[

INSTITUT FUR INFORMATIK

DER TECHNISCHEN UNIVERSIAT MUNCHEN

Diplomar beit

Managing Trust in a Distributed
Networ k

Bearbeiter: Benedikt Elser
Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering

Betreuer: Helmut Reiser
Latifa Boursas
Pierangela Samarati

~rOOO0—0O1+—0
—OOOO0+0—
~rOO0—0+0—
~rOO0—OO0+0—

[

INSTITUT FUR INFORMATIK

DER TECHNISCHEN UNIVERSIAT MUNCHEN

Diplomar beit

Managing Trust in a Distributed
Networ k

Bearbeiter: Benedikt Elser
Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering
Betreuer: Helmut Reiser

Latifa Boursas
Pierangela Samarati
Abgabetermin: 14. Marz 2006

~rOO0—0+0—
~rOO—OO0+0—

~rOOO0—0O1+—0
—OOOO0+0—]

Hiermit versichere ich, dass ich die vorliegende Diplonegtrbelbstandig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel vedetdmabe.

Miinchen, den 14. Marz 2006

(Unterschrift des Kandidaten)

This thesis serves as an introduction to the topic of trudtappropaches to its management in a distributed
network. It will show how to use reputation as a way to minienike possibility of frauds when encounter-
ing unknown clients. For this purpose various techniquest, &re currently available, will be analyzed. In
the course of this work, a distributed hash table, calledktdgemlia network, will be adapted to feature a
reputation based trust system. A distributed hash tablblesa mapping between keys and buckets across a
whole network, without the need for a central index systehe fieputation information will be aggregated in
this fashion by collecting recommondations of peers, abthérs, at distributed, but well known places. This
information will be guarded using cryptographic hashe@revent any tampering. The system will therefore
be totally decentralized and enable secure reputatioinghar

Contents

B Cryptography based SOIULIONS .« . o o e e e 13
B11 Asymmetric ENCIVDLON o o o 13
B12 TrustCentersand BKI oot 14
B13 XB500DIECIOMS o o oot e e 16
B14 Weboftrubt. 17
B.1.5 Decentralized Trust Managenhent 18
B16 Conclusidn 19

&%ﬂaﬂmﬁ;&ﬁms 20

.. 20
ithm . e 21
....................................... 22

3.3 Distributed Reputation SYStAMS o o v e e e e e 23

%&t 23

P oo e 25

B33 Conclusidn 28

B4 Attacks ontrustmetrics e 29
BE_Conclusidn oo 30
K__Choice of a Peer to Peer Model | 32

B CROMtH . ..o 32

.2 Technicallntroductionto Kademjlia 33
M21 Network tonoloay 34
M22 Distance Metlico 34
B23 Protochl . . . o oo 34
R T 35
125 FindingNodesinthe DTt 36
B.2.6 Publishinginformatibn 36
K27 Retrieving Informationinthe DT 37
B28 Cachidg« o v oo e 37

B3 Conclusidn . . . o o oo 37
[5_Model of a Trust-Aware Solution | 39
B1 _SketchofDesifin e 39

List of Figures

2.1 __Trust accumulates from a variety of sources e 4
Mbrk 5

3 Atrustsystemwiththreeno@les. 8
2.4 Areputation SYSIAM 9

[3.2__Trust relation between X.509 certifichitescoei oo 16

B3 Trustmetricwithatrustcenter 17

B.4_ TrustrelationsinaWeb of Trhst 18

C . e e e e 21

%ic 23
’ ' ingle source, multiple singigenh L. L. 24

3.8 _The Gnutella Protocol for searching and retrievingdmfation 26

B.9 The P2PRep protofol o o e 27

B.10 P2PRep: Aggregationofvdtes 28

[3.11_A possible attack scenario on AdVOFato e e 29

41 _Asample Chord Netwdrk o o e 33

% 34

ia Di LT 34

ia’ i S i e e e e e e e e 35

M5 _Asampleseamch o 38
M6 Asamplesearatdnfl 38
M7 Asamplesearatonfl 38

4.8 Mappingdatakeystonolles. 38

[5.1__The workflow of a Reputation Sysfiem 40

B2 _SIONNGAVOIE . . o o i it i e 43

5.3 The Vote Basketneedstobeupdated 43
6.1 _The components of the Kademlia implementation in theleMiient 47

Igg :Eg E%E% and opcode of a ggﬂemlia packet 48

ingpartof asearchregliest e e 48

6.4__An extended architecture, allowing reputation shhring. 51
6.5 A CEniry is a datastructure, facilitating the accessTagist 53
6.6 _ThecallgraphoPublishVotes() | 54
16.7_Data structures involved in the implementation of Vogsiets 55

jalisati 56

56

57

57

58

58

59

60

62

List of Tables

2.1 Rules of the prisoner’s dilemma

................................. 6
[2.2__Abstracted rules of the prisonersdilemhmao oo 6
B.1_Comparison of all SOIULIANS o o v e e e 31
4.1__A sample Kademlia routing_[able 35
4.2 The Chord and Kademlia distributed hash tables comipared 38

1 Introduction

Over the last several years, the Internet as a businessmfatfas gained momentum. Systems like amazon
and eBay prove that effective business can take place onrtdl/i basis. But this is not only the case in
business. Even communication is increasingly shiftingaials technologies provided by the global network.
Email, Instant Messaging and online shopping are becoming @nd more part of every day life.

Besides the undoubted benefits, this rapid growth servedala catalyst for the evolution of criminality. Not
a week passes without media reports of new waves of mail ndigeople fooled by a hostile eBay vendor.
A new trend in criminality are phishing attacks that try ttrieve sensitive banking data from customers of
online banking. Judging from the rising amount of thesedrit is evident, that abusing others on the Internet
is a lucrative task and works fairly well. Various factorfiuence this. This work will try to limit this problem,
by analyzing the employed forms of interaction.

Big differences in the interaction can be found when conmapai confrontation with an unknown peer in real
life and on a virtual basis, like the Internet. In familiarrfts of interactions peers are able to collect “meta
information” from each other. This includes the appearamtkthe facial expression of the other party. Facing
a vendor competence or interaction with the desired proelngbles a customer, to develop confidence that
his decision is correct.

Internet style interaction differs greatly from that. Itrisuch easier for a peer to control which information
can be collected. An example illustrates this: Creating Bshep which looks trustworthy for users is much
cheaper than this is in real life. The physical unavailapitiakes judging harder for us.

This comparison demonstrates, that normal style intemaanables us to develop a rather common element
of social interaction: “Trust”. While every form of humartémaction is based on this property, cyberspace as
new media lacks of mechanisms to judge the trustworthingssers.

1.1 Motivation

No matter what kind of transaction we face on the Internetjlitmostly involve totally unknown peers com-
municating with each other. Whenever a peer is confrontéld tve decision of transacting with another peer
it inevitably comes to a trust decision, identical to norm@atial interaction. Regardingtdtp transaction

of a website, one server provides informatiomtolients. Chaptdr 217 will however show, that regardiegr

to Peercommunication, the situation changes drastically; aervers, provide information te clients, which
boosts the number of trust decisions, while also stresti@gumber of unknown clients. While it is common
when facing a stranger in real life, to collect additiondbmation and base a judgement on that, the Internet
lacks these possibilities. Therefore a trust decision isre@ally possible, as we can base our judgement on
only a few factors and assumptions.

This problem is normally limited, as a numberof clients will try to access services af provides, with

m << n. Recent years however introduced a new trend of distribsgedces, théeer to Peesystems. In
those systems every client not only uses, but also provieleéces to others, withn == n. The benefit is
that the number of service providers increases. On the btnedl the number of interactions with unknown
clients increases drastically, which increases the piitityabf facing a hostile peer. The complete scenario
can be found in chaptEr2.7. As currently no “ready to uselitsmhs exist, this work will try support current
research.

1 Introduction

1.2 Conceptual Formulation

The overall goal of this work is to enable trust based densan the Internet, trying to overcome the previous
lack. To reach this goal a couple of steps have to be taken:

e Analyze the concept of trust in sociology. To develop a madelomputer science, the surroundings
of “real world” trust decisions need to be analyzed brieflyisTis done to ensure, that the developed
model represents an accurate abstraction of reality.

o Identify the components of trust in computer science. Qumesearch on trust has developed a set of
formalism and split into a variety of research areas. Anwesr of this complex topic is given, as an
introduction to the complex topic in the informatics domain

e Give an overview of the current state of research. As theve bhiready been different approaches to
the topic in computer science, an introduction into theenirresearch in the surroundings of trust will
be given. What different approaches to the topic of trusetekeady been taken and what can provide
valuable input for this research.

e Presentan abstract model. After receiving input from déife trust research topics, a model that enables
trust based decisions on the Internet will be proposed. ‘With model, an attempt will be made to
contribute to the current state of research in the surrowgsddf both P2P systems and trust systems.

e Develop an implementation. The proposed solution will dtided into a major P2P application.

1.3 Proceeding

To reach the previously defined goals, the second chaptéiofthesis will introduce the formal surround-
ings of trust, starting with the definition of the word truditat will be used throughout the course of this
work. Subsequently a generic example developed by thedtieakfield of computer science will lead to the
requirements of trust in computer science. Finally the aderof this work will be introduced.

Chapter 3 will give an introduction on the current state afegrch. It will illustrate past models that were
developed to develop trust. During the course of this chiafitese solutions will be analyzed to determine
whether and how they would fit into the presented scenaribisthesis.

In chapter 4 a distributed hash table as basis for a P2P sygtebe chosen. This will settle the environment,
in which the intended solutions developed in this thesiswalrk.

The developed abstract model of trust will be presentedapter 5, which incorporates all previously acquired
knowledge. It will start with a description of the developaddel and will present the details of the developed
implementation.

In the following two chapters the achieved results will becdissed. Finally a summary will provide an
overview of the accomplished work and identify it's wealkses In the conclusion recommendations for
further research will be given.

2 The Notion of Trust

Trustis a very common word. In the course of this chapteediffit definitions of trust will be analyzed and one
of them will be chosen to be used in this work. Furthermoreyrarnon example that stresses the importance
of trust in computer science will be presented. After logkitt common elements of trust in informatics, the
scenario this work is based upon will be introduced.

2.1 Trust in sociology

Trust is something used in everyday live as an element ofkaderaction. While its use is common as a
social phenomenon, developing a definition for it is a comdsk as it is purely subjective. When analyzing
trust a variety of factors will be found, that in differentrdexts have different weigths. For example, for a
doctor to be trustworthy, his competence has an absolubeitgrihis loyalty counts less, which may be - for
judging a friend - an important factor. Speaking of compe¢eand loyalty, these are already two examples
of sourcesof trust, which are based on attributes of other peers. Gtinetude reliability, goodwill, or even
the way the other person dresses. Besides this, the sishjeat’ situation and mood make up other factors of
trust, so a heavily weighed “human factor” expressing the gubjective nature of trust, needs to be included.

In literature there are two common definitions of trustiability trust anddecision trust In [Gam88] the first
form is defined:

Reliability Trust: Trustis the subjective probability by which an individuglekpects that another individual,
B, performs a given action on which his welfare depends.

The former definition stresses the dependence on an actanuted party should perform and defines trust
as probability of this happening. This is a straight forwdedinition of trust. Imagine a store, were you buy

some item. Now further imagine a storekeeper, that shangpdsyou every now and then. Being an example,
the obvious solution of leaving this store without cominglbagain, will be ignored. So now we can count

the time we have been purchasing at that store and the timaaweebeen shortchanged. Dividing the former
through the latter will result in the statistical probatyilbof a negative outcome.

Decision Trust: Trust is the extent to which one party is willing to depend omsthing or somebody in a
given situation with a feeling of relative security, eventlyh negative consequences are possible. [MC96]

This definition includes more elements of human interacinwolving trust, by stressing that negative con-
sequences are possible. Thisk becomes more important, the higher the loss would be. Ineaginonline
business platform, accepting credit card numbers as themethod of payment. Giving away that number
leaves its customers in a vulnerable positidapendingon the vendor to act according to lawssking an
enormous financial damage.

A possible trust decision could therefore be modeled: Adiacdepending on the risk - controls whether a
transaction is carried out under a given probability of ®ssc For illustration purposes figlitel2.1 represents
this kind of trust in a pseudo code implementation.

In [Han00] the author names a variety of sources of trusts ®hillustrated in graphic2.1. They are weighed
differently by their context and a human “factor”. Trust afwes both actions from other partys a subject
depends on and it's subjective influences. In the course®fbrk the definition oReliability Trust,will be

2 The Notion of Trust

Listing 2.1: Pseudo code implementation of Decision Trust

enum risk_t = {high, low};
enum trust_t = {high, medium, low}

bool transact(risk_t risk, trust_t trust) {

if (risk == high) {

if (trust == high) {
return true;

}
return false;

}

if (risk == low) {
if (trust == low) {

return false;

}
return true;

}

return false;

used, because it serves best as a straight forward definRimthermore, the concept of risk in a transaction
would shift the focus away from a generic concept of trust aggament, as it would require to check transac-
tions on their possible risk. This may need some explanatimagine the eBay system would be enhanced,
providing information concerning the risk of an operatidme system would require functionality deciding
what risk for the user means, depending on the current ptplikeca cost-trust ratio. That information is too
specialized for a system designed to be generic as possilskjuires some semantic knowledge about the
transmitted data. We strongly emphasize however that tbik gerves as a basis which could be specialized
and, by deciding on the type of information the concept df cisuld be included.

Reliability

/

Human Factor

= Goodwill

/ \
Loyality

Competence

Figure 2.1: Trust accumulates from a variety of sources

The definition of Reliability Trust mentions a subjectivepability at which an action is performed. Therefore
the probability of an action is defined by the mathematicabpbility:

qi
Uz

pi =

q denotes the successful transactions while the number of total transactions with peerOf course it is
eminentthat in the case af= 0 the degree of trust is undefined. In case no decision basédmowledge of
the client is possible, which exactly resembles the scelsgsiroblem of trusting an unknown peer. Additional
information is needed. A formal basis for that case can badoo[Z.5.

2.2 Social Networks
2.2 Social Networks

As a matter of fact, communities develop not only in real wptbut in every medium given. These are
commonly modeled as social networks. In computer sciehceatea of research gained high popularity over
the last years, not at last because of the rise of standaltsh wnable expressing relations between entities
in a machine readable format. To introduce these kind of okdsva definition is needed:

Definition of Social Networks A social network is a social structure between actors, ngastividuals
or organizations. Itindicates the ways in which they arergerted through various social familiarities ranging
from casual acquaintance to close familial bonds TFoU05a].

A social network can be represented as a graph, where edyeseat a “knowing” relationship and nodes
reflect individuals. For an example see figuré 2.2.

Although these networks have always existed, a fact givelmioyan nature, the concept received attention in
computer science lately with the usage of a technique cRié&ssburce Description Framework (RDRhis is a
standard developed by the w3c [BG:99] with the aim of enalidimgputers to parse information on the Internet
automatically. As toady’s information on the web is not ahle structured to be processed by a computer this
was necessary. These techniques are referred to asremntic web.

One social network, relying on the latter technique is theéeird of a Friend(FOAF)” Proje(ﬂ. While at
first sight not trust related, this technique provides anastfucture for enabling such a system. It provides
a method of expressing information about peers and linkiagjinformation. Furthermore, it copes with an
important topic in the area of trust: Identifying peers. Bdble to express information about peers, these
have to be identified in a common way, that maps a descriptearlg to a person. FOAF expresses identity
using email addresses. While a person and that person’s adaaess are not the sarpeu could reasonably
assume that all descriptions of a person that included “figsson’s e-mail address is edd@xml.com” might
reasonably refer to the same pers§Bum0Z2]

@ Individual

o—eo
R
P > /@

Figure 2.2: An example for a social networkqu05a])

Social Networks are used to describe interaction on alm@styeapplication. A logical step is applying trust
to those, which creates an convenient way, to analyze teerelations between peers in networks.

http://www.foaf-project.org/

2 The Notion of Trust

2.3 The Prisoner’s dilemma

One of the goals of Computer Science is building an abstracteinof reality. Therefore it is not surprising
that this import part of human interaction has already rexbiattention. In the area of game theory, the
Prisoner’s Dilemma was invented as an example that sheksf trust. Therefore, this game is introduced
in the following, as trust centric situations can be reducedtie dilemma.

The game has two players A and B. They were captured by theepfr having committed a crime, but
there is insufficient evidence for a conviction. Therefdreth are separated and each of them gets an offer
from the police, for going free when testifying for the progton against the other, who will be arrested for 5
years. The downside is, if the other player chooses the saategy both will be arrested for 4 years. When
none takes the offer from the police they go free after 2 ydarghe lack of sufficient proof. To sum up the
situation:

Prisoner A silent Prisoner A betrays
Prisoner B silent Both 2 years A: Free B: 5 years
Prisoner B betrays B: Free A: 5 years Both 4 years

Table 2.1: Rules of the prisoner’s dilemma

The optimal solution for both players is to cooperate. Ifytbtay silent they will receive a moderate punish-
ment of 2 years. But, from a game theory’s point of view, théroal strategy for every player is to betray. If
the other player stays silent, he will be free, otherwise Hidnwave one year less of punishment. The dilemma
is that both players can not develop a strategy, as they pegated and even if there were a cooperation no
prisoner knows if the other will not betray. Here we have aclack oftrust.

The game has a Nash equilibrium, which describes the cofeeaditemma. The only strategy, in which no
player has a gain in changing his own strategy is the “botlath&tuation. The obvious “both cooperate”
case, leaves every player the opportunity to cheat andvweaajain.

If the game is played repeatedly, there are different gi@seto play this game, but first an abstracted form of
the game needs to be introduced.

Player B:
bl b2
al +5 -5
Player A: +5 +8
+8 -3
a2 -5 -3

Table 2.2: Abstracted rules of the prisoner’s dilemma

In this game both players have an abstract “choice”, regipiints for their actions in each iteration of the
game. Now we see more clearly that we deal with a non null-sameg as it is not the fact that in every
outcome a player gains as much as the other looses. Theredastarge number of research carried out on
the dilemma and different strategies arose: To name onlytene is the forgiving strategy, that always plays
nice, hoping for the other player to do the same. The “nicedtsgy, starts playing nice until the other one
betrays, sanctioning the other player and returning to ee’rétrategy after the other cooperates. Itis also a
forgiving not vengeful stategy. The latter also pays outtyessit prevents revenge and relies on the opponent
to play nice in the end.

2.4 Trust in computer science

Hofstadter's Modifications There have been multiple modifications of the game. We wilehelook at
the version of Douglas Hofstadtér [Hof85], which was desidjto reflect business habits. Now both players
have a bag and exchange them. Both agreed previously théagneontains a product and the other contains
the payment. But every side can also handle an empty bagn/&djaitrategies applied to the prisoners game
can be applied. The chosen act will boil down for both playerthie same outcome. One is receivinghart
high gain by receiving payment for no product, or not paying for a prdThis will of course stop further
interactions. The other islangstanding moder ate gain by behaving correctly. This leaves the possibility to
do further business with that customer.

The Prisoner’s dilemma and especially the modification ofstémlter serve in the case of the Internet as
business platform as a very good model. It has already bemreprin reality and is now stressed by the
special attributes of the Internet. Most people even toddigle that there is a certain kind of anonymity on
the Internet. This misconception produces a relativerigadi security that in turn increases the probability of
betraying.

Most striking however is the fact that on the Internet, esdlycin P2P systems, there is a high degree of
transaction between people who have never met an will liketymeet in the future. When facing a possibly
anonymous vendor, that is unknown to a peer, giving awayitoradd information is a sensitive task. It can

therefore only be hoped, that the other player will play gdime “nice” strategy, as a fair player will be the

one having loss.

Pavel Watzlavick notes in his book “How Real is Real?”, thagnif the prisoners can communicate and settle
an agreement, they will need dependn the other being cooperative and the dilemma starts again:

“each [prisoner] will invariably realize that the trustwahiness of the other depends largely
on how trustworthy he appears TO the other, which in turn iederined by the degree of trust
each of them has FOR the other — and so forth ad infinitykvat/€)]

2.4 Trust in computer science

The Prisoner’s dilemma already introduced the importarfitieetopic. While previously different definitions
of trust in sociology were given, computer science offers@abl spectrum of trust applications, involving
different subjects and appliances of their trust relatiBlaze et al.describes the duty of a trust management
system in their work as follows:

“Does the set C of credentials prove that the request r coasphith the local security policy P?”
[BELY96]

Blaze uses the system for authorisation. Therefore some elements need to be added, to have a sufficient
set of trust elements:

Entities These are the basic acting elements. There can be diffaret#t i trust interaction. They include
humans interacting via a computer, but may at the other metiee purely digital entities, as for example a
X.500 directory, that interacts with a X.509 certificate chaptef3.T13 will show. Another common name is
principals

Credentials Associated with Entities are sets of credentials which des¢hem and their relationships. A
classicAccess Control List (ACL. s the UNIX? style system, describes possession of files by individuals.
ChapteE23.T15 will introduce certificates describing merabip in groups and the ability to delegate trust as a
set of credentials.

Authenticity ~ Both previously mentioned systems form the basis of eacleesiy trust system. Entities and
their Credentials are the basis for all decisions. Theeeitds critical, that the peer cgmoveits authenticity.

As cryptography provides this functionality, its imporeanin the area of trust systems needs to be stressed. It
will receive attention in chapt€r3.1.1.

2 The Notion of Trust

Policies The authority which decides about the validity of the reqaesl comes up with a trust decision.
Policies can be distinguished, depending on the type thesad@on. In[[KR97] the authors define three types:

e Principal-Centric Policies: Describe who is allowed toesxresources at a given privacy level

e Object Centric Policies: Commonly a ACL style policy. Eadjext is associated with a list of autho-
rized users.

e Action Centric Policies: Bases decisions on which actico ise performed by a given “token”.

Relation On behalf of a policy relations are established. Fundanfigraay kind of interaction between
peers can be a relationship. Once again it includes a widgerahpossible appliance. After a successful
authorisation a peer could be certified by another, or deperahother. The web of trust serves here as an
example. After a meeting in person, both parties certifihesthers keys, to be a valid identifier of the person.
The web of trust will be explained in chapfer3]1.4.

Trust Classes The resulting trust, can be divided into classes, givenrihelved credentials and policies,
as described ir [AJ05]:

e Provision Trust: The party’s trust in a service or resourc@vjger. This kind of trust is commonly
encountered when being prompted to install digitally sthAetiveX applets, when updating a windows
installation.

e Access Trust: Describes the trust a party grants others ath@ming access to resources. ACLs are a
closely tied concept to this kind of trust.

e Delegation Trust: The trust into a party, to act and decidtherbehalf of the other party
o |dentity Trust: The trust that an agent is who he claims to be.

To sum up a trust system, as seen in fiduré 2.3 may be seen agemsysat lets other nodes join after
fulfilling a set of constraints (e.g. a successful authexittn). After joining the system, a peers credentials
will be evaluated by a set of policy rules. These define thatigrls systems have with each other, that in turn
authorize the use of resources and allowed actions.

.

Trust System

R

Figure 2.3: A trust system with three nodes B,C and D. A neetsinh the system, to build relations

2.5 Developing Trust by Reputation

In the previous chapters different sources of establistiirgy were introduced. A closer look reveals that these
have been subjective measurements. However, a personlhodoas not totally rely on his own impression
of a person. A very common source of trust is what other - ppbsaiready trusted - people think about others,
especially when the third party is unknown. The previouseeigmce of others will be used by a person, to

2.5 Developing Trust by Reputation

fill in a gap in his knowledge. For example when searching fooaline store for the first time, it is common
to ask others for their recommendations. This informatidhlve weighted by giving a high importance to
recommendations of already trusted persons, or simplytaayuthe number of positive votes for a certain
shop. Following this step, a trust decision will be prodydafluenced by the previously collected data. A
possible source of trust to somebody or something is thexef@good reputation. Before going into details a
definition will formally define this process.

Reputation: Reputation is what is generally said or believed about agmés®r thing’s character or standings.
[AJ05)

This definition stresses that reputation is a kind of colecteasurement of trust. While trusting someone
usually means that this person has a good reputation, teesesis not true, expressing only a “general” view.

It is important to stress the difference between trust apdtegion: [AJO5]
e | trust you because of your good reputation
o | trust you despite of your bad reputation

Using reputation information as basis for trust decisioesnss to be sensible. It was already stated that
problems arise when encountering a unknown peer, becaegeamnot be judged using normal social style
interaction. Therefore the rather common task of collectiformation from “other sources” will be used,
thus discovering the reputation of that peer for making attdecision. Using this method, an interaction is
based on the experience other users had before with this part

A reputation system is therefore a way to enhance a trustrsysGiven a set of peers that are already in a
trust relation and another peer that has a trust relatiom @rie of the other peers, a reputation system helps
establishing a trust relation between previously unknoeerg, as illustrated in figuEe2.4.

B

Figure 2.4: A reputation system used to establish a truatioel between node A and D by using the trust
relations between (A,B) and (D,B)

Reputation in sociology enforces a system of social conBelcause it is a publicly available measurement
of trust, misbehaving clients can no longer hope that thetis avill be “not noticed”. The availability of
information will therefore put pressure on them as theis ace available to everyone. The information can
easily be extended to a “cooperative sanctioning systems&dbon reputation.

For a common example of reputation, examine a popular faie: tA sheep guard was bored, as nothing
happened all day. That is why he yelled “wolf”, pretendingnigein danger. When everyone came to help
him, of course there was no such danger. He repeated his gaoftes, that when there was a real wolf no
one came to help him.

This fairy tale illustrates how deep the concept of repatetiis integrated into everyones social lives, leaving
an advantage to “honest” peers with a good reputation ansipinig the dishonest. The sheepguard managed
to have such a bad reputation that no one trusted him anydonge

2 The Notion of Trust

Reputation Systems and Trust Systems Jagsang et alsum up the main differences between a reputa-
tion system and a trust system, as the difference betweebjective and a collective measurement. Further-
more, the measurement of trust varies. While trust systakesihto account subjective and general measure-
ments as factors for trust decisions, reputation systetegrfmrmation about specific events, like transactions.
Also when making a trust decision, a reputation system needssume some kind of transitivity of trust to
come to a trust decision, while in an trust system this is atie@kaction.

Reputation Systems Commonly these kind of systems are divided into two categoriA centralized
scheme aggregates the reputations at a central locatioreturds the scores to participants, when needed.
Examples include the eBay systems or Googles PageRanke Blgetems will receive attention in chapter
B4. The second type are distributed systems. Each clieintairas a own repository of experience and returns
it, when needed. In that case a client seeking for that inftion has to actively aggregate it from the clients.
The P2PRep solution froamarati et al [DAVPS03] and the Eigentrust algorithmiéamvar et al [KSGM]

will be presented in chaptEr:3.3.

System Design In this work it was decided, to design a distributed repotatiystem. These systems not
only fit into the application scenario described in the idtrotion and will elaborate in chapterP.7, but are
both more reliable and efficient, as by distributing the infation across a network a “single point of failure”
is eliminated. These system are further not “owned” by sat tould possibly influence the information in
some way.

2.6 Trust Metrics

In chaptell’Zb it became evident that a reputation systemsisitable way to establish trust relationships.
Obviously reputation is a complex topic that yields moregioms about usage. This will be illustrated in the
next paragraph.

To formalize the concept of reputation it can be thought deiims of mathematics. Let A,B and C be peers
and leto be a binary operation expressing trust. The question ishvnétust has a concept tnsitivity.

(AocB)A(BoC)= AoC (2.1)

This means that if A trusts B and B trusts C, is it true that GtsUA? As this work’s concepts are based
on reality, the decision is not obvious to answer yes, bug likely. The area of research touched with this
question is huge and centers arosodial networks.

Definition Trust Metric There are three inputs to this trust metric: a directed grapldesignated "seed”
node indicating the root of trust and a "target” node. We wigh determine whether the target node is
trustworthy.

Each edge from s to t in the graph indicates that s believesttisatrustworthy. The simplest possible trust
metric evaluates whether t is reachable from s. If not, ther® reason to believe that t is trustworthy, given
the data availabldLev04]

Note that Trust Metrics are also referred as “Reputation Qutation Engines” in literature.

Given a set of four nodes A, B, C and D and a set of trust relatamseen in Figuie2.5, the Question trust
metrics center around is whether to trust D and to what extEmére are different metrics, that refer to that
problem. A linear approach called “linear pool” was presenin [Gen85]. Another one is the noisy OR
[Pea88] by Pearl. Further elaborate examples will recebemtion in chapter 3. Trust Metrics and Reputation
Systems have not only application domains in apparenttgifi® as encountering peers, they also are the
underlying technology for Googles PageRank sysiem [BP98].

10

2.7 Scenario on Distributed Trust Management

C -

85% D

90%

Figure 2.5: A sample trust metric with a trust root (A) twodted parties (B,C) and an unknown party (C)

Given the research on trust networks, there has also beearcbson possible attacks on theselin [Lév04],
[Dou02]. After defining the general surroundings of trulsg hext chapter will present the specific application
domain of this work, upon which the scenario is based.

2.7 Scenario on Distributed Trust Management

Trust and Reputation systems are in widespread use todayfir§huse of Access Trust is the trust system by
Balze, that will receive attention in chapter 3, was introeldiin 1996. The Public Key techniques, which form
the basis for every kind of Identity Trust, date back to 19With the rise of the Internet, online platforms
caught up and used trust models as oriental guide for cussom#&hile the solutions seem sufficient for
most applications, another area, where the lack of trushbabeen addressed sufficiently, can be identified:
The area of P2P systems. These distributed networks reguivally no authentication and even actively
help users to hide their identity. For those two reasonstkgstems have been abused for sharing copyright
protected material. This work, of course, wants in no wayupp®rt any kind of copyright violations and
distances itself from it.

However when a user chooses to download a piece of informétion a peer to peer network, let it be a CD

image of a popular LINUX distribution, how can he be sure tdimad a correct copy of the distribution and

not a tampered image? Cryptographic hashes usually dssissér in his decision, but what if there is no such
extra information? The peers, that share the image wilkehfibe known to the user, therefore there is little
assistance from that source of information. The peer migtiter downloading an unknown file.

A reputation system might help in that situation. If the useks trust in the services offered by other clients,
he lacks - as referred in chapler]2.®rovision Trust. However there is no direct trust relation between the
user offering and the peer searching for information. Tioeesa user needs to come to a decision based on a
collective measurement of trust, which is in turn a repataiystem. The user could query for the reputation
of the offering peer and base his decision on that.

Designing a reputation system, that fits the needs of a P2Bnsysspecially the needed flexibility is a chal-
lenging, but feasible task. P2P features a large userltte@ften encounters unknown peers. The openness of
these systems makes them different to other existing tysgtms. While normally every system has to fulfill
some constraints to participate in a trust system - let itrbawghentication after a registration process - P2P
systems are open and usable for every user. Therefore atigpgtystem needs to handle every client and also
resist every client's attacks. P2P research has been degigigorithms to be faster in locating information in

a vast distributed network, which is a problem that everyrithisted reputation system also faces.

This work will present a reputation system that is desigodi the needs of P2P systems, by integrating it into
a core protocol. Recommendations will be retrieved by egipfpa distributed hash table, chosen in chapter
A. The table will retrieve a key of a node as input and provigekey of a node managing the inputs nodes as
output. The returned node will provide a number of votesembéid from all peers, that want to express their

11

2 The Notion of Trust

recommendation. The integrity of votes will be guarded bygital signature, attached to the vote. For this
purpose, the system will use a decentralized private kegstiucture, that will provide the required public
keys. The system will work under the assumption that the ritgjof voters will provide a reliable basis, while
weighting their input on the basis of their previous perfanoe. To get a closer idea of this sketch of design,
the next chapter will introduce existing solutions for eliraptrust. Based on components of these solutions
and on a platform, evaluated in chapter 4, the system willrbsgnted in chapter 5.

12

3 State of the Art

In the previous chapter the scenario of this work has beecrithesl. This chapter will introduce the current
state of research. Different solutions, that can providealse input to the design of this thesis have been
implemented during the years. As itis intended to collefdrimation from different peers about the reputation
of a third peer, mechanisms for identifying these need toobed. Furthermore, it was postulated, that this
system needs to be resistant to attacks.

Commonly in computer science, when the validity of s.o. brreeeds to be ensured, cryptographic methods
are chosen. The first subchapter will research existindisokiin that area.

Furthermore, as a reputation system needs to be desigrted;haptef 312 and chapferB.3 introduce existing
systems. The first chapter focuses on the central archigsctWhile these systems do not meet the design
goal of building a distributed system, a number of very cég#iist metrics have been developed.

In subchaptdr3l3, two distributed reputation systemsheltlosely analyzed. The system which fits best the
needs of the scenario will be chosen as basis for this work.

In the last chapter, the security research on reputatidesygswill receive attention, which enables an analysis
of the the potential risks and attacks to the system.

3.1 Cryptography based solutions

Every possible trust solution today relies partially ontfieas provided by cryptography. The solutions pre-

sented in this chapter address the problendehtity Trust.As defined in chaptér2.4 the presented solutions
will enable another entity to trust in the authenticity o theer. It could identify itself using the presented

techniques. As an introduction this chapter starts withef biverview on encryption, to refresh the knowledge

of the basic functionality and then have a look at furtheradigements.

3.1.1 Asymmetric Encryption

Historically encryption was a difficult task because of tleed to exchange the key before being able to use
encryption, as the symmetric key - used for encryptaddecryption - had to be known to both parties. Yet
it would have been impossible to create a lager scale systemamy different nodes, as the key management
would have overtaxed the system. A trust management solwiguld not have been possible. Public key
cryptography, also callelsymmetric Encryptiordescribed in a paper by Whitfield Diffie and Martin Hellman
[DH78], solved the problem of key exchange. In contrast eosymmetric approach where there is only one
key, the encryption and decryption keys are separated iptivate and a public key. The private key, also
calleddecryption keyis used to decipher messages encrypted with the corresgppdblic key.

This technique creates and enforces the important badigrésaof transactionPrivacy and Authenticity
Privacy guarantees that only the receiver of the messagdamate and read the message. The latter enables
a recipient of a message to be certain about the identityi@fcttmmunication partner, as normally only the
key holder can use the key, with which the message is guakileén using a digital signature the feature of
Integrity is also provided. Integrity prevents data change duringstrassion.

For this work it means, that both the integrity of the votimformation and the voter’'s authenticity could
be proven. This is a fundamental need for a system that establtrust on information received from third
parties, as otherwise this information could have beemedtduring transmission.

Some examples for Public Key techniques are:

13

3 State of the Art

o Diffie-Hellman
e RSA encryption algorithm
e ElGamal
The RSA algorithm, described 1978 [n [RSA77], works acaogdd [Inc0%] as follows:

Upon key generation two random prime numbers and their Rtode: p * ¢ are generated. Both primes have
to be big although significantly differ in dimension. Funtimere, let there be a public exponent e and a private
one d, that comply with the following rules:

e e<n A ggtle,(p—1)(¢g—1)) ==
* (ed—1)mod ((p—1)(qg— 1)) ==
The primesp andq have to be deleted after findirgandd.
e A messagen can be encrypted by using= m*® mod n
e A message can be decrypted by using = ¢? mod n

An important part of this work is thimtegrity feature. But first the motivation for cheating a trust systeith
receive attention. The scenario is based on the fact thas ek a lot of meta information on the Internet
when deciding if it is safe to transact with a given peer. Mxisk therefore wants to provide a trust system
to support that decision. Given the evidence that a poskimsgle peer is encountered, the possibility to cheat
that system needs to be eliminated, because otherwisedhigtead or the system ad absurdum. A possible
attack to such a system would be to tamper the trust infoomath client requesting reputation information
for a given peer could easy be mislead in its trust decisitimeifpublished information could be altered. This
is why the integrity of the trust information needs to be eadu This is done by providing a digital signature
of the data. This requires further information:

Digital Signatures enable their users to assure that theedignessage has not been tampered in any way
during transmission. It is achieved by creating a uniqué ledishe message. To prevent the hash itself from
tampering it issncryptedvith the senders private key. The resulting checksum wilitteched to the message.
The recipient can validate the message by computing thedfakle message once more. The hash attached
to the message can blecryptedusing the public key of the sender. If both hashes are echaintegrity of

the message has been proven, as seen in Flguke 3.1 ofpage 15.

Furthermore, the transaction could take place on encryghednels. Although the information is public

available and already equipped with a signature, the subfebe reputation information should be hidden
from a possible attacker. By hiding the content of the tratisa from others, attacks on the trust information
of specific peers could be prevented. Also the Authenticitgrimation is of great value. Every trust system is
useless if an attacker could pretend to be a trustworthygoegcircumvent the security mechanisms.

Disadvantages of Public Key Cryptography include highengotational costs, besides a pressing disad-
vantage, that is not a problem of the concept, but limits Bcpce the level of security: previously it was
mentioned that Privacy, Integrity and Authenticity are poiped. In practice however the key management
remain a problem. If an attacker manages to get hold of thvatgrkey, he could impersonate the key holder.
Common attacks to rob a private key are simply breaking intoraputer, or a “man in the middle” attack
during the key exchange. Using the latter technique thelstadoes not even need to hold any peers private
key, as he simply replaces the peers public key with his own ke

After getting familiar with the basics of public key encriggt it is now possible to move forward and inspect
trust system, that are built basing or using the servicegiged by this fundamental technique.

3.1.2 Trust Centers and PKI

The advent of Asymmetric Encryption reduced the importariéey exchanges, while other problems of both
asymmetric and symmetric encryption remained. This chagtepresent solutions found for managing the
life cycle of the key pair. PKI stands fétrivate Key Infrastructurewhich as the name already hints, provides
means of managing public keys. In a centralistic approaetéart of the PKIl is a trusted instance, Thast

14

3.1 Cryptography based solutions

N
e
-
L]
£
=
™
u

Wb 1F2anfa |—>

Encrypted digest Slgned document

Public key

Private key

Calor indicates ownarship

Hash

[

> [
1fzanfa] —ifZanfa _—%} -

Signed document Digest

Cerlificate

=0

Pubdic key

=&

Prlvale key
Color indicates ownership

Figure 3.1: Creating and verifying digital signatures JAT0

15

3 State of the Art

Centerthat serves as central authority managing certificates apsl. Kt is responsible for key distribution,
providing a central place to retrieve public keys, or if a kay no longer be trusted, the key can be revoked.
When a key expired, actions can be taken. Given this set ddifesthe trust center serves as instance to
validate keys. For example a web browser may request veitificaf a certificate issued by this authority.
Furthermore, the validity of public keys can automaticalychecked.

The decentral pondain is a self managing network of publcdistribution, that relies on a set of servers for
key retrieval.

This management of life cycles of certificates and keys froeation until expiry enables to more secure
authenticity, as now a user can be mapped to a given key anduatio that mapping with a reasonable
amount of work.

In the following two examples of a public key infrastructuvi#l receive attention.

3.1.3 X.500 Directories

The X.500 directory standard was developed as a joint projethe CCIT and the ISO committee. Both
institutions started researching in 1984 separate solsitioat were in term merged. The first standard dates
from 1988 [CCI88b] . The directory was designed to hold ofgjemnd their attributes of different kinds,
including information concerning systems, organisatiand people. Per directory, the concept follows a
centralistic approach, storing information in one placée Hirectory is represented as a tree, whose root
represents the root object, like an organisation. Eachrestitelow the root contains finer grained units,
following the organisation example e.g. a department. $ eafild describe employees of the department. An
attribute of such a leaf could be the email address of thagper

Particular interesting from the cryptographic point ofwiare the X.509 certificate5 [CCI88a], which were
developed with X.500. There were primary designed as a a@saamntrol mechanism, so that users could
authenticate to alter their data in the X.500 directory. Aifieate binds a user with a particulBistinguished
Name, email address or other credentials to a public key. Thedatahalso includes ways of revoking
certificates viaertificate revocation lists.

Fields of a X.509 certificate include:
e Issuer: The Certificate Authority that signed this Certtéca
e Subject
e Subject Public Key Info:
Subject Public Key
e Signature Algorithm

While the X.500 standard was never fully implemented X.50®ains a standard for certificates. For this
work it is of course interesting to have a look at the trustringtropagated of this model:

Root CA

X

Figure 3.2: Trust relation between X.509 certificates. & tbot CA is trusted, all certificates are trusted too

o

16

3.1 Cryptography based solutions

The Trust Center serves dsust Root. Every node that is known to the root is fully trusted in thetegs
Therefore, figur€2]5 from chaplerP.6 should be alteredénfoliowing way: Let A,D be a local client. C

is the Trust Center. The resulting trust model is describditjure[3B. Obviously the trust root is no longer
inside the client (A) that tries to judge trustworthinesst, is now transferred to a central instance (C). As that
instance is considered totally secure, client D is considémustworthy by providing conformity to the PKI
policies. In this example trust teansitive.

C 100% D

" 7100%

Figure 3.3: Trust metric with a trust center (C). Ultimatestrapplies to all members of the PKI

A closer look reveals some imminent shortcomings for a tsystem.
e Central Trust Management Approach
e Full trust in the Central Authority
e No possibility to express distrust

The system suffers from problems every central system hasenfral concept provides a single point of
failure, which could in case of an attack be exploitable toiakof service (DoS) attacks. Furthermore, if a
malicious peer manages to have its key signed from the atyjhather peers assume it is trustworthy.

However, this technique describes a mapping between arpargba cryptographic key, which is signed by a
trusted third party. Under ideal circumstancesi, the gbauthenticity has been reached. This can be used to
base access control features on top of that concept.

3.1.4 Web of trust

In the previous chapter, a way of binding a subject to a aeltey by using a trusted root certificate authority,
was introduced. While this may fit for most needs, a bothadtignd powerfully approach is the transfer
of social live into virtual space. As humans always tend td fiontact to others there has been a rise of
virtual communities, where anonymity is overcome by gettim know each other on a virtual basis. These
communities form the basis for the “Web of Trust”.

The principle is rather simple. Users receive public keysth&r users commonly in electronic form from a
keyserver. These servers store the public keyring of a seensure the authenticity of the received public
key, it is necessary to compare the key, or more specificitggefiprint, with the original key. This can be done
by meeting the owner in public, e.g. at special “key signiagys”, or by comparing with a printed version,
received from the owner of the key on some other channelpgigted on his business card. After checking
validity, the key is signed, expressing the successful detigm of that process. As it is not possible to know
every communication partner in person, it becomes necegsagely on others, that have already checked the
key and testified its authenticity, which is a formtafst. By uploading the signed key back to the keyserver,
a user provides his validity information to others.

The binding is ensured to be correct by other users that pheveorrectness. However, there may be malicious
users, that aim at circumventing the system, by incorreettjfying other user’s keys. This could easily lead
to a trust relation about the binding of a key to an identithjck is incorrect. Therefore a trust system is
employed. Users can rate other user’s ability of correatlyfying other user’s keys in five different levels:

17

3 State of the Art

1 =1don not know

2 =1do NOT trust

3 = trust marginally
4 =1 trust fully

5 = trust ultimately

Note, that the word trust is hereby used to mean trust in areoaund trust in a key. The trust in an owner in-
formation is kept private, the trust in a key informationxpeessed by signing and uploading that information
to a keyserver. The policy, that decides, whether a giverikeglid yields a positive result if the following
conditions are met:

1. itis signed by enough valid keys, meaning
e you have signed it personally
¢ it has been signed by one fully trusted key
e it has been signed by three marginally trusted keys

2. the path of signed keys leading from the key back to your keynis five steps or shorter

— direct trust
---» indirect trust

S

Alice U S T George
SEH | [e

Figure 3.4: Trust relations in a Web of Trust. Starting froficé a chain of direct trust relations enables an
indirect trust relation between Alice and George

This approach moves away from the central structure of feriifi€ate Authorities to a more public model.
Users are not forced to have ultimate trust in a certificateaity they only know by name, but can rely on
their social contacts to support their trust decision. It &very user is his own trust center, issuing his own
certificate and relying on a trust chain he defines. Everyanestart a web of trust, as these can coexist and
can be linked by member in both “groups”.

3.1.5 Decentralized Trust Management

Another approach directed at establishixgress Trusivas done byBlaze et al.in [BEL96]. The goal was to
replace existing ACL solutions, whose main problems wesedeed according ta [BEK99]:

e Authentication: While it is convenient for local only contpts to have knowledge of every user access-
ing the system, it is not the case in a distributed systemrefbee, a new model had to be developed
allowing to unify Authentication and access control.

o Delegation: As large distributed systems tend to sufferdasing complexity, administrative tasks need
to be decentralized. This allows more than one administratdhe past these mechanism were imple-
mented using Access Control Lists (ACL), the Unix systenpédglly used group permissions to handle
this need, which add unnecessary complexity to the system.

o Extensibility: The traditional ACL systems were not desidrio be extensible. The common distinction
between the owner of a file, members of the files group andladiretis not scalable.

18

3.1 Cryptography based solutions

e Local trust policy: A concept not known to traditional systeare all kinds of trust polices and the rela-
tions between other systems. While it is now possible tadbsdime kind of trust between machines by
adding their public keys to the local trust policy more coexghteractions - for example the mentioned
transitivity of trust- are not possible.

A typical workflow for processing a signed message was intced in its paper as:
1. Obtain certificates verify signatures, possibly. deteenpublic key of signer
. Verify that certificates are unrevoked

. Attempt to find “trust path” from trusted certifier to céidate of public key in question

2

3

4. Extract names from certificates

5. Look up names in databases that maps names to the actattisei are trusted to perform
6

. Determine whether the requested action is legal, baseth@mames extracted by certificates and
whether the certification authorities are permitted to arile such actions according to local policy

The papers by Blaze suggests, to replace steps 3 to 6 by signaill data together with a local trust policy
to a central service. The service is required to form a trastsibn based on the given data. The questi®n
user A allowed to perform the task B replaced byDoes the set C of credentials prove that the request
r complies with the local security policy P2%hich is handled by &rust Management Engingjroviding a
result in the context ofr, C, P).

A prototype implementation of a trust management engirle@¢&lolicyMaker was presented in the first paper
of Blaze. In [BEK99] a second engine call&@&yNotewas presented. Both implementations differ in the
architectural boundaries that were drawn.

First to note is that no longer only humans are accepted #&g&eniThe mapping of a cryptographic key to a
real name was replaced, as the system checks only the yalfdite givenkeywhich is the principal of this
trust solution. The system is enabled to be layered on topreddy existing PKIs, including X.509, as it relies
on cryptography for providing the trust root. Another agpethe type of the policy, which idction Centric
as defined in chaptEr2.Zhe PolicyMaker system provides a simple language in wisigxpress conditions
under which an individual or an authority is trusted, as waslconditions under which trust may be deferred.
[BEL9€] The general nature of this concept does not expliaibplement a trust metric, but does implicitly
allow to build one based on the programability of polices.

By enabling an application to specify a policy, the burdemofforcing and creating policies is passed away
from a central instance. This enables flexibility to implemany kind of trust metric that is suitable for the
needs of a system. Furthermore, the locality that this aagroepresents avoidise need for the assumption
of a globally known, monolithic hierarchy of “certifying thorities” [BELIE].

For a better understanding, imagine a web browser that callynagcepts SSL keys, that are under a month
outdated, without normal user interaction. But when rdogian outdated key from a online banking system
it would warn the user and refuse connection to that systelms @ample shows the support of a special
contextof operation, that could be supported by a programmableydis different applications and even the
programs may require different trust decisions, dependmtie situation, this concept is highly promising in
the trust research.

3.1.6 Conclusion

The solutions presented in this chapter, as already statd#eeiintroduction, are systems providing Identity
Trust, with the solution by blaze shifting focus towards Ass Trust. They will form an important basis, as
every trust solutions needs to layer itself on top of an iifgirust solution, as already stated in chajbferl 2.4.
They are, however, not sufficient for our work, as it aimsniéttely at a solution enabling Provision Trustin a
P2P system.

19

3 State of the Art
3.2 Central Reputation Systems

A variety of reputation solutions, relying on a central arste exist already today in mostly web based algo-
rithms. The classic example of such a service is the eBagisyshat will be described in the following. Other
solutions use elaborate algorithms to provide the systamauvbetter trust recommendation. The systems de-
scribed in this chapter are Google and Advogato.

3.2.1 eBay

One of the most common reputation systems on the web is lpuitié form of a “feedback forum”. This
technique is widely used and presents users with the ptigstbiexpress a vote at the end of a transaction.
But first recall the “prisoners dilemma”: Without any kind mfputation system there would be both for
customers and vendors virtually no reason to buy or sellytsd Vendors would have little reason to sell
high quality products, as even if there is sanctioning, féneopotential customers will be informed about it.
So it would be highly probable for customers to buy a pig in kegpovendors that provide quality products
would not be able to match the prices of the betrayers anawest would not be able to distinguish them
from the others. This would destroy the market.

eBay The Internet business platform eBay www.eBay.com will sérvthe following as an example. The
platform provides an infrastructure for managing, buyimgl ¢isting auctions articles. Being - simplified -
just a platform for listing items, there is of course no watyeof any kind for products sold via its interface.
Much research has been carried out on eBay because of itatiepusystem, that is considered successful in
a market asripe with the possibility of large-scale fraud and dece[Kal99].

In [RKZEQU] the author exploited 3 key features for reputatsystems:
e Long living entities: provided for future interactions
e Feedback captured and distributed: stored for reference
e Feedback guide buyers decision: use it

While the features defining a reputation system were exdaptoblems were also observed in the eBay
system. As most systems depends on the “quality” of theirisereputation systems stand and fall with the
quality of the reports. It seems trivial to note that repbise to be done, the asynchronous “workflow” of an
auction platform hinders this. To file a report, the outcorhthe transaction will be judged, but the system
has to wait until the transaction really finishes. On an angblatform, this includes big delays resulting from
the individual transaction partners and the parcel sen8oeexpressing a report can be forgotten or simply is
considered too much work. It must of course be noted thatdrcéise of a bad outcome the voting mechanism
will more likely be used, but by judging only bad outcome thelity of reports is lowered significantly.
Another form of lowering the quality leads to the second poReports must be honest. When reports are
truly wrong few techniques can be used to filter those. Witlsteaisting clique detection algorithms needing
a huge amount of input, these will lire dubioinaccurate. As eBay’s system allows feedback on feedback,
there is also the possibility of getting punished for givinge reports. Therefore most reports tend to be neutral
or good for the sake of avoiding negative consequences. @Eepthis way the data that can be obtained is
mostly irrelevant, as it does not reflect an objective exgioss

One last problem, that must be noted is the limited scopemieon reputation systems. Appliance is mostly
limited to the target platform it was designed for. If howethere is a technical possibility for interoperability
the “political” problem have to be considered, as the owonétsese systems have little interest in cooperation.
More common is that it is tried to make the features of thestesys unique by trying to patent them. Upon
receiving a patent, methods of enforcing these will moreljilbbe used than cooperating.

From a trust metric point of view the eBay system leaves tlues@m, of whom to trust totally to the user. The
system provides all information about all peers, so the isstieoretical enabled to check the trustworthiness
of every voter. The system aims at enabling Provision Twasich in turn relies on Identity Trust. The latter is

20

3.2 Central Reputation Systems

ensured by using a password based identification schemeh \gives the door wide open to attacks ranging
from brute force to phishing.

3.2.2 The PageRank Algorithm

A common principle of search engines is based on a trustidaci¥he rank of a page in the list of matches
is computed using a reputation like concept, that basegdtsidn on the amount of pages pointing at it. The
PageRank is therefore an expression of a trust relatiofeoéntity search engine, in the entity website. As
Google puts it:

In essence, Google interprets a link from page A to page B agey oy page A, for page B. But,
Google looks at more than the sheer volume of votes, or lidegya receives; it also analyzes the
page that casts the vote. Votes cast by pages that are thezasghportant” weigh more heavily
and help to make other pages “importanf(Goo04]

The described recursive algorithm uses votes as reputafiomation and weights it according to the repu-
tation of the voting page and the number of votes. The originper on Google, found i [BPP8], describes
the behaviour as emulating a “random surfer”. The probigbilf finding a page intuitively increases, when
a page is referred by many other pages and if only few linkg habe followed, beginning from a starting
page. To sum it up, two credentials of a website exist: Digtainom a given starting page and number of
referrals from other sites. Google started out as an acadesséarch project and is now one of the major
search engines available on the Internet. As the projeavisan a commercial basis, further research on the
PageRank algorithm is kept private. The original paper dsfihe PageRank (PR) of a page A, that is referred
from paged/; to 7,,, as follows:

PR(A) = (1 - d) + d(PR(T}) /C(T}) +--- + PR(T;))/C(T,)) (3.1)

d is a constant damping factor, that is set to 0.85, expregisegrobability that a surfer will further browse this
path. C(A) is defined as the number of links going out from pagEurther development on the Algorithm
is not published, therefore a complete trust metric for G@@annot be presented, but known facts can be
summed up in figure=3.5.

- n >
/ D
f?

Figure 3.5: The Google trust metric combines two credesitiethe length of the patim) from a trusted starting
point (A) and the number of votes]

The algorithm also has a description in linear algebra. Ragk values are the entries of the dominant eigen-
vector of the modified adjacency matrik. [FouD5b].

21

3 State of the Art

PageRank(p1)
PageRank(p2)
R= .

PageRank(pn)

q/N lpi,p1) Upip2) -+ lUpi,pw)
q/N -,

' - U(pi; py)
9/N lpn,p1) Upn,pN)

The adjacency functiof(p;, p;) is 0 if p; does not link to pagé further it is normalized to ensure that
Zf\; l(pi,pj) =1

Google has defined a set of trusted websites, that servesagdnt for the algorithm. These websites also
form the entities Google works upon. The links between websind the previously described damping factor,
form the credentials, which are combined to a ranking degisSConcerning which entities to use, the original
paper proposes to use thex.html file of each webserver, but this seems unrealistic from atigadc
point of view. It is also unclear whether the starting poiats identified by any means of IP address, DNS
name, or a certificate. It can therefore not be reasoned aogwkind of used Identity trust. Although not all
facts about the algorithm in its current form are known, gitlee accuracy and success of Google, this work
can benefit from the idea of the technique: an algorithm miaigagy large network of reputation, should not
only take the sheer number of votes into account, but shartbine it with the credibility of the voter.

3.2.3 Advogato

Advogato is a community platform for free software develsp#t uses a specigrouptrust metric, developed

in [Lev04], to rate members of the communifjhe members of this site certify each other, specifying éne o
three skill levels[[LevOOa]The system takes these certificatmedentialsas input and uses its “Group Trust
metric” as policy, which in turn decides on a trust level. Begding on the trustworthiness of a member, it
receives benefits on the site. These include posting nems jtteomments and editing project information on
the site.

Group Trust Metric ~ The algorithm computes a “global” trust value of all nodescéunts and certificates
are modeled as a graph, where nodes are connected via a&dieziye, if a user has certified the other. Its
trust root is formed by a set of “trusted accounts”. Starih¢hese roots a shortest path search in the graph
determines the distance between a “root node” and a giveemddepending on the distance value, the node
is associated with a capacity. The graph is then in a statiasito the system, that can be found in figlrd 3.6.

After these capacities are assigned, the graph defines ke siongrce, multiple sink problem. Furthermore,
capabilities are assigned to nodes, instead of edges. fohethe graph has to be modified, by introducing a
“supersink” node is added to the system. By connecting evedg of the system to this new created node the
problem is redefined to a “single source, single sink”. AsrifBLT illustrates, the supersink is connected with
nodes, by splitting nodes into-aand— part. Another edge from every newly createdode is added to the
system with a capability of 1. The connection from theéo the— node is assigned the original capability of
the node minus one.

The global trust value is computed by using a maximum netffovkalgorithm on the resulting graph, under a
last constraint: If it computes flow from-ato a+ node, there must also be flow fromto the supersink. The
actual algorithm used is a standard Ford-Fulkerson atgatrifThis algorithm repeatedly finds an augmenting
path through the residual graph, until no such path existiterAhe computation of the network flow, the
algorithm certifies each node, that has a connection to thersink, based on the computed flow.

Advogato performs its kind of certification at three diffetéevels: Apprentice, Journeyer and Master. This is
actually done by running the basic trust metric three timis modified rules for creating edges.

22

3.3 Distributed Reputation Systems

Figure 3.6: An capacity assigned graph, used to computedivedato trust information of a node by combin-
ing capacities of their referring nodés [LevDOb]

The Advogato system has seen much attention, as it is sailaccbmmunity of professionals, with very few
not trustworthy, so called “trolling” user. The systemswhdhat a trust metric can be successfully derived
from a maximum network flow algorithm.

3.3 Distributed Reputation Systems

This section will introduce reputation systems that aregiesi for operation in a distributed manner. Since
these systems are based on P2P technology, the first chalbfenesent a short history of P2P systems. Two
solutions will receive attention in the following subchaqst Beginning with an adaption of tiRageRank
algorithm, from chaptdr-3.2.2, a work, that is more focusedhe architecture of such a system,®gmarati

et al. will be discussed.

History of P2P P2P development started with th&apstersystem in 1999. This system allowed every
node in the network, besides being a client to a service, dwige the services, acting as a server. The
problem of locating information was solved with the intratlan of central index servers, which where run by
the corresponding company. Napster was soon followed bytheella Networkn 2000, providing a fully
decentral system. P2P systems have received much att@nsoience over the last years. Research has been
carried out about the sociological and technical aspetcts. One main part of research that was put in by
computer science was the question of efficiently locatirfigrmation in a network, called distributed hash
table. These systems work similar to a common hash table. Datarngifebd via a key. A hash function returns
the location of the corresponding data in the system. Thellised case returns the corresponding nodes on
a network, the data has been mapped to. This enables eveeytodthve a “global view” of the network.
Two recent examples of this technique are the Chord systdrobért Morris et al.[MKKBO1], introduced

in the year 2001 and th€ademliadistributed hash table lylaymounkov and Mazier¢BIMO2]. In the year
2001Robert Morris et alproposed in[[MKKBO1] theChord DHT, which was followed byKademliain 2002
[MMO2).

3.3.1 Eigentrust

A distributed trust metric was presented Kgmvar et al.in [KSGM]. The system aggregatedaral trust
values;; by the ratings of transactions between the own ricaled the peef. Positive transactions increase
the trust value by one, negatives decrease it by one. Thergfo= > r;; with r;; € (=1, 1) representing
the ratings. The proposal goes on normalizing the valueslas\s:

23

3 State of the Art
S
/

7

supersink
k. -

v
~

Figure 3.7: Reduction of the “single source, multiple simklgem”, to a “single source, single sink problem”
[CevOOh]

maxz(s;j,0)
= 3.2
i >~ maz(sq;,0) (3.2)

Note that in the case of a zero denominator the equation isfunedl. In that case the normalized trust value
is replaced with a predefined trust valpghat comes from a predefined trust vector, that was definfléde
starting the system. When there is a decision based ondrbstrhade covering pekthe algorithm weightens
the options of other peers depending on the trust he pladasin:

lig = Z CijCik (3.3)
J

This equation could be written in matrix notation: If aj; values were be added to a global matrix - con-

taining all local trust values of all peersG = [¢;;] andl;; could be written as vectdE containing allk
recommendation trust values, the computation could béemris:

li=CT¢ (3.4)

Currently only the local trust values in friends and thecammendations are included. Using the matrix
notation simplifies the expression of a recommendation ofemd’s friend. This would bé; = (CT)2G;
After n for a largen the trust vector; will converge to the same vector fail peers i. r represents a global
trust vector, which is the left Eigenvector 6f

Every peer can compute its own global trust value, withs a damping factor, for including the predefined
trust values:

Y = - a)ed? + -+ el + ap; (3.5)

24

3.3 Distributed Reputation Systems

As a decentral computation of the trust values is possibéeptoposed distributed system delegates the com-
putation of trust values to so calledore managersAs a P2P system is sketched, every client on the network
is the score manager of another peer - his so calledyhter peer, computing a part of the global trust vector

I. To identify these peers Chord [MKKBD1], a distributed heesble, that will be presented in chapier4.1, is
proposed. Besides the computation of the global trust véileig@eer has to maintain the local trust values of
its daughter peer. To compute an appropriate trust vedt@care managers of peers that have downloaded
from each others’ daughter peers need to stay in contaaipghtae local trust values and computed global
trust values with each other.

3.3.2 P2PRep

There have already been successful attempts to equip a B&e@rwith a trust management feature, done by
Samarati et alin [DAVPS03]. The System callge2PRep, built on top of theGnutella protocol, enables
peers to keep track and share with others information albheutdputation of their peers. As the system relies
on a P2P system as storage for reputation information ittegomized as aistributed reputation systenn

the following the Gnutella system will be sketched, a dethéxplanation can be found in.[CIli01].

Gnutella TheGnutella network appeared in 2000. It was the first system to work intalyodecentral
fashion. Previous P2P solutions like Napster relied on #&rakimdex server. The system is “open” for every
client, called servent, to join. Clients are identified ngtiB address, but by their associatstvent _id ,
that is not assigned by the network, but is created on the fihéyglient. For providing search functionality
the protocol featured a new approach - the horizon. Everyigemnnected with a number - commonly up
to 10 - of other peers, called the “neighbours”. That topglisgcalled a mesh. If a node searches for a key,
it broadcasts &uery request to its neighbours, which in turn will contact thesighbours. The request is
equipped with a “time to live”(TTL), that is decreased whearsging the search further. When the lifetime
counter is zero, the search terminates. The concept is inailasto theTTL field of thelP header. For a
better understanding of the taken approach, a extract fnerGhutella protocol is shown in figUre13.8 on page
Z8. Clients search for information in the first phase @iaery messages and retrieve it in a second phase,
from clients that have sentResultSetontained in @QueryHit message.

P2PRep Samarati et aladd two more phases to enable reputation sharing capabii@iGnutellapolling
andvote evaluation. “After receiving the responses to its guercan select a servent [...] based on the
quality of the offer and its own past experience. Then, psptdlpeers by broadcasting #6¢ll) message
requesting their option about the selected serveff&IVPS03]. To protect the messages from tampering the
system makes use of the previously described asymmetgicagsaphyPoll requests are equipped with a
dynamically created public key. The voters will reply witiPallReply = message containing their option
along with their IP, Port and serveitt. In the enhanced version of the algoritArtne voter will digitally sign
the data with its private key. The corresponding public kEthe voter, the data and its signature, are then
sent back to the polling client, encrypted with the givenlmukey, contained in théoll message. The
polling algorithm will then check the validity of votes. Thmcryption of reply messages provides privacy
and integrity features. As the contained data is signed l@dntvolved public key is provided, integrity is
even more provided. To prevent fake IPs, the algorithm #gse¥ou messages containing the provided
serventid, sent to the IP, contained in the vote. On a succegskYouReply the client can select a client
based on the votes, which may be weighed using previousiexger The different phases are illustrated in

figure 329 on page27.

Trust Model Using the trust classification given in chafien 2.4, it isiobs, that the whole area of P2P sys-
tems needs to establish provision trust, as every peer iwvgas@rovider. Any trust related work in that topic
aims ultimately to enhance the quality of service. The prektrust solution aggregates experiences with
peers in a repository, as a set of triples (serventid, numplus, numminus) It further aggregates measure-
ments of voters, reflecting the number of times their recomdagons met the expectatiofis (serventid,

1For a description of the basic algorithm s2e [DdVHS03]

25

3 State of the Art

PHASE 1: RESOURCE SEARCHING

search |
P
Legend
g servent looking for & resource
p
B servents willing to offer the requested resource
A
PHASE I: RESOURCE DODWNLOADING

=
| \- L
x .
L.

—

_rmwu-
_ %jr‘d
P . L
g |

Figure 3.8: The Gnutella Protocol for searching and reimiginformation ([DAVPS03])

26

3.3 Distributed Reputation Systems

P
T —
/ _ b
-
B
&
Lz
a =
T ¥ ! pian
—
39" o
PHASE 3: VOTE EVALUATION
% | -
. 3 " |
& [—
g § i
) o -

Figure 3.9: The Gnutella Protocol for searching and reimiginformation enhanced by P2PRep ([DdVPIS03])

27

3 State of the Art

numagree, nurdisagree).Collecting information on the voters enables the systenstabdish a history of
previous performance, not only concerning previous tretia, but also on previous reliability as voter, as
a large number ofiumdisagreereveals bad performance also in this area. In other wordenéty gets a
set of credits assigned that reflect its previous performamd voting actions. A policy takes these credits
into account and decides, whether a relation (here: traéinsads sensible (figurd_3:10). The end results of a
transaction are used as input for another policy basedideg¢ighich yields an updated relation between the
two peers and produces a new set of credentials.

W

Figure 3.10: P2PRep: Aggregation of votes

Trust Metric The trust metric consists of two parts: aggregation of erpee values into votes and ag-
gregation of votes, to come to a trust decision. Votes aratedeusing araggregation operator : ¥ —
{0,1}, that can be chosen by each voter independently. The papetvio possible definitions, a conserva-
tive approach, that define¥) = 1 only if numminus = Ootherwise it is set to zero and another more
forgiving approach, settingg(¥) = 1 if num_plus — num_minus > 0. The aggregation of votes is
based on the data from titerepository. As in the previous step the operator § — {0,1} is used. If
num_agree — num-_disagree > k for a givenk > 0 the function yields a positive resul{d) = 1. The pa-
per makes a number of suggestions on computing the finalvalist, including local conjunction, weighted
averages, but does not go into details here.

3.3.3 Conclusion

The two presented solutions differ in complexity and trustnie. The Eigentrust algorithm roots in PageRank,
used in Google, which models the trust decision as a pathrizhia length from a peer, representing the trust
root, to another peer, with a given probability of not reachihe other peer in each step. The design of the
solution implements the computation of trust at an authiather than the requester, which to the author of
this work sees as a mayor design flaw. For this work aims ahgasiist decisions on a similar concept as
reality, it is chosen, to compute the trust decision loc@!¥PRep matches this decision. Itis also simpler from
its design. However, the underlying architecture Gnutalllews trust decision only in a very limited scope,
based on the recommendations of a horizon, which is limitedipared with the scalability of a distributed
network. The P2PRep solution takes into account a crejibépository for weighting the recommendations
each voter gives. However it does not require the networlotopute the trust vector for peers, as they can
operate on the given credibility data using any algorithaytbhoose.

Summing up P2PRep was a step into the right direction, butlaptan to another P2P protocol needs to be

done to overcome limitations in the P2PRep system, esfhethial limited horizon a client is bound to and the
design of the solution, which involved an enormous netwaait.

28

3.4 Attacks on trust metrics
3.4 Attacks on trust metrics

Another section of research concerning trust is their tasce to certain attacks. One of the most widespread
attacks, the so called “Sybil Attack” was named after thedam(alleged) multiple personality case of Sybil
Dorsett. This patient, whose disease was described in a B3GR of Flora Rheta Schreiber, suffered 16
different identities.

Sybil Attacks A Sybil attack is an attack on a system that involves a singlsqgn that creates multiple
identities, with the aim of taking influence in a process ofing. John Doucer from Microsoft Research
showed in[[Dou02], that these simple frauds are nearly tagdvwpossible.

Most systems today, however, rely on building their trusitron a set of well known nodes. As already
introduced, PageRank uses a set of websites to assurétgtakidlvogato and other more P2P based systems
use a set of well known users. Furthermore, it is argued,ithtite beginning of these systems most of its
users are developers or early adopters, which decreaspsotbility of an malicious attack, as they are not
assumed to be hostile. Besides the existence of a trusthotht previously mentioned systems feature some
kind of attack resistance built into the algorithms. GosdageRank has been resistant to most attacks to the
current day. However the algorithm takes into account theber of links, that point to a page, which is a
weak spot in nearly every search engine. To exploit this Bedcdink farms” can be found on the web. whose
purpose is to create a tight web of links, providing refeesnio each other.

Advogato The Advogato system is claimed to be more attack resistantdther reputation systems before.
In [Lev0O0K] the author explains the robustness. It is asslim&t a group of malicious nodes have entered the
network. As a matter of fact the “bad” nodes will certify eaxther, building a closely tied mesh of computers,
equal to the “good” nodes. Both networks will be connectedatgmall group of “confused” nodes, that
initially enabled the “bad” nodes to enter. The situatiopriesented in figule3.111.

no edges from good to bad

"confused" "bad" nodes
"good" nodes nodes

Figure 3.11: A possible attack scenario on Advogato [Le}y00b

The reason why the impact onto the network is not catastedptithe assumption that a malicious peer will
not be able to be certified by a highly trusted node on the nitwAs seen in chaptér3.2.3 trust declines
depending on the distance from the seeding node. Givendhatte system remains in a good state, even
though bad peers are able to certify each other, becauswithisot have a huge impact on the global trust
values, seen by the system.

29

3 State of the Art

3.5 Conclusion

In the course of this chapter various solutions have beesepted, that form - at least partially - a trust system.
Table[31 sums them up and compares them, whether they du fosehis particular scenario.

While the solutions presented in sectlonl 3.1 are of greaptmsading Identity Trust, they do not fully match
this models needs, as we aim at enabling Provision Trust iistéliited network. The sketched approach
matches best the algorithm of thiéeb of Trusfrom chapteE3.T14. Both solutions provide a decentralipubl
measurement of trust, using features from cryptographpyrdtect their information. These solutions, however,
differ significantly.

The only public trust information given by the Web of Truskisignature, expressing the confidence of the
signer, that the signed key isally the key of that person. The possibility to rate a peer is botall only
and targets only the peers reliability in verifying the tela between keys and owner. The hereby presented
solution publishes information expressing if the peerustied omot This difference is critical to note, as the
web of trust does not allow to express distrust, even in itgec A user can choos®tto sign a key if he
does not trust in the key - owner binding, but can not publighihformation. This lies in the architecture of
the system. While this solution creates a public availabpository ofall available information, the Web of
Trust centers around creating a path from a clients own &enother key, by combining signatures of already
known clients, with the level of trust he puts in them. Beeiagtricted to information that is only reachable
using this path, the client is not able to use all availabferimation in the system. Especially P2P systems
are considered, to be too huge to build a sufficient trust fzatither users, especially since these are limited
in size. Therefore this approach bases its trust decisiagh@majority of recommendations, but includes also
the ability to weigth every vote, by a local “credibility” ¢or.

As a last point the Web of Trust requires a static key infragtire, that is not flexible enough for the needs
of a P2P system. Public keys need to be published at a cemétahice, which destroys the idea of a real P2P
system. This solution uses a self signed PKI, in which evientcan request the public key of another client
from this client itself, which reflects truly the P2P idea. tdanformation on this solution can be found in
chapter 5.

Furthermore there have been centralized systems, thabkréoacompute a global trust value, upon receival
of new input, or upon periodic execution of an algorithm. 3éeystem feature elaborate trust metrics, ranging
from vector geometry to network flow algorithms. While seryias a good example for reputation, or trust
systems in general, the architecture is quite differenh&éodecentral structure, we want to research on. All
systems require clients to fulfill some constraints, thatxe them to access the system, while we focus on a
“open” approach. Similar to the previously mentioned cogwaphy, they serve as the foundation of our work.

In chaptefZ3B existing distributed solutions receivedrdton. For the reason stated in chapfers.3.3 P2PRep
clearly meets the needs the requirements of our scenario Besent development in P2P show, however,
that the chosen basis, the Gnutella protocol suffers sonakmesses. Firstly, the limited horizon does not
provide a global view on the network, while still requiringagmous traffic. Secondly the search algorithm is
in no way as efficient as algorithms used for distributed hables, that manage to provide search operations
in logarithmic time. Thirdly is the enormous message ovadhen the network. Every client that needs to
establish a trust relation needs to poll its horizon for sotéven if another client starts the exact same poll,
messages are by no means cached.

For that reasons we will base our work on the fundamenta¢gareked in its surroundings. We will, however,
change the underlying protocol to a P2P Protocol based ostigbdited hash table. This will be chosen in the
next chapter.

30

1€

Trust Model Distributed Global Network View Trust Computet Cryptography
X.509 Identity Trust No. System uses oneYes. Central Server Client side Yes
central trust root
Web of Identity Trust No. System uses oneYes. Central Server Client Side Yes
Trust central server
architecture
Blaze Access Trust System uses centralYes. Central Server Client Side Yes
server architecture,
supports delegation
PageRank Provision Trust Central approach Yes. Central Server Server Side No
Advogato Provision Trust Central approach Yes. Central Server Server Side No
Eigentrust Provision Trust Yes. P2P Approach Yes. P2P system Not local, delegated No
to other peers
P2PRep Provision Trust Yes. P2P Approach No. System relies on Client Side Yes
Gnutella, that provides
only limited horizon
This Provision Trust Yes. P2P Approach Yes. Distributed Hash er@lside Yes
Solution Table based, provides
all votes available
Normal Text| Met Requirement
Grey Text Unmet Requiremen

Table 3.1: Comparison of all solutions

[

uoIsnjau0D G'S

4 Choice of a Peer to Peer Model

As seen in the previous chapters there are a variety of Rsputaystems and Trust Metrics already in use
today. However, this thesis covers a distributed reputatisstem incorporated into an existing P2P system,
because these system feature the following benefits:

e Decentralised: Not a single server; the whole network glesinformation
e Broad userbase: The Kademlia DHT is said to currently featyrto 5 Million users at a time
e Frequent transactions between strangers: P2Pistam relation, central systems have.do 1 ratio

e Speed: As information is distributed, load is balanced s&tbe network

Copyright As those systems are abused for any kind of thievery the authots to once more clearly
separate his work from these frauds. This work wants in nd kirpport the violation of copyrigth law. In the
meantime however even commercial interest in P2P has begkeaing. This seems to be rooted in the fact,
that distributed network solves a problem that vendors gitalimedia over the Internet face. A typical pop
song encoded with a compressed format consumes roughly 8iyess of space. Classic centralised vending
platforms like theTunes Music Storprove that they can handle the distribution of digital mu3ibe iTunes
Japan store sold 4 Million tracks in four days, which wouldlased on the previous assumption 12 Terabytes
of Data. But with the advent of better Internet connectioms @deo codecs, digital media distribution is no
longer limited to music. Video data, which takes from 700 lelegtes of space for acceptable quality, setting
nearly no limit on space consume for high end data.

Providing this load of data to consumers is a challengink, &sbandwidth costs explode. This can be solved
by employing P2P technologies, as already doneviayv.peerimpact.com This solution enables customers
to download data directly from other customers. The onlydrfee a central server are the billing part of
the transaction. Customers providing their data for dowadlget credits for providing their bandwidth. Thus
a cheap bandwidth saving opportunity is employed whichreféen more benefits, like the reliability of a
distributed network.

Copyright violations, however may prove that the feelinganbnymity is on these systems imminent. Basi-
cally, this is the case, because most P2P implementatidinslgichide the identity of the user. In conjunction
with the large userbase of P2P techniques, providing a lah&hown users, serves as a basis for the spread
of abuses. A first fraud, that is cited in combination with R2i® security problems is ti@nutella.VBS

worm [KSGM]. The worm appeared in 2000 and replicated itgplbn execution, by copying itself into the
Gnutella shared folder under different names. It also medlifihe configuration of the program, to allow its
distribution. As users need to actively click on the worm ézdme infected, one could argue, that the impact
of this worm could not be that large. However, worms that agnga emails need also to be activated by user
interaction and in spite of this manual invocation they ha@en very successful.

4.1 Chord

In 2001 the Chord distributed hash table was developed aiMifieLaboratory for Computer Science. A
distributed hash table works equal to its local counterpamaps keys to values, using a given hash function.
However in a local case, information may be a pointer to a mgheaation, while this kind produces pointers
to nodes in a network.

32

4.2 Technical Introduction to Kademlia

Network Topology The architecture of chord is a ring, clients joining the ratwwill be included by
inserting them between their corresponding neighbours. 88 figurd4]1. Basically a node only needs to
know its successor, to be able to pass a query on the netwiaskdnccessor. For efficiency reasons clients in
the chord ring have routing information, commonly referasd'finger table”, containing a list of nodeshe

it" entry in the table at node contains the identity of the first node,that succeeds by at leas2’~! on the
identifier circle [...] [MKKBO1]. By using this technique chorgsolves all lockups via O(log(n)) messages
[MKKBO1].

finger table keys finger table keys
start| int. |succ, EI start | int. [succ) I:I
7 |[7.00] 0 12| o1
0 ([0,2)| O 2 |[24)] 3
2 |[286)] 3 4 |([40)]| 6
finger table keys
start| int. |succ)
2 |[23)]| 3
3 |35 3
5 |[51)] 6
finger table keys
start| int. |succ)
4 |[45)]| 6
5 [[57)] 6
7 |[73)| o

Figure 4.1: A sample Chord Network, equipped with nodes hait touting tables(IMKKBOI1])

Simultaneous Node Joins The described architecture works fairly well when used iaressthle manner.
However when scaling the system to the size of the Interhetweakness of the system can be identified as
the need for a node, to know its successor. Nodes joiningysters, need to make other nodes aware of their
presence. If multiple nodes join simultaneously the nekwitris possible that the mechanism fails and the
ring is split up into two or more fractions, as described ia ¢higinal paper. Normally, this problem is caught
by a stabilisation protocol that is needed, to keep the ronsistent. However, in the worst case the system
ends up with two rings, that both appear consistent to th#ligiag protocol. In [MKKBO1] it is noted, that
there is currently no way to detect this kind of failure.

4.2 Technical Introduction to Kademlia

Kademlia is another peer-to-peer distributed hash tabt€n)Ddeveloped at the New York University in 2002.
While providing the features of a DHT, it adds some uniquéuiesss which make it fast and scalable. Key
benefits are:

e Small protocol, not requiring an extra configuration pratoc
e SpeedO(n) = log(n) + ¢ for a system witin nodes[[MMO02]
o Efficient Caching Mechanism
e Open Source Implementation

Before explaining the functionality of the Distributed HaRable, it is substansial to understand the basics of
the network. This subchapter will start with the employetivoek topology, and proceed with the distance
metric, most operations in the network are based upon. Adtésiting the basic protocol, it will be possible
to understand the used routing system and it's benefits.

33

4 Choice of a Peer to Peer Model

4.2.1 Network topology

While chord’s network topology is a ring, Kademlia is modk#es a binary tree, with each leaf representing
a node. FigurE412 illustrates this. The difference betwkenwo solutions is obvious: A ring requires every

element to know at least its successor. To ensure this mgseatstabilisation protocol is required, as similar
joins to the network could destroy the topology of the netwoA binary tree solution needs none of this

special treatment. Similar to Chord, each node in the trikeigtified by a unique identifier, which happens to
be a 160 bit key.

1 0

10..
110. 011.
1111 1110 0101 0100

001. o000.

Figure 4.2: The Kademlia binary tree with 4 bit IDs: Leavedha tree are nodes, dots in the IDs represent
hidden subtrees

4.2.2 Distance Metric

The paper defines a special distance metric for Kademliatabige is computed by using a bit wi¥®R
of a nodes ID with a target ID. As all distances are computédi®e, numbers, expressing distances will
in the following be written in binary notation. An illusted example, as in figufe3.3 will help for a better
understanding:

a) b) c)
xor |01 011 1 0
0 0|1 xor 110
1 10 =101

111 110 101 100 011 010 001 000

— Distance = 10+

Figure 4.3: The Kademlia Distance Metric for 3 bit node IDsuth Table of XOR a), sample distance com-
putation b), illustration of b) in c)

The Distance between two nodes, for example 110 and 011 lisasGseen in the a) and b) part of the figure.
An interpretation of this number is illustrated in the c) tpaf the image. This distance notion is not the
traditional notion of distance, but maps implicitly to distes in the binary tree. Huge distances mean very
distant subtrees, small distances represent “close” setr

4.2.3 Protocol

Kademlias protocol is designed to have a small footprinelies on 4 primitives.
e Ping: This command checks for a hosts existence, similar to ICMBests.

e Store: A request to publish information is sent to a given node udiig the key, which identifies
the information and the data itself. The target node wilhtbkeck whether a given key should really be
stored at its location. This is done by employing the alreaéytioned distance metric.

e Find _Node: The basic routing primitive of Kademlia. It is used for locatother peers in the tree.
It employs a recursive algorithm that is described in a feifg paragraph.

34

4.2 Technical Introduction to Kademlia

e Find _Value: Arequest to locate a given key in the node ID space. It workkkérsame manner, as
the routing primitive.

It has already been stated, that no specific stabilisatiotopol is needed. Further the efficiency of the system
is increased, as ever message of the protocol will be takeragtount for routing functionality.

4.2.4 Routing

The protocol primitived=ind _Node andFind _Value both are based on the routing subsystem. Routing
information is held in a data structure calle@uckets, wheré determines the size of the bucketsor each

0 < i < 160, every node keeps a list of [...] nodes of distance bet@eand 2+ from itself[MMO0Z].

The meanin of distance in the context of Kademlia has beeodnted previously in the paragraph "Distance
Metric*. The range ofi is chosen, because of the 160 bit identifiers, which allow dii®trees, that do not
contain the node. The size of the buckétss suggested to be set to 20, which representgtfemunsize, a
bucket can grow to, smaller, or even empty buckets are Vilidrepresents a node add is the nodes own
identifier, it can be expressed as:

Vaekr, 128 <a @ ID <21

A graphical representation of a tree with 4 bit IDs dne- 2 is presented in figufe-4.4 accompanied by table
E1.

1 0
- i=2
i=3 _ -~
//<\
<7 S 10..
e N 110. 011. 001. 000
1111 1110 0101 0100

Figure 4.4: The Kademlia routing tables illustrated. Dakbgbtrees represent the 4 Buckets available in the
tree.

Bucket Nodelist Bucket NodelList

i=0 0100 i=2 0010
0011

i=1 0110 i=3 1111
0111 1000

Table 4.1: A sample Kademlia routing table, for 4 bit node #ds a bucket sizé = 2

These buckets are filled with nodes, which are set up and ke date by using the information network
traffic provides. When nodes exchange messages, e.g. fohg&g the contacted node can not only return
information to the requester, but also add him to the comedmg bucket in its routing table. If the client is
already contained, it will set the client alive, marking itlwa “last time seen” timestamp.

Because nodes are stored in buckets, the routing algorigmnelroose the “optimal” path along nodes regard-
ing speed or node failures by contacting a sulbset k£ of nodes and in turn contacting the fastest replying
node. So the routing system is failure redundant.

Of course thé; factor limits the size of the bucket. When the bucket is fatides could no longer be added
to the bucket. It would be convenient to add the contact imately to a bucket, dropping another client.
Research however has shown, that the probability for atciemng offline decreases, the longer he stays
online. So the routing algorithm will prefer already knowients over unknown clients antbtadd it to the
bucket. This technique makes the algorithm resistant tonabeu of Denial of Service attacks, as attacking
clients can not easily fill the targets routing tables witlybs, or their own, entries.

Buckets are further periodically checked for offline nodgsendingPing commands to nodes, that have
not been set alive in a while. If these do not reply, they aneoeed from the pool and considered offline.

35

4 Choice of a Peer to Peer Model

After discussing the involved data structures the routiggrithm will receive attention.

4.2.5 Finding Nodes in the DHT

The implementation oFind _Node is a recursive algorithm. The Figures on the following pagesent a
graphical illustration of the process.

1. The searching client with ID 001 looks up the target nodg, 1 its routing tables. If it is found the
algorithm terminates and returns an IP address. Othertyisekis the “closest” node to the target node,
from its routing tables - in this example the client with theadlest distance to 111 will be 101 - and
executes step 2.

2. The chosen client is contacted by 001 (Fiduré 4.5). Adaiose” means that the bitwise xor of the
target node’s and chosen node’s ID is minimal. Upon recgithie query, the chosen node looks up 111
in its routing tables and similar to stdpreturns ak—sized set of closest nodes, either containing the
searched node, or just closer nodes, e.g. a node 110.

3. If the queried node returns the target, the algorithmeeds (Figur€417), if the result yields no closer
nodes, that the already known the algorithm terminategytieyy a failure. Otherwise a new target node
is picked from the set of results and sfs repeated (Figule4.6).

During each iteration of the routing algorithm, client 00ight be added or set as alive in the corresponding
Bucket. This information is, as described earlier, usedhforee the usage of long living clients in the routing
tables. Furthermore this is an example on how closely cordtgun messages are integrated into the core
protocol primitives.

4.2.6 Publishing information

Publishing information on the network is the task of addimg dlata to the distributed hash table. It involves
identifying the node where the information needs to be stoby sending &ind _Value command and
uploading it using &tore command.

Keys Kademlia addresses both data and nodes as 160 bit keys. fitte@fuof the Distributed Hash Table
that maps the keys of data to nodes on the network is indegdsiraple: Thek closest nodes to a givetata
key will store the values of the keys. So the binary tree stinecof the node network is resembled in a parallel
data tree. A simplified illustration can be found in figlirel 418 this example data and node keys are only 3
bit wide. The table shown in that figure consists of data kegmputed from the file and the corresponding
node, where data would be mapped in the right hand side biressy For example, the key of file B is 001. It
is mapped to node 000, as the distance between key and ndétk, isffile the distance between key and node
010is 011.

Publishing Adding information to the network employs 3 steps. Firstparesponding key to the value
is computed, using a well known hash function. The paper estgghe SHA-1 hash function, but this is
implementation specific. The second step is retrievingktbwsest nodes to the returned key by searching
for the closest nodes to this key on the network. This is éxdlee basic routing algorithm, that has been
discussed in the previous chapter. When the set of the tloedss is found, &tore command is sent to
thesek nodes, requesting them to publish the information togetilithrthe key at their position.

By storing atk nodes, an efficient cache is installed, because nodes sgafochinformation will have a list of
thek closest nodes. By contacting a suhseif k, the fastest replying node can be contacted. To avoid Igosin
information, by node failures, or nodes closer to that kéyijm the network the key must be republished in a
given interval, usually one hour.

36

4.3 Conclusion

4.2.7 Retrieving Information in the DHT

Retrieving information is a two phased task, similar to amalrhash table. First, a key has to be found, second
the information has to be retrieved.

Finding Information As the user can not compute the key of a set of data, he doesmnoseveral ways

to publish those keys exist. Itis common practice to puldikky on a given website. For example most Linux
distributions use this technique to publish pointers tartfree products on their homepage. Independently
from other networks, the information can be published om#gvork itself. By publishing a hash of common
search strings or the filename along with a pointer torglaéhash key, an easy way to locate the desired key
can be established.

Retrieval For finding a value corresponding to a known key, the algoritasembles the routing algoritm. A
lookup of the closest node to the given key vieiad _Value command is performed. In the recursive step,
the recursion breaks if hitting a node that stores the requialue. In that case, the node will return the value.
Otherwise it returns a set of closer nodes and the recursiotinues. So the only difference between locating
a node and retrieving information is the returned valueteid of an IP. Besides the routing configuration
information, this search spreads across the network. Tsigrnléatures also a caching mechanism described
in the next paragraph.

4.2.8 Caching

Kademlia cachegkey,value pairs across its network. This is done after informatiorklgm a node, that has
successfully completed a query will store the result at #s hode, that did not return the information. By
installing such a cache it shortens the path of its query l®yroating message. The probability of other nodes
hitting such a cache is high, because the xor distance metdgidirectional. This means that the closer a
peer is to its target, the more likely it is to hit a path anottieent already used. For a proof, see the original
paper [MMO2]. Therefore, if the key is popular this cachieghnique enables fast lockups, as it “balances”
the load. A side effect is that even after multiple node faifuthe information is likely to be available in the
network. The information itself is already stored not ontyane host but is distributed to théclosest” hosts

as seen in the section Publishing in subchdpieri4.2.6.

4.3 Conclusion

The need for a stabilizing protocol, that need to maintaiititegrity of the Chord ring, explains the choice
of the Kademlia solution, which is described to be self canfigg and maintains its stability via the normal
search operations.

From a clear practical aspect, the decision is based on ttetfeat Kademlia is in widespread use by the
eMuld client. It is the second implementation of the system, kessttie reference implementation. There is
also at least one more public available implementationéﬁ\theuruE client. All of these implementations are

open source, which enables modifications to the code basedasy manner. The available implementations
have also proven, the chosen solution scales up to 5 Millkams) according to a developer of the eMule client.

Table[4? sums up the reasons, that lead to the choice of ttherkla system.

www.emule-project.org
2www.arzeurus.org

37

4 Choice of a Peer to Peer Model

| Chord Kademlia
Implementations 1 3
Implementation Maintained No Yes
Protocol Over head Stabilisation Protocol None
Sear ch Operations log n logn

Normal Text | Met Requirement |
Grey Text | Unmet Requirement

Table 4.2: The Chord and Kademlia distributed hash tablegpened

104 100 011 010 ,001 000

“Find Node 111

Figure 4.5: Searching for node 111: Node is not containetiénrouting tables of 001, contacting a known
node 101 close to the target

-
-

<

“
110°~101 100 011 010-7001 000

Find _Node 111

Figure 4.6: Searching for node 111: Contacting node 110chwvsicloser to the target, after updating routing
tables with results from 101 (dashed)

-
-~

~<
s

1112 110 101 100 011 010 001 000
Figure 4.7: Searching for node 111: Found node and updateithgtables with results from 110 (dashed)

1 0
| Key | Node
FileA | 110 | 111
FileB | 001 | 000
FileC | 111 | 111 111 011 010 000

Figure 4.8: Mapping data keys to nodes

38

5 Model of a Trust-Aware Solution

A vital part of a network of potentially anonymdlissers is not only the availability of information, but also
their quality and integrity. To reach that goal, this chaptmposes a reputation system, based on sharing
information about users, among clients. The subsequeshapters will introduce the design of policies and
a proposal for an integration into the Kademlia networkyjiimg a secure facility for reputation sharing. The
next chaptell6 will introduce the details of the referencplémentation of the system.

5.1 Sketch of Design

The proposed solution is designed to be a distributed répataystem. It works, as described in chapter
23 by enabling users to express their experiences withr o@rs in a way that every other user could base
his decision on the recommendations of other users. In flgdl®n pag&4o0 this procedure is divided into
three different phases. In the first phase user A receives af setes about a third peer B, from another
peer C. A was able to locate this information, as the disteiiunash table providesraapping functionsee
chapte&l4, that takes a peer’s identifier as input andristanother peer’s id, that is chosen, to collect all
votes concerning the given peer. This solution is based ei#demlia distributed hash table, therefore the
information is distributed to multiple peers, to improvéability and balance the load between nodes.

Peer A has in the second phase a number of votes, consistingtafdata and a binary identifier expressing
whether the voter recommends a transaction with that peerpb A description of a vote’s components

can be found in chapt€r$.3. The decision of peer A can be baseblese votes. The received data is a
collection of votes, so the peer has to combine all the received datayrio its decision. Other systems

already return a global trust value, already combined. Ehlstion, however, allows the peer to form its

decision independently.

A may have no previous experience with peer B, but it mightehlaad interaction with some of the peers,
e.g. D, that expressed their recommendation. If so, it shaeight the votes according to the voters previous
performance. The Policy section in the next subchapterimiiibduce this decision phase.

If A chooses to interact with peer B, it is able to rate thimsaction after it has finished. By rating the

authenticity of the exchanged information, separatingttamet to provide malware from a valid exchange
of information, the peer distinguishes between a posithe anegative outcome. This information has to be
published into the network, by assembling a vote and pulblistt to net node, the set of votes was received
from. The details of the publishing are found1nl5.5.

In a final step, A is capable of remembering, how helpful theonemendations of the voters have been.
If the outcome matched the recommendations of a voter, ageagalue could be increased, otherwise a
disagree value will be updated. More on thegperience repositoriesill follow in the next subchapter under
“Credentials”.

5.2 Expressing Trust

In chaptefR it became evident that there are different wagstablish trust, based on sets of credentials and
polices. The basic components used in this work will recattention first.

IHere: not known among each other

39

5 Model of a Trust-Aware Solution

Trust Classes Every Trust System is a social network with entities and giationships between them. In
this model, entities are agents that behave on the actioasisér. It is the goal of this work to enable them
to base their actions on a trust decision. Chdpidr 2.4 defioagbonents of trust and also a classification of
trust. In the course of chapter 3 it became evident, thatst system for P2P ultimate deals wilhovision
trust. The assumption that every class of trust is baseientity trustis also central to this work, as entities
need to be able to identify each other.

Credentials To have a history of an entity’s prior performance, anothitgthat interacts with it, has to
measure the outcome of this interaction and store it. Byipliplg this information, a decentralized reputation
system, based on the experiences of its users, can be buoitidimg trust relations. In figurE3.1 this is
illustrated. An entity A can retrieve credentials, of nodgBblished at node C. Depending on the credentials
it can interact with B and assign, based on the interactioeva set of credentials to B, that need to be
republished to C. When analyzing the workflow of such an gritito actions that serve as a sensible basis for
credentials can be identified. Clients actively search atréere information. A first credential is therefore the
authenticity of the provided information. In other wordss the provided data of client X relay what it was
said, that it would be? Is it infected with viri?”. This cred&l will be calledreputation as download source.
The second important measurement lies in the nature of pheation system itself. User’s experiences with
other clients should be used, but what happens if they ah®dést? To provide an appropriate measurement
for the voting information a client provides, the secondlergial will be calledeputation as voter.

1. Evaluation

2. Interaction

3. Rating

Figure 5.1: The workflow of a Reputation System. Credentiélgser B are retrieved from a node C to A.
On this basis a trust decision is made. New assigned Cradigriiased on the interaction will get
published back to C.

Aggregation of Credentials To collect a set of credentials a number of repositories é&lad to record
both good and bad performance of a given node. In the preyategraph, two measurements for client's
performance were identifiedeputation as download soureadreputation as votedn chapteE3b it has been
decided to base this trust solution closely on the P2PRejtisnlby Samarati et al.presented in subchapter
B32. Therefore, the same nomenclature will be used. Smefheation as download sourecepository is a
set of triples¥= (serventid, numplus, numminus) while thereputation as voterepository will be called=
(serventid, numagree, nundisagree).

40

5.3 Layout of Votes

Policy To form a trust decision the the collected information netedbe evaluated. The evaluation is
done by the policy of the system. While primary research feilus on developing trust by reputation, the
system is flexible enough to cover a broader spectrum of ef ttecisions. In the following, a policy for trust

management based on reputation is presented. In the caorchusother possible policy, which establishes
trust by the usage of a hierarchical structure and adapéesténtials, will be sketched.

To keep consistent with the P2PRep approach, the policyrig tiseaggregation operatop : ¥ — {0, 1} that
was already used in the context of subchdpier3.3.2. A fongstrategy will be selected, that yields a positive
recommendation, even if there has previously been “badawenr, if the number of positive experiences
with a peer is greater or equal to the number of negative olfiéisere is no previous interaction, a positive
result is yielded. The value is a public measurement of wtiatvoteri into a clientj , which will be call the
global trust valuev;; in this work. When publishing this value along with metaddeacribed in subchapter
B3, it will simply be referred as “vote”. The publishiewill be calledvoter, j will be called subject.

Vij = ¢(‘I’j) =

: _ — _m >
{ 1: num_plus — num-minus > 0 (5.1)

0

For consistency reasons, the computation of the “reputatovoter”,¢ is defined as) : § — {0,1}. The
number of times the vote matched the experience of the chieist be greater or equal to the number of times
it did not match the clients experience. The latter is a peivalue, that measures, whether the votes of a client
j can be trusted; its credibility;.

cj = ¢(0;) = (5.2)

{ 1: num_agree — num-_disagree > 0

0

Given these definitions, the global trust relations aret&ohto a binary attribute. This is expandable and will
not limit future work. For the current scope however it isuassd to be sufficient for most use cases.

It should also be noted, that the aggregation operatdigst dependentA client may use a forgiving strategy,
as presented in this subchapter. Other clients could be stoct and vote negative after the first negative
experiencerfumnegative> 0).

Before describing the publishing of votes in subchdpidrthéterminiology needs to be explained. Since this
solution is designed to be a distributed network and thekesavill be stored on the network, it is convenient
to define a name for a peer that holds the information aboutjpdéiis node will be called thetorage peer

S; of peerj.

Aggregation of locally Credentials The aggregation of and¥ will be explained in this chapter. Ag-
gregation of credentials happens local on every client. drhdentiakeputation as download souraeill be
republished, if the value changed. Commonly the better atagjon system is integrated into an application,
the more information can be collected without any user adton. Automatic collection of reputation infor-
mation could already take place at the block level: exisKiaglemlia clients use hashes to detect corrupted
parts received from the network, so the client can recordussdthese exceptions to adjust the trust level
of that peer. Furthermore after a successful transactiefilthtype could be checked automatically using a
similar approach as in the UNIKle command. In this solution it is done by the user, who needat® r
peers directly on the basis of a completed download. If a isggositively rated, the credibility of the voters

0 could be adjusted automatically, by adjusting thenagreeandnumdisagreevalues.

5.3 Layout of Votes

The two most obvious elements of votes to enable reliablesacdre operation is a Tuple consisting of the
information needed for reputation sharing and a digitahe@yhash of this information. By distributing the
information in this form, it is certain that - given the fabtt the signature check succeeded - the data has not
been tampered either by a malicious peer or the storagetpekr i

41

5 Model of a Trust-Aware Solution

Furthermore the ID of the subject of the vote needs to be atidiad meta information. As votes may change
overtime, it is absolutely necessary to add a timestamg;iwtnievents malicious peers from sending outdated
information. As the outdated vote would seem valid, thereldde no possibility to detect this fraud. These
frauds are called “replay attacks”. Adding the IP addressimilar data for evaluation votes, as done in
previous work is depreciated by the usage of cryptograpkithods. More work on security can be found in
sectiorfG}. In summary, up a vote is proposed like this:

aj; = Uj + IDoter + ID] + tlme()

vote = a; + encrypt(shal(a;), private_key)

a is a temporary placeholder. The basics of digital signing lsa found in chaptdi3.1. Note that explicit
knowledge of the voter’s public key is required with this défon. It is not possible for a peer to check the
validity if he does not have the public key of the voter. If fheblic key were included in the vote, it would
open the door for a large scale fraud by the node storing thes s it could provide an infinite set of votes,
all signed with bogus keys. This fundamental data strucnebles us to store votes, even at untrusted places,
as the data can not be tampered, or replayed. The only fratdadlld happen, is that the data gets dropped
by the storage. As Kademlia caches the informatiok aotes, this is unlikely.

5.4 Mapping Function

Kademlia maps (key,value) pairs to the closest node. A egjout system built on that basis should also store
votes in a similar fashion at a central place. To accomphgha function is needed, that maps given IDs of
clients to a key. This is needed to identify thi®rage pees; that handles the reputation information of peer
i- A constraint is that this function never maf&:) = «, or following the nomenclature of that wogk = ;.
This means that no client should ever be able to manage Viotes himself.

The original Kademlia paper suggests the SHA-1 hash fotiogekeys of data. This choice is driven by the
need to identify different chunks of data uniquely and ndedi® 160 bit wide. This solution could easily rely
on a much simpler function, as a 160 bit key is already presedionly a direct mapping of data needs to be
prevented. Theot function () will be used bitwise on the subject’s ID. This function does only prevent
direct mapping between ID and storage peer, but also mape tntost distant” node on the network, in the
xor distance metric. To prove this, look at the definition of ywith & meaning xor andl meaning not and:

r@y=(z|(|y)|(]y]z)

the definition ofnot andis

r|ly=(rAy)

and then compute the distance betweeand—x

Given 160 bit identifiers, the distance would bé&! — 1

42

5.5 Publishing a Vote

Since Kademlia identifiers are free to choose, this leavesmrmr malicious users attacking the system with
clients managing each others reputations, dropping negatites. But the fact that the system publishes
each informatiork times makes this increasingly difficult. A clique detectadgorithm together with an add
on to the reputation system, described in Sedfioh 6.4 shmininise that impact even more. Solving this
Kademlia-wide problem is outside the scope of this work.

5.5 Publishing a Vote

The most visible change by adding a reputation system ishilliéyato “rate” a peer. By presenting the user
the possibility to express his satisfaction about othersjgedging if the provided information in terms of viri
or authenticity, the system can upddteaccordingly, effectively updating its local trust relatito that user.
To update the global information the following steps areuresy.

To publish a vote, concerning a node 1D 0000, the voter 01@ds & prepare a vote, as described in chapter
E3. Then it computes the storage pegiho, that handles votes for 0000, as described in the previcasteh
Similar to the algorithm describedInZ4.P.5 the seka@losest nodes teyygo are computed via Rind _Node
command. These nodes will receiv&tore command containing the vote. The recipient of this message
will store the vote in a basket associated with 0000 (Fi§uB®. 5Further action is not required from the
recipient. Error checking or building a mean of all trustuesd would be insecure and is therefore a duty of the
client. Other clients searching for votes can now retrieng ipdated basket.

1 0

110, o1l . 001
11117 ~1110 _010% 70100

- -

000.

Store(vote 4100,0000)

Figure 5.2: Node 1111 is contacted by node 0100, to storeeaoro0000 in its associated vote basket

Update Voter: 0100 Vote: 1 ...

Node 0100
Node 1111

List of Yotes

Yoter 1011 Yoter 0111 Yoter 0100
Yote: 1 Yote:0 Yote: 0

Date: 20050401 Date: 20050421 Date: 20050301
Signature: XXX Signature: XXX Signature: XXX

Vote Baskets

Figure 5.3: The Vote Basket needs to be updated

Due to the fact that votes fluetuate, the author suggestsrarspablish interval to keep the votes basket up to
date. 60 minutes should be sufficient, the normal repubtidrval is 5 hours for sources and even 24 hours
for everything else.

43

5 Model of a Trust-Aware Solution
5.6 Retrieval of Votes

Retrieving votes from its associated storage peer invdalwes phases:

Retrieval of Votes After retrieving the ID of a potential download sourgethe storage peer that holds
the reputation information is computed, which is, in thisueple,s; = —j. The storage peer is found via the
Find _Node command. The Network then returns a list of Nodes “closeh#target ID. The fastest found
node will be contacted with Bind _Value command. The information is retrieved.

Verification of Votes Phase two is vote verification. A possible solution that wasedby P2PRep, is
contacting each voter from the voting basket and validatirggiven vote directly. As this method created
too much traffic on the network while delaying the verificatiphase, especially on low speed links this
technique was replaced, by using digital signatures. Wh#éenotable gain of speed an simplicity may not be
underestimated, once again the need&symetric cryptographgnd a decentralized distributen of public keys
is eminent. Every peer needs to know the public key of peemsdrs to interact with. Otherwise a secure
vote verification would not be possible. Fortunately, ergtclients already support this for built in credits
systems. This implementation specific part will be touchethe implementation specific part in chagdikr 6.
The sole existence of this system is not only a good basisuftindr work but proves this concept as solid.
With the existence of a PKI the retrieval and management bfipkeys can be transferred to the existing
systems. Therefore, upon receiving a set of reputationmmdtion, the integrity of data can be verified by
checking the signature that is contained in the votes. Ifeldg a positive result, the timestamp of the vote
needs to be checked. If the second check succeeds, the vet#iisd and can be further processed.

Decision The appliance of a policy to the collected and verified votesE the final step before down-
loading. The outcome will decide on the trust relation betmboth peers, which ranges frarastto distrust.
P2PRep presents in its paper different choices to do soethtiie selection and implementation is completely
client specific and does not need a global defined algorithrfunlamental basic approach was choose for
this solution, that can be extended on behalves of specjalnements.

The first step of the policy is to combine the collected votéh e credibility repository defined in chapter
B2. This process will be callegleighting.Using the aggregation operator every voteof voter: is multiplied
with its credibility ¢;. The result of the operatian; - ¢(;) defines the set of votes that will be used to compute
the trust relation. As both votes and the operatare defined tq0, 1} votes from untrusted sources will be
dropped.

The policy can now decide on the the trust relation, usingatbigthted averages technique. For this purpose
the votes are summed and divided by the number of watpsoducingg; the global trust value.

9i = n distrust

" v > 0.5
Do Vij _ { > 0.5 trust (5.3)

If these yield a positive resulj, is contacted. Otherwise the search for another downloacteahould be
initialised. It may be argued that the system gets more sd€tmansactions are carried out only with peers
that have a higher global trust value. We object against #sigeers with no reputation information have to
be treated equal, as this would otherwise bully clientsifmjithe network for the first time.

5.7 Extended Reputation System

In the previous chapter, the basic capabilities have bedadith the voting system. To enhance the function-
ality even further, the different subjects that are invdlirethe process should be reconsidered:

44

5.7 Extended Reputation System

e A trivial subject, when using a reputation system is the ptett this transaction is about. We may
or may not have had previously interacted with that peerrdeefafter a transaction one can express a
rating and update the local notion of that subject. Then yiséems global view of that subject will be
updated.

e When retrieving votes, there will be one or more ratings fratitmer users. These should be weighted
depending on previous performance. After a transactioterscan easily be rated, because it is clear
to which votes the client agreed and which he disagreed.idgdige quality of their votes by adding
previous experiences adds a “history” feature to the algari

e Also, the retrieval of votes is an interesting task. Malis@eers may try to hide their operations by
giving reliable votes and even may carry successful trditsecout. But in an attempt to pollute the
voting system it is possible that they play unfair in thelerasstorage peer

By looking at the different subjects involved in the processother credential was identified: theputation

as download source We could identify peers that try to pollute the voting systeWhile we have tried

to assure a maximum of security for votes, it has alreadyecdear in chaptdrd.3 that a node dropping
votes is a flaw that can currently not be handled. A voter cdubdvever, periodically check the nodes, that
previously received &tore command, whether they still return his vote. Furthermotieeclients could
detect malicious storage peers using the cryptographiedsasAlso in this phase the clique detection and
decision techniques from [DdVPS03] are extremely useflieylcheck the source of a vote for its IP address
and try to resolve the IP range. If all votes come from the ssmfxet, a clique is highly probable.

45

6 Prototype Implementation

In this chapter, the integration work that was done to additajon sharing capabilities to the open source
eMule client, will be introduced. The first subchapter wikkpent the existing architecture of the client, further
subchapters will present the extensions to this architecnd the protocol used by the client. As malicious
users may tend to circumvent protection, trying to atta@nts more easily by pretending to be a high trusted
user, the system requires an analysis of security considesawhich will conclude this chapter in subsection

0.4.

6.1 Architecture

The eMule client, which is at the time of writing at versiod®a, started as an implementation of the EDon-
key2000 protocol in 2002. It has received much attentionif asms the first open source client, that im-
plemented it. While providing compatibility to the alreadyisting client, it introduced a far number of
improvements. These include a credits based queue systaoh will be analyzed in paragraph PKI. It fur-
ther overcame the limitation of the EDonkey network, whistbased on central server, by providing a C++
implementation of the Kademlia protocol, based on Maymawitkreference implementation in Java. The
subsystem is cleanly separated from the eMule core and suledépd in a owriKademlia namespace. The
specification in[[MMOZ] is closely followed, although thestgm is based on 128 bit identifiers, instead of the
proposed 160 bit, & is an integer on the basis of two.

The sourcecode of the client including the eDonkey20000maitalready consists of 428 source and header
files in the code’s top level directory. The Kademlia implertation, found in th&ademlia/ subdiradds 48
files. The classes, that were added during this work can beifouthe fileskademlia/kademlia/vote

. {cpp,h }, extensions to the source code are distributed across thenledsubdirectory. Grapical User
Interface related changes were integrated into files ldcatehe root directory of the source code. The
nomenclature across the sourcecode is unique. Every slaapliemented using a source and header file, that
are named using the contained classes name. For examplase€KadUDPListener is implemented in
theUDPListener. {cpp,h } files.

The task of integrating trust management into an existirenttequires an understanding of its architecture.
For this purpose, the components shown in fidurk 6.1 will leedeed in the following section.

UDPSocket All protocol communication is done via UDP. A transmittedssage will be received by the
CClientUDPSocket::OnReceive() callback of the windows API. The client implements both the
EDonkey and Kademlia protocol. If the message starts witlagienumber associated with Kademlia, like in
figure[6.2, it will call theCKademlia::ProcessPacket() function, which forwards the request to the
UDPListener instanceSKademliaUDPListener::processPacket() function. As messages may
be compressed, the client might previously decompressitepsulated data.

TheProcessResponse() function calls appropriate functions on behalf of @BCODHield of the pro-
tocol. Valid opcodes includ6 ADEMLIAPUBLISH.REQ or KADEMLIASEARCHREQ. The first of both
opcodes branches into the index service, while the secdatheethe results of a search. The component is
the central point to send messages viasbedPacket() call.

Routing The routing service, offers all services described in tlohrécal introduction in chaptér4.2. It
adds Nodes to the internal routing bins and returns the IReadaf a given contact. It is also the central place
to receive the contact list from the system, via a caljédAllEntries() . All known contacts will be

46

SearchManager

startSearch()
processResult()

User Interface

CSearchManager::;jumpStart()

6.1 Architecture

Contact List

getContact()

Routing

add()

UDPSocket
processPacket()
sendPacket()
Index
addNote() %

addKeyword() £
5
[53}
=4
o
)
c
(=]
N
j=2
£
5
o
X
o

12 /X

o L,
6
Timer

CKademlia::Process()

Figure 6.1: The components of the Kademlia implementatiché eMule client

47

6 Prototype Implementation

+ + e +
| OP_KADEMLIAHEADER | OPCODE | DATA |
+ + e +

Figure 6.2: The header and opcode of a Kademlia packet

stored in this list. The graphical user interface of thertligses these functions to display a list of all known
contacts in the upper part of figure @.14. The complexity efrtbuting system is hidden behind a simple API,
but unfortunately the search for closest nodes is not ofeseparated from the general query implementation.
Routing messages that are sent across the network to digb@/enearest nodes to a key have the Opcode
set toKADEMLIAREQ replies are identified witiKk ADEMLIARES. To get a better understanding of the
routing elements in a query have a look at the explanatiottsafiollowing “Search Manager” and see figure
0.d.

CsSearch Object Routing

earch Jarget
gearcn ¥yp getClosestTo()
contacted |remaining

timeline

-, Contact List

false

sendPacket(KADEMLIA_REQ) UDPSocket

rocessResponse| Search rocessResponse
closest p ponse(Manager p ponse() | KADEMLIA_RES

true sendPacket(KADEMLIA_SRC_VOTES)

Figure 6.3: The routing part of a search request. A list ofelnodes to a target is retrieved and subsequently
contacted. If no closer nodes can be found the algorithmitertes.

Index The clients server capabilities are implemented in thexrsddsystem. It provides the storage part of
the distributed hash table. Data identified by its keys is@skbd and provided in the internal data structures
of this index. When the client encounters e.&KADEMLIAPUBLISH-REQ, the index service is contacted
to publish the given data at the given keywords location gisirfunctionaddKeyword(). Currently,
clients can add themselves sgurcefor a given key, registekeywordsor leavenotesassociated with the
corresponding hash key. The data structures used for gthey/value pairs will receive attention in chapter

E32.

Timer Besides events from the user interface and the UDP basedme@third instance provides events,
that require actions from the system. The timer subsystemodieally checks for various conditions. It
ensures, that both the provided sources, keywords and aotekept consistent by republishing them on
change or in the defined interval and deletes on its serveahiiities key/value pairs that have expired and
have not been republished in time. Various other timers kbepouting bins up to date using a function
calledCRoutingZone::onBigTimer(). As described in the specification, it is done by sendiimgy
messages if entries are near expiration, or delete bins nb@es seem to be down after a given period of time.
It also calls a method in the SearchManager cglietpStart(), that checks if search results have arrived
and provides them to the associa@8earch object.

Search Manager Both searches that are initiated by the user - e.g. searébiregkeyword - and those
by the system, e.g. node lockups, are registered at a cémgtahce: the “Search Manager”. This object,
identifies all searches, using the associated hash key tieegearching for. This technique enables it to

48

6.1 Architecture

receive packets from the Kademlia UDP listener and forwatd the appropriat€Search object, while
explicitly preventing simultaneous searches for the sa@ye k

The interface for creating a search inside the SearchMarsgiee functionprepareLookup(). The
function requires a “search type”, a bool value, that cdatibthe search should also be started imme-
diately and the search key, as arguments. A new search dbjeceated and if advised to do so, the
CSearch::go() method is called, which starts the routing part of this quinyodes closest to the passed
key, will be located by calling the functio@Search::sendFindValue(). The routing messages,
marked withKADEMLIAREQ will be sent andKADEMLIARES messages will be received. These routing
messages will be passed to thearchManager::ProcessPacket() function, which forwards them
to CSearch::ProcessPacket() that will contact the returned closer nodes. If no closerasodan
be found, the routing algorithm terminates and the actuahywill be sent to the discovered nodes. These
packets will have an opcode set to the appropriate type ofjtieey, as described in the previous UDPLis-
tener paragraph. Results for this query will finally be forsled to the search via thgrocessResult()
function. There is also a graphical representation, asiset@e lower part of figure6.14.

PKI Among the components that were shown in fiduré 6.2, the usent blas already asymetric key cryptog-
raphy and functions to retrieve the public key from anothesrpwhich added additional value to the platform.
In previous chapters, it was analyzed, thntity trustis the fundamental basis f&rovision Trust Further-
more subchapt€rd.3 explained the use of cryptographioigebs in this solution. This implementation relies
on self signed keys, without the use of a Certificate Autlyofiients exchange keys the first time they make
contact. The current use of these keys is a credit systemeWards other users: eMule uses a key handshake
method to ensure the authenticity of this user. Users assagtits to each other, depending on the volume of
the transferred data between them. Credits stored for aansesnly granted if this authentication has been
successful.

The strict queue system in eMule is based on the waiting timeeahas spent in the queue. The
credit system provides a major modifier to this waiting tinyedking the upload and download
between the two clients into consideration. The more a uptradls to a client the faster he
advances in this client’s queué. [Prd06]

The existence of a repository for keys of other users andlataized ways of exchanging keys, allows this im-
plementation to be based on existing services. The clierds uthe Crypto++ library from
http://www.eskimo.com/"weidai/cryptlib.htmlhe library is a C++ interface to various one way hashes, in-
cluding SHA-1, MD2, MD4, MD5 and both symmetric and asymmetric cryptography functiombe
library makes extensive use of templates. The client’s toggaphic functionality is implemented in the
file ClientCredits.h. The algorithm used in the client is the RSASSA-PKCS15valgorithm de-
scribed in RFC24371KS98]. The signature standard is theedPKCS #1, SHA-1 is the chosen hash func-
tion. On startup the client reads the keys from the dilgptkey.dat and stores the private key in a
datastructure callechpSignkey of typeRSASSAPKCS1v15_SHASigner. The public key is of type
RSASSAPKCS1v15 SHAVerifier and is written in a byte array calledabyMyPublicKey. If the
keys are not available, a new keypair is created on startup.

For the intended usage of this work, signing and verifyindesp two functions were added to the
ClientCredits class:

Listing 6.1: The function definitions for signing and veiifg Votes

uint8 SignBlock(uchar * pachOutput, uint8 nMaxSize,
Kademlia::Vote &t);
bool VerifyBlock(CClientCredits * pTarget,
const uchar * pachSignature, uint8 ninputSize,
Kademlia::Vote &t);

These functions both take as an argumekiote. The functionSignBlock will write a signature of

the passed vote to the temporary bufferchOutput, not exceedinghMaxSize. It sets up a ran-
dom number generator from the Crypto++ library, serialites vote into abyte[] array and calls the
PK_Signer::SignMessage function. The PKSigner interface is implemented inside the

49

6 Prototype Implementation

RSASSAPKCS1v15 SHASiIgner class. The signature will then be stored in the callersegptiuffer.
As it will become clear in the course of this subchapter, thléec will proceed by creating a special kind of
CTag storing the signature and append it to Yae.

The verification of a receivedote is done in similar fashion. Before callingerifyBlock, the client
needs to remove the signature from the vote. This is conmgrds the signature was not contained in the
vote block at the time of signing the vote. Both are passedrsdgly to the function. The public key of
the voter is retrieved from hi€ClientCredits structure. With this information, a new instance of the
classRSASSAPKCS1v15 SHA Verifier is created. Th&/ote is written into a temporary buffer and
the functionVerifyMessage s called, which will yield a positive or negative result.

6.2 Integration into the eMule Client

The approaches and solutions used will be presented heeeprElious chapter introduced the key compo-
nents, that need to be adapted, when adding the proposeditbsol§erving votes requires additions to the
protocol that enable sharing and retrieving of votes andrttiex to provide the serving capabilities of votes
and the contacts list, to store the users own experienchghdtcontact. Furthermore, timers are needed, that
republish the vote information. Finally, a graphical useeiface needs to be added. Figlrd 6.4 reflects the
required changes to the infrastructure.

UDPListener The implementation required four new opcodes. The first tenote a request to pub-
lish votesKkADEMLIAPUBVOTESREQnNd the appropriate reply opcod&DEMLIAPUBVOTESRES.
The remaining opcodes are used for searching and retrieviagt of votes from a given key are called
KADEMLIASRCVOTESREQ andKADEMLIASRCVOTESRES. TheprocessPacket function ofthe
classCKademliaUDPListener was extended to branch to four additional created functions

KADEMLIA PUB_VOTES_REQ --> processPublishVotesRequest 0
KADEMLIA_PUB_VOTES_RES --> processPublishVotesRespons e()
KADEMLIA_SRC_VOTES_REQ --> processSearchVotesRequest()

KADEMLIA_SRC_VOTES_RES --> processSearchVotesResponse ()

Furthermore a helper function was defined, implementingrthpping function from chaptEr®.4, that returnes
the binary negative of a given KABUInt128 identifier. It is call called contactToNode.

Listing 6.2: The definition of the mapping function
CUInt128 contactToNode(CUInt128 &contact);

Experience Repositories and Vote Structure For the implementation of this work, two incarnations
of a vote exist. The first is the direct representation of #positorie®) and¥ . The second representation is
the global trust valué(¥), along with additional information.

To represent both the reputation and the credibility repogia new type of object was designed in the
Kademlia namespace, thExperienceRepos class. This class is designed to provide all functional-
ity the client requires to use and contribute to a reputatimiem. A part of the public interface of the class is
defined as the following:

Listing 6.3: The class ExperienceRepos

class ExperienceRepos

{

friend class CVotePage;

public:
ExperienceRepos(CUInt128 key);

50

6.2 Integration into the eMule Client

KADEMLIA_PUB_VOTES_RE KADEMLIA_PUB_VOTES_REQ
KADEMLIA_SRC_VOTES_RE KADEMLIA_SRC_VOTES_REQ
User Interface UDPSocket Routing
processSearchVotesRequest() getContact()
processSearchVotesReply() add()
l:l processPublishVotesReply()

processPublishVotesRequest()

processPacket()

sendPacket() Contact List

update/retrieve reputaion
information

Index Client
SendValidVotesReply()
AddVot

otes() setMyVote()

getMyVote()

addOtherVote()
Client’s Votes Storage
Other Votes Storage

User Cindex::Clean()

CContact::PublishVotes()
CContact::ReoveOtherVotes()

Timer
CKademlia::Process()
m_nextVoteCleanAndUpdate

Kademlia::reputationSearch()
Kademlia::VoteClient()

Figure 6.4: An extended architecture, allowing reputasibaring

51

6 Prototype Implementation

"ExperienceRepos();

uint8 getReputation();
uint8 getCredibility();
uint8 getVoteSourceRep();

void alterReputation(uint8 how);
void alterCredibility(uint8 how);
void alterVoteSourceRep(uint8 how);

bool isValid();
bool isModified();
Vote &getVote();

protected:
uint8 getReputationRep(uint8 &pos, uint8 &negq);
uint8 getCredibilityRep(uint8 &pos, uint8 &neg);
uint8 getVoteSourceRep(uint8 &pos, uint8 &negq);

uint8 setReputationRep(uint8 pos, uint8 neg);
uint8 setCredibilityRep(uint8 pos, uint8 neg);
uint8 setVoteSourceRep(uint8 pos, uint8 neg);

private:
uint8 getGlobalTrustValue(uint8 pos, uint8 neg);

The class is implemented as described in the previous disafRepositories of positive and negative perfor-
mance can be accessed by its public interface. The cafjstieputationRep() and similar functions
return the positive and negative baskets, whilegdbtReputationRep() class of functions overwrites
them. These functions can only be called from a specialljaigedfriend class. Currently, only one
friend class, that is tied to the graphical user interfaescdbed in chaptérd.3, may access these functions,
theCVotePage class.

To retrieve the previously describgtbbal trust valuea set of functions are provided, starting with CKadem-
liaUDPListenergetRepuation() that return a eigth bit integer. These functions currendy all the
private getGlobalTrustValue() function, that computes its result on behalf of the policfirde in
chapteE5P. As it has been decided in the current implertient@nly zero, for a negative recomondation, or
one, for a positive recommondation, is returned, which d@alsily be extended.

By providing this critical functionality encapsulated isiagle class, a client that wants to alter the behavior of
the system, just needs to subclass and overwrite speciffoa®t To alter the behavior of every trust decision,
the function that returns the global trust value could beriigdden, for finer grained access, the repository
specific functions, likgetCredibility() could be altered.

The functiongetVote() needs some explanation. The signature returns a referereelata structure
calledVote which is also called dagList . It stores the global trust value, along with the requiredame
data, as described in subchajhiet 5.3.

The classTagList is a list from the standard template library, whose elemantsof typeCTag. This
abstract class is used in the client to store data of a defiyya dnd identified by a name. Commonly,
every kind of published data in tHexdex subsystem is available in this form. For easier managenfent o
these lists, a clasSEntry is available, which provides searching facilities, alonithwecords of the IP
address, the source port and the ID of the client that tratesnhe data. TagLists can easily be seriaflzed
to a binary representation, that can be stored in a file, osinéited over the network, using simple APIs
provided by the client. The available datatypes can be eéeigby subclassing th@Tag class. Types include

1For the serialized representation of a TagList, proceedtelsaptefG.211

52

6.2 Integration into the eMule Client

strings, integers, or bytes. The widespread use and thdisitypnade us choose to implement the second
representation of votes in this form.

For an example on how to use tags, the following will definegarteeded for reputation sharing and storing
the global trust value)(¥). In subchaptefBl2 it was agreed upon, that mapping it to gt it integer

is more than sufficient, for it currently has only two statéfie CTagUInt8 subclass is therefore chosen.
Furthermore a name is needed to identify the stored dad& REPUTATION was chosen as identifier. To
access a received global trust value, a list can be scann#fddadentifier. A figure might help to explain the
relation between tags and entries.

CEntry
GetlntTagValue()

GetUInt128Value()

GetStringValue() /\\

TagList taglist
CTagString CTagUint128 CTagUint8
TAG_TITLE TAG_VOTER TAG_REP
length VALUE VALUE
VALUE

Figure 6.5: A CEntry is a datastructure, facilitating theess to a TagList

Besides a tag for reputation values a set of additional tagsdefined, to comply with the requirements for
votes from subchaptEr®.3. The complete set of tags is:

TAG_REPUTATION
TAG_CREDIBILITY
TAG_VOTESOURCE
TAG_TIME
TAG_SIGNEDTUPLE
TAG_VOTER
TAG_VOTED

The values of the tags are eigth bit integers for the measemtnof performance, 32 bit for timestamps and
128 bit integers for the IDs. The SIGNEDTUPLE representgiibéal signature, which is byte[] value.

Contact List After becoming clear on the representation of a vote, ancéatson between th€Contact
class and the trust data was made by adding methods anditgtrio the class.

Listing 6.4: Functions, added to ti@Contact class

bool PublishVotes();
bool RemoveOtherVotes();

void ScheduleOtherVotesRemoval();

ExpiriencesRepos * getMyVote();
void setMyVote(ExperienceRepos *X);

void addOtherVote(Kademlia::CEntry * pEntry);
const VoteList& getOtherVotes();
uint8 getOthersTrust()

VoteList m_OtherVotes;
time_t m_lastPublishTimeKadVotes;
time_t m_removeOtherVotesBasket;

Both of the first two functions, are needed for the timer if#ee described in the next paragraph. The
{get,set }MyVote() functions return the associated trust repositories tha¢ wescribed in the previous

53

6 Prototype Implementation

chapter. If a reputation search was initiated via the Kageme global functiomeputationSearch()

the processing of incoming results will add received voiagheaddOtherVote() function. Once again,
an object of typeCEntry, which facilitates the processing of the containeatList, is passed.

To retrieve all currently known votes a list @Entrys can be retrieved by callingetOtherVotes().

The time _t variables are used to monitor the expiry of votes. After @hbthg a vote, the timer
mlastPublishTimeKadVotes is set appropriately and is accessed in BublishVotes() func-
tion, to determine, if the published votes need to be refrdsin that case the function will retutrue, as
illustrated in figuré6l6

CContact

m_Vote
m_lastPublishTimeKadVotes
PublishVotes()

m_lastPublish
TimeKadVotes
<= time()

m_Vote—>isValid()

False m_Vote—>isModified() True

:
:

Figure 6.6: The callgraph dfublishVotes()

The second timer monitors the age of received votes. Thdsawtdmatically expired, to ensure that only
valid votes will be used as base of a trust decision, via thetfan ScheduleOtherVotesRemoval()
The timeframe of this decision was set to be 15 minutes.

#define KADEMLIARVOTEXPIRY MIN2S(15)

After this interval the votes need to be received again froendtorage peer. This timeframe was chosen, to
allow a “cached” trust decision in the case of subsequensteas with a peer, while still ensuring an up to
date trust decision.

To compute the trust decision, another function is providbath analyzes and weights all votes according to
the global credibility values each voter is assigned. A€desd in[5.6, the functiogetOthersTrust()
comes up with a trust recommendation, based on the publiablainformation.

Timer An additional timer is needed for the implementation thatiess, votes from the Index and prevents
client's own votes from expiring, from the global index, Bpublishing them. As previously described the
main timer routine iCKademlia::Process(). For this purpose another timestamp was introduced,
with the signaturdime _t CKademlia:m _nextVoteCleanAndUpdate. that is checked in inter-
vals of KADEMLIAREPUBLISHTIMEV.

#define KADEMLIAREPUBLISHTIMEV HR2S(1) //1 hour
That timer loops through the list of contacts, by calling igpiate functions of the routing subsystem. Each

contact is asked t®ublishVotes(), which was already described. It further cleans up the receiv
votes of other uses, that have been cached by a previousitigugearch. Then the next contact is checked.

54

6.2 Integration into the eMule Client

The index subsystem is contacted via @ladexed::clean() function, which expires votes, that were
explicitly published at this node.

The timer runs in an interval defined by tRECVOTESDELETE variable, which is set at compile time of
20 seconds.

Index In figure[&.3B, this part of the index system was already sketch set of so called baskets, one for
every voted subject, stored on the node, should hold a ligvtrs for that subject. Instead of a list, a set of
hash tables are used in the system celexHash , that use voters ID as key, providing a pointer ©©ntry
representing the data. To be able to quickly retrieve thergdtash table associated with a vote subject all
hash lists are added tostéd::map derived data structure.

Listing 6.5: The data structure storing votes

CMap<CCKeyconst CCKey&,SrcHash *,SrcHash *> m_VotesMap;

This map stores the IDs of the subjects of the votes as keys and returns refesg¢adtke previously described
hash tables containing their votes. Figlird 6.7 reflectetbkranges.

Index
Yy
/7’
i Y
[/ Voter 0100
m V
* S DjVote: 0
— Sj Date: 20050301
i Signature: XXX
m_VotesMap SrcHash Source

Figure 6.7: Data structures involved in the implementatib¥ote Baskets

To add votes to the index, the data set is manipulated vidt/otes() = method. This method is called
from the UDPListener in response tak&DEMLIAPUBVOTESREQ. Before adding the received data to
the list, the function will check the distance between thda®own ID and the key, to prevent storing values
at wrong locations in the distributed hash table. It willeatequire a creation time encapsulated in the vote,
which is used to check if the vote is still valid. This preven¢play attacks, as they will be described in
subchaptdrl4.

When the data has been validated,fbi€otes _map is queried for the given key. In the trivial case, the query
yields no result and a nercHash is added to the map, containing only c8eurce entry, identified by
the given voters key. If the map returns an existing hastetdhit the voter is not already contained, a new
Source data structure is allocated. The object reference€tetry containing the actual vote and then
added to the hash using the ID of the voter as key. If both djrexist, the vote is considered to be more
recent than the previous vote, which is ensured by checlatigPAG TIME tags. If the vote is more recent
the previous version is discarded and replaced by the neatar i for some reason a older vote was received,
almost certainly some kind of fraud was detected.

To return a set of votes to a given key, the funct®endValidVoteResult is provided. If a lookup in
the map yields a hash table, a packet containing all availadties is constructed and sent to the query issuer.
The detailed assembly of these packets will receive atiriirtithe protocol description in the next subchapter.

As a termination of the program would otherwise remove tliexed votes, a file#ote _index.dat is
written on program termination in the destruc@index:: ~ClIndex , storing votes permanently on disk.
On startup theeadFile() method reads them back into memory, by adding them vidti/otes()
method, that ensures the validity of the vote, by checkirgithGTIME of the vote. So no outdated votes
will be distributed to clients.

55

6 Prototype Implementation

Searches The search API of the client is generic, so that no changesegugéred to the core system it-
self. The remaining task in this subsystem was to add two reanch types that allow a specific process-
ing of results, on search termination. The tyd3TES and STOREVOTESwere added in the namespace
CKademlia::CSearch. When receiving a query, the type of the search is checkedhé&set additions.

If a search with type&STOREVOTESerminates, no further action is required, as this meartsaivate has
successfully been published. If results for a votes quezyeaeived, they need to be checked for validity and
added to the appropria@Contact structure, by calling thaddOtherVotes() function of the object.
This function will search for the voter in the intermalotherVotes data structure. If an entry is found, it
is assumed, to be outdated and is deleted, after the proposetias been verified. If a dialog, that displays
the key’s reputation information, is currently open, itnédrmed of the addition of data.

6.2.1 Protocol Description

There have been four additions to the already implementetb@ol. Their binary representation and the
further processing will be introduces in the following.

CTags CTags were chosen to represent votes inside the clientdrdfmmission purposes these need to be
serialized. Therefore, we will start with the binary remeation of CTags in figufed.8, to be able to describe
them in the rest of the subchapter using their name attriduagList will be serialized in the same way, but
the packet will be preceded by the number of tags, that wildrg.

ST + + + ST -+
| Type | LENGTH(NAME) | NAME | LENGTH(DATA) | DATA |
ST + + + ST -+

Figure 6.8: Serialisation of a CTag

Retrieval of Votes Normally a search for votes is initiated on behalf of the u$éis high level function-
ality is provided by theepuationSearch function, defined in theote.h header file. This function
creates £Search object and sets its type to VOTES. Using ttuatactToNode() function it computes
and sets the search key. If no other query for the key is ctiyractive, the call td&SearchManager::startSearch()
succeeds, otherwise an alert informs the user about thengisearch, asking him to repeat the query later.
The search object will first try to locate the storage peerrest to the key. As previously described,
KADEMLIAREQ packets are sent for this purpose. When this routing phaszesedes, the closest nodes
are contacted witKADEMLIASRCVOTESREQ packets, containing the search key and the queries own ID.
The packet will look like figur€®&l9.

+ + e S — +

| OP_KADEMLIAHEADER | KADEMLIA PUB_VOTES RES | TARGET | S8CE |
+ + e R +

I I I I I

0 8 16 32 48

Figure 6.9: The elements of a search votes request

On the server side a storage peer will receive the packeteirUbPListener and branch into the function
processSearchVotesRequest(). It will extract the queried key and the source of the queryermh
it will contact the index subsystem by calli®@endValidVoteResult() along with the source and the
search key as parameters. As described in the previousrpphaghe the index will look up the key in
the datastructurewVotes _-map. If no results are found the algorithm terminates and no nesp@acket

56

6.2 Integration into the eMule Client

is produced. Otherwise it iterates over all elements in thghhmap and produce packets with 50 votes at
maximum. Figur€&.30 illustrates these packets.

+ + + IS S —— +

| OP_KADEMLIAHEADER | KADEMLIA_SRC_VOTES_RES | TARGET | ORT | VOTER |
+ + + IS S —— +

I I I I I I

0 8 16 32 34 50
S — +

| TAGLIST | * COUNT Times

S — +

Figure 6.10: Elements of a search votes reply

When the client, that inited the query receives this packetili pass it to the SearchManager::
processResult() function. Using the search key, the search object that $entitiery is located and
the packet is further passed via t@&earch::processResult() function. Using the objects search
type, that was set when creating t@&earch object the function callprocessResultVotes() to
complete the processing.

This function, calls addOtherVotes() to add each receivad to theCContact structure. It further no-
tifies an open Votes dialog of the new arrived data, by cal@@pntact::UpdatedData(). This

triggers a UM _DATACHANGEDnotification, to be sent if a dialog displaying the reputatidthis client
is open. This will be discussed in detail in subchapidr 6.3.

‘FindCIientByUserHash() ‘

addOtherVote(Vote) ‘

|

m_OtherVotes—> .
contains(Vote) i Find Voters CContact *

vote->get(TAG_BUDDYHASH)

Remove old Vote

validateSignature()

- vote->remove(TAG_SIGNEDTUPLE)

m_OtherVotes.AddHead(pEntry) ‘

Figure 6.11: A callgraph of the addOtherVotes() function

FAILED ‘

Publishing of Votes The process of publishing a vote is initiated by the timersygbem, described in
the previous subchapter. If a republish interval is hit, oteg changed previously, tiublishVotes()
function will returntrue. The Kademlia::CSearchManager::prepareLookup function, will

57

6 Prototype Implementation

be called, to instantiate@Search object, setting the search type3d OREVOTES. The search subsystem
will go through all steps described previously, calling tbeating subsystem, in order to retrieve the closest
known nodes, contacting them for closer nodes. If no closdes could be found, théote::getVote()

function will be invoked, returning the signed vote. Thidlle sent to alk clients, that were found to be the
closest nodes. The packet will include all fields, found inifef&.TP.

+ + e S +

| OP_KADEMLIAHEADER | KADEMLIA PUB_VOTES REQ | TARGET | BRCE |
+ + e S— +

I I I I I

0 8 16 32 48
+ + + + e +

| TAG_REPUTATION | TAG_VOTER | TAG_VOTED | TAG_TIME | TAG_SGNETUPLE |
+ + + + oo +

I
49

Figure 6.12: The elements of a publish votes request

A limitation of the eMule client forced us to include anotf@ement in the protocol, not included in the
above figure. Since the client supports both the KademligfameéDonkey2000 protocol, the implementation
requires a given eDonkey user ID to identify the stored ukdy of a client. After discussing the details
of searching the complete list of public keys, it was decjdedt the eDonkey ID, callebuddy hastwill be
included in the vote for practical reasons. This hash isaioetl in theTAGBUDDYHASHag of the vote and
can safely be removed from the system after the programmiegface has been changed accordingly.

The storage peers will reply to the received packet with ak@aacontaining an opcode set to
KADEMLIAPUBVOTESRES This packet has attached load parameter that expressesnbotv data is
already published at this node. Nodes will only publish adi#enount of data. To make the network aware of
this possible overload, a load parameter is returned aftgygublish request.

+ + e R +

| OP_KADEMLIAHEADER | KADEMLIA SRC VOTES_REQ | TARGET | AD |
+ + e R +

I I I I I

0 8 16 32 33

Figure 6.13: The reply to a publish votes request

6.3 User Interface

The actual user interface, that can be used to expressrirtist credentials of another clients is implemented
as a “Tab” page in a Dialog. This implementation was choser avsingle dialog, as this addition should

remain extensible via different “snap ins”. It was Incorgted into the Kademlia section of the eMule client,

using a new created context menu, that is illustrated in §@E% on page®9.

The dialog itself shows up when a contact is selected in thed@olist in the Kademlia window and the “View
reputation of this user” entry of the context menu is sekkctégure figuré 6.5 shows the resulting window.
It is divided into two sections. The first is entitled “Yourted. This contains the experience repositories of
the user, with this contact. The lower half of the dialog ilexh“Other User’s Votes” and presents a list of
votes.

58

6.3 User Interface

|_ Bupnauuos: pey|pa3IauUInD 100 HZae B_ o0 tumog | oioidn ﬁ#_ (3406 100:sad| {92 Thmistasn @._ mc_uumEc_uu_
| mmném..x I JOEE ST Ed | FEaT | SRS =T AL | =) T
{0 saUpIRas JUALND Ty
Joma R pey LU RO OO L UL L U OO0 U i UL LT UL 4405 TS T BHoh LR |
0 IOTTTOOTTOOTITTOTTTIOT0T I 100000001 on 1 £346605 50FIGAILEZAIYITE002EL6DT ¢
CUTTTO000T TOOTO000TTITIOT0T 0000001 o T 074429035 TI062623YSea09 000200 ¢
O0TOTOTOTTIONTTOOTOOTOTIO0OTTTLTT on 1 5206007102359 04ZZ#3900YSFO495T00 |
§ CI00TTTO00TOTOT IITTII00TI000T TR oy T 2520073025888 420050086d2ATLET0T ¢
100TTIOTTOTOTO0TO0T 100001001 1T1TT on 1 WI4D22A0L908T90604894902TA0YH0T ¢
CTTTTTTT000TOT T TO00000000F00FTTTTT N 1 T1£404046d4095408562 2059921438040 ¢
oL 10T TO000000TOOT TO0000TTOTTOTITTTT o T R0V ETIREDTLLBEY TEGDR0030 T |
U I0000TOTTTOTO000T TOOTOTITITRITI TN o 1 220p303092F ST 20643229V ITIOSEET |
CUTTTOTOOTTOOOTTIITO0T IO 55 S o Uoleange s 150 24T+0ATISAD0F6E06IZDE0ETS00L0WET ()
sy Sl " TTO000TTOTO0OTOTTT00TI0 95T 5 40 .._.u_uﬂu_...n_uw_ .:u_b W£99463952 9P TODAEFIIIWEESZLAT ¢

deljsi009

CUTOOTTTETTTO0TO0TO00T000

10110001 10T 100110110100

£(02821909006060L9ED39E 2008840 ¢

94039626 108604 30EY 220980234013 |

sjua)a r__sn_.cv_ oy @ COTTI00TOTOTOTTTTTIOTO00TO00T0TII0TY oy 1 0299+3F9002250 D95 Y4TR09693, 39T ¢
COOTTTOTTTTTO00TO0TOOT TOTOTIOFTIONT oy 1 14209232420 200095036 THOZAYSE LD ¢
_ _ O OTOTTOTO000TOT TO0CTOOTTOTTOT0TaTT O T 903 19422292 DPE8D0YHICEI09306d |
104 15SEUPPY J0 d] CT0OTTTITOTOOTTOOTOTIONTTITITIO0TT G 1 0893£006EYIFSI0IEFH0655Y 280,88 ¢
n_mﬁmuoom@l O000TTTO00TTIIOTOTTOTTILIOTT00TOTT oan 1 FFZHEEYIRERIZ0EIVA00ATEIITETO0Sd ¢
: COOTTITITTOTOOTTTOOT ITO00TOTT00T0TT oy 1 192029100230 TIVEELPE0VLP0E042E4d ¢
paes || peesspapay | _ BEEG [eS| I T
(021} 323400 5E|
digg Sjoo] SISEIG Tt safiossal] sa)d paseys SlajsueiT = fal=p] jaaueT

&=

B & & & U k1 &

9930 L9'29H'0A NI 5

Window of eMule

1a

: The Kademl

Figure 6.14

59

6 Prototype Implementation

In the experience repository section, users can expresgrilg in other users, by setting a positive negative
ratio. Two editboxes, with associated spinboxes allow toipaate the positive experiences, which are altered
in the left box and the negative side, which is the right boxext\to the boxes, every line contains a trust
recommendation. In the reputation line, the text can redus Elient is trusted” and “This client is not
trusted”, dynamically updated on the decision of gle¢Reputation() function. If one of these values is
altered and these changes are accepted by pressing thg”AppOK” button, the vote is set to a “modified”
state and will be republished on the next iteration of thestisubsystem, which checks every vote for being
modified.

The list in the lower section of the dialog is set up using T&GREPUTATION, TAGVOTER and
TAGVOTESOURCIHlata that is provided with votes. The list only shows cutsenached votes. How-
ever, using the “Search KAD” button, a new reputation se&chitiated. If results arrive while the dialog is
open, the list is dynamically updated with the received soBelow of the list of votes, another text label sums
up the recommendations given by other users. It can be s@ttet Users recommend to trust this user” or
the expression of distrust. On an update of the list, thislédbel will be computed again.

Implementation The user interface was designed using the guidelines amdm&a given by the eMule
source code. The client uses thicrosoft Foundation Classes (MFC3p all graphical user interface work
was done accordingly.

The first task was to decide where to integrate a trust managenser interface. As the Kademlia system,
has an own window in the eMule client, that currently displayist of all known contacts and active queries,
it was chosen to add context menu to the contact entries.

foctais x|
i @ View Vokes |
i rour Yote
I Reputation as Download Source: | 4 j | 2 ﬁ This Cliert is brusted
Credibility as Woter | 0 ﬁ I 1 j‘l This Client is mot & trusted water
Reputation as Yote Source | o j’ | a ﬂ This Client a recommendead storage peer

I rOther User's Votes

Lisername ‘Yolke l Reputation as d... I
2C7CR4CED484209223205, .. 1 1

Other Users recomment ko trust this user

| oK | | Cancel | | Soply

Figure 6.15: The new created vote dialog

The implementation of the dialog was done in similar fashiBrery control in the MFC is associated with
a name, that can be chosen in the graphical user interfagneesofVisual Studio This dialog was named
IDD _VOTEDIAG which has to be passed to the constructor of the base€RssizablePage . Using this
identifier the Windows runtime can load the dialog from theatiption in the resource filemule.rc and
display it.

Every element in the User Interface is also associated witirbitrary identifier. In the Microsoft Foundation
Classes there are two possible ways to access these. The fosdirectly access the element by calling a
function inherited from the parent class, calf@dtDIgltem(). Passing the name of the desired control,

60

6.3 User Interface

the runtime returns the associated object. The objectseptimg the list, that shows the votes of clients is e.g.
created with the following call:

Listing 6.6: Microsoft Foundation Classes supply functiom retieve pointers to GUI elements
ClListCtrl *pList = (CListCtrl *)GetDIgltem(IDC_LIST);

This method is sensible for getting pointers to GUI obje@ise second way is suited to keep local variables
consistent with the displayed data is call@nlect Data Exchange (DDX)This technique is provided by the
windows runtime. To use the DDX feature, a method must impleintheDoDataExchange method,
which specifies a mapping of GUI item names to local variable@es. Macros for mapping controls to objects
DDXCONTROLandDDXTEXT, mapping text to variables were used in the following example

Listing 6.7: An example for Direct Data Exchange

/I Map first negative spinbox to control
DDX_Control(pDX, IDC_SPIN_N1, m_repSpinNeg);

/1 Map contence of edit box to variable
DDX_Text(pDX, IDC_REP_EDT, m_RepVotPos);

DDX is automatically invoked by the windows runtime, howgveneeded, the functiobpdateData() is
provided, for manual invocation.

For the user interface to work, the last action taken is thadagdation of aMessage Map. A message map

is a central component of the Windows Operating Systemrpndeess Communication (IPC) is done using
messages. Drivers éfuman Interface Devicegenerate events, that are sent to the central windows neessag
queue. This queue is periodically checked for new data. léw message arrives it locates the current
active window and inserts the message in the message queue@fJI thread. There are predefined actions
depending on the type of the message. When providing a useface, it is sensible to overwrite some of the
standard handlers. This is done by overwriting parts of thedardMessage Map.

The user interface presented in this subchapter is not \@nplex, but needs to react on some messages to
ensure the validity of the entered data, or to react on cheingée trust values. The following is an export of
the used map.

Listing 6.8: The Message Map of the vote dialog

BEGIN_MESSAGE_MAP(CVotePage, CResizablePage)

ON_WM_DESTROY()
ON_MESSAGE(UM_DATA_CHANGED, OnDataChanged)
ON_EN_CHANGE(IDC_DLVOT_EDT, OnEnChangeEdt)
ON_EN_CHANGE(IDC_DLVOT_EDT_N, OnEnChangeEdt)
ON_EN_CHANGE(IDC_CRED_EDT, OnEnChangeEdt)
ON_EN_CHANGE(IDC_CRED_EDT_N, OnEnChangeEdt)
ON_EN_CHANGE(IDC_REP_EDT, OnEnChangeEdt)
ON_EN_CHANGE(IDC_REP_EDT_N, OnEnChangeEdt)
ON_BN_CLICKED(IDC_KADBUTTON, OnBnClickedKadbutton)
ON_NOTIFY(UDN_DELTAPQOS, IDC_SPIN_P1, OnDeltaposSpinP1)

END_MESSAGE_MAP()

The first messagg MDATACHANGED:s a IPC message, similar to a signal from the UNIX environtsien
The message was defined in the filserMsgs.h and is used for notifying windows about an event. The
message is sent from search objects, if votes on the cyrdisfllayed client were found. In response to this
message the functioBnDataChanged() calls UpdateList(), redisplaying the list of votes and the
recommendation information on the bottom of the dialog.

ONEN.CHANGE() is a natification of changed controls. The listed controtsthe input boxes that represent
the experience repository. Their associated function raynoalls the DDX functions, to update the local

61

6 Prototype Implementation

62

CVotePage

+ m_repSpinPos: CSpinButtonCtr
+ m_credSpinPos : CSpinButtonCtrl
+ m_votSpinPos: CSpinButtonCtrl
+ m_repSpinNeg : CSpinButtonCtrl
+ m_credSpinNeg : CSpinButtonCtrl
+ m_votSpinNeg : CSpinButtonCtr
+ m_replnputPos : CEdit

+ m_credlnputPos : CEdit

+ m_votinputPos: CEdit

+ m_repinputNeg : CEdit

+ m_credinputNeg : CEdit

+ m_votinputNeg : CEdit

+ m_RepVotPos: uint8

+ m_CredVotPos: uint8

+ m_DIVotPos: uint8

+ m_RepVotNeg : uint8

+ m_CredVotNeg : uint8

+ m_DIVotNeg : uint8

m_strCaption : CString

-m_ID : Kademlia.CUInt128

- ¢ : Kademlia::CContact*

+ CVotePage()

+ ~ CVotePage()

+ SetClients(_c : Kademlia::CContact*)

+ SetClients(paClients : const CSimpleAmay< CObject * >*)

Localize()

RefreshData()

UpdateTitle()

UpdateList()

UpdateTexts()

OnlInitDialog() : BOOL

DoDataExchange(pDX : CDataExchange®)

OnTimer(nIDEvent : UINT)

OnDestroy()

OnDataChanged(: WPARAM, : LPARAM)

OnSetActive() : BOOL

OnApply() : BOOL

+ OnEnChangeEdt()

+ OnBnClickedKadbutton()

+ OnDeltaposSpinP1(pNMHDR : NMHDR*, pResult : LRESULT™)
+ OnDeltaposSpinP2(pNMHDR : NMHDR*, pResult : LRESULT¥)
+ OnDeltaposSpinP3(pNMHDR : NMHDR*, pResult : LRESULT*)
+ OnDeltaposSpinN1(pNMHDR : NMHDR*, pResult : LRESULT*)
+ OnDeltaposSpinN2(pNMHDR : NMHDR*, pResult : LRESULT™)
+ OnDeltaposSpinN3(pNMHDR : NMHDR*, pResult : LRESULT¥)

Figure 6.16: The class implementing the vote dialog

6.4 Security Considerations

variables to the entered results. After data is consistieatinterface reflects the updated global trust value by
refreshing the appropriate messages via the funtfipate Text()

The click handler connects th&®C_KADBUTTONwith the functionOnBnClickedKadbutton . This
function’s purpose is to call theeputationSearch() with the classeamID property. Various
ONNOTIFY functions follow. They connect the SpinButtons to theiroasated edit fields.

Most previously mentioned functions will be called in tBalnitDialog() method of the class. It sets
up variables by manually invoking DDX, sets up the listsiogllUpdateLists() , editboxes and text labels
via a call toUpdateText()

6.4 Security Considerations

This subchapter will try to come up with common attacks te tieputation system and its possibilities to resist
these attacks.

For an introduction the features that are considered toreghthe security of this system will briefly be
summed up. The basic design of Kademlia comes with a feaithiecaching mechanism. While this was
designed to enhance the robustness and scalability of th@rieit serves also as a mechanism to circumvent
malicious clients. As it is not certain that every clientshit malicious user, the impact the fraud could have
on the network is limited. Cryptographic methods are usegrttect data, which eliminates the possibility
of “tampering” values. The data itself includes the puldishnd a timestamp, disabling the possibility to
return valid but not updated votes. Clients have alreadly inuieatures of a simple private key infrastructure.
Possible false votes and bogus storage peers are measthidtihgé client.

Client IDs are currently freely choosen. Therefore, impagdion is a problem. This problem, is however,
considered structural and out of the scope of this work. Treblpm can be solved in various ways ranging
from a registration process for users, or adding an auttegidgn layer in the protocol basing on cryptographic
information. This work relies on cryptographic informatito secure its information. This spots the possibility
for an attack by circumventing the caching feature.

Information is published to thk closest host of a network. An attacker could insert that nemadb hosts
into the network providing the nearest matching clientsdaih The client will hit a bogus client and retrieve
malicious reputation information that could influence iputation decision. Looking at the positives the
client could hit a dynamical created cache on the networkumoler control of these peers. Furthermore a
list of clients, that misuse their storage peer positiorsisdu If the client is blacklisted already another client
could be connected, or if all caches are blacklisted try tokvem the data given by the peer. This data can
be tampered in multiple ways. A first step is to match the listaters against the clients own “reputation of
voters” list. This could filter some of the worst voters. Witle help of this list one could also gain knowledge
about which peer should be “advertised” to the client. Tfaeee one could decide not to use this peer. A
common technique is “cliqgue detection” that could be useémtiere is no previous knowledge on voters.
We therefore refer ta [DAVPSD3]. Analyzing the data in thaywould also help to detect the “pushed” client.
If after applying these techniques, it is not possible to edma decision, the network is under an attack and
therefore no transaction with unknown clients should beéedwout at all. Even if the reputation system is in
that scenario not able to assist the users decision it cae thakuser aware of a high risk of transactions and
warn him to handle transactions with extreme care. Theeefrch a system will not be totally useless even
under worst case scenario.

Another possible problem that springs to mind when autaralyi receiving public keys from other hosts for
verification purposes is the following scenario. lbdbe a malicious client that tries to denial of service the
network by creating an enormous traffic. This could be acdistmgd by exploiting the need to collect public
keys from unknown hosts. While we agreed to see this capahdi“built in” it is a problem. Ifo would be the
storage peebf a clientc and a clienta would try to collect reputation information abouitb could produce a
large number of votes from potentially unknown - or even ixstent - clientsa would need to contact every
peer listed in the data set given byto retrieve the public key. This would create a lot of loadadér the
network.

63

6 Prototype Implementation

There are several possible “workarounds” for this problérhe first is to limit the number of entries to a
constant value. The client would only request a certain arhofivotes. While this would limit the impact of
this fraud it would certainly harm the reputation systemif &sopen to thestorage peewhich votes to return
as result.

Sybil Attacks In subchaptef314 a technique called the “Sybil” attack waalyzed. The author claims
that a network will always be vulnerable, as long as an attaclin create multiple identities. Most systems
are indeed vulnerable to this treat, but the impact of thétseks is overestimated. The already presented
trust implementation cfamaratiDdVPS03] and this work share a common ground in the handlirBoth
solutions require every “personality” to have a unique IBrads. An attacker therefore needs to hold enough
resources, to fool the system, which raises the barrier $oicaessfull attack immense.

64

7 Discussion

In the course of this work, we succeeded in creating a salMdibtributed system for reputation sharing and

thus created a trust system. We sepvevision trustin the hope to raise the level of security on distributed

networks by applying methods taken from real life. For bmifdan abstraction, that closely resembles reality,

a short survey of the sociological surroundings of trust masle. Furthermore, a variety of approaches on the
topic of trust were taken into account and analyzed on this lodsurrent research on trust.

Initially, cryptographic solutions were presented, pdiwgidentity trust,which was identified to be the basis
for all further trust research. Central reputation systerese then analyzed to get an overview of current re-
search on trust metrics, policies and credentials. These superseded by the distributed reputation systems,
which were presented in the form of the Gnutella based syB@2RRep bysamarati et al.

We started from the P2PRep system and tried to remain cobilfigtivith the given semantics. The adaption
the the Kademlia architecture, however, changed the widgrsystem dramatically. P2PRep relied on the
Gnutella Protocol, which does not employ any kind of distréal hash table. Our architectliseDHT based
and we therefore had to make different adaptions.

P2PRep did not use any kind of centralized storage therefioeepolling phase would create an enormous
network overhead for every request. Our architecture sdhvis by usingt central nodes per voted clients,
that collect all votes, that should be included in a poll yefdlhe costs for just one run of the poll are equal
in terms of messages, as all peers need to push their poktodltecting node, but on a second poll only a
request and its response are transmitted.

Moreover, the problem of the limited horizon is solved witie thosen topology. All clients send their votes
to a set of nodes, that collect them in order to be able to sestes to a requester. The horizon itself is an
interesting question as well: a central storage concepiges an easy way to pollute the public measurement
of trust by adding bad votes. Instead of trying to get into tieéghborhood of the attacked client, as in
the Gnutella system, the attacker can create a large sett@d @md publish it to the responsible client. In
other words the attacker does no longer need to be “near”tthekad client. However, as every major
P2P architecture, including the Gnutella network, switcteedistributed hash tables and attack scenarios are
possible in both models, this is not seen as a critical daensf our approach.

With the new scalable search algorithm, servindoign: requests, witlh as number of nodes in the network,
we created a scalable alternative, even when running orga krale network. Recall, that the number of
neighbours in the Gnutella network is up to 10. In contrasirider to search a network with 60 000 000
nodes the search algorithm takes 7,778 hops, to find thems#gpe node.

P2PRep uses, in contrast to our work, even encryption ofaddl.dOur work does not require this, as we rely
on the integrity and authenticity features of the encrypsiolution. We do not use the privacy feature, because
of different network topologies. In P2PRep a client encsythe date of hi®ollReply with a public key,
that is provided by th€oll message. The reply will then be routed back to the poller Niaoales between
the responding and polling node. A malicious node that shoolite the packet, could decide to drop the
packet if the contained vote does not suit its needs. Thexéfaffic is hidden from all clients between start
and endpoint of the route. In Kademlia, however, there ig ditect connection between a poller and the node
storing votes. This is why a privacy feature is not needed.

Of course during this period, we faced a number of problentsclwwill be described in the following.
Most of our considerations were driven by the overhead sushtaork employs, when coming to a trust

65

7 Discussion

decision. We believe, that a large scale adaption is onlgiples if the footprint in number of messages is
small. As previously described, we needed to make adaptiiche P2PRep systems to reflect our needs. We
chose to include no optional verification phase for voteshasligital signature proves, the integrity of votes.
Furthermore, the node storing the votes already check&éol address of the voter. If a voter tries to leave
a vote for an IP address that does not match his own, he willdzkéd.

It has also been discussed, to include the public key of therwio the vote, to avoid, the already mentioned
need for exchanging public keys. This was drawn down due éofdbt that it would be possible for the
node, that is storing votes, to execute large scale fraudsad chosen, to rely on the public key signature,
which protects the system from this treat, but requires abrarrof message exchanges. This decision added
flexibility and even security to our work. By using the PKI dieteMule client users bound their reputation
to the built in credits system of eMule. A user could not alzanitls Kademlia ID - and so his bad reputation

- easily, as he would also lose the associated credits, fieatieely identify his rank in other clients waiting
queues. But other solutions are possible as well. Furthertatrieved from existing PKIs, as the web of trust,
or public key servers could add a better foundation of trusixisting solutions.

Another interesting feature would have been the publicatibthe reputation as voter. By retrieving the
attributes separately, a more elaborate policy would haes ipossible, with more fine grained control over
the mechanisms leading to trust relations could have edoMé chose to not include this feature, as it would
have involved anothét n messages fom voters, to different storage nodes. For enabling more obotrer
relations we talk in the next chapter about the concept kf vighich will enable some of these benefits.

Further problems were implementation specific. As Microsagrates its compiler to become fully ISO C99
standard compatible, there were issues with the compilatia runtime of the program, that needed to be
addressed. The code quality of parts of the eMule source alicdlfow us any deeper integration into the
system. At last, the testing of the provided features nesdeatk additions to the code base, as we found no
default ways to debug a large scale distributed systemiocal

66

8 Conclusion

With this work, we have created an established basis fanéuresearch in all main directions of trust research.
While the presented trust solution is both scalable, seandefully decentral, further research could extend
the system in some areas. We want to give some pointers irntper.

Integration One problem that could easily addressed is finding more otede Both automated as half
automated credentials would provide a set of additionarimftion, that could be used to define tighter trust
policies. These would include measurements of speed,teegisport scans from other nodes or manual
interactions with the peer, like whether a chat between bséins had been initiated previously. By using more
and more provided data, techniques from common intrusitection systems like snfror their information
could be used. This would also serve as a testbed for datagni@chniques in the surrounding of computer
science.

Sanctioning Strategy ~ The policy system presented in this thesis is currentlygiaipessimistic approach.
This strategy is intuitively safe. However game theory dran interesting picture. In chapfer]2.3 we transi-
tioned from sociology to computer science using the “préssmlilemma”. Although the only Nash equilibrium
in the game is the “both cheat” situation, research has jprthat a optimal strategy is the “nice” strategy. This
strategy returns to playing fair, after sanctioning a cinggplayer. This is an interesting scenario for a P2P
systems, that should receive attention. Currently aftitlireg a negative trust decision, it is possible, that a
sanctioned client will not be distrusted, as enough othientd still believe in its trustworthiness. But if a
majority of voters certifies the client as not trustworthgyphcould the client regain its trust? In the current
implementation this was considered out of scope, sincelitiet gains its trustworthiness, as the voter leaves
the system. After the republish interval of his votes haseenthey will be discarded. It is also possible that
another client does an interaction, although the peer israsted. The client has a chance to gather a positive
recommendation. However in a work based on this thesis arigxmuld be introduced, that invalidates votes
after a period of time, resetting the trust relation backhminitial state. It would be interesting to see, how
this approach would affect the trust relations on the ndtpas a whole.

Credibility and Reliability Our current approach is designed to enable users to buildsa decision,
when they face peers, they have never had interaction bdfaveuld also be interesting, on how to combine
the information, when there has been previous interacteiwéen the peers. How could a possible trust
decision be computed? Should the users own vote be includkedwouble weight? Further how should the
credibility of voters be computed? If they are trusted asmload source, should this count more as a couple
of bad votes? These are definitively questions that shoutshberered on the path to a fully automated system,
that operates without user interaction, on the recommeéntad trust system produces.

Trust Model and Policy Another interesting work in this area, would be the switandrreliability trust,

to decision trust, as defined in chadfed 2.1. This changedniotrioduce a user specific risk concept. In the
current form of our system, there is no opportunity to infeeethe decision of the policy, that controls the
trust relations. However for building fully automated tragstems, it would be feasible, to add parameters to
the computation, that allow influence on the risk factore@s, that accept trust relations, even at high risk, or
change the risk factor depending on a specific context comértd. The idea is similar to the approach taken
by Blaze, described in chap{er-311.5, that supports fulbhgmmmable policies, depending on the context. A
P2P system could provide these concepts, based on the tedjusage. Just like the web browser, that accepts

Lhttp://www.snort.org

67

8 Conclusion

expired SSL keys in a given interval, rejecting them fromsias critical sites, like a bank, a P2P system used
for downloading a PGP key, should adapt its risk tolerandevo In contrast when retrieving information in
“secure” formats, e.g. textfiles could accept even a hidf ds these files do not contain executable code and
are usually small in size. So downloading and even exectiigy is acceptable, even at high risk.

Credentials A completely other set of credentials becomes mandatorgnwiorting this application of
trust in another scenario. For a applied scenario, we willleha trust system for a real world scenario.

The well known CERT institute from Genve possesses the wdadjest particle accelerator. When doing
experiments a incredible amount of data has to be handledh&bpurpose there exists a escalation strategy,
where the data is distributed to a couple of large scalereleictdata processing centres (EDPC). The analysis
and storage of the data is then once more escalated fronrgfeesieale EDPC, to smaller centres. For example
one such smaller center is the “Leibnitz Rechenzentrum” imMh. Of course when analyzing that strategy,
we will find out, that the topology is a tree, with the data proer as root and smaller workstation, that actually
do the processing of data as leafs.

Of course these scientific networks also face the problemusft telations. At the present time, all nodes are
chained with cryptographic keys, that only providentity trust. However a strategy to check the validity of
the given services, that would provigeovision trustis not developed. A possible attack scenario that would
be caught by applying that kind of trust would be an attackhedata, or the analysis of it. The computations
could be altered by an attacker and as long as the cryptogriey chain is not altered, there would be no
possibility to detect this.

So what would a trust model, that supports a use case, likeltbee mentioned, look like like? In the course
of this work we were using a reputation system, for the evwaneof trust relations. As we now have a
hierarchical trust model, with an ultimately trusted roeé need to adapt our credentials. We no longer need
a publicly available measurement of trust, but need a stradtmeasurement of trust. For the leaf nodes in
the tree, the trust relation between their parent nodestisnteresting. The only trust chain, that is really
interesting is the “top-down” approach, as the informatjmmovider” needs to be sure that the next computer,
on the path to the leafs is trusted. This approach is alreesiymbled and well tested, in the cryptographic
identity trust checking mechanisms. When passing datagméxt node, the public key of that machine is
checked. After the identity has been proven, the furthdrilligion is done by the “lower” node.

Checking the credentials of provision trust would mean #rat given node could pass data downtwm
different machines. These machines would do storage, dys@is@n the given sets of data. By doing so the
“parent node” would waste some storage or CPU cycles, butd@mmpare the results of both operations and
compare them for differences.

Finally Due to the size and rapid development of both the P2P andubieslystem area this work can only
provide a snapshot of the current state of the art. The fukiliehopefully bring a wide spread usage of
these techniques. The problems of central systems, likBkeystems, in use today have been spectacular
demonstrated, by a fraud describechitp://www.heise.de/newsticker/meldung/69588nalicious user has
been able to provide a SSL certificate, signed by GeoTruattjdientified him as the Mountain America bank.
As GeoTrust is a well known Certificate Authority, this magkaew generation of frauds and identifies some
of the weaknesses of relying on a centralized Identity Tsystem.

68

Bibliography

[ACO05] Inc. Apple Computer. Security concepts, 2005. itieveloper.apple.com/documentation/Security/
Conceptual/Securitpverview/Concepts/chapt8rsection6.html.

[AJO5] Colin Boyd Audun Jgsang, Roslan Ismail. A survey oftrand reputation systems for online
service provision. IDecision Support SysterZ005.

[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. KeragnyKeynote: Trust management for
public-key infrastructures (position paperl.ecture Notes in Computer Sciende50:59-63,
1999.

[BFL96] MattBlaze, Joan Feigenbaum, and Jack Lacy. Deabrnéd trust management. Technical Report
96-17, 28, 1996.

[BG99] Dan Brickley and R.V. Guha. Resource descriptiomigavork (rdf) schema specification. Tech-
nical Report http://www.w3.org/TR/rdf-schema/, 1999.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a lszgke hypertextual Web search engine.
Computer Networks and ISDN SysteB&(1-7):107-117, 1998.

[CCI88a] CCITT. The directory: Authentification frameworkraft Recommendation X.509, 1988. Ver-
sion 7.

[CCI88b] CCITT. The directory: Overview of concepts, madahd services. Draft Recommendation
X.500, 1988. Version 7.

[Cli01] Clip2. The gnutella protocol specification v0.4,
http://www.clip2.com/GnutellaProtocol04.pdf.

[DdVPS03] E. Damiani, S. De Capitani di Vimercati, S. Paisdio, and P. Samarati. Managing and sharing
servents’ reputations in p2p systemlEEE Transactions on Data and Knowledge Engineering
15(4):840-854, July/August 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. New directioris cryptographylEEE Transactions on
Information TheoryIT-22(6):644—654, 1976.

[Dou02] John Douceur. The sybil attack. Rroceedings of the 1st International Peer To Peer Systems
Workshop (IPTPS 2002March 2002. http://www.cs.rice.edu/Conferences/IPE$01.pdf.

[Dum02] Edd Dumbill. Finding friends with xml and rdf, June@.
[FouO5a] Wikimedia Foundation. Social networks, 2005p##en.wikipedia.org/wiki/Sociahetworks.
[FouO5b] Wikimedia Foundation. Social networks, 2005ptiten.wikipedia.org/wiki/PageRank.

[Gam88] Diego GambettaCan We Trust Trust?chapter 13, pages 213-237. Basil Blackwell, 1988.
Reprinted in electronic edition from Department of SocipidUniversity of Oxford.

[Gen86] J. V Genest, C. Zidek. Combining probability distitions: A critique and an annotated bibliog-
raphy. Statistical Sciencel:114-148, 1986.

[Goo04] Google. Google technology, 2004. http://www.gleatpm/ technology!/.

[Han00] Rob Handfield. What does it mean to trust?, 2000.
http://scrc.ncsu.edu/public/DIRECTOR/dir110503.html

[Hof85] Douglas HofstadterMetamagical Themas: questing for the essence of mind antdrpathap-
ter 29. Bantam Dell Pub Group, 1985.

69

Bibliography

[Inc05]
[Kol99]

[KR97]
[KS98]

[KSGM]

[Lev0O0a]
[LevOOb]
[Lev04]
[MC96]

[MKKBO1]

[MMO2]

[Pea88]
[Pro0e6]

[RKZFOO0]

[RSA77]

[Wat76]

70

RSA Security Inc. Crypto fag, 2005. http://www.ssgurity.com/rsalabs/node.asp?id=2214.

Peter Kollok. The production of trust in online matk. InAdvances in Group Processes (Vol.
16). JAI Press, 1999. http://www.sscnet.ucla.edu/soc/fatkdllock/papers/ onlingrust.htm.

Rohit Khare and Adam Rifkin. Weaving a web of trugtorld Wide Web J2(3):77-112, 1997.

B. Kaliski and J. Staddon. Pkcs #1: Rsa cryptograpiegiications version 2.0. RFC 2437, oct
1998. ftp://ftp.isi.edu/in-notes/rfc2437.txt.

Sepandar D. Kamvar, Mario T. Schlosser, and HectarctaaMolina. The eigentrust algorithm
for reputation management in p2p networks.

Raph Levien. Mission statement, 2000. http://wadvogato.org/ mission.html.
Raph Levien. Mission statement, 2000. http://wadvogato.org/ trust-metric.html.
Raph Levien. Attack resistant trust metrics, 2004.

D. Harisson McKnight and Norman L. Chervany. The mage of trust. Tech-
nical Report 94-04, Carlson School of Management, Unitiersif Minnesota, 1996.
http://misrc.umn.edu/wpaper/WorkingPapers/9604.pdf.

Robert Morris, David Karger, Frans Kaashoek, anartHBalakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. AGM SIGCOMM 2001 San Diego, CA,
September 2001.

P. Maymounkov and D. Mazieres. Kademlia: A peer-eepinformation system based on the
xor metric, 2002.

J. Pearl. Probabilistic reasoning in intelliggstems: Networks of plausible interference, 1988.

Emule Project. Credit system, 2006. http://wwwugen
project.net/home/perl/help.cgi?l=1&topid=134.

Paul Resnick, Ko Kuwabara, Richard Zeckhauset,tric Friedman. Reputation systen@om-
mun. ACM 43(12):45-48, 2000.

R. L. Rivest, A. Shamir, and L. M. Adelman. A methodr fobtaining digi-
tal signatures and public-key cryptosystems. TechnicghoReMIT/LCS/TM-82, 1977.
http://theory.lcs.mit.edu/ rivest/rsapaper.pdf.

Paul WatzlawickHow Real is Real?/intage, 1976.

	Introduction
	Motivation
	Conceptual Formulation
	Proceeding

	The Notion of Trust
	Trust in sociology
	Social Networks
	The Prisoner's dilemma
	Trust in computer science
	Developing Trust by Reputation
	Trust Metrics
	Scenario on Distributed Trust Management

	State of the Art
	Cryptography based solutions
	Asymmetric Encryption
	Trust Centers and PKI
	X.500 Directories
	Web of trust
	Decentralized Trust Management
	Conclusion

	Central Reputation Systems
	eBay
	The PageRank Algorithm
	Advogato

	Distributed Reputation Systems
	Eigentrust
	P2PRep
	Conclusion

	Attacks on trust metrics
	Conclusion

	Choice of a Peer to Peer Model
	Chord
	Technical Introduction to Kademlia
	Network topology
	Distance Metric
	Protocol
	Routing
	Finding Nodes in the DHT
	Publishing information
	Retrieving Information in the DHT
	Caching

	Conclusion

	Model of a Trust-Aware Solution
	Sketch of Design
	Expressing Trust
	Layout of Votes
	Mapping Function
	Publishing a Vote
	Retrieval of Votes
	Extended Reputation System

	Prototype Implementation
	Architecture
	Integration into the eMule Client
	Protocol Description

	User Interface
	Security Considerations

	Discussion
	Conclusion
	List of Abbreviations

