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Abstract

This work explores the adaptation of mobile code during runtime. There are various aspects to
adaptation. Especially mobile agents are faced with changing environments because of traveling in
heterogeneous networks. The focus of this work are dynamic re-configuration, context awareness
and the architecture of a repository serving exchangeable parts to the mobile code. Results from
the implementation of a prototype show that dynamic adaptation can reduce programming effort
for mobile code in heterogeneous environments. Furthermore it makes mobile code more efficient
in terms of bandwidth and enhances its scalability.
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Chapter 1

Introduction

Today’s computer networks have complex and heterogeneous structures due to their drastically
increased size.

Mobile code seems to be a promising technology which utilizes the advantages and overcomes
some disadvantages of such an infrastructure. The motivation for mobile code is to move code to
data sources instead of the vice verse.

[LO98] gives a short overview of advantages offered by a special form of mobile code, mobile
agents. Mobile agents can reduce network traffic because the communication between program
and data is done through local interfaces. The local communication also overcomes communication
latency, which can enhance performance especially if a big amount of data is exchanged. Another
merit of mobile agents is the flexibility to update or to modify protocols. If a protocol layer is
only updated or modified on the local host, but not on the remote host, a mobile agent can be
sent to the remote host as mediator between the incompatible parties.

Mobile agents enable an application to execute code autonomously. After moving code over
the network and initiation of the computation, the connection to the source application can be
released and the mobile code continues to execute its task.

This property can make a distributed software system more robust and fault-tolerant, because
the potential negative effect of poor links with low bandwidth and low reliability is reduced.

1.1 Mobile Code

Mobile code appears in many shapes: as Postscript documents executed on the printer [Ado85],
Java applets used for animated and interactive web pages [Fla97] and complex mobile agents
executing important network management tasks [Ple99].

The purpose of this section is to define the term mobile code and to give an overview of
technologies and concepts used in the area of mobile code. Definition of terms and differentiations
in this section are based on [FPV98].

In traditional distributed systems, i.e. systems which do not rely on code mobility, the exe-
cutable parts reside in a computational environment during their entire lifetimes. In distributed
systems following the mobile code paradigm, the executable parts can be moved between compu-
tational environments.

The main aspects of mobile code are: mobility mechanisms, design paradigms and application
domains.

The mobility mechanism enables an application to move executable code between computa-
tional environments. The design paradigm benefits from the mobility mechanisms and describe
concepts of distributed applications which rely on mobile code. Where mobile code is useful and
improves distributed application performance is covered by the section on application domains.

2



1.1. MOBILE CODE 3

1.1.1 Mobility Mechanisms

This section introduces various technologies which enable an application to exploit mobile code.
Executable parts as they are used in traditional distributed applications include the executing
unit, the sequential flow of computation and the data space, which contains references to resources
managed by the local computational environment. The mobility of the executing unit is dealed
within the first part of this section. Handling data space is addressed in the second part.

Mobility of Code and Execution State

An executing unit consists of the code and the state of the current computation. The executing
state comprises private data and control information, e.g. stack call, instruction pointer.

If both code and execution state are moved to a new computational environment, the mobility
mechanism is called strong mobility. Weak mobility represents the transfer of code with some
initialization data without recreation of the execution state.

Strong mobility is either realized by migration or by remote cloning. For migration the execut-
ing unit is suspended and after the transfer of code to the new computational environment, the
executing unit is resumed. Remote cloning differs from migration, because it does not detach the
original executing unit from its current computational environment.

Weak mobility differes in the direction in which the code moves, the nature of the code, the
synchronization and the point of time when the code is actually executed. The direction can either
be to the executing unit, fetch, or from the executing unit to a computational environment, ship.
The code is either stand-alone or only a fragment. Whether the weak mobility is synchronous or
asynchronous depends on whether the executing unit moving the code, blocks until the moved
code is executed or not. After the move to a new computational environment the code is executed
immediately or deferred.

Data Space Management

The executing code references resources managed by the local computational environment. If the
executing code is moved, the bindings to the resources must be modified in a such way that the
moved code holds valid references in the new computational environment. The resources can be
split into transferable and non transferable resources. For instance, a byte string is transferable,
but a resource of the type printer is not transferable by the mobility mechanism. Transferable
resources are furthermore either free or fixed. Though a huge file is transferable it is not desirable
by the application because of performance reasons.

Apart from the nature of resources it is also important how the resources are bound to the
executing unit. Fugetta et al. [FPV98] describe three kinds of bindings: by identifier, by value
and by type.

The strongest binding is the binding by identifier. The executing unit references by identifier an
uniquely identified resource. This binding type is used for resources which cannot be substituted
by other equivalent resources. If the executing unit moves to a new computational environment
the resource, can be moved with the executing unit, presumed that the resource is transferable
and free. If the resource can not be re-allocated in the new computational environment, a network
reference mechanism must be used. The resource is not moved along with the executing unit. The
executing unit holds a reference which points to the resource in the old computational environment.
Network references imply that the data space is distributed over the network and complicate the
management of state consistency.

If other executing units reference a resource and the by move mechanism is exploited, network
references must be assigned to the resting executing units. The removal of bindings of resting
executing units which reference moved resources leads to undesirable exceptions if the resting
executing unit access the void reference.

If a resource is bound by value to the executing environment, the most convenient mechanism
of data space management is by copy. The value of the resource is copied to the computational
environment. An alternative is the data space management by move, as described for bindings
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by identifier. It may also be applied, but especially if a resource is referenced by more than one
executing units, network references must be assigned to the remaining executing units with the
drawback of the distributed data space.

synchronous
asynchronous

deferred
immediate

stand-alone
code

code fragment synchronous
asynchronous

deferred
immediate

synchronous
asynchronous

deferred
immediate

stand-alone
code

code fragment synchronous
asynchronous

deferred
immediate

management
strong mobility migration

remote cloning

code shippingweak mobility

code fetching

data space
management

code and execution statemobility
mechanisms

binding removal

network reference

re-binding

by copy

by move

Figure 1.1: Classification of mobility mechanisms [FPV98]

The weakest binding is the binding by type. The executing unit needs a resource of a specific
type, no matter which identity or value it has. In this case it is sufficient for the data space
management to re-bind. The problem of re-binding is the resource reallocation that may fail if no
resource with an appropriate type is available in the new computational environment.

Figure 1.1 illustrates the classification of technologies for mobile code. The different architec-
tures which utilize these mobility mechanisms are described in the following section.

1.1.2 Design Paradigms

The common characteristic of architectures deploying mobile code is the distribution of know-how
(code) and resources (data) over sites, i.e. representation of location. Another aspect deals with
the computational component which triggers the execution of the know-how.

Remote Evaluation

In the paradigm of remote evaluation a computational component A has the know-how in order
to execute the task, but it lacks the necessary resources, which are suited on a different site.
The computational component A therefore sends the know-how to a computational component
B, which resides on the same site as the resource, needed to fulfill the task. The computational
component B executes the task using the know-how received from A. The results of the task are
delivered back to A.

Code on Demand

In the code on demand paradigm, the computational component A has local access to the resources,
but does not know how to execute the task. Thus, it contacts a computational component B on a
different site, which provides the know-how. The component A loads the know-how from B and
executes the task locally.
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Mobile Agent

The mobile agent paradigm is applied to a similar scenario as the remote evaluation, where the
resources reside on a different site than the computational component A. The idea of the mobile
agent paradigm is to send the entire computational component A to the remote site and not
only the know-how. In contrast to the remote evaluation paradigm the mobile agent paradigm
does not presume a computational component B residing on the same site as the resources for
execution of the know-how. The mobile agent paradigm differs from the remote evaluation and the
code on demand paradigms concerning the movement of an existing and running computational
component.

1.1.3 Application Domains

After the presentation of mobility mechanisms and architectures of mobile code, this section gives
an overview of application domains for mobile code.

A potential application of the mobile agent paradigm is the scenario of distributed information
retrieval, where a small subset of data must be selected from a big superset of data distributed over
a set of hosts. In all traditional client-server architecture the whole superset must be moved over
the network to the computational component, that executes the selection. When deploying mobile
agents the computation is executed close to the information base, which avoids the communication
over the network for the selection. The mobile agent transports over the network only the small
subset of data selected out of the information base.

A wide spread form of mobile code is the enhancement of electronic documents for interactivity
and presentation effects, like web pages or e-mail. It enables the local execution of programs that
are associated with the document. For instance, user inputs can be locally evaluated and improve
the interactivity of the document. The usual paradigm used for this scenario is code on demand.
E.g. WWW technologies and Java applets offer the necessary mechanism for active documents.

Another scenario which is interesting for the deployment of mobile code is the remote control
of devices, e.g. network management. Especially the monitoring where the status of devices are
checked by continuous polling may generate considerable network traffic and may cause other
problems in a traditional client-server architecture. The alternative is to move the monitoring
functionality to the devices and to fire events reporting about the state of the devices.

In the area of work flow management systems activities can be mapped on mobile compo-
nents. The mobile components circulate through all participating entities which are involved in
the work flow. The mobile components which encapsulate documents can control access rights to
the document and the revision status of the document.

Active networks may be considered as another application of mobile code [TSS+97]. It is
used to manage the network through the traffic itself. There exist basically two approaches: the
programmable switch and the capsule. The programmable switch conforms with the code on
demand approach, where the node loads executable code for extended functionality. The capsule
approach embeds the executable code into the packets. The embedded code is executed at every
node which is passed by the packet.

In the scope of electronic commerce mobile code helps to customize the behavior of participating
parties by encapsulation of protocols. It also supports moving mobile agents in order to operate
close to the information base or to other mobile agents participating at the negotiations, e.g. in a
virtual marketplace.

1.2 Motivation for Adaptation

1.2.1 Situation

Mobile code is faced with the problem of heterogeneous hosts. Hosts differ in hard- and software
configuration. A first approach is a common base on every host, that provides a homogeneous
computational environment to the mobile code, e.g. Java [LY99]. The homogeneous interface
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of the computational environment is achieved by abstraction from the environment-dependent
details. For instance, Java abstracts the file system and offers a platform independent API for
accessing its resources. Because platforms strongly differ it is not possible to abstract the entire
functionality, which constrains the abstraction to a subset of what is available. The approach of
abstraction works fine as long as the highest common denominator is sufficient to the application.
If the demands of the application can not be satisfied by the platform independent computational
environment, it is necessary to add environment dependent implementations to the application.
The application has to decide when to use the right implementation.

1.2.2 Static Customization

The general way to do that might be an if-then-else construct with conditional branches, which
are interchangeably executed depending on the environment. The common computational envi-
ronment is still necessary for the bootstrapping of the mobile code. This solution is denoted in
this work as static customization.

Under certain conditions this solution is not very efficient. Code is moved over the network,
which is perhaps used rarely. If a mobile agent for example has to execute its task on hundreds
of hosts and ten of them afford a special implementation, which might be rather big, it is not
efficient to move the big implementation along the whole route.

1.2.3 Dynamic Adaptation

The intention is to enable the mobile code to move with a small core part which is environment
independent through the net and to add dynamically, i.e. without termination, environment de-
pendent implementation for the particular environments only. The environment is assumed to be
static for the runtime of the mobile code on a host. A change of the environment occurs only if

adaptation

core

migration of mobile code to new host

code
mobile

X Y

environment A environment B

adaptable parts (gray areas)

Figure 1.2: Dynamic adaptation overview

the mobile code moves to a different host. The decision which implementation must be used is
done without a prior knowledge of the environment of the host.

The mobile code is split into an environment-independent non-adaptable core part and an
environment-dependent adaptable part. With dynamic adaptation only code is moved over the
network when it is actually needed.

The input of dynamic adaptation is a set of environment dependent implementations (X,Y ),
a mobile core application and an environment. The result of dynamic adaptation is the selection
of the right implementation for the environment and the linking of the selected implementation
into the core application. This is also depicted in figure 1.2.
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time

code

movement of code

Figure 1.3: Event and object of dynamic adaptation

The trigger for dynamic adaptation is the movement of code. If the mobile code moves to a
new host, the dynamic adaptation procedure is initiated. (s. fig. 1.3).

The objects of dynamic adaptation are code fragments, which are exchanged (s. fig. 1.3).

1.3 Scenarios

The deployment of mobile code in the area of network management is a promising approach
[FKK99], [GFP99],[BPW98], [MKKM98]. As described at the beginning of the chapter, today’s
computer networks are heterogeneous and thus network management has to deal with managing
heterogeneous devices. Even when using platform-independent technologies, e.g. Java, the device
properties can differ so strongly that it is necessary to apply implementations which are tailored for
specific classes of devices only and packed altogether to support a broad spectrum of environments.
For instance, the configuration of network elements by Java technology affords to deal with a
variety of device sizes apart from producer specific interfaces. Enhanced PC’s serving as routers
offer the full functionality as provided by a standard JVM, in contrast to specific router devices
which do not offer the execution of Java programs. Though small ipEngines [Bri98] support
common operating systems and the execution of Java programs in a JVM, the available resources
in terms of memory are very limited and special version of Java programs are necessary.

Another common scenario can be found in the world of Java applets. Different configurations
of browsers, which provide the JVM for the applet, support different Java versions and different
set of pre-installed Java packages. This leads to incompatible Java applets, if the user does not
interact and add necessary Java packages, e.g. Swing packages. The instrumentation of an applet
with all necessary packages, which could miss for the execution, is undesirable because of long
loading times and inefficient usage of bandwidth. Dynamic adaptation offers an alternative by
small applets which can be loaded and executed by every browser, and triggers the loading of
additional packages or classes if needed. For example, if swing packages are missing it can switch
to a GUI based on the traditional Java AWT.

A third scenario which also belongs to the field of network management, deals with the config-
uration of applications by mobile code. A set of applications is installed on hosts using different
operating systems and cpu architectures. The configuration of the application depends on the sys-
tem parameters of the host. In a mobile code architecture which does not rely on adaptation, it is
either necessary to know the exact hard- and software configuration of every host, which affords
complex administration and maintenance, or code for all possible configuration is packed together
and sent to the hosts, which means long latency and network traffic that could be avoided. The
configuration of a network browser which is selected as the application example for such a sce-
nario for illustration purposes in this work. It is also taken as example application of the prototype
implementation, which will be described in chapter 2.
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1.4 Problem Statement

The goal of this thesis is a concept for the development of mobile code using dynamic adaptation.
The concept provides guidance for the programmer to deploy adaptation to its application and it
offers a framework architecture which supports the detection of the environment. The framework
includes a description and selection mechanism for choosing the right implementation in an en-
vironment. Furthermore the framework offers the technology for loading environment dependent
implementations from a repository. The presented concepts are implemented as a prototype in
order to show that dynamic adaptation enhances mobile code as described in this chapter.

The following chapter gives an overview over the state-of-the-art in adaptation and evaluates
various concepts as potential solutions for dynamic adaptation of mobile code. For the evaluation
of the known adaptation mechanisms a list of requirements is set up. In chapter 3 the proposed
methodology will be presented and the implementation of the proposed methodology. Chapter 4
evaluates the proposed methodology and the implementation according to the requirements as set
up in chapter 2. The conclusion of this work and ideas for future work are the contents of the
chapter 5.



Chapter 2

State-of-the-Art in Adaptation

This chapter gives a survey over a some existing adaptation techniques. In literature the term
adaptation is used to express different things. Therefore, the chapter starts with a classification
of the different meanings of adaptation. It continues with the definition of requirements for
dynamic adaptation as addressed by this work. The chapter will be concluded with a survey of
known adaptation techniques towards their applicability for the problems of dynamic adaptation
as considered in the scope of this thesis.

2.1 Adaptation in Literature

Adaptation techniques as found in literature are used within different contexts. Thus, the objec-
tives, which are addressed, are different and the methodologies differ in order to meet the targets.

2.1.1 Static Adaptation

The reuse of code is a field where adaptation is applied. This kind of adaptation is here denoted as
static adaptation. One of the benefits of component based software engineering (CBSE) is the reuse
of existing code respective components. The goal is to reduce programming to the composition
of components. Even if components are available for every functionality, it is probable that not
every component fits together with another component or into an application. The reasons for
that can e.g. be syntactical incompatibility or semantic differences of the interfaces. In order to
use incompatible components static adaptation can be used to modify the incompatible parts of
code in such a way that they fit together.

Static adaptation differs from dynamic adaptation – as defined in section 1.2.3 – by two cri-
teria. One criterion is the point of time when adaptation is executed. For static adaptation it is
sufficient when the adapted code is available at compilation time and remains unchanged during
the runtime of the application. In contrast dynamic adaptation is executed without termination
of the application.

The other criterion is the nature of the adaptation function. Static adaptation gets a component
C as input. The output is the modified component C ′ which fits into the designated application
(s. figure 2.1). This differs from dynamic adaptation (s. section 1.2.3), where adaptation means
the exchange of components, e.g. X and Y (s. figure 1.2), depending on the environment.

2.1.2 Continuous Adaptation

For some applications it is important to be able to react to changes of the resources in order to
provide a reasonable service even with low resources. For instance, multimedia applications which
use unreliable connections, e.g. wireless communication, Internet, must modify the representation
of data according to the conditions of the network in order to deliver usable results. Changes
of the resource conditions may occur without following a certain pattern or any other regularity.

9
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component C

use
component

adaptation

component C’

component based application

Figure 2.1: Static adaptation

The modification of the application is done by tuning of parameters. Such modifications are here
denoted as continuous adaptation. The triggers for the continuous adaptation are not discrete
events as for dynamic adaptation, but continuously changing conditions of resources.

time

parameter

Figure 2.2: Continuous adaptation

For continuous adaptation the resources are monitored and the adaptation process initiated
as the resource conditions change. The result of the continuous adaptation is the modification of
parameters (s. figure 2.2).

Though static adaptation and continuous adaptation differ concerning the objective and in the
realization they share some problems with dynamic adaptation and will therefore be evaluated in
this chapter. For the evaluation a list of requirements is specified in the following section.

2.2 Requirements

From the goal of this thesis (s. section 1.4) a generic and abstract architecture with main elements
as shown in figure 1.2 can be derived. The term adaptable parts (grey areas in fig. 1.2) is a general
expression and stands for components, modules, objects, methods, byte code, etc. depending
on the granularity of the adaptation mechanism and the software technology of the mobile code
(e.g. component model, object oriented). These adaptable parts docked into the core together
form the whole mobile code. The core consists of non-adaptable parts and provides the interface
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for the adaptable parts. It is used to bootstrap the adaptation mechanism for a particular piece
of adaptation software. In the following adaptable methods are used to describe methods which
build adaptable parts themselves or are contained in adaptable parts, e.g. classes.

From this architecture and the objective target to support application programmers to develop
adaptable mobile code following classes of requirements can be derived:

1. requirements concerning the overhead effort necessary for programming adaptable mobile
code that fits into a generic adaptation framework

2. requirements concerning the interaction between core and adaptation framework

3. requirements concerning the costs of running adaptable mobile code (bandwidth, CPU usage,
runtime, etc.)

These classes of requirements are explained in more detail in the following subsections. Each
requirement is labeled with an acronym R<requirement number> for further reference in the
survey. A summary of all requirements can be found in table 2.1.

2.2.1 Programming Overhead: R1-R4

The programming overhead is a very critical point in terms of convincing a programmer to use
dynamic adaptation instead of traditional solutions, e.g. conditional branches (s. section 1.2),
which covers all known environments.

R1 The integration of the adaptable parts into the core should be possible without any meta lan-
guage, specifying any interfaces or dependencies of adaptable parts. The same programming
language which is used for the rest of the mobile code should be applied for the adaptable
parts, to specify their environmental conditions and to put together the whole mobile code.

It does not forbid the deployment of different programming languages in the application, but
the code fragments where adaptable parts are used, should not imply special tags or other
markers that are not conform with the syntax of the language of the surrounding program
code.

The reason for this rule is the kind of compilers, syntax checkers, visualization tools, etc.
which are used to develop the mobile code. Only tools for common languages should be
necessary and reduce the effort for installing and maintaining the programming environment.

R2 The second requirement improving the convenience for the application programmer is a
qualitative requirement: minimal increase of “lines of code”. This demand emerges from
the direct comparison of an implementation using dynamic adaptation and an traditional
implementation providing support for different environments (s. section 1.2). Another unit
of measurement could be the number of classes, if an object-oriented (OO) language is used.

R3 Support for easy maintenance can be achieved by a compact and integrated structure of the
additional information needed for adaptation. Such information contains the description of
environments and the environmental condition of adaptable parts.

R4 An assistance to the application programmer and an increase of stability of the mobile code
is the indication and elimination of errors due to adaptation already at compilation time.
Following conditions should be ensured by compilation:

– fitting interface between core and adaptable parts
– type safe invocation of adaptable methods
– validity of environmental condition for adaptable parts

The last requirement is an ill-defined requirement because it depends on the architecture of
the adaptation mechanism which determines the kind of faults that can occur and therefore
should be checked at compilation.
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These requirements may not guarantee a more sophisticated way to program mobile code which
must handle different environments but they guarantee at least, that the effort for using dynamic
adaptation is not noticeable higher than for the traditional method (s. section 1.2). Beside the
aspect of pure programming techniques it is also important to look at the interaction between the
core and the adaptation mechanism.

2.2.2 Interaction between Core and Adaptation Mechanism: R5-R10

If mobile code uses adaptation, one interesting question is: How much does the core (s. section
2.2) have to know about the fact that adaptation is used? The most desirable answer would be:
Nothing. That means that the core does not have to worry e.g. when to trigger adaptation, how to
handle any faults during adaptation or to care for linking any adaptable parts: full transparency
of adaptation. The following requirements build a basic set to get towards full transparency.

R5 As defined in section 1.2.3 the mobile code must not be terminated for the adaptation.

R6 Another requirement in order to get more transparency is the demand for minimal impact
on the characteristics of the mobile code. E.g. if the adaptation mechanism would strongly
rely on a central server, it would loose its autonomy, an important characteristic of mobile
code.

R7 The initiation of the adaptation should not be task of the core. The adaptation mechanism
must be able to notice itself when it is necessary to reconfigure the mobile code.

R8 This requirement which may overlap with the former is the demand for linking adaptable
parts without participation by the core. If the mobile code is being adapted, parts perhaps
defined as modules, components, objects or other other kind of units must be exchanged.
From where they are loaded, e.g. over the network or from a specific directory, and how they
are linked into the running core should not be mixed up with the task of e.g. performing
configuration management and executing a specific task.

Method invocation on adaptable mobile code should not differ from standard method calls.

R9 There should be no special syntax required for calling a method offered by an adaptable
part.

R10 Also the semantic (R10) of the method must simulate the invocation of a non-adaptable
method. In distributed environments, like CORBA [OH98] or Java RMI [Sun99], a similar
problem occurs. The handling of remote objects is hidden to the application by local stubs,
which encapsulate the communication with the server.

The requirement of the standard syntax used for adaptable method calls overlaps particularly
with requirements R1-R4, which concern the programming language and syntax for implementing
adaptable mobile code.

After considerations concerning programming effort and transparency the following topic spec-
ifies some demands concerning the influence of adaptation on the performance of the mobile code.

2.2.3 Runtime Overhead: R11-R13

One of the advantages of adaptation is the potentially reduced size of code which must be shipped
over the network. This gain of bandwidth and loading time must not be wasted by an expensive
adaptation mechanism.

R11 Therefore a fundamental requirement is to demand that the size of the binary resources of the
core and of an adaptable part (worst case: the biggest) including the adaptation mechanism
is smaller than the binaries of a comparable monolithic application. Obviously, this needs
to be considered in relation to the overall size and to the execution time of the code. This
requirement supports the argument of saved bandwidth when using adaptation.
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requirement class requirement acronym
no meta language for adaptation R1
source code overhead R2programming effort
integrated solution R3
high error detection during compilation R4

adaptation without termination R5
minimal effect on mobile code semantics R6

interaction between automatic initiation of adaptation R7
core and adaptation automatic linking of parts R8

standard syntax for adaptable methods R9
transparent method call R10

smaller size than monolithic application R11
runtime overhead low time for re-configuration R12

low time for invocation of adaptable methods R13

Table 2.1: Summary of requirements

R12 The second requirement enforcing minimal overhead is fast loading of adaptable parts and
re-configuration of the mobile code.

R13 Considerations on runtime overhead must also include the time needed for the invocation of
adaptable methods. If this is noticeably high, e.g. in relation to the runtime of the method,
the adaptation mechanism has a negative impact on the performance of the mobile code.

2.2.4 Deployment of Requirements

The listed requirements differ in the way they can be deployed for an evaluation of adaptation
mechanisms. Some requirements allow a well-defined validation, e.g. R1 - yes it does use a meta
language or no, it does not-, others help to compare two concepts by doing measurements, e.g. R11-
R13, but others allow only a qualitative evaluation of a concept, e.g. R4, which requires high error
detection during runtime. Such a requirement can only be deployed by discussing the concept
under the aspect of the requirement, but an exact judgment is not possible.

2.3 Survey of techniques

As mentioned in section 2.1 the known adaptation mechanisms can be classified into dynamic
adaptation, static adaptation and continuous adaptation. Though most of the found mechanisms
are not mechanisms for dynamic adaptation, it is worth to evaluate some of them and to analyse
if parts can be used for dynamic adaptation.

2.3.1 Static Adaptation

In [Hei99] a collection and evaluation of component adaptation mechanisms is presented. They
can all be classified as members of the static adaptation category. The main problem that static
adaptation mechanisms are not usable for dynamic adaptation is the adaptation at compilation
time.

Binary Component Adaptation

The Binary Component Adaptation (BCA) [KH98] shifts parts of the adaptation from the compi-
lation time towards the runtime.
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The BCA mechanism applies adaptation to classes. Attributes, methods and modifiers of
classes can be removed, added or changed without needing to access the source code. The modifi-
cations are specified in an adaptation file which is compiled into a binary delta file. The delta file
is then being merged with the original binary resources during loading and adapted binary code
is produced. Keller et al. used the Java technology for the implementation of their prototype.
The heart of the BCA technique is a modified class loader. The original procedure of class loading

Java compiler

source code

runtime

compiletime

interpreter JIT

runtime system

binary Java code

class file

modifier

class loader

verifier

adaptation

delta file compiler

delta file

Figure 2.3: Procedure of class loading in BCA

[LY99] is extended by a modifier and a delta file compiler (s. fig. 2.3). In the original procedure a
class file is loaded by the class loader and translated into an internal representation. The internal
representation is then checked by the verifier to guarantee that no JVM rules are violated. In the
modified procedure the BCA modifier is inserted between class loader and verifier. The modifier
takes a class in the internal representation from the class loader and adapts the class according to
the specification in the binary delta file. The delta file was generated from the adaptation file. In
the adaptation file the programmer can define the modifications on a class in a syntax similar to
Java. For example if the programmer wants to add an interface Printable and an implementation
of a method print(String msg) as defined in the interface to a class A, the adaptation file would
look as follows:

delta class A {

add interface Printable;

add method public void print(String msg){

System.out.println(msg);

}

}

After the modification of the loaded class file it is passed to the verifier and executed by the
interpreter or a just-in-time compiler (JIT).

Though BCA offers adaptation not only at compilation time, but also at load time – as imposed
by R5 – in its original from it is not suitable for dynamic adaptation. It assumes that there is
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at maximum one delta file for a class file and does not provide any functionality to perform a
environment specific selection of a delta file out of a set of delta files.

Load-Time Adaptation

Load-Time Adaptation (LTA) [DH88] uses a similar approach as BCA. The class files are modified
at load time. The specialty of LTA is the point where the loading process is interrupted and
adaptation is executed. BCA is implemented as a customized class loader, but LTA acts on a lower
level in order to keep the loading process between virtual machine and application untouched. The
intention is to redirect the operations on the class file, e.g. read(), open(), close().

The redirection of system calls is neglected because modifications of the operating system are
hard to port to various platforms. The solution as proposed by [DH88] is to modify the dynamic
library, which provides the functionality for operations on the file system. The modified library
accesses the file system via system calls and performs an adaptation of the class files if necessary.
This approach hides the adaptation process to the application and to the virtual machine, but
supports porting the modified dynamic libraries to various platforms, because it uses only non-OS
dependent functionality.

This LTA adaptation mechanism suffers on the same lack as BCA: the missing support for an
environment dependent adaptation.

MetaJava

The adaptation of runtime mechanisms is discussed in [GK97] and a platform for adaptable operat-
ing system mechanisms, called MetaJava, is presented. MetaJava provides reflection for controlling
the execution environment of an application. The behavioral reflection is different from the Java
Reflection which is denoted in [GK97] as structural reflection. Another aspect of MetaJava is
the separation of functional code and non-functional code, called metaprogramming. The func-
tional code, which concerns the computation of the application, resides in the base level and the
non-functional code, which controls objects in the base level, resides in the meta level (s. fig. 2.4).

M1 M3

M2

B

A

reflection reification (events)

meta level

base level

Figure 2.4: Behavioral reflection and reification

Whereas in traditional systems ad hoc extensions of the programming language support multi-
ple threading, distribution, fault tolerance, mobile objects, etc., MetaJava hides such functionality
in the meta level.

For instance, Java supports the programming of multi threads or Remote Method Invocation,
but the programming is done on the same level as the programming of the application task which
might be independent from the thread management or object distribution.

For triggering the meta level reification is necessary. Reification is defined in [GK97] as “the
process of making something explicit that is normally not part of the language or programming
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model”. The reification is realized using events that are raised by the base level and delivered to
the meta level. For using the meta level a meta object must be attached to an object in the base
level. Meta objects can be attached to references, objects and classes.

An application for MetaJava is for example a special type of remote method invocation where
instead of the Java build-in RMI package a proprietary mechanism implements remote method
invocation over a proprietary protocol stack.

If a method of a remote object is called, an event of the local method call of the proxy object
is delivered to the attached meta object. The meta object then propagates the method invocation
to the server.

In the context of adaptation an event for class loading might be used in order to initiate the
adaptation mechanism and to select the right class for the current environment.

For the integration of MetaJava a modified Java Virtual Machine (JVM), the MetaJava Java
Virtual Machine (MJVM), is used. The MJVM uses the same class file format and byte code set
as the JVM, but provides a meta-level interface (MLI) permitting the meta objects to access the
internal state of the virtual machine.

This implementation implies that the deployment of MetaJava based applications is constrained
to hosts on which a MJVM is installed.

MetaJava could provide the architecture for a dynamic adaptation mechanism. The adaptation
is executed in the meta level hidden to the application. But the constraint of a MJVM contradicts
especially in particular requirement R6 because the assumption to install everywhere a MJVM
limits the radius of the mobile code to such configured environments. The dynamic adaptation
would limit the mobility of the code. Therefore MetaJava seems not to be the best technology for
dynamic adaptation.

2.3.2 Dynamic Adaptation

LEAD

In [AW97] a language for dynamically adaptable applications is presented. LEAD is a methodology
of the field of dynamic adaptation. The granularity of LEAD is a procedure. LEAD enables
applications to select the right implementation according to the current environment from a set
of available procedure implementations for various environments. In LEAD such an adaptable
procedure is called generic procedure call and an environment specific implementation for this
generic procedure call is named method. The static (non-adaptable) part of a program is the
base-level which calls generic procedures in the meta-level. LEAD consists of the following parts:

1. a new programming language, which supports the definition of generic procedure calls and
associated methods

2. a runtime system, which selects the appropriate method for a generic procedure call

If the runtime system in the meta-level receives a generic procedure call from the application,
it obtains the information about the current environment from the OS, evaluates the information
based on a built-in adaptation strategy and selects the suitable method. The method is sent back
to the application and executed on the base-level.

The runtime system can detect changes in the environment and informs the application by
asynchronous events. Generic procedure calls are associated with those events and enable the
application to react on a changed environment. The environment is described by environmen-
tal elements which are an abstraction of the environment. LEAD provides a fixed set of basic
environmental elements:

environmental element property
network represents network connectivity
memory free memory size
display display size
power power source type
battery battery remainder
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A function is associated with each environmental element and is executed by the runtime
system determining the state of the environmental element. Based on the built-in elements new
environmental elements can be constructed on a higher abstraction level.

The definition of a method contains a list of conditions referring to states of environmental
elements. The list is evaluated by the runtime system and the result of the evaluation determines
the selection of the method.

How the list of conditions is evaluated is defined by the adaptation strategy. The goal of the
evaluation is to determine a suitable method for the environment. By default the simple strategy
is applied which evaluates the condition list with AND and ORs. If this strategy fails, the priority
strategy is applied, which evaluates the conditions according to the priorities associated with them.

The LEAD approach can not fulfill two requirements defined in section 2.2. The require-
ment R1 which interdicts a meta language for dynamic adaptation is violated by LEAD. LEAD
presents an extension of Scheme in order to define adaptable procedures. This would involve a
new programming language into the development of an application for using adaptation.

The second violation of a requirement is a consequence of the first. The definition of adaptable
procedures as string variables in Scheme, prevents that the adaptable methods are syntax-checked
during compilation time and runtime errors may occur during their interpretation at runtime. The
purpose of R4 is to avoid such a situation.

Due to the listed reasons it is not desirable to use LEAD for dynamic adaptation.

2.3.3 Continuous Adaptation

Continuous adaptation is merely interesting for mobile devices, which are faced with a contin-
uous changing environment. The main focus of continuous adaptation is the detection of the
current environment and the propagation of environment changes to the application. The actual
modification of the application’s behavior is mostly limited to resetting the parameters.

In [STW92] the environment dependent parameters are managed by dynamic environment
servers. If an application is interested in the parameters of a dynamic environment server, it must
subscribe to the server. For the communication between the application and the server RPC is
used. The application can retrieve parameters from the server, but the server can also notify the
application by callbacks about changes in the environment.

[Nob00] presents a scenario, where a small personal digital assistant (PDA) guides tourists
through a museum or a city delivering multimedia information about touristic attractions. The
PDA must handle changing bandwidth and be aware about the tourist’s location in order to present
the interesting information of the location. The focus of [Nob00] is to decide whether the adapta-
tion is executed by the application, called laissez-faire application. If the adaptation is triggered
by the operating system, the adaptation is called application-transparent system. The application
has the knowledge, which amount of resources is necessary, whereas the operating system has
an overview of the running applications and can manage the shared resources. The conclusion
of [Nob00] is a collaboration of operating system and application, denoted as application-aware
collaboration. The collaboration is realized as an adaptive decision loop in the application. Inside
the loop the application selects the data quality and requests the according resources. The appli-
cation is informed by the operating system about changes of the resources. After notification the
application selects a new data quality and redefines its resource requests.

A similar scenario is presented in [ADOB98]. The work presented in this section deals with
different problems involved in manipulating parameters than dynamic adaptation which exchanges
executable code. The common object of continuous adaptation and dynamic adaptation is the
detection of the environment in order to determine the right adaptation. The information retrieval
from the environment is based on application specific sensors, like active badges [WHFG92], and
not on generic properties of the hard- and software configuration, as targeted by this work.
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2.4 Conclusion

Besides dynamic adaptation as defined in section 1.2.3, static adaptation and continuous adapta-
tion can be found in literature. Both forms have different objectives than dynamic adaptation.
The main reasons that methodologies for static adaptation can not be used for dynamic adaptation
are:

• the time of adaptation, which is at compilation

• the missing concept for the environment detection

Though continuous adaptation is providing a functionality for inspecting the environment the
methodologies are not suitable as a whole because of

• application specific sensors

• modification of parameters instead of code

The consequence of this considerations is the necessity to develop an own methodology inte-
grating the exchange of code during runtime and the detection of the environment flexible for all
kinds of properties concerning the hard- and software configuration of a host.



Chapter 3

Proposed Methodology of
Adaptation

Since the evaluation of chapter 2 concludes that none of the currently known adaptation techniques
meet the requirements, a new and specifically tailored methodology will be developed in this
chapter. For illustration purposes an example is introduced in the first section, which will be
referred to throughout the remaining chapter.

3.1 Example: Browser Configuration

The background of the example is a simple configuration management architecture using mobile
agents, as a special form of mobile code (s. section 1.1.2), based on Java technology for executing
tasks in intranets.

The term mobile agent is used to denote executable code which migrates to different execution
environments to perform its tasks. The work does not rely on other specific aspects of mobile
agents for this particular application.

Every host which supports the management architecture has an agent system running serving
as a common platform for agents. Objectspace Voyager [Obj00] is used as mobile agent platform.
The primitive agents are initialized with a list of hosts and move from one host in the list to
the next to locally execute their task. After execution of the task on the last host, the agents
terminate. The configuration procedure must set the size of the disk cache and the memory cache
of the browser. The setting of these parameters must be system dependent in order to get the
optimal cache size, hence the opportunity for code adaptation to fit to local circumstances.

The example agents are programmed to set the size of the disk and the memory cache to
a reasonable percentage, e.g. 10%, of the free disk space for the disk cache and of the physical
memory for the memory cache.

The agents must support various CPU architectures and operating system configurations,
e.g. Windows NT/x86, Linux/x86, AIX/PowerPC, etc. and different web browser types,
e.g. Netscape Communicator, Microsoft Internet Explorer, Lynx. The access to system informa-
tion, like physical memory size and free disk space, is in most cases not provided by Java functions
and must be implemented in platform dependent functions. Even if the configuration files for
the browsers are in text format and accessible by platform independent Java APIs, e.g. Netscape,
Lynx, there are still the syntactical differences between the configuration files of different browsers.

The support of different platforms and applications and the lack of standardized interfaces
for this task forces the agent programmer to instrument the agent with various implementation
variants for various platforms and browser types. As pointed out earlier, this could result in
an implementation that uses static customization (s. section 1.2.2) for choosing between different
forms of behavior. To motivate the adaptation framework presented in this work, a more advanced
solution is however assumed in the following based on code adaptation.

19
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The collection of system information and the configuration of the browser is e.g. done in the
function configBrowserCache(int,int) that may look as presented in in figure 3.1, for a non-
adaptable program.

public void configBrowserCache(int diskCachePercent, int memCachePercent){
int memSize = m_memory.getPhysicalMemorySize();
int freeDiskSpace = m_harddisk.getFreeDiskSpace();
int totalDiskSpace = m_harddisk.getTotalDiskSpace();

m_configuration.setDiskCache(diskCachePercent,
freeDiskSpace);

int cacheMemSize = (memSize * memCachePercent)/100;
m_configuration.setMemoryCache(cacheMemSize);

}

Figure 3.1: Non-adaptable version of configBrowserCache

Assuming that methods implemented by the object m memory of the class Memory reads the size
of the physical memory, the object m harddisk of the class Harddisk reads the size of free disk
space and the size of total disk space. The configuration of the browser is done by m configuration
of class Configuration. The objects m memory, m harddisk and m configuration are member
variables and therefore marked by convention with the prefix m .

The classes Memory, Harddisk and Configuration or some of their methods must
be implemented in different ways and using different technologies. E.g. for Linux the
getPhysicalMemorySize() functions can be implemented in pure Java reading the text file
meminfo in the /proc file system, in contrast to a Windows environment, where either a na-
tive diagnostic tool or a C function of the Win32 API must be used instead. The C functions can
be embedded into the Java code by using the Java Native Interface (JNI) [Lia99].

Before the various aspects of adaptation are discussed, a short overview of adaptation will be
presented in the following section.

3.2 Overview

The main elements which are involved in adaptation are the environment, the core with its adapt-
able parts and the adaptation framework (s. fig. 3.2). The environment are the hard- and software
configuration of a host or any other static properties. Static properties means in this context, that
the properties do not change during the runtime of the mobile code. Examples for such properties
might be the CPU architecture, operating system, default web browser, etc..

The core is the non-adaptable part of the mobile code. Note that its existence is a necessary
boundary condition, since adaptation has to start from a well-defined state. The non-adaptable
part must move to every host on which the mobile code will run and form the minimal footprint of
executable code which must be transfered over the network. The adaptable parts are implemen-
tations of equivalent tasks, but suitable for different environments. The core and the adaptable
parts are designed by the application programmer (shaded in grey in fig. 3.2).

An adaptation framework which is application independent provides a mechanism to determine
the appropriate adaptable parts for the current environment, referred as context awareness, to load
the adaptable parts over the network from a repository and to link the parts into the core, denoted
as reconfiguration, which is the contents of the following section.
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Figure 3.2: Elements/components involved in adaptation

3.3 Reconfiguration

The reconfiguration loads executable code and links it into the core. The core can switch between
various implementations without termination, (s. requirement R5 in chapter 2, table 2.1). The
linking should be done at a high level of transparency to the core (R6-10). From these requirements
a design pattern [Gra98] can be derived which must be followed by application programmers in
order to do dynamic linking of Java classes. The design pattern will be presented in the first part
of this section. The second part of the section deals with the framework offered to the application
programmer.

3.3.1 Design Pattern

Adaptation links parts, which export the same semantic definition to other parts of the mobile
code, but differ in their implementations. This polymorphism can be simulated in the OO world
in general and by the Java language in particular in at least two ways:

• generalization by superclasses

• abstraction by interfaces

In the example the generalization might provide a superclass Memory and adaptor classes
Memory AIX PPC, Memory WINNT X86 and Memory LINUX X86 (s. figure 3.3). The specific class
example refers to the configuration scenario, introduced in section 3.1.

If a superclass is used to realize polymorphism, functionalities which are common for all en-
vironments must be implemented only once in the superclass and can be inherited by the im-
plementation classes. This approach however is only possible in OO languages which support
multiple inheritance. If the language supports the single inheritance paradigm, e.g. Java, the
use of generalization would constrain the programmer to use a single superclass for all imple-
mentations of e.g. Memory. For instance, if the application programmer intends to use a class
SystemResources LINUX, which supports access to system information, it is not possible to in-
herit functionality from SystemResources LINUX for the implementation class Memory LINUX X86,
because all implementation classes must inherit the superclass Memory.

The abstraction by interfaces offers an alternative to the abstraction by superclasses (s. figure
3.4). It allows the implementation classes to be subclasses of other classes than the one needed for
adaptation. For adaptation it is necessary that all implementation classes of an implementation
group export the same behaviour to other classes. If this is realized by an interface, the imple-
mentation classes are not restricted in the case of a programming language allowing only single
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Figure 3.3: Design pattern with superclass and considering Java single inheritance

inheritance, e.g. Java. Figure 3.4 shows the same secnario as figure 3.3, where the implementation
class Memory LINUX X86 wants to inherit functionality from the class SystemResources LINUX. In
this case the inheritance is also possible for single inheritance because Memory LINUX X86 imple-
ments an interface in order to be used as an implementation class and is not part of an inheritance
hierarchy due to the adaptation mechanism.

The design pattern for the proposed methodology is based on this concept. Before the concept
is described in more detail the necessary terminology which is used within the scope of this
work will be defined by the example of the classes for the browser configuration agent. The
functionality of the Memory class is described in an interface IMemory, called functionality interface.
Implementations of IMemory for different environments, called implementation classes, export all
the same functionality to other parts of the mobile code, but their implementation is suitable for
different environments.

Note that much of this is going on in normal modeling as well. However this approach provides
in addition the automatic composition at runtime of particular branches in the inheritance rela-
tionship according to environmental conditions. Other branches can be left out, thereby releasing
cost benefits.

In the example the three functionality interfaces IMemory, IHarddisk, IConfiguration are de-
fined. Table 3.1 shows the implementation classes of the functionality interfaces and a description
of their respective environment.

Implementation classes which implement the same functionality interface are called imple-
mentation group. The name of an implementation group is by convention the common func-
tionality interface of the implementation classes. The implementation classes Memory AIX PPC,
Memory WINNT X86, Memory LINUX X86 all implement the interface IMemory and form an imple-
mentation group with the name IMemory.

The names of the implementation classes in the example have suffixes that correlate with their
desired execution environment. These suffixes are used to give more meaningful names to the
classes of the example. E.g. the implementation class Harddisk WINNT X86 could also have the
name Foo. It is up to the application programmer to name the implementation classes. There
is no compulsive correlation between the name of an implementation class and its respective
environment.

Figure 3.5 shows two hosts with different configurations. Without changing the interface of
the core mobile agent, different implementations (grey shaded) are used fitting to the operating
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functionality interface implementation class environment
Memory AIX PPC AIX, PowerPC

IMemory Memory WINNT X86 Windows NT, x86
Memory LINUX X86 Linux, x86
Harddisk AIX PPC AIX, PowerPC

IHarddisk Harddisk WINNT X86 Windows NT, x86
Harddisk LINUX X86 Linux, x86
Configuration UX NETSCAPE Unix, Netscape
Configuration WINNT NETSCAPE Windows NT, x86, Netscape

IConfiguration
Configuration UX LYNX Unix, Lynx
Configuration WINNT IEXPLORER Windows NT, x86, Internet Explorer

Table 3.1: Implementation classes for the example

system, CPU architecture and the default browser. The core mobile agent represents the non-
adaptable part of the mobile code which handles e.g. the movement in the network or controls the
general program flow, e.g. the configBrowserCache(int,int) function.

A constraint of this design pattern is the specification of implementation classes by an interface.
Such an interface cannot define any member variables of the implementation classes. A method
to add member variables to implementation classes is to wrap the implementation classes.

This wrapper classes as part of the interaction between the core, the functionality inter-
faces and the implementation classes are described in the following section. The interaction
between the functionality interface and the implementation class in particular includes the pro-
cedure of replacing an implementation class by another class, e.g. to exchange Memory AIX PPC
by Memory WINNT X86 when the agent moves from a host running AIX on a PorwerPC to another
host which is running on a x86 CPU with Windows NT as operating system.

An important aspect of reconfiguration is the dynamic linking of the implementation classes
into the core. Dynamic linking is supported by the Java core technology [LB98], but in the context
of this work, it is also important that the impact of the dynamic linking is as low as possible for
the non-adaptable parts of the mobile code. In this section three proposals will be presented. The
order in which the concepts are described correlates with the degree of transparency of linking to
the mobile code. The section will conclude with an evaluation of the proposed concepts. As a
result of the evaluation, one proposal will be chosen for the implementation of the prototype.
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Figure 3.5: Design pattern

3.3.2 Explicit Adaptation - Proposal 1

The first concept assumes that there is an object m adaptation in the mobile code available. Its
method loadImplementationClass() takes the name of the functionality interface and returns the
right implementation class. In the example the mobile agent would hold a reference to an object of
type IMemory. The mobile agent loads if necessary the class Memory AIX PPC, Memory WINNT X86 or
Memory LINUX X86 from the adaptation mechanism specifying the functionality interface IMemory.
The same applies to the IHarddisk and IConfiguration implementation group. In this proposal
m adaptation acts as an explicit broker which is fully visible for other objects.

public class WebClientAgent_Proposal1{
private transient IMemory m_memory;
...
public void configBrowserCache(int diskCachePercent, int memCachePercent){

...
Class memoryClass = m_adaptation.loadImplementationClass("IMemory");
m_memory = (IMemory) memoryClass.newInstance();
int memorySize = m_memory.getPhysicalMemorySize();
...

}
}

Figure 3.6: Invocation of getPhysicalMemorySize() in proposal 1

Figure 3.6 shows a code example for the invocation of a method of the class Memory. Before
the method invocation the class must be loaded and instantiated explicitly through the adaptation
mechanism m adaptation.

The member variable m adaptation holds a reference to an object of the class Adaptation.
The class Adaptation provides a method loadImplementationClass(String) which returns the
appropriate class for the environment.

When the agent migrates to a new host, it drops the implementation class and re-creates an
implementation class in the new environment. The mobile code does not carry the implementation
class to the new environment for the case that the implementation class is not needed on the new
host. Figure 3.7 shows this concept where on every host the implementation classes must be
explicitly re-created by the mobile agent.

This solution would implicate that adaptation is not transparent for the core:
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Figure 3.7: Explicit adaptation

1. the application programmer must determine when to adapt classes (disagrees with R7)

2. the procedure of class instantiation of adaptable classes differs from the instantiation of
non-adaptable classes (disagrees with R9)

3. method calls are not checked against type errors at compilation time, which is required by
R4

A second disadvantage is the loading of the implementation class by specifying the functionality
interface during runtime as a string. If a non-existing interface name is specified, the error can
only be detected during runtime. This is contradictory the requirement R4. An improved level of
transparency can be achieved by the following approach.

3.3.3 Adaptation Adaptor - Proposal 2

A higher level of transparency can be achieved by wrapping the procedure of adaptation. Instead
of using objects of type IMemory and loading different implementations, a non-adaptable class
wraps the adaptable classes and links them with the core.

Similar to CORBA’s IDL stubs [OH98], where stubs hide the marshaling and simulate a local
method call, little adaptor classes hide the adaptation from the core, and simulate a method
invocation in non-adaptable mobile code. To the functionality interface IMemory an adaptor class
IMemory Adaptor which implements IMemory and is used in the mobile code instead of IMemory.
The same code as the one above looks with adaptor classes like in figure 3.9.

All interactions between implementation classes and the core are handled by the adaptor
classes. They decide when to adapt, hide the dynamic loading mechanism and provide a Java
conform class instantiation to the application programmer. The adaptor classes could also be
automatically generated at runtime similar to the proxy class in Objectspace Voyager [Obj00].

The adaptor holds a reference to an object of the class Adaptation (s. section 3.3.2) and
loads via that object the right implementation class. The method invocations from the core are
delegated by the adaptor to the implementation class.

The disadvantage of this approach is the compilation of the adaptor classes. It involves an
additional tool, the adaptor generator, which must be integral into the compilation procedure,
and complicates the maintenence of compilation setup, e.g. Makefiles etc. It also does not offer
total transparency as desired, because the application programmer uses the adaptor classes with
the class name suffix Adaptor.
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public class WebClientAgent_Proposal 2{
private IMemory m_memory = new IMemory_Adaptor();
...
public void configBrowserCache(int diskCachePercent, int memCachePercent){

...
int memorySize = m_memory.getPhysicalMemorySize();
...

}
}

Figure 3.9: Invocation of getPhysicalMemorySize() in proposal 2

3.3.4 Virtual Class - Proposal 3

Maximum transparency is realized by using a virtual class, e.g. Memory, which is used as a repre-
sentation for the implementation classes and instead of loading the class Memory the adaptation
mechanism is triggered to load the right implementation class. The virtual classes do not exist as
source code or executable code, and serve just as place-holders for the implementation classes.

This might be realized by a modified compiler, which must recognize the class as a virtual
class. The virtual class might then be replced by a reference to an adaptor class.

Another approach could be the exchange of the virtual class during runtime by generating
adaptors in byte code. Nevertheless there would still be the problem that the compiler needs a
code base for the virtual class in order to be able to translate the source code.

Figure 3.11 shows the migration of the mobile agent with the virtual classes and the replacement
of implementation classes on the hosts. The proposal of virtual classes would offer a very high
level of transparency, but the problem is the compilation of an application that references classes
which can not be found by the compiler or the linker.

3.3.5 Summary of Reconfiguration

The low gain of transparency achieved by virtual classes compared to the adaptor classes and the
effort for creating a suitable compiling procedure, e.g. by a modified compiler, do not justify the
implementation of virtual classes for the prototype. As an alternative, the adaptor classes are
being used for the implementation.
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A task of the reconfiguration that has not yet been discussed is the loading of the implemen-
tation classes. The loader acts as intermediate piece between the adaptors and the repository.
The implementation classes are loaded from the repository by the loader and handed over to the
adaptors where they are linked into the core. The concept of the class loader is a standard concept
of the Java technology and supports the implementation of user defined class loaders as needed
for the reconfiguration.

The contribution of reconfiguration to adaptation is the design pattern, the concept of adaptor
classes and the loader. The design pattern pretends to the application programmer, to define
the functionality of the implementation classes in a functionality interface, which is implemented
by all implementation classes. E.g. to program an adaptable class that retrieves the information
about the total and the free disk space, i.e. Harddisk in a non-adaptable version, the program-
mer defines for an adaptable version the functionality interface IHarddisk, and the implemen-
tation classes Harddisk AIX PPC, Harddisk WINNT X86 and Harddisk LINUX X86. In the non-
adaptable parts of the mobile code an adaptor class is used instead of Harddisk. The adaptor
class IHarddisk Adaptor is being generated out of the functionality interface IHarddisk by a
generator, similar to the CORBA IDL compiler.

Another aspect of adaptation which has not yet been explained is the resolution of the im-
plementation class name from the functionality interface and the environment. This is done by
context awareness as explained in the following section.
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3.4 Context Awareness

If the mobile code moves to a new host and the adaptor classes decide to adapt the implementation
classes, the context awareness must inspect the environment and deliver the name of the right
implementation class to a given functionality interface.

E.g. the mobile code intends to execute getPhysicalMemorySize() of a IMemory Adaptor
object. The adaptor class decides to adapt the implementation class and the adaptation contacts
the context awareness in order to get the name of an implementation class of the implementation
group IMemory.

For this decision the context awareness needs following information:

1. the description of the local environment, where the mobile code executes at present, denoted
as environment profile

2. the descriptions of the suitable environments of all implementation classes belonging to the
implementation group, denoted as implementation profiles

3. the function for comparing the environment profile with the implementation profiles

For the comparison of the environment profile with the implementation profiles the equality is
not sufficient. If an implementation class has a requirement like e.g. at least version 1.0 of the op-
erating system, all operating systems higher than 1.0 and not only exactly version 1.0 work fine for
the implementation class. E.g. in the example of the web browser the Configuration UX NETSCAPE
class is suitable for UNIX operating systems and not only for e.g. Linux. In this case strict equality
would not be sufficient.

3.4.1 Profiles and Profile Values

The implementation profile must be specified by the application programmer. The environment
has several properties, e.g. default browser, operating system, etc. The environment properties are
mapped to a set of profile values. A profile value has a type, e.g. default browser, which correlates
with an environment property and a value, e.g. Netscape, which correlates with the current value
of an environment property. Every implementation profile consists of a set of profile values.

association
function

X86

WINNT

NETSCAPE

implementation profile

Configuration_WINNT_NETSCAPE

default browser

CPU architecture

operating system

types of profile values

Figure 3.12: Implementation profile

For example the profile of the implementation class Configuration WINNT NETSCAPE (s. figure
3.12) has profile values of three different types: operating system, CPU architecture and default web
browser. The values of the profile values are: WINNT, x86 and Netscape. All three properties must
be fulfilled in an environment, that the implementation class Configuration WINNT NETSCAPE
works properly. Therefore the profile values are associated with and.

The implementation profile must be compared with the current environment in order to deter-
mine whether the implementation class is suitable for the environment. For this comparison each
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profile value is checked whether it matches the current value of an environment property. The
equality may not be sufficient, e.g. for the test of an operating system version, it is sufficient, when
a version newer than 3.0 is installed rather than exactly 3.0. A matching function is associated
with every implementation profile value and describes how this profile value can be matched with
the profile value of the environment.

For the matching between a profile value and the value of the environment property a profile
value is generated out of the environment property. The generation of profile values out of the
environment is specified by the generating function. The result of the matching functions is true
(= profile values match) or false (= profile values do not match). The generating function is
also contained within the profile value and must be executed in the environment for which the
implementation class must be suitable, i.e. the environment, in which the mobile code is running
at present.

generating function

PPCNETSCAPE

environment
Netscape, PPC, AIX

AIX

Figure 3.13: Generation of environment profile values

In the case of the implementation class Configuration WINNT NETSCAPE, the three profile
values generate the complementary profile value of the current environment. Assuming the envi-
ronment is a PowerPC running AIX with Netscape as default browser, the profile values of the
implementation class, generate the profile values NETSCAPE, PPC and AIX (s. figure 3.13).

The association of the results of the matching function is defined by the association function as
part of a profile. For instance, an implementation class is suitable for a system running Linux or
AIX. The implementation profile has two profile values of the type operating system and they are
associated by or because the implementation class is suitable for Linux or AIX. The result of the
association functions determines whether the implementation class is suitable for the environment
or not.

The generated profile values are matched against the profile values of the implementation
class, i.e. Configuration WINNT NETSCAPE (s. figure 3.14). The results of the matching function
are associated as defined in the association function, i.e. association by and. The result of the
evaluation of the implementation profile in the example environment is negative. The context
awareness must proceed to evaluate other implementation profiles of the same implementation
group.

In general the generating function of one type of profile value is the same. In the case of the
profile values of the type default browser they depend on the environment. For Unix systems, the
configuration file in the home directory is checked, but on hosts running Windows, several entries
in the Windows Registry must be checked. This principle of context awareness is described in the
following section.
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Figure 3.14: Matching of profile values

functionality interface implementation class environment
DefaultWebClient UX Unix

IDefaultWebClient
DefaultWebClient WINNT X86 Windows NT, x86

Table 3.2: Implementation classes of example

3.4.2 Recursive Context Awareness

Another issue of context awareness is the nature of the set of profile values which are used to
describe the environment. A fixed set of basic profile values has the advantage, that the functions
for acquiring these parameters can be integrated into context awareness efficiently. The disad-
vantage is that the application programmer is restricted to the set of profile values offered by the
context awareness. This suggests that context awareness must be open to allow the application
programmer to define new profile values.

E.g. the implementation group IConfiguration selects the suitable implementation class, de-
pending on the installed default browser. This is an application dependent type of profile value
and cannot be provided by default in context awareness. Another problem concerns the way how
profile values are retrieved from the host system. After the mobile code is moved to the new host
it can only interact over the standardized common interface of the Java API to figure out more
about the environment. In the case of the default browser this API is insufficient. The informa-
tion about the default browser is saved on Windows operating systems in the registry database
which is e.g. accessible via Win32 native C functions, but not through the Java API. On Unix
systems it is sufficient to check the home directory for configuration files of a specific browser.
Therefore context awareness must not only support the new definition of profile values, but also
the adaptation of functions for retrieving system information.

The easiest way to overcome this is by folding the establishment of code for the environment
determination into the very adaptation mechanism itself and hence to arrive at a recursive mech-
anism: recursive context awareness. The recursive dependencies must end in axiomatic values
which do not need adaptation. In the browser example the information about the default web
client must be designed as additional adaptable part of the mobile code.

Table 3.2 shows the implementation classes and their environment profiles which only contain
values, operating system and CPU architecture, that can be determined by Java functions, and
resolve the recursive dependency of the implementation group IConfiguration. The implemen-
tation classes of the implementation group IConfiguration need not only to know the operating
system and the CPU architecture, but also the default web browser (s. fig. 3.15).

In order to get the information about the default web browser, it is necessary to perform adap-
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Figure 3.15: Recursive dependencies

tation, because the way to retrieve this information from the system depends on the operating
system and the CPU architecture as explained above. This adaptation is realized by the imple-
mentation group IDefaultWebClient, which is a recursive profile value. I.e. a profile value which
must perform adaptation in order to execute the generating function. In this case the generat-
ing function must create a profile value for the current environment representing the default web
browser.

The chain of recursive profile values must end in an axiomatic profile value. An axiomatic
profile value has a generating function which is environment independent. In the case of the
profile value IDefaultWebClient, which represents an implementation group and a profile value
at the same time, the dependency chain is resolved by the axiomatic profile values CPU architecture
and operating system, which are the only profile values that are needed by IDefaultWebClient.

In the cases of CPU architecture and operating system the environment independent Java
function System.getProperty() is used to resolve the dependencies.

In the following subsections three different approaches will be presented and compared.

3.4.3 Rule Based Context Awareness - Proposal 1

In order to achieve a good level of scalability and flexibility a rule based context awareness can
be useful. The idea is to realize the implementation profiles including the association, generating
and matching function as rules.

The adaptation obtains the rules as initialization parameter. On every host the rules are
interpreted by the adaptation mechanism of the agent and the names of the fitting implementation
classes are resolved. For the example of the browser configuration, the rules could look like in
figure 3.16.

The section variables defines the profile values of the environment which are used and the
functions which are executed to retrieve the profile values from the system. It implements the
generating function of the profile values. The definition of predicates provides the generalization
of values, e.g. unix :=OS in {Linux,AIX}. This is the realization of the matching function.
The association function is defined in the section matching. The matching section declares the
matching function for every implementation class. The implementation classes behind the arrow
in the matching section are suitable, when the evaluation of their expression returns true. The
association function is basically realized by logical operators and, or and not.

The application programmer must define the rules for every implementation group. In figure
3.16 the rules for the implementation group IConfiguration are shown. If the adaptation wants
to load the suitable implementation class specifying the functionality interface, all expressions of
the implementation group in the section matching are evaluated. The implementation class is
selected from the group whose expression returns true.

On a host running an UNIX operating system, with Netscape as default browser, the expression
of Configuration UX NETSCAPE will return true and the resting expressions of the group return
false. In this case the context awareness decides that Configuration UX NETSCAPE is the right
implementation class.
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variables{
OS:=GetOsName;
Arch:=GetArchName;
DefaultWebClient=:dynadap.webclient.IDefaultWebClient.getDefaultWebClient;
}

predicates{
unix:= OS in {Linux,AIX};
nt:=OS in {Windows NT};
x86:=Arch in {x86};
netscape:=DefaultWebClient in {netscape};
iexplorer:=DefaultWebClient in {iexplorer};
lynx:=DefaultWebClient in {lynx};
}

matching{

...

dynadap.webclient.IConfiguration{
(unix and netscape)

->dynadap.webclient.Configuration_UX_NETSCAPE;
(x86 and nt and netscape)

->dynadap.webclient.Configuration_WINNT_NETSCAPE;
(unix and lynx)

->dynadap.webclient.Configuration_UX_LYNX;
(x86 and nt and iexplorer)

->dynadap.webclient.Configuration_WINNT_IEXPLORER;
...

}
}

Figure 3.16: Example for context awareness rules

If none of the implementation classes can be chosen, a runtime error is reported by the context
awareness to the mobile code, that a class can not be found. If a new operating system, and
a suitable implementation class is added to the system, the rules must be extended by a new
predicate and an expression for the new implementation class.

The quality of this approach is strongly dependent on the semantic power of the rule language.
If it is only a simple language, like in the example shown above, a small number of environments
can be described only. The introduction of an additional language – if the rules are considered as
a new language – conflicts with the requirement R1 which does not allow an additional language
to the programming language of the mobile code.

The advantage of this technique is the open context awareness which is able to interpret every
definition of new profile values or even implementation classes during runtime. If the mobile
code does not rely on a static set of rules, but loads the current rules for every adaptation, it is
possible to introduce new implementation classes into the system without termination of the core
or rewriting of the adaptation mechanism.

If the number of implementation classes increases dramatically, a graphical editor could support
the administration of the rule file. The price of these advantages is the loose coupling between
the rules and the implementation classes, which is a violation of requirement R3, because the rules
are totally independent from the mobile code and changes in the implementation require updating
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the rules in order to avoid inconsistency. Faults can occur very easily, if the consistency between
rules and implementation classes is not checked.

Another approach is the introduction of a component model similar to Java Beans [Eng97].
This concept is explained in more detail in the following section.

3.4.4 Info-Component-Based Context Awareness - Proposal 2

The info-component approach extends the design pattern of functionality interface and implemen-
tation classes by info classes. To every implementation class an info class is assigned and provides
the necessary information of the profile values. The reason for the separation of the implemen-
tation classes and the profile values is the basic requirement of dynamic adaptation, i.e. only to
load code which is really needed. If implementation classes and the profile values are coupled
inseparably, the implementation class must be loaded for context awareness purposes from the
repository, but are perhaps never needed for the execution of the mobile code.

An example for the implementation info for Harddisk WINNT X86 might look like in figure 3.17.

public class Harddisk_WINNT_X86Info implements ImplementationInfo{
public static boolean matches(){
return Environment.os().equals("Windows NT") &

Environment.arch().equals("x86");
}

}

Figure 3.17: Example of info class

The context awareness loads all info classes and executes their matches() method. The context
awareness loads the info classes from the repository specifying the functionality interface. The
matches() method of the info classes implements the matching function and also contains the
generating function.

In the example (s. figure 3.17) the generating functions are realized by Environment.os() and
Environment.arch(). For the matching function simple equality is sufficient in this case.

The improvement of this concept against the rules is the higher flexibility of describing
and proving the environment. E.g. if the right implementation class from the implementation
group IHarddisk can be resolved, all implementation infos must be loaded from the repository:
Harddisk AIX PPCInfo, Harddisk WINNT X86Info and Harddisk LINUX X86Info.

The name of the implementation class can be resolved out of the class name of the implemen-
tation info. The application programmer creates for every implementation class an info class. The
name of the info class has as root the implementation class name and the suffix Info. E.g. the
info class for Harddisk WINNT X86 is Harddisk WINNT X86Info. This convention must be followed
by the programmer, to guarantee that the repository finds the suitable info classes and that the
context awareness can resolve the name of the implementation class out of the implementation
info class name.

In the info class the environment for the implementation class is defined in the matching
function. As shown in figure 3.17, the implementation class Harddisk WINNT X86 works only on a
x86 host running Windows NT. In this concept the matching function also contains the generating
function, which describes how these profiles values, i.e. x86 and Windows NT, are retrieved from
the system. In the example shown in figure 3.17 predefined functions from a class Environment are
used. For the implementation classes implementing IConfiguration a function would be specified
that describes how the default browser can be determined.

The disadvantage of this proposal is the loose coupling between the implementation class
and the info class. This extension also roughly doubles the number of classes, which must be
implemented by the programmer. The handicap of the big number of classes and the loose coupling
between implementation classes and their info classes may be minimized by using a graphical
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programming editor. The graphical programming editor can supervise the coupling between the
implementation classes and the info classes. It can enforce the naming convention and support
the programmer by a clear presentation of existing implementation classes and info classes.

Nevertheless this workaround can not match the strength of potential structural linking be-
tween implementation classes and profile values. A promising approach is presented in the following
section, which represents a refinement of the proposed above component model.

3.4.5 Integrated Profile Based Context Awareness - Proposal 3

The intention of this concept is the integration of the profiles into the implementation classes
but holding down the costs for loading the implementation classes. The implementation classes
containing the profiles are loaded into the repository, but only the profiles are transferred to the
mobile code over the network.

The loaded implementation classes are instantiated and deliver their implementation profiles
to the repository. The context awareness can download the implementation profiles from the
repository for resolving the implementation class.

This construction implies that the implementation profiles are coded into the implemen-
tation class. The implementation class Configuration UX NETSCAPE contains the function
getProfile() which describes the suitable environment for the implementation (s. figure 3.18).

public class Configuration_UX_NETSCAPE
implements IConfiguration,

IImplementationClass{
...
public Profile getProfile(){

return new Profile(new ProfileValue [] {
new Unix(),
new Netscape()});

}
...

}

Figure 3.18: Example for an integrated profile

The function getProfile() is declared by the interface IImplementationClass which must
be implemented by all implementation classes in addition to the functionality interface, in this case
IConfiguration. The association function in this concept is limited to the association of profile
values by the logical and operator. The profile values are objects which contain the following three
pieces of information:

1. the profile value itself, e.g. “Linux”

2. the commands for getting the profile value from the environment,
e.g. System.getProperty("os.name");, i.e. the generating function

3. the matching function between the implementation profile value and the environment profile
value; i.e. the matching function

Every implementation profile is able to create an environment profile through the generating
function and can compare the implementation profile with the created environment profile by
applying the matching function.

Figure 3.18 shows how the implementation profile for the implementation class
Configuration UX NETSCAPE is specified within the implementation class. The profile values Unix
and Netscape are classes, which contain both the generating function and the matching function.
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In this proposal the profile values are associated with and. This association is very strict,
because an implementation class may be suitable for mor than one environment, e.g. for Linux or
AIX. But because of mapping profile values to classes a further relation can be assigned to the
profile values. The generalization can be constructed by building super- and subclasses. figure 3.19
shows the hierarchy of profile values of the type operating system as the mapped class hierarchy.

LinuxWindows NT Windows 95/98 AIX HP-UX Solaris

MS Windows UNIX

ProfileValue

OperatingSystem types

values

Figure 3.19: Generalization relation between profile values

The matching function between profile values can then be expressed in terms of super- and
subclasses:

If the profile value of the environment is the same class or a subclass of the profile value
of the implementation class, the implementation class is suitable for the environment

If in the above example an implementation class has the implementation profile value UNIX,
e.g. Configuration UX NETSCAPE, it can run on all hosts which can build an environment profile
value that is a subclass of UNIX, like e.g. Linux or Solaris.

This is an universal rule, which does not rely on the type of the profile value, and can be
implemented by the universal superclass ProfileValue for all profile values. The mapping of
profile values to classes also offers the possibility to implement more complex expressions than a
set of profile values which are evaluated by connecting with and.

A set of commonly used types of profile values can be provided as part of the adaptation
framework, but application specific types, e.g. default web browser, must be added by the appli-
cation programmer. A new type of profile class can be created, by extending the ProfileValue
superclass. In the application specific profile values the generating function must be implemented
in order to retrieve the value of an environment property from the system. The same applies to
the matching function which matches two values of this type of profile value.

3.4.6 Summary of Context Awareness

For the comparison of the presented context awareness concepts three criteria are used:

1. level of integration of profiles into implementation classes

2. programming and maintenance effort when the number of implementation classes increases

3. flexibility in describing environments

The integration classifies how close the implementation profile is tied to the implementation class
in terms of coding: e.g. same language, same file. The rule based approach has no relation between
the implementation profile and the implementation class. The names of the implementation classes
are listed in a different file, even in a different programming language. If e.g. the name of the imple-
mentation class changes from Configuration UX NETSCAPE to Configuration WINNT IEXPLORER
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there is no guarantee that the rule file is compulsory updated. The info components are imple-
mented in the same language as the implementation class and they are associated through the
common root of their class name. A higher level of integration is achieved by the last proposal,
where the implementation profiles are coded in the implementation class itself.

The scalability addresses the applicability of the concept when the number of implementation
classes increases. For a higher number of classes the rule based approach still offers an acceptable
solution, perhaps supported by an editor with syntax high-lightning or a graphical editor. The
info component model has an unacceptable level of scalability. The number of classes doubles and
results in higher programming effort, but also in a more complex maintenance. The integrated
profiles are not influenced by the number of implementation classes because no further classes or
files are needed apart from the implementation classes which are necessary anyway.

The flexibility addresses the way to describe environments. The more flexible the description
mechanism is, the more environments and more precisely can be specified. The rule base context
awareness relies strongly on the power of the language and is therefore ranked on a middle level
of flexibility. High flexibility have both the info components and the integrated profiles. They can
both use Java language constructs for the association of profile values and define own matching
functions.

info
components

rules

integrated
profiles

integration

flexibilityscalability

Figure 3.20: Cirteria for the evaluation of context awareness concepts

Figure 3.20 shows a graphical summary of the evaluation of the various context awareness
concepts. There are three levels for every category: e.g. no scalability, acceptable scalability, good
scalability. From this evaluation the conclusion can be drawn that integrated profiles represent
the most suitable approach for context awareness and will be used for the implementation of the
prototype.

A very subtle point of this concept is the design of the repository, which is responsible for load-
ing implementation classes and delevering the implementation profiles to the adaptation mecha-
nism.

3.5 Repository

The repository provides a service for delevering the adaptable parts to the adaptation reconfigu-
ration mechanism as shown in figure 3.2. For the integrated profile based context awareness the
profiles are also loaded from the repository.
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The repository allows the mobile code to load only the code over the network which is actually
needed for the execution in the current environment. The concept of the repository has to overcome
several disadvantages.

If the mobile code is a mobile agent, like in the example of browser configuration, the repository
restricts the autonomy of the mobile agent. If a link between the repository and the mobile agent
is down, the agent can not proceed with its execution because of missing classes. This contradicts
the requirement R6 of chapter 2 because autonomy, a key feature of the mobile agent application,
is limited by employing adaptation.

Another problem is the increased latency for remotely loading the classes from the repository
instead of loading the classes from the local file system.

These implicit disadvantages can not be solved entirely, but their influence can be reduced by
extending the framework with proxy repositories.

3.5.1 Proxy Repository

The proxy repository is proposed to minimize the impact of remote code loading on the runtime
behavior of the mobile code. If the connection between proxy repository and mobile code is based
on fast and stable links, low latency and high reliability for the procedure of remote loading can
be achieved. Hosts which are connected over fast and stable links build a neighborhood. The
most desirable residence of a proxy repository is in the neighborhood of the mobile code. E.g. a
LAN segment builds a neighborhood, but represents only a small number of hosts. This implies
a big number of proxy repositories that must be set up if a mobile code moves to a lot of hosts
in a complex network. The nature of the neighborhood is strongly application dependent. If
e.g. neighborhood is defined as a subnet and a mobile agent visits exactly one host in the subnet,
e.g. for configuration of DNS servers, a proxy repository is created on every host that is visited
by the agent. In this scenario the concept of the proxy repository would not meet its goal, due to
the unsuitable realization of the term neighborhood.

The proxy repositories can be started as a separate thread or process by the adaptation mech-
anism itself when it can not find a repository in the neighborhood. The started proxy repository
serves to the mobile code as a replacement of the central repository. The mobile code does not
contact the central repository any more, but the proxy repository for loading profiles or imple-
mentation classes instead.

implementation classes
loading

and profiles

neighbourhood 2neighbourhood 1

host 1
host 2

host 3 host 4

host 7

host 6

host 5
central repository proxy repsoitory

Figure 3.21: Example for proxy repository

Figure 3.21 shows two neighborhoods and the route of a mobile code that moves in turn starting
on host 1 to all others and terminates on host 7 as the last host. When the mobile code moves
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from host 4 to host 5 the neighborhood, e.g. the subnet, changes and the adaptation mechanism
starts a proxy repository on host 5. The initiation of the proxy repository and the strategy for
loading objects from the central repository to the proxy repository depends on the architecture of
the proxy repository, which is covered by the following section.

3.5.2 Architecture of the Proxy Repository

Both the implementation of the term neighborhood and the architecture of the proxy, influence
the efficiency of the proxy repository.

In this section two different approaches for a repository architecture are presented and one will
be selected for the implementation of the prototype.

Replication - Proposal 1

Maximal independence from the central repository can be realized by a replication of the central
repository. After the creation of the proxy repository all implementation classes and profiles are
copied from the central repository to the proxy repository. After this initialization the connection
between the central and the proxy repository can be released without any impact on the execution
of adaptable and mobile codes.

In figure 3.21 a replicated repository on host 5 would load all implementation classes from the
central repository at the initialization. After the initialization the hosts in neighborhood 2 do not
rely anymore on the central repository.

A replicated repository augments the independence of a mobile agent, but it takes longer to
start it, because all implementation classes must be copied from the central repository to the
proxy. The start-up time of the proxy repository can be reduced, by an implementation as a cache
instead of a replication as proposed in the next section.

Cache - Proposal 2

If the proxy repository uses a cache, no implementation classes must be copied at start-up. If
the mobile code requests an implementation class it is stored in the proxy repository and other
mobile codes in the neighborhood requesting the same implementation classes can be satisfied by
the stored classes in the proxy. If implementation classes are requested, which are not already
stored, the proxy repository must contact the central repository to obtain these implementation
classes.

In figure 3.21 a proxy repository on host 5 would load the implementation classes from the
central repository when they are requested for the first time from the hosts in neighborhood 2.
The hosts in neighborhood 2 do not see the central repository and direct all requests to the proxy
repository.

The connection to the central repository can only be released by the proxy repository under
the assumption that the hosts in the neighborhood offer a homogeneous environment to the mobile
code. If this assumption is valid, the same implementation classes are requested by a mobile code
on all hosts in the neighborhood. After the mobile code has visited the first host and executed its
task, all implementations which are needed for the execution of the task are stored in the cache
of the proxy repository and further request can be satisfied by the content of the cache.

3.6 Implementation of a Prototype System

After the development of concepts for adaptation in the former sections the implementation of a
prototype system will be presented in this section.

The implementation of the adaptation framework is both independent of the configuration
task and independent of the agent system. It provides the infrastructure for the remote loading
of profiles and implementation classes, the evaluation of profiles and the dynamic transparent
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linking of implementation classes into the core. This presumes that the mobile code is programmed
according to the design pattern as presented in section 3.3.1.

The configuration of the browser relies on the adaptation mechanism. It implements the
configuration of a set of web browsers running on various operating systems and CPU architectures.
The configuration is brought to the different hosts by a mobile agent using the Voyager agent
system platform [Obj00].

Because of the independence of the adaptation framework it is convenient to describe it first
and then to continue with the implementation of the remaining parts of the prototype system.

3.6.1 Adaptation Framework

Architecture

The adaptation includes three aspects as discussed in chapter 3:

1. Reconfiguration

2. Context awareness

3. Repository

The reconfiguration consists of a suitable programming discipline, which is expressed as a design
pattern. (s. section 3.3.1, the concept of adaptors, including the adaptor generator, and the
loader). The implementation of the reconfiguration is limited to the adaptors and the loader. The
design pattern must be followed by the application programmer at compilation time.

Adaptors are generated for the core and are an integrated part of the core. The loader remains
encapsulated in the adaptation mechanism. It is steered by the result of the context awareness.

The context awareness delivers the result of the evaluation of the profiles to the loader, which
loads the right implementation class over the network from the repository. The profiles are also
loaded by the context awareness from the repository. Both the context awareness and the loader
rely on the service provided by the repository.

The communication with the repository is integrated in a repository client. The context aware-
ness and the loader send their requests as local method calls to the repository client. The repository
client communicates with the repository using a proprietary subset of the hypertext transfer pro-
tocol (HTTP). The adaptation, context awareness and the loader are designed as Java classes as
shown in figure 3.22.

The repository is a separate program that functions as a web server for the context awareness
and the loader. Both services make use of the repository client in order to translate between Java
method calls and HTTP protocol elements.

The adaptor class IConfiguration Adaptor is generated from the functionality interface
IConfiguration by the adaptor generator. To the core the IConfiguration Adaptor class
offers the two methods setDiskCache() and setMemoryCache() as defined in the interface
IConfiguration. In the interior it access the adaptation mechanism.

Adaptor

For each functionality interface a different adaptor class is generated. The adaptor class consists
of a part that is common for all adaptor classes, denoted as generic part, and a part that depends
on the functionality interface, the interface specific part.

Structure of an Adaptor Figure 3.23 shows the adaptor class for the functionality interface
IMemory. The adaptor class implements the Serializable interface which enables the serialization
of the adaptor class. This is necessary for moving the adaptor class with the mobile code.

Through the object m adaptation an adaptor can load the right implementation class for the
current environment. The member variable m adaptation is marked as transient. Though the
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Figure 3.22: Overview of adaptation architecture

adaptor class is serialized for migration to another host, the m adaptation object is dropped and
recreated after de-serialization. This reduces the size of code that moves over the network.

The implementation of the interface IMemory enables the core to use the adaptor class
IMemory Adaptor like a non-adaptable conventional implementation of IMemory without any con-
siderations about adaptation.

The member variable m iimplementation holds a reference to an object of the implementation
class, which is suitable for the current environment. It is also marked as transient, since the
implementation class may become obsolete, when the mobile code leaves the current environment.

The generic part of the adaptor classes, printed in boldface in figure 3.24, consists of the im-
plementation of the interface Serializable, the member variable m adaptation and the method
createAdaptation(). The method createAdaptation() recreates the dropped adaptation ob-
ject after the migration to a new environment.

The interface dependent part, printed in boldface in figure 3.25, consists of the method imple-
mentations defined in the functionality interface – in this case the implementation of the method
getPhysicalMemory() – and the object m implementation of implementing the functionality in-
terface.

The adaptor classes provide the skeleton to delegate the method invocations from the core,
e.g. getPhysicalMemory (s. figure 3.26), to the implementation class and return the result to the
core.

Exceptions that are thrown during adaptation are caught by the adaptor class. Two kind of
exceptions can be thrown because of adaptation:

• the repository is unreachable for the mobile code

• no profile matches, i.e. there is no suitable implementation class for the environment,
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Figure 3.23: Adaptor class for IMemory
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Figure 3.24: Generic part of the adaptor class for IMemory

in which the mobile code is running at present

These two kinds of exceptions are both mapped onto a class not found exception, which is the
consequence for the non-adaptable core: a necessary class can not be loaded.

Adaptor Generator The adaptors are generated from a stand alone tool. An application
programmer defines the functionality interfaces and the adaptor generator creates the according
adaptors. This is done before the application is compiled.

Figure 3.27 shows the different phases of the adaptor generator and the representation of the
functionality interface respective the adaptor class. The functionality interface must be available
as class file. The generator loads the functionality interface and obtains a representation of the
functionality interface as a Java Class object.

The structure of the functionality interface can then be inspected by Java Reflection [Fla97].
This allows to pick up information that has already been processed by the normal Java compiler
and avoids complicated parsing. In order to create the adaptor class following information is read
out of the Class object:

• name and package of the functionality interface, e.g. IMemory

• method definitions (method name, modifiers, parameters, return value)

The interface name is mapped to <interface name> Adaptor. The method definitions are
mapped to method implementations. The method implementations invoke the adaptation mech-
anism in order to load and instantiate the implementation class, if necessary and delegate the
method invocation to the loaded instance of the implementation class.
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Figure 3.26: Delegation of method call to implementation

In addition to the mapping the generic part is added, which contains the member variable
for the instance of the adaptation mechanism and the method createAdaptation() in order to
instantiate the adaptation mechanism.

Adaptation

The purpose of the Adaptation class is the coordination of context awareness and loader. The
adaptor loads an implementation class by specifying the functionality interface of the implemen-
tation class, e.g. IConfiguration. Before the loader can load an implementation class from the
repository the name of the implementation class must be determined by the context awareness.

ContextAwareness The class ContextAwareness loads the profiles of all implementation
classes of the specified functionality interface. The request is sent to the repository client and
the context awareness obtains an array of profiles from the repository client.

The functionality of the context awareness is contained in the profiles. The ContextAwareness
class invokes the matching function of each profile. The implementation class with the unique
profile, that executes the matching function successfully is determined as the right implementation
class for the current environment. The profile checker programm (described in detail below)
supports the application programmer to verify that the implementation profiles are unique. If the
context awareness detects at runtime that two profiles match the same environment, an exception
is thrown. This internal adaptation exception is mapped to a class not found exception which is
reported to the core.

The name of the implementation class can be retrieved from its profile and is returned to the
adaptation.

Loader With the information about the right implementation class the loader is able to re-
quest the class file from the repository client. The loader is a subclass of the abstract class
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Figure 3.27: Phases of adaptor generator

java.lang.ClassLoader contained in the Java Development Kit (JDK) [LB98]. The loader im-
plements the findClass() and overwrites the loadClass() method, which are responsible for
locating the class file as raw byte stream and the definition and resolution of a java.lang.Class
object.

For reducing the communication overhead the default class loading is delegated to the parent
class loader, which loads classes from the local file system.

The adaptation loader has access to the list of all implementation classes. If an implementation
class is requested by the mobile code the loader contacts the repository via the local repository
client.

The loader of the prototype is also able to load dynamic libraries which are necessary for the
support of the Java Native Interface (JNI) [Lia99]. The JNI supports the execution of native code
from Java programs. E.g. this is necessary in order to access the Windows registry, the central
configuration database for Windows applications. In the example of the browser configuration
the access to the registry is necessary to determine the default web browser and to configure the
IExplorer.

The native functions must be compiled and linked into a dynamic shared library, e.g. a DLL for
Windows. During the execution of the Java program the library is dynamically linked to the Java
program. Before the library is linked to the program the findLibrary() method of the loader is
invoked by the Java interpreter. It returns the absolute path name of the dynamic library. The
loader contacts the repository through the repository client and stores the dynamic library in a
temporary directory.

This implementation works fine for the prototype, but the writing of the library to the tem-
porary directory slows down the adaptation procedure.

RepositoryClient The repository client transforms the requests of the context awareness and
the loader from local method calls to remote HTTP requests. It hides the network communication
from the context awareness and the loader and simplifies the protocol between the repository and
the adaptation mechanism of the mobile code. A specification of the HTTP requests is desribed
below (s. figure 3.34 and 3.35).

Profiles

The profiles are the essential mechanism of the context awareness. The implementation classes de-
scribe their destinated environment in profiles. The profiles are evaluated by the context awareness
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in the current environment. If a profile matches an environment, its associated implementation
class is suitable for the environment.

matches()
getImplementationClassName()
getProfileValues()
equals()

ProfileValueProfileValue [] m_values

Profile

Figure 3.28: Structure of profile class

The profile is implemented as a class called Profile. As described the profile contains a set
of profile values. In the class Profile the member variable m values contains the profile values.
The method matches() of the class Profile invokes the matching function of the profile values
and associates the result with and. The method equals is provided for the profile checker, part
of the repository, which helps the application programmer to create unique profiles.

The profile values provide the functionality to match their value with the value of the current
environment property, i.e. the matching function. The profile value also contains the functionality
in order to retrieve the value of the environment property from the system (generating function).

Structure of Profile Values For the implementation of the Integrated Profile Based Context
Awareness of section 3.4.5, the profile values are mapped to a class hierarchy (s. figure 3.19).

The root of the hierarchy is the abstract class ProfileValue which implements only the match-
ing function, in figure 3.19 the matching function is denoted as matches(). The generating function
is only defined, here denoted as getEnvProfileValue(). The other two methods equals() and
sameType() are needed two compare implementation profile values in order two check whether
two profiles would match for the same environment.

The various types/properties of profile values are direct subclasses of ProfileValue, e.g. the
class OperatingSystem in the case of the leading example. The types implement the generating
functions of the environment property, i.e. getEnvProfileValue(). The subclasses of the types
represent concrete profile values of the environment properties as separate classes, e.g. the class
Linux.

The generating functions assumes that the superclasses know all the subclasses. The class
OperatingSystem must know that there is a class Linux that must be built if the name of the
operating system is “Linux”. Such a construction works fine as long as the set of subclasses is
fixed and not intended to be extended. This would constrain the reuse of profile values or requrie
re-writing of the profile values if new types and value are added to the profile values hierarchy.

In figure 3.29 the profile value UNIX knows the operating systems Linux, AIX and Solaris.
The different Unix flavors are implemented as subclasses of the superclass UNIX. If a new Unix
operating system, e.g. BSD, would be added, the generating function of class UNIX must be re-
written, in order to support the generation of an object of the class BSD. Besides of the re-writing
of code, the UNIX profile value would change its semantic for already existing applications using
the class UNIX as a representation for Unix flavors.

The solucation is provided by introduction of a new Unix profile value, e.g. Ext UNIX (s. figure
3.30). This new profile value is used as re-presentant of Unix in new applications. It knows how to
generate a profile value on a host running BSD. If the context awareness runs in another operating
system it requests its superclass, i.e. UNIX, to generate a profile value.

This approach is not sufficient for the matching function. If an implementation is suitable for
UNIX operating systems, including BSD, e.g. Configuration UNIX NETSCAPE, its profile contains
the profile value Ext UNIX. If the mobile code moves to host running AIX, the context awareness
applies the matching function as defined and implemented in the superclass ProfileValue: If
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the profile value of the environment is the same class or a subclass of the profile value of the
implementation class, the implementation class is suitable for the environment

The rule fails, because the class Linux is not a subclass of Ext UNIX, though the implementation
class is intended to work also in a Linux environment.

Part of the solution is provided by the Marker Interface design pattern [Gra98]:

“The Marker Interface pattern uses interfaces that declare no methods or variables to
indicate semantic attributes of a class.”

The interface IExtension, which defines no methods, serves as marker interface. The class
Ext UNIX implements the interface IExtension(s. figure 3.31).

The semantic attribute of IExtension is that classes which implement the interface are not
considered to be superclasses in terms of the matching function. Though the class Ext UNIX is a
superclass of BSD in the Java class hierarchy, it is not a superclass in the context of the matching
function applied on BSD. The class Ext UNIX is ignored and UNIX is taken as superclass. This
relation is shown in figure 3.32.

If Ext UNIX is defined by an implementation class it includes both the own sub profile values,
i.e. BSD, and the profile value under the super profile value UNIX

The inspection of the classes, e.g for determining whether a class is marked by IEtension is
done by using Java Reflection.

User Defined matching function As shown in section 3.4.5 the association of profile values
by and is very strict. This constraint can be released by overwriting the matching function of a
profile value of the superclass ProfileValue. The evaluation of the default matching function is
based on the structure of the profile values. This function can be exchanged when a new profile
value is introduced by the application programmer.

The new matching function can compare the implementation profile value and the environment
profile value in a completely different way. The result must be of the type boolean.

The profile values are encapsulated by the profile, which is defined by the programmer of the
implementation class. As suggested in Integrated Profile Based Context Awareness in section 3.4.5
the profiles are integrated into the implementation class.
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Figure 3.30: Introduction of superclass for extension
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OperatingSystem
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knows

Ext UNIX

BSD

implements

Figure 3.31: Hierarchy of profile value classes in class diagram

Integration of Profile Values into Implementation Classes An implementation class is
suitable for a certain environment. This environment is described as a profile, which is inte-
grated into the implementation class. The profiles are implemented as a class Profile which
contains as member variable an array of ProfileValues. Every implementation class must
implement an interface IFunctionality which defines a function getProfile(). The return
type of getProfile() is Profile. An application programmer must implement the function
getProfile() in every implementation class. In the body of getProfile() the profile values
must be defined in order to create a Profile object.

The code example of figure 3.33 is an excerpt from the implementation class
Configuration UX NETSCAPE. Configuration UX NETSCAPE works properly on a x86 host run-
ning Windows NT and with Netscape as default browser.

The context awareness service obtains the profiles from the repository, which instantiates the
implementation class and invokes the getProfile() function. The profiles are serialized and sent
to the context awareness. The implementation of the repository is the subject of the following
section.
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UNIX

OperatingSystem

Linux AIX HP-UX SolarisBSD

Figure 3.32: Logical hierarchy of profile values due to marker interface

public Profile getProfile(){
Profile result = new Profile(new ProfileValue [] {

new WindowsNT(),
new X86(),
new Netscape()

});
return result;

}

Figure 3.33: getProfile()

Profile Checker A second tool of the adaptation mechanism beside the adaptor generator is
the profile checker. Its task is to verify that there is not more than one implementation class of an
implementation group suitable for the same environment. This is tested by analyzing the profiles.
The analysis is performed at compilation time to support the application programmer and at the
start-up of the repository.

Because of the flexible nature of the profile values it is not possible to obtain a non-ambiguous
result of the equality of two profiles. Three cases are possible:

1. Two profiles are equal, i.e. the according implementation classes are suitable for the same
environment =⇒ Error

2. Two profiles can not be compared because of complex structure of profile values, no conclu-
sion =⇒ Warning

3. No profiles are equal =⇒ O.k.

For the comparison of two profiles the sets of profile values must fulfill following condition:

intersection of types must not be empty

If this is valid it is not guaranteed that it can be decided for all profiles of an implementation
group whether they are valid, because if the intersection is a real subset of the set of profile values
of one profile and the profile value in the intersection are equal.

The comparison mechanism is implemented in the class ProfileValue which is the superclass
of all profile values. If a profile value implements a different matching function (s. section 3.4) the
equals() function must be overwritten, as well.

Repository

The repository is a stand alone application. It works independently of the adaptation mechanism
integrated over adaptors into the mobile code. It provides profiles, implementation classes and if
needed libraries to the adaptation mechanism of the mobile code.
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The main() method of the Repository class listens on a defined well-known port for requests.
When a request is accepted the repository creates a Repository object. which is responsible for
answering the request.

There are three types of requests:

1. profile request

2. class request

3. library request

The profile request is sent by the context awareness specifying the functionality interface,
e.g. IHarddisk. The repository returns the profiles of the implementation classes for the imple-
mentation group.

The class request is initiated by the loader. The loader loads an implementation class by
contacting the repository. The loader also contacts the repository if a dynamic library must be
loaded, i.e. library request.

Profile Request For the profile request the repository loads all implementation classes. The set
of implementation classes is specified in a configuration file. If a new implementation class is added
to the system, the list of implementation classes must be updated. An alternative solution is the
bundling of the implementation classes in a special JAR file. It avoids an additional configuration
file, but if the set of implementation classes changes, the JAR file must be modified instead of
changing a line in a configuration file.

The loaded implementation classes are instantiated on the repository. From the objects of the
implementation classes the profiles are retrieved by invoking getProfile(). The array of profiles
is serialized to a byte stream and sent to the context awareness.

The instantiation of the implementation class on the repository is necessary in order to get
the profiles out of the implementation class. In the prototype implementation all instances of
implementation classes are held on the repository. If there are a lot of implementation classes, this
implementation may lead to high resource consumption. An alternative would be to instantiate
the implementation classes for retrieving the profiles once and to drop instances of implementation
classes and to keep only the profiles in memory.

Class Request The loader specifies the full name of the implementation class including package
name and sends it as a request to the repository. The repository looks up in the configured class
path for the class file of the implementation class. The class file is converted to a byte stream and
sent to the loader.

Library Request The library request works similar to the class request. The only difference is
the look-up mechanism. The repository looks in a configured directory for the library.

Communication Protocol

The communication between the repository and the adaptation mechanism is based on a small
subset of the HTTP protocol [FGM+99]. It is extended by the definitions for the profile, class and
library request.

send request message ::= GET /<request>.<request type> HTTP/1.1 CRLF CRLF
request ::= <functionality interface> | <class name> | <library name>
request type ::= interface | class | library

Figure 3.34: Format of send request message

Two messages are supported by the protocol:
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1. send request

2. send answer

The send request message format is structured as shown in figure 3.34. The send answer
message format is structured as shown in figure 3.35.

send answer ::= HTTP/1.1 <status code> CRLF
Content-Length: <message length> CRLF CRLF
<message body>

Figure 3.35: Format of send answer message

As discussed in section 3.5 the central repository has a major impact on the characteristics of
the mobile code, e.g. autonomy of the mobile agent. The proposed solution for the prototype is a
proxy repository.

Repository Proxy The proxy is a replacement for the repository in the neighborhood of the
mobile code (s. section 3.5.1). The class RepositoryProxy implements a server loop similar to the
server loop in the main() method of the Repository class listening for profile, class and library
requests. The requests are satisfied with a cache, i.e. if the requested profiles, classes or libraries
are cacheed, the contents of the cache is returned.

In the prototype implementation the proxies and the central repository can be inconsistent, if
the implementation classes on the central repository are modified. In order to avoid inconsistencies
the central repository could notify all proxy repositories. Therefore, it would be necessary that
the central repository knows the addresses of existing proxies.

In an alternative approach the proxies could check the version of the implementation class by
contacting the central repository before they deliver an implementation class to the mobile code.
This approach would constrain the autonomy of the proxy repository.

A more suitable proposal could be the deployment of a limited lifetime for proxies. If a proxy
does not receive a request for a certain period of time it dies. The next time the mobile code moves
into the neighborhood of the dead proxy, then a new proxy is created with the current versions
of implementation classes. This would also facilitate the management of the proxies, which are
distributed over the network and are not needed any more.

Repository Info The information about the address of the available repositories must be man-
aged by the mobile code. The adaptation framework provides a class Info, which saves the
information about available repositories. An object of Info is initialized by the central repository
and is moved along with the mobile code. After the arrival on a host the Info objects check
whether the repository which was used on the last host, or any other known repository is in the
neighborhood of the current host. If no repository can be found in the current neighborhood the
Info objects starts a separate repository proxy thread. The address of the current usable reposi-
tory is published by the Info object as Java properties. The Java properties can be read by the
adaptation mechanism of the mobile code.

For the prototype the neighborhood (s. section 3.5.1) is defined in a configuration file. A list
of hosts separated by line-feed forms a neighborhood. A new list is separated from the former by
an empty line. This configurable definition of neighborhoods simplifies the implementation of the
prototype but also offers a flexible way to configure different scenarios independently of the actual
network configuration.

The repository is the one edge of the adaptation framework in opposite to the adaptors which
are strongly integrated into the mobile code.
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3.6.2 Implementation of Browser Configuration

This section describes the implementation of the sample application. The configuration of the
browser consists of two parts. The first part acquires the two system parameters: physical memory
and the free disk space. The second part configures the browser according to the parameters
speicifed by the user, e.g. 5% of the physical memory, and to the actually available resources,
e.g. 95MB.

Both parts can benefit from adaptation in a heterogenous environment, as described in section
3.1. For the configuration of the default browser recursive context awareness is necessary (s. section
3.4.2).

IMemory m_memory
IHarddisk m_harddisk
IConfiguration m_configuration

run()
configureBrowserCache()

WebClientAgent

Serializable

IHarddisk_Adaptor

IConfiguration_Adaptor

IMemory_Adaptor

Figure 3.36: Structure of WebClientAgent

The browser configuration is executed by a mobile agent implemented as a class hold-
ing references to the adaptor classes providing adaptaptable class for acquiring system in-
formation (IMemory Adaptor,IHarddisk Adaptor) and setting the browser cache parameters
(IConfiguration Adaptor) (s. figure 3.36). The method configureBrowserCache() executes
the configuration of the web browser using the adaptor classes. The method run() is needed for
the mobile agent functionality of the class WebClientAgnet described in the following sections.

3.6.3 Mobile Agent on Voyager Agent System Platform

The configuration of the browser on a host is carried out by a mobile agent, which moves to several
hosts, where the configuration task is executed. The mobile agent of the prototype implementation
executes the following steps on every host:

1. initialization

2. execution of task

3. computation of the remaining route

4. migration to the next host

For the implementation of the mobile agent the Voyager agent system platform is used [Obj00].
The heart of the Voyager agent system platform is the class Agent, which can convert any seri-
alizable object into an object of the type IAgent. An object of type IAgent offers the method
moveTo(), which realizes the movement of an object to a remote host. moveTo() takes as pa-
rameters the destination address of the remote host and optionally the specification of a method
provided by the moving object. After the movement of the object all local references to the object
can be released, though the object is not deleted on the remote host. It can act autonomously.

For the sample application an instance of the class WebClientAgent is converted to an object
of the type IAgent. The method moveTo() is called, specifying the destination address of the first
host and the method run() as the starting point of the execution on the remote host. The method
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run() triggers the browser configuration and invokes after the execution of the task the method
moveTo() again specifying the next host and itself as execution point (s. figure 3.37).

run() run()

WebClientAgent

host1:portnumber host2:portnumber

Figure 3.37: Movement of WebClientAgent object

The movement and the execution of the configuration of the web browsers continues until all
hosts listed for configuration are visited. Then the object dies.

The condition for moving an object to a remote host when using Voyager is a running Voyager
server on the remote host. A Voyager server is a separate Java program which listens for requests on
a specified port and provides the runtime environment for the received object. The specified port
builds together with the host name of the remote host the destination address. The destination
address is used as a parameter for the method moveTo().

Integration of Technologies

The sample application relies mostly on Java technology, on dynamic adaptation and on code
mobility. The adaptation is realized by the presented concept, the code mobility is implemented
by Voyager.

Application

Voyager Adaptation

Java

Figure 3.38: Stack of technologies

Figure 3.38 shows how the three technologies are integrated. The Java technology serves as
the basis for dynamic adaptation and for Voyager. The Java JDK classes must be installed on
every host where an application deploying dynamic adaptation or Voyager is executed.

Since the sample application relies on code mobility based on the Voyger technology the Voyager
packages must be installed on every destination host.

The classes needed for adaptation can be divided into classes belonging to the adaptation
framework and application specific classes. The framework classes must be installed on every
host. The application specific classes are further divided into non-adaptable classes and adaptable
classes, i.e. implementation classes.

For the sample application the non-adaptable and environment independent classes must be
available on every host. This may be improved by the agent system, in the case of the sample
application by Voyager, which allows a distribution of class files by the Voyager agent platform
without installation of necessary class files on every destination host.

The installation of the implementation classes is done by the adaptation framework. The
classes are loaded if needed from the repository.



Chapter 4

Analysis and Evaluation of
Methodology and Implementation

This chapter presents an evaluation of the proposed methodology to review whether the require-
ments set up in chapter 2 are fulfilled and whether the proposed mechanism is useful for deployment
under the right circumstances. The basis for the evaluation is the implementation of the proto-
type, which is e.g. needed to measure the consumption of bandwidth, which is expected to be
lower when using dynamic adaptation instead of a conventional monolithic approach. For this
purpose an equivalent application has been developed using static customization as described in
section 1.2. The following section discusses the fulfillment of requirements R1-R10 (s. table 2.1).
These requirements concern the programming effort and the interaction between adaptation and
application. A separate section is dedicated to the revision of requirements R11-R13. They con-
cern the runtime overhead when using adaptation. In order to verify these requirements a more
complex configuration for measurements has been established.

4.1 Meeting the requirements

4.1.1 Programming Effort

The prototype is written in Java. For the integration of the adaptable classes into the core
no further meta languages are needed. The description of the implementation profiles and the
environment profiles is realized in Java. Therefore R1 is fulfilled up to a certain degree.

Some key concepts are based on reflection. Thus, the concept is only applicable to OO pro-
gramming languages supporting reflection. Inconvenient in terms of R1 is the interaction with the
framework, which does not support other programming languages than the one used for its imple-
mentation. If the adaptation concept is used for an application written in a different programming
language, the framework must be ported for the new programming language and cannot be reused.

The second requirement concerning the programming effort considers the overhead in terms
of lines of code or number of classes (R2). The solution as implemented in the prototype requires
programming a functionality interface, which is environment independent, and the development
of the implementation classes, one class for each environment.

If it is assumed, that for static customization a separate class for each environment has to be
designed, because of modular programming, the number of classes needed for dynamic adaptation
is not higher than for static customization.

The explicit description of the environment in every implementation class instead of condi-
tional branches as assumed in static customization, affords more lines of code, but improves the
maintainability at the same time.

Requirement R2 is met it terms of number of classes. The lines of code needed for dynamic
adaptation are increased, but it also offers the advantage of better maintainability.

52
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Requirement R3 concerns the placement of the profiles in relation to the implementation class.
A strong coupling of profile and implementation classes simplifies the maintenance and avoids
inconsistencies. As described in section 3.4.5 according to the proposed methodology the profiles
are specified within a method body of the implementation class. This offers a high level of
integration and therefore meets R3

For avoiding a broad spectrum of errors during runtime due to adaptation, R4 requires to detect
possible failures during compilation. Since the proposed methodology implements the profiles in
a conventional programming language, (s. discussion about R1 above), it is guaranteed that the
profiles are implemented correctly concerning the syntax. The profile checker, which is integrated
into the repository proves the profiles of an implementation class and delivers information about
conflicting profiles. Whether the right profile is specified in the implementation, i.e. the profile
describes the right environment, for which the implementation class is suitable, is a potential source
of errors, which can be detected at runtime only. Other failures might occur due to unreachable
repositories or an environment which is not supported by an implementation class.

Such errors must be handled by the application during runtime and are part of the second set
of requirements, which covers the integration of an adaptation mechanism into the application.
Whether the proposed methodology fulfills these requirements is discussed in the following section.

4.1.2 Interaction between Application and Adaptation Mechanism

The definition of the term dynamic adaptation, is also stated in R5: adaptation during runtime,
i.e. without termination of the application. Since the environment is assumed to be static dur-
ing the runtime of an application on a host, adaptation is only necessary after moving to a new
environment. Thus, the events of migration and adaptation are combined in the proposed method-
ology. Because most architectures of mobile code, e.g. [Obj00], support weak mobility (s. section
1.1.1) only, there are no executing methods, including adaptable methods. Together with dynamic
linking, which is supported by Java, the application needs not to be terminated for adaptation,
because the new implementation classes are linked dynamically and the method calls are redirected
through the adaptors (s. section 3.3.3).

The semantic of class loading is changed for implementation classes concerning the source of
the class files. Instead of being loaded from the local file system or the common platform for the
mobile code, the implementation classes are loaded from the repository. This implies that the
reliability of the repository and especially of the links between the application and the repository
have an influence on the runtime behavior of the application. This problem is formulated by R6,
which requires minimal influence on the application characteristics. This requirement is partially
fulfilled by the proposed methodology through the concept of the proxy repository. The proxy
repository minimizes the negative impact of a central repository.

Other kinds of transparency are required by R7 and R8. The initiation of adaptation and the
necessary procedure of linking must be transparent to the application. This is provided by the
adaptors. The adaptors are responsible for loading the suitable implementation classes and for
the linking, for hiding everything to the application, and for simulating an ordinary Java class,
which implements functionality for one environment only. Though the adaptors hide the initiation
and the linking to the application, the introduction of adaptors into the application prevents a
total transparency. The concept of adaptors introduces a high level of transparency but does not
provide total transparency offered by virtual classes (proposal 3 in chapter 3).

The concept of adaptor classes offers adaptable methods in standard Java syntax as required
by R9. The semantic transparency is postulated by R10, but depends on the availability of a
suitable implementation class for the current environment and the reliability of the repository.

4.2 Runtime Overhead

One of the advantages of dynamic adaptation is the efficient use of bandwidth. This is emphasized
by the requirement R11. The gain in bandwidth is paid by higher runtime. The deployment of
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adaptation implicates an augmented runtime. The detection of the environment and the dynamic
linking of parts into the application affords additional time. The purpose of the requirements
R12-R13 is not to postulate an adaptation concept with necessarily lower runtime than when
deploying static customization, but to keep at least the overhead of adaptation as low as possible.

In order to approximate the runtime overhead of adaptation, some rough measurements are
done comparing the runtime of the prototype and an equivalent monolithic application. This is
the object of the following section.

Setup of Measurements

The goal of the measurements is the comparison of the prototype implementation using dynamic
adaptation, called prototype version in the following, and an implementation using customization
denoted as customized version.

Reference Customized Application The concept of the customized version is based on mod-
ified adaptor classes. Instead of containing the class Adaptation a adaptor holds references to all
implementation classes of the implementation group. The method call for the implementation class
is delegated to the right implementation class by traversing several if-then-else statements.

IMemory_Adaptor

Memory
_AIX_PPC

Memory
_WINNT_X86

Memory
_LINUX_x86

getPhysicalMemory(){

if(os==AIX and arch==PPC)

else if(os==Linux and arch==x86)

else if(os==WinNT and arch==x86)

}

Figure 4.1: IConfiguration adaptor of the customized version

Figure 4.1 shows an example for a modified adaptor for the customized version. The class
IMemory Adaptor holds references to objects of all implementation classes, which implement
the functionality interface IMemory. The method getPhysicalMemory is delegated to the right
implementation class. The selection of the implementation class is hard coded in conditional
branches. This scheme is applied to the other adaptors of the example, i.e. IHarddisk Adaptor,
IDefaultWebClient Adaptor and IConfiguration Adaptor. This modification of the prototype
is used as the reference application for static customization, which is equivalent to the prototype
as implemented according to the proposed methodology.

This design of the reference customized application is chosen, because it allows to reuse most
parts of the adaptable version and keeps the effort for implementing a reference application low.
A customized version developed from scratch would have a lower runtime, but it is considered to
be sufficient in order to approximate the ratio between the runtime of an adaptable application
and a customized version.

Runtime Measurements The measurements are made by setting a time stamp tbefore before
the method calls of adaptor methods and afterwards tafter. The difference between tbefore and
tafter is taken for the runtime of the method. For the time stamps the global time is taken. In
order to get reproducable results, the measurements are done on a single-user host, where the
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conditions for the measurements can be hold stable for the period of measuring and restored as
needed.

Time stamps within the adaptation mechanisms measure the time needed for context awareness
and remote class loading for a more detailed analysis of the method runtime. The implementation
of the customized version contains only time stamps for the method calls of the adaptor classes.
The time which is needed for migration is not measured because the effort for setting up synchro-
nized clocks between the hosts is much higher than the gain of exact results compared to a more
simple approximation. The lowest time which is needed for migration is the size of executable
code divided by the theoretical bandwidth.

Results of Measurements

According to the requirement R11 the size of executable code which moves over the network should
be lower when using adaptation, than when using static customization. An objective of this section
is to derive an equation from the measured code sizes. The equation should help to decide whether
adaptation induces a gain of bandwidth.

The customized application is based on adaptors identical to those of the prototype version
using dynamic adaptation. Thus, it is sufficient for the comparison of the size of executable code to
compare the size of used implementation classes, eventual dynamic libraries and profiles neglecting
the size of the core. The size of the core can be neglected because an identical core is also used
for the customized version.

size of size ofimplementation size of serialized
environment implementation dynamic librarygroup profiles [byte]

class [byte] [byte]
AIX, PPC 1724

IMemory 1046 Linux, X86 1788
WindowsNT, X86 978 18209
AIX, PPC 2415

IHarddisk 1052 Linux, X86 2599
WindowsNT, X86 1090 17965
Unix 1275IDefaultWebClient 891
WindowsNT, X86 1369 19785
Unix, Netscape 2607
Unix, Lynx 2335IConfiguration 1408
WindowsNT, Netscape 2781 20187
WindowsNT, IExplorer 1362 19788

Table 4.1: Size of executable code

The customized version holds references to all implementation classes over the whole lifetime
of the application. When the mobile code moves to a new host, the serialized objects are also
moved along. The approximation for the code size of the customized version (s. section 1.2)
is the sum of the sizes of all implementation class files of the implementation groups IMemory,
IHarddisk,IDefaultWebClient,IConfiguration (s. table 4.1):

size of executable code =
k∑
i=1

sizeOf(IMemoryi) +
l∑
i=1

sizeOf(IHarddiski)

+
m∑
i=1

sizeOf(IDefaultWebClienti) +
n∑
i=1

sizeOf(IConfigurationi)

= 4490 + 6104 + 2644 + 9085
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= 22323 [byte]

with

k number of environments supported by implementation group IMemory
l number of environments supported by implementation group IHarddisk
m number of environments supported by implementation group IDefaultWebClient
n number of environments supported by implementation group IConfiguration

The prototype version only holds references to implementation classes which are suitable for
the current environment, i.e. one implementation class out of each implementation group. If the
mobile code moves to a new host, the objects are dropped. For loading a required implementation
class, the context awareness loads the instantiated and serialized profiles of all implementation
classes of an implementation group.

The approximation for the code size of the prototype version is the sum of all serialized profiles
and the arithmetic mean of the implementation classes. The arithmetic mean of the implementa-
tion classes represents the implementation class that is suitable for the current environment and
actually loaded. Due to differing sizes of implementation classes for different environments, the
arithmetic mean is taken in order to get an environment independent unit of measurement.

size of executable code =
k+m+n+l∑

i=0

sizeOf(profilei)

+
k∑
i=1

sizeOf(IMemoryi)/k +
l∑
i=1

sizeOf(IHarddiski)/l

+
m∑
i=1

sizeOf(IDefaultWebClienti)/m

+
n∑
i=1

sizeOf(IConfigurationi)/n

= 4397 + 1496 + 2034 + 1322 + 2271
= 11520 [byte]

The approximations of the size of executable code show that the prototype version (11520[byte])
is smaller than the customized version (22323[byte]). From this approximations a general equation
for R11 can be derived:

k+m+n+l∑
i=0

sizeOf(profilei) +
k+m+n+l∑

j=1

sizeOf(implementation classi)/(k +m+ n+ l) <

k+m+n+l∑
i=0

sizeOf(implementation classi)

If the number of profiles and implementation classes increases and the average size of the
implementation class is assumed to be constant, the size of profiles and the sum of implementation
classes becomes much bigger than the average size of the implementation class. Thus the average
size of the implementation class can be neglected and the equation can be established for each
implementation class and its profile:

sizeOf(profile) < sizeOf(implementation class)
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As long as the size of the profile is smaller than the implementation class requirement R11 is
fulfilled.

This equation can be taken to decide whether bandwidth can be saved when using adaptation.
This equation is a very rough rule and can only be taken for a first approximation. Especially the
sizes of the executable code may strongly depend on the environment. As shown in table 4.1 some
implementation classes are rather small, but need to load big dynamic libraries, containing native
code. This aspect is not taken into account for the derivation of the equation, because they are
only specific for a few environments in this scenario.

A moderate increase of runtime as cost for the gain of bandwidth is the target of R12 and R13.
R12 postulates low reconfiguration time and R13 low time for the call of adaptable methods. In
the proposed methodology (s. section 3.3) the method call is used as the event for adaptation.
Because of this integration of method calls and adaptation the requirements R12 and R13 are
jointly evaluated: low runtime overhead of adaptable methods. The overhead consists of two parts:
the execution of context awareness and the loading of the implementation classes (s. figure 4.2).
The adaptation is done, when the reference to a class is accessed in a new environment for the
first time. Thus there is only an increased latency for the first method.

time

migration getFreeDiskSpace() getTotalDiskSpace()

customization
static

context awareness

adaptation
dynamic

runtime execution

class loading

Figure 4.2: Runtime latency due to dynamic adaptation

In the prototype and the customized version the methods of the adaptable classes are called
as shown in figure 4.3. The gray colored method calls must carry out adaptation before they can
execute their tasks.

The latency due to adaptation in the first method call of the object and the unchanged runtime
for succeeding methods is proved by the measurements (s. table 4.2).

average function runtime [ms]reference method
dynamic adaptation static customizing

m memory getPhysicalMemorySize() 346 9
getFreeDiskSpace() 211 83

m harddisk
getTotalDiskSpace() 48 45
setDiskSpace() 467 20

m configuration
setMemoryCache() 13 13

Table 4.2: Measured runtime values for methods using dynamic adaptation and static customiza-
tion

The method getFreeDiskSpace() of the reference m harddisk has a higher runtime for the
prototype version than for the customized version. The method getTotalDiskSpace() of the
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getTotalDiskSpace()

setMemoryCache()

m_memory

m_harddisk

m_configuration

getFreeDiskSpace()

setDiskSpace()

getPhysicalMemorySize()

method which must 
do adaptation

Figure 4.3: Sequence of method calls

reference m harddisk, which is invoked in the program flow after getFreeDiskSpace(), has almost
the same runtime as the method of the customized version.

The values in table 4.2 are measured on a single-user host with a local repository. Each value
in the table is the arithmetic mean of a set of 100 measured runtime values.

dyn. adaptation - ratioreference method
stat. custom. per method

m memory getPhysicalMemorySize() 337 0.97
getFreeDiskSpace() 128 0.61

m harddisk
getTotalDiskSpace() 3 0.06
setDiskSpace() 447 0.96

m configuration
setMemoryCache() 0 0

Table 4.3: Comparison of runtime values

The latency because of adaptation is partially up to 97% (getPhysicalMemorySize()) of
the total runtime of the method. This is a high ratio and contradicts requirements R12-R13. The
reason for the high ratio is the short runtime of the method and the delay caused by the adaptation
process at the first method call. If the latency of adaptation is considered over all methods of
a reference the ratio of latency per method is more acceptable. If the latency for adaptation is
assumed to be constant, adaptation becomes cheaper in terms of runtime. The assumption of a
constant runtime of adaptation relies on the fact that the biggest portion of runtime is spent for
loading the profiles and executing the context awareness. If the complexity of profiles remains at
a constant level, the runtime for context awareness and thus for adaptation can be assumed to be
constant.
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4.3 Summary

The proposed methodology and the implementation of the prototype meet most of the require-
ments. Because of using reflection the concept relies on programming languages which support this
technology and the modification of the framework is necessary if another programming language
than Java is used.

Complete transparency to the application is however not been achieved. Adaptors hide most
of the adaptation mechanism, but are still visible to the application.

The gain of bandwidth depends heavily on the size of the implementation classes and the
number of environments. If only small implementation classes for few environments are used, the
adaptation version is less efficient than a customized version. The efficency of adaptation increases
with the size of implementation classes and the number of environments.

scenario customized version dynamic adaptation
long running methods + ++
big implementation classes - +
few different environments + -

Table 4.4: Comparison between customized version and dynamic adaptation

The costs for gained bandwidth is a runtime overhead. This runtime overhead becomes negli-
gible, if an application has a long running time on a host.

Table 4.4 gives an overview in which cases adaptation may be a better choice than the con-
ventional customized version.



Chapter 5

Conclusions

5.1 Contribution

5.1.1 Requirements

In order to survey the state-of-the-art of adaptation, a list of requirements for dynamic adaptation
of mobile code has been set up in chapter 2. The evaluation of the known technologies concludes
that a new methodology must be developed. The requirements serve as guideline for the develop-
ment of the methodology throughout chapter 3 and help reviewing the resulting concept and its
implementation in chapter 5.

5.1.2 Design pattern

One part of the proposed methodology as discussed in chapter 3 is a guideline for the programmer
for creating adaptable mobile code. The design pattern is based on abstraction by interfaces. The
environment independent functionality is defined in the functionality interface. The environment
dependent implementations are mapped into implementation classes which implement the common
functionality interface.

As evaluated in section 4.1.1 the programming effort for adaptable mobile code compared to
static customization is not necessarily higher. The noticeable difference for the programmer is
the deployment of the adaptor generator which does not increases the number of classes, but
the compilation procedure must be modified. The adaptor generator is part of the adaptation
framework.

Profile

For the specification of the suitable environment the concept of a profile, which is associated with
the implementation, is introduced in this work (s. section 3.4.1). The profiles are designated to be
evaluated by the framework in order to determine the right implementation. The profile concept
is based on object-oriented mechanisms, e.g. relations among implementation requirements and
environment properties are mapped to a class hierarchy.

5.1.3 Framework

The adaptation framework forms the second part of the proposed methodology. It integrates the
adaptation mechanisms as transparent as possible into the mobile code, supports the selection
of the right implementation for the current environment and the dynamic linking of the selected
implementation.
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Adaptors

The concept for the integration of adaptation into the mobile code relies on adaptors (s. section
3.3.3). The adaptors are generated by an adaptor generator and are used within the non-adaptable
part of the mobile code as transparent interface to the adaptation mechanism. The generation
of the adaptors is necessary in order to provide a code base for the compiler (s. discussion in
3.3.3) but the automatic generation does not lead to a high overhead of programming effort as a
consequence.

Context Awareness

The context awareness as part of the framework evaluates the implementation profiles in the local
environment. The implementation profiles are loaded from the repository. It is hidden by the
adaptors and contributes its result to the loader.

Loader

The loading of the right implementation classes is done by the loader. In order to support the
execution of native code in the Java environment the loader must support loading of dynamic
shared libraries as required by the JNI mechanism [Lia99].

Repository

The repository provides the profiles, implementation classes and native libraries to the context
awareness and the loader. The repository is needed for every adaptation procedure. If the repos-
itory is not reachable the adaptation fails and the mobile code can not proceed to execute its
task.

This would threaten the autonomy of mobile code. The solution as discussed in section 3.5.1
is a proxy repository in the neighborhood of the mobile code. The general term neighborhood is
introduced because the most favorable location of the repository which supports the autonomy of
the mobile code at the same time keeping down the overhead, is application dependent. I.e. the
nature of the route of the mobile code – assuming a multi hop agent – determines the optimal
location of a repository.

5.2 Example of Adaptation Process

For illustrating the role of the adaptation elements described above this section presents an example
for executing the method of an adaptable class. The adaptable class is described by a functionality
interface IMemory which declares the method getPhysicalMemory() retrieving the size of the
installed memory of a host. The functionality interface is supported by a set of implementation
classes for different environments.

The adaptor class IMemory Adaptor is generated out of the functionality interface and used in
the core for accessing the implementation classes. It is assumed that the core is running on a x86
host with Windows NT and no implementation class is yet loaded by the adaptor class.

Following steps are performed by the adaptation mechanism for executing the implementation
method getPhysicalMemory() provided by a suitable implementation class (s. figure 5.1).

Step 1 The core invokes the method getPhysicalMemory() offered by the adaptor class
IMemory Adaptor.

Step 2 Since no implementation class is yet available, the adaptor class contacts the adaptation class
to load the suitable implementation class supporting the functionality interface IMemory.

Step 3 The class loader of the adaptation class requests the implementation class name from the
context awareness mechanism.
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Figure 5.1: Steps of adaptation process

Step 4 For resolving the right implementation class name the context awareness needs the profiles
of all implementation class belonging to the implementation group IMemory. Therefore the
context awareness retrieves the profiles from the repository through the repository client.

Step 5 The repository collects all profiles from the implementation group IMemory out of the imple-
mentation classes and sends them back to the context awareness via the repository client.
The context awareness obtains the profiles, executes them and returns the right implemen-
tation class name to the loader.

Step 6 The loader requests the suitable implementation class Memory WINNT X86 from the repository
via the repository client.

Step 7 The repository sends the implementation class to the loader through the repository client.
The loader returns the implementation class to the adaptor class, which instantiates the
class and executes the method getPhysicalMemory().

If further methods of the class IMemory Adaptor declared in the functionality interface IMemory
are invoked by the core, the adaptor class can directly delegate the method calls to the implemen-
tation class Memory WINNT X86. A new adaptation process is necessary if the core moves to a new
host.

5.2.1 Implementation of the Prototype

The proposed concept is realized in a prototype. The sample application is the configuration of
web browsers by a mobile agent as described in section 3.1. The implementation uses the Voyager
agent system platform [Obj00] as infrastructure for the mobile agent. The adaptation framework
is written in pure Java. For the configuration of web browsers running on MS-Windows NT the
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access to the registry, the MS-Windows configuration data base the Win32 API is used, packaged
in dynamic shared libraries for MS-Windows (DLLs).

5.3 Results

5.3.1 Transparency of Adaptation

As discussed in section 4.1.2 the proposed methodology does not offer total transparency to the
application.

Adaptors hide adaptation up to certain limit, but there are still two aspects affecting the
application:

• deployment of adaptors

• changed semantics of method invocations

Though the adaptor concept is a means to enhance transparency, the adaptors themselves lead
to a different way of programming than needed for static customization.

Invocation of adaptable methods differs from ordinary local method calls, because an invocation
of an adaptable method involves a selection of an implementation class requiring communication
over the network with the repository. This implies two additional exceptions: The communication
with the repository may fail due to a network error and the selection of an implementation class
may fail because of a missing suitable implementation class for the current environment. These
exceptional cases are mapped to one exception corresponding to the generic Java class not found
exception.

5.3.2 Runtime Overhead

As presented in chapter 4.2 the implementation of the prototype using dynamic adaptation has a
higher runtime than the equivalent version using static customization. This can be explained from
a tradeoff between flexibility and performance as it occurs in many engineering disciplines. The
runtime overhead caused by adaptation loses its effect on the overall runtime of the application,
if it is applied to classes providing methods with a noticeable higher runtime than needed for the
adaptation.

5.3.3 Breakeven Point of Adaptation

The essential criteria for the deployment of adaptation discussed in this work is the ratio of the
size between the application-independent core and application-specific implementation classes.
Adaptation is advantageous when the size of the environment dependent implementations is greater
than the environment independent core.

5.4 Future Work

The current implementation of the repository has the drawback that instances of all implemen-
tation classes must be hold in the memory in order to get the according implementation profiles.
This is sufficient if only a small number of implementation classes are needed as in the case of
the sample application. Since a strength of dynamic adaptation is the gain of bandwidth in the
case of a high number of implementation classes with a big size, the repository of the current
implementation may become a bottleneck. The solution may be the loading and instantiating
of each implementation class at start-up time of the repository. After the startup the separated
profiles are saved only.

A further improvement concerning transparency would be the implementation of an adaptor
generator which generates Java byte code during runtime and not Java source code as in the
prototype implementation.



Bibliography

[Ado85] Adobe System Incoporated. PostScript Language Reference, 1985.

[ADOB98] Gregory D. Abowd, Anind Dey, Robert Orr, and Jason Brotherton. Context-
awareness in wearable and ubiquitous computing. Virtual Reality, 3:200–211, 1998.

[AW97] Noriki Amano and Takuo Watanabe. Lead: A language for dynamically adaptable
applications. In International Technical Conference on Circuits/Systems, Computers
and Communications (ITS-CSCC’97), July 14-16 1997.

[BPW98] Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile agents for network
management. IEEE Communications Surveys, 1(1), 1998.

[Bri98] Bright Star Engineering. ipEngine-1 Hardware Reference Manual, 1998.

[DH88] Andrew Duncan and Urs Hölzle. Load-time adaptation: Efficient and non-intrusive
language extension for virtual machines. Technical Report TRCS99-09, University of
California, Santa Barbara, June 1988.

[Eng97] Robert Englander. Developing JAVA Beans. O’Reilly, 1 edition, 1997.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol – http/1.1. RFC 2616, IETF, June 1999.

[FKK99] Metin Feridun, Wilco Kasteleijn, and Jens Krause. Distributed Management with
Mobile Components. Technical report, IBM Zurich Research Laboratory, Rueschlikon,
Switzerland, 1999.

[Fla97] David Flanagan. Java in a Nutshell. O’Reilly, second edition, May 1997.

[FPV98] Alfonso Fugetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code mobil-
ity. IEEE Transactions on Software Engineering, 24(5):352–361, May 1998.

[GFP99] Thomas Gschwind, Metin Feridun, and Stefan Pleisch. ADK - Building Mobile Agents
for Network and Systems Management from Reusable Components. Technical report,
IBM Zurich Research Laboratory; Distributed Systems Group TU Wien, Rueschlikon,
Switzerland, 1999.
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Finland, June 10 1997.

[Gra98] Mark Grand. Patterns in Java, Volume 1, A Catalog of Reusable Design Patterns
Illustrated with UML. John Wiley, September 1998.

[Hei99] George T. Heineman. An evaluation of component adaptation techniques. In Inter-
national Workshop on Component-Based Software Engineering, May 17–18 1999.

64



BIBLIOGRAPHY 65

[KH98] Ralph Keller and Urs H”olzle. Binary code adaptation. In 12th European Conference
on Object-Oriented Programming (ECOOP ’98), Brussels, Belgium, July 20–24 1998.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the java virtual machine.
In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications, 1998.

[Lia99] Sheng Liang. The Java Native Interface : Programmer’s Guide and Specification.
Addison-Wesley, June 1999.

[LO98] David Lange and M. Oshima. Programing and Deploying Mobile Agents with Java.
Addison-Wesley, 1998.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2 edition, 1999.

[MKKM98] Nelson Minar, Kwindla, Kramer, and Pattie Maes. Cooperating mobile agents for
mapping networks. In First Hungarian National Conference on Agent Based Com-
puting, Cambridge, MA, USA, May 1998.

[Nob00] Brian Noble. System support for mobile, adaptive applications. IEEE Personal Com-
munications, pages 44–49, February 2000.

[Obj00] Objectspace. Voyager ORB 3.3 Developer Guide, 2000.

[OH98] Robert Orfali and Dan Harkey. Client/Server Programming with JAVA and CORBA.
John Wiley, 2 edition, 1998.

[Ple99] Stefan Pleisch. State of the art of mobile agent computing - security, fault tolerance,
and transaction support. Technical report, IBM Zurich Research Laboratory, June
1999.

[SAW94] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing applica-
tions. In Proceedings of the Workshop on Mobile Computing Systems and Applications,
December 1994.

[ST93] Mike Spreitzer and Marvin Theimer. Scalable, secure, mobile computing with location
information. Communications of the ACM, 36(7):27, July 1993.

[STW92] Bill N. Schilit, Marvin Theimer, and Brent B. Welch. Customizing mobile applica-
tions. In Proceedings of the USENIX Symposium on Mobile and Location-independent
Computing, pages 129–138, August 1992.

[Sun99] Sun Microsystem, Inc. Java Remote Method Invocation Specification, December 1999.

[TSS+97] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall,
and Gary J. Minden. A survey of active network research. IEEE Communications,
35(1), January 1997.

[WHFG92] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location system.
ACM Transactions on Information and System Security, 10(1), January 1992.


	Titel der Diplomarbeit
	Inhaltsverzeichnis

	Contents
	Abbildungsverzeichnis

	List of Figures
	List of Tables
	1 Introduction
	1.1 Mobile Code
	1.1.1 Mobility Mechanisms
	1.1.2 Design Paradigms
	1.1.3 Application Domains

	1.2 Motivation for Adaptation
	1.2.1 Situation
	1.2.2 Static Customization
	1.2.3 Dynamic Adaptation

	1.3 Scenarios
	1.4 Problem Statement

	2 State-of-the-Art in Adaptation
	2.1 Adaptation in Literature
	2.1.1 Static Adaptation
	2.1.2 Continuous Adaptation

	2.2 Requirements
	2.2.1 Programming Overhead: R1-R4
	2.2.2 Interaction between Core and Adaptation Mechanism: R5-R10
	2.2.3 Runtime Overhead: R11-R13
	2.2.4 Deployment of Requirements

	2.3 Survey of techniques
	2.3.1 Static Adaptation
	2.3.2 Dynamic Adaptation
	2.3.3 Continuous Adaptation

	2.4 Conclusion

	3 Proposed Methodology of Adaptation
	3.1 Example: Browser Configuration
	3.2 Overview
	3.3 Reconfiguration
	3.3.1 Design Pattern
	3.3.2 Explicit Adaptation - Proposal 1
	3.3.3 Adaptation Adaptor - Proposal 2
	3.3.4 Virtual Class - Proposal 3
	3.3.5 Summary of Reconfiguration

	3.4 Context Awareness
	3.4.1 Profiles and Profile Values
	3.4.2 Recursive Context Awareness
	3.4.3 Rule Based Context Awareness - Proposal 1
	3.4.4 Info-Component-Based Context Awareness - Proposal 2
	3.4.5 Integrated Profile Based Context Awareness - Proposal 3
	3.4.6 Summary of Context Awareness

	3.5 Repository
	3.5.1 Proxy Repository
	3.5.2 Architecture of the Proxy Repository

	3.6 Implementation of a Prototype System
	3.6.1 Adaptation Framework
	3.6.2 Implementation of Browser Configuration
	3.6.3 Mobile Agent on Voyager Agent System Platform


	4 Analysis and Evaluation of Methodology
	4.1 Meeting the requirements
	4.1.1 Programming Effort
	4.1.2 Interaction between Application and Adaptation Mechanism

	4.2 Runtime Overhead
	4.3 Summary

	5 Conclusions
	5.1 Contribution
	5.1.1 Requirements
	5.1.2 Design pattern
	5.1.3 Framework

	5.2 Example of Adaptation Process
	5.2.1 Implementation of the Prototype

	5.3 Results
	5.3.1 Transparency of Adaptation
	5.3.2 Runtime Overhead
	5.3.3 Breakeven Point of Adaptation

	5.4 Future Work

	Bibliography

