
INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSIT̈AT MÜNCHEN

Diplomarbeit

Managing Trust in a Distributed
Network

Bearbeiter: Benedikt Elser

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering

Betreuer: Helmut Reiser
Latifa Boursas
Pierangela Samarati

INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSIT̈AT MÜNCHEN

Diplomarbeit

Managing Trust in a Distributed
Network

Bearbeiter: Benedikt Elser

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering

Betreuer: Helmut Reiser
Latifa Boursas
Pierangela Samarati

Abgabetermin: 14. März 2006

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 14. März 2006

. .
(Unterschrift des Kandidaten)

This thesis serves as an introduction to the topic of trust and appropaches to its management in a distributed
network. It will show how to use reputation as a way to minimize the possibility of frauds when encounter-
ing unknown clients. For this purpose various techniques, that are currently available, will be analyzed. In
the course of this work, a distributed hash table, called theKademlia network, will be adapted to feature a
reputation based trust system. A distributed hash table enables a mapping between keys and buckets across a
whole network, without the need for a central index system. The reputation information will be aggregated in
this fashion by collecting recommondations of peers, aboutothers, at distributed, but well known places. This
information will be guarded using cryptographic hashes, toprevent any tampering. The system will therefore
be totally decentralized and enable secure reputation sharing.

6

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Conceptual Formulation 2
1.3 Proceeding 2

2 The Notion of Trust 3
2.1 Trust in sociology 3
2.2 Social Networks 5
2.3 The Prisoner’s dilemma 6
2.4 Trust in computer science 7
2.5 Developing Trust by Reputation 8
2.6 Trust Metrics 10
2.7 Scenario on Distributed Trust Management 11

3 State of the Art 13
3.1 Cryptography based solutions 13

3.1.1 Asymmetric Encryption 13
3.1.2 Trust Centers and PKI 14
3.1.3 X.500 Directories 16
3.1.4 Web of trust 17
3.1.5 Decentralized Trust Management 18
3.1.6 Conclusion 19

3.2 Central Reputation Systems 20
3.2.1 eBay .. 20
3.2.2 The PageRank Algorithm 21
3.2.3 Advogato 22

3.3 Distributed Reputation Systems 23
3.3.1 Eigentrust 23
3.3.2 P2PRep .. . 25
3.3.3 Conclusion 28

3.4 Attacks on trust metrics 29
3.5 Conclusion 30

4 Choice of a Peer to Peer Model 32
4.1 Chord 32
4.2 Technical Introduction to Kademlia 33

4.2.1 Network topology 34
4.2.2 Distance Metric 34
4.2.3 Protocol 34
4.2.4 Routing 35
4.2.5 Finding Nodes in the DHT 36
4.2.6 Publishing information 36
4.2.7 Retrieving Information in the DHT 37
4.2.8 Caching 37

4.3 Conclusion 37

5 Model of a Trust-Aware Solution 39
5.1 Sketch of Design 39

i

5.2 Expressing Trust 39
5.3 Layout of Votes 41
5.4 Mapping Function 42
5.5 Publishing a Vote 43
5.6 Retrieval of Votes 44
5.7 Extended Reputation System 44

6 Prototype Implementation 46
6.1 Architecture 46
6.2 Integration into the eMule Client 50

6.2.1 Protocol Description 56
6.3 User Interface 58
6.4 Security Considerations 63

7 Discussion 65

8 Conclusion 67

List of Abbreviations 69

List of Figures

2.1 Trust accumulates from a variety of sources 4
2.2 An example for a social network 5
2.3 A trust system with three nodes 8
2.4 A reputation System 9
2.5 A sample trust metric 11

3.1 Creating and verifying digital signatures 15
3.2 Trust relation between X.509 certificates 16
3.3 Trust metric with a trust center 17
3.4 Trust relations in a Web of Trust 18
3.5 The Google trust metric 21
3.6 The Advogato Trust Metric 23
3.7 Advogato’s reduction of a single source, multiple sink problem 24
3.8 The Gnutella Protocol for searching and retrieving Information 26
3.9 The P2PRep protocol 27
3.10 P2PRep: Aggregation of votes 28
3.11 A possible attack scenario on Advogato 29

4.1 A sample Chord Network 33
4.2 The Kademlia binary tree 34
4.3 The Kademlia Distance Metric 34
4.4 Kademlia’s routing tables 35
4.5 A sample search 38
4.6 A sample searchcont . 38
4.7 A sample searchcont . 38
4.8 Mapping data keys to nodes 38

5.1 The workflow of a Reputation System 40
5.2 Storing a vote 43
5.3 The Vote Basket needs to be updated 43

6.1 The components of the Kademlia implementation in the eMule client 47
6.2 The header and opcode of a Kademlia packet 48
6.3 The routing part of a search request 48
6.4 An extended architecture, allowing reputation sharing. 51
6.5 A CEntry is a datastructure, facilitating the access to aTagList 53
6.6 The callgraph ofPublishVotes() . 54
6.7 Data structures involved in the implementation of Vote Baskets 55
6.8 Serialisation of a CTag 56
6.9 The elements of a search votes request 56
6.10 Elements of a search votes reply 57
6.11 A callgraph of the addOtherVotes() function 57
6.12 The elements of a publish votes request 58
6.13 The reply to a publish votes request 58
6.14 The Kademlia Window of eMule 59
6.15 The new created vote dialog 60
6.16 The class implementing the vote dialog 62

iii

List of Tables

2.1 Rules of the prisoner’s dilemma 6
2.2 Abstracted rules of the prisoner’s dilemma 6

3.1 Comparison of all solutions 31

4.1 A sample Kademlia routing table 35
4.2 The Chord and Kademlia distributed hash tables compared. 38

iv

1 Introduction

Over the last several years, the Internet as a business platform has gained momentum. Systems like amazon
and eBay prove that effective business can take place on a “virtual” basis. But this is not only the case in
business. Even communication is increasingly shifting towards technologies provided by the global network.
Email, Instant Messaging and online shopping are becoming more and more part of every day life.

Besides the undoubted benefits, this rapid growth served also as a catalyst for the evolution of criminality. Not
a week passes without media reports of new waves of mail viri and people fooled by a hostile eBay vendor.
A new trend in criminality are phishing attacks that try to retrieve sensitive banking data from customers of
online banking. Judging from the rising amount of these frauds, it is evident, that abusing others on the Internet
is a lucrative task and works fairly well. Various factors influence this. This work will try to limit this problem,
by analyzing the employed forms of interaction.

Big differences in the interaction can be found when comparing a confrontation with an unknown peer in real
life and on a virtual basis, like the Internet. In familiar forms of interactions peers are able to collect “meta
information” from each other. This includes the appearanceand the facial expression of the other party. Facing
a vendor competence or interaction with the desired productenables a customer, to develop confidence that
his decision is correct.

Internet style interaction differs greatly from that. It ismuch easier for a peer to control which information
can be collected. An example illustrates this: Creating a webshop which looks trustworthy for users is much
cheaper than this is in real life. The physical unavailability makes judging harder for us.

This comparison demonstrates, that normal style interaction enables us to develop a rather common element
of social interaction: “Trust”. While every form of human interaction is based on this property, cyberspace as
new media lacks of mechanisms to judge the trustworthiness of peers.

1.1 Motivation

No matter what kind of transaction we face on the Internet, itwill mostly involve totally unknown peers com-
municating with each other. Whenever a peer is confronted with the decision of transacting with another peer
it inevitably comes to a trust decision, identical to normalsocial interaction. Regarding ahttp transaction
of a website, one server provides information ton clients. Chapter 2.7 will however show, that regardingPeer
to Peercommunication, the situation changes drastically, asn servers, provide information ton clients, which
boosts the number of trust decisions, while also stressing the number of unknown clients. While it is common
when facing a stranger in real life, to collect additional information and base a judgement on that, the Internet
lacks these possibilities. Therefore a trust decision is not really possible, as we can base our judgement on
only a few factors and assumptions.

This problem is normally limited, as a numbern of clients will try to access services ofm provides, with
m << n. Recent years however introduced a new trend of distributedservices, thePeer to Peersystems. In
those systems every client not only uses, but also provides services to others, withm == n. The benefit is
that the number of service providers increases. On the otherhand the number of interactions with unknown
clients increases drastically, which increases the probability of facing a hostile peer. The complete scenario
can be found in chapter 2.7. As currently no “ready to use” solutions exist, this work will try support current
research.

1

1 Introduction

1.2 Conceptual Formulation

The overall goal of this work is to enable trust based decisions on the Internet, trying to overcome the previous
lack. To reach this goal a couple of steps have to be taken:

• Analyze the concept of trust in sociology. To develop a modelin computer science, the surroundings
of “real world” trust decisions need to be analyzed briefly. This is done to ensure, that the developed
model represents an accurate abstraction of reality.

• Identify the components of trust in computer science. Current research on trust has developed a set of
formalism and split into a variety of research areas. An overview of this complex topic is given, as an
introduction to the complex topic in the informatics domain.

• Give an overview of the current state of research. As there have already been different approaches to
the topic in computer science, an introduction into the current research in the surroundings of trust will
be given. What different approaches to the topic of trust have already been taken and what can provide
valuable input for this research.

• Present an abstract model. After receiving input from different trust research topics, a model that enables
trust based decisions on the Internet will be proposed. Withthis model, an attempt will be made to
contribute to the current state of research in the surroundings of both P2P systems and trust systems.

• Develop an implementation. The proposed solution will be included into a major P2P application.

1.3 Proceeding

To reach the previously defined goals, the second chapter of this thesis will introduce the formal surround-
ings of trust, starting with the definition of the word trust,that will be used throughout the course of this
work. Subsequently a generic example developed by the theoretical field of computer science will lead to the
requirements of trust in computer science. Finally the scenario of this work will be introduced.

Chapter 3 will give an introduction on the current state of research. It will illustrate past models that were
developed to develop trust. During the course of this chapter, these solutions will be analyzed to determine
whether and how they would fit into the presented scenario of this thesis.

In chapter 4 a distributed hash table as basis for a P2P systemwill be chosen. This will settle the environment,
in which the intended solutions developed in this thesis will work.

The developed abstract model of trust will be presented in chapter 5, which incorporates all previously acquired
knowledge. It will start with a description of the developedmodel and will present the details of the developed
implementation.

In the following two chapters the achieved results will be discussed. Finally a summary will provide an
overview of the accomplished work and identify it’s weaknesses. In the conclusion recommendations for
further research will be given.

2

2 The Notion of Trust

Trust is a very common word. In the course of this chapter different definitions of trust will be analyzed and one
of them will be chosen to be used in this work. Furthermore, a common example that stresses the importance
of trust in computer science will be presented. After looking at common elements of trust in informatics, the
scenario this work is based upon will be introduced.

2.1 Trust in sociology

Trust is something used in everyday live as an element of social interaction. While its use is common as a
social phenomenon, developing a definition for it is a complex task as it is purely subjective. When analyzing
trust a variety of factors will be found, that in different contexts have different weigths. For example, for a
doctor to be trustworthy, his competence has an absolute priority, his loyalty counts less, which may be - for
judging a friend - an important factor. Speaking of competence and loyalty, these are already two examples
of sourcesof trust, which are based on attributes of other peers. Others include reliability, goodwill, or even
the way the other person dresses. Besides this, the subject’s own situation and mood make up other factors of
trust, so a heavily weighed “human factor” expressing the pure subjective nature of trust, needs to be included.

In literature there are two common definitions of trust,reliability trust anddecision trust. In [Gam88] the first
form is defined:

Reliability Trust: Trust is the subjective probability by which an individual A, expects that another individual,
B, performs a given action on which his welfare depends.

The former definition stresses the dependence on an action the trusted party should perform and defines trust
as probability of this happening. This is a straight forwarddefinition of trust. Imagine a store, were you buy
some item. Now further imagine a storekeeper, that shortchanges you every now and then. Being an example,
the obvious solution of leaving this store without coming back again, will be ignored. So now we can count
the time we have been purchasing at that store and the times wehave been shortchanged. Dividing the former
through the latter will result in the statistical probability of a negative outcome.

Decision Trust: Trust is the extent to which one party is willing to depend on something or somebody in a
given situation with a feeling of relative security, even though negative consequences are possible. [MC96]

This definition includes more elements of human interactioninvolving trust, by stressing that negative con-
sequences are possible. Thisrisk becomes more important, the higher the loss would be. Imagine an online
business platform, accepting credit card numbers as the only method of payment. Giving away that number
leaves its customers in a vulnerable position,dependingon the vendor to act according to laws,risking an
enormous financial damage.

A possible trust decision could therefore be modeled: A factor - depending on the risk - controls whether a
transaction is carried out under a given probability of success. For illustration purposes figure 2.1 represents
this kind of trust in a pseudo code implementation.

In [Han00] the author names a variety of sources of trust. This is illustrated in graphic 2.1. They are weighed
differently by their context and a human “factor”. Trust involves both actions from other partys a subject
depends on and it’s subjective influences. In the course of this work the definition ofReliability Trust,will be

3

2 The Notion of Trust

Listing 2.1: Pseudo code implementation of Decision Trust

enum risk_t = {high, low};
enum trust_t = {high, medium, low};

bool transact(risk_t risk, trust_t trust) {
if (risk == high) {

if (trust == high) {
return true;

}
return false;

}
if (risk == low) {

if (trust == low) {
return false;

}
return true;

}
return false;

}

used, because it serves best as a straight forward definition. Furthermore, the concept of risk in a transaction
would shift the focus away from a generic concept of trust management, as it would require to check transac-
tions on their possible risk. This may need some explanation. Imagine the eBay system would be enhanced,
providing information concerning the risk of an operation.The system would require functionality deciding
what risk for the user means, depending on the current product, like a cost-trust ratio. That information is too
specialized for a system designed to be generic as possible.It requires some semantic knowledge about the
transmitted data. We strongly emphasize however that this work serves as a basis which could be specialized
and, by deciding on the type of information the concept of risk could be included.

Trust

Reliability

Goodwill

Competence

Human Factor

Loyality

Figure 2.1: Trust accumulates from a variety of sources

The definition of Reliability Trust mentions a subjective probability at which an action is performed. Therefore
the probability of an action is defined by the mathematical probability:

pi =
qi

ni

q denotes the successful transactions whilen is the number of total transactions with peeri. Of course it is
eminent that in the case ofn = 0 the degree of trust is undefined. In case no decision based on the knowledge of
the client is possible, which exactly resembles the scenario’s problem of trusting an unknown peer. Additional
information is needed. A formal basis for that case can be found in 2.5.

4

2.2 Social Networks

2.2 Social Networks

As a matter of fact, communities develop not only in real world, but in every medium given. These are
commonly modeled as social networks. In computer science, this area of research gained high popularity over
the last years, not at last because of the rise of standards, which enable expressing relations between entities
in a machine readable format. To introduce these kind of networks a definition is needed:

Definition of Social Networks A social network is a social structure between actors, mostly individuals
or organizations. It indicates the ways in which they are connected through various social familiarities ranging
from casual acquaintance to close familial bonds [Fou05a].

A social network can be represented as a graph, where edges represent a “knowing” relationship and nodes
reflect individuals. For an example see figure 2.2.

Although these networks have always existed, a fact given byhuman nature, the concept received attention in
computer science lately with the usage of a technique calledResource Description Framework (RDF). This is a
standard developed by the w3c [BG99] with the aim of enablingcomputers to parse information on the Internet
automatically. As toady’s information on the web is not suitable structured to be processed by a computer this
was necessary. These techniques are referred to as thesemantic web.

One social network, relying on the latter technique is the “Friend of a Friend(FOAF)” Project1. While at
first sight not trust related, this technique provides an infrastructure for enabling such a system. It provides
a method of expressing information about peers and linking that information. Furthermore, it copes with an
important topic in the area of trust: Identifying peers. To be able to express information about peers, these
have to be identified in a common way, that maps a description clearly to a person. FOAF expresses identity
using email addresses. While a person and that person’s email address are not the sameyou could reasonably
assume that all descriptions of a person that included “thisperson’s e-mail address is edd@xml.com” might
reasonably refer to the same person.[Dum02]

Figure 2.2: An example for a social network ([Fou05a])

Social Networks are used to describe interaction on almost every application. A logical step is applying trust
to those, which creates an convenient way, to analyze the trust relations between peers in networks.

1http://www.foaf-project.org/

5

2 The Notion of Trust

2.3 The Prisoner’s dilemma

One of the goals of Computer Science is building an abstract model of reality. Therefore it is not surprising
that this import part of human interaction has already received attention. In the area of game theory, the
Prisoner’s Dilemma was invented as an example that showslack of trust. Therefore, this game is introduced
in the following, as trust centric situations can be reducedto the dilemma.

The game has two players A and B. They were captured by the police for having committed a crime, but
there is insufficient evidence for a conviction. Therefore,both are separated and each of them gets an offer
from the police, for going free when testifying for the prosecution against the other, who will be arrested for 5
years. The downside is, if the other player chooses the same strategy both will be arrested for 4 years. When
none takes the offer from the police they go free after 2 years, for the lack of sufficient proof. To sum up the
situation:

Prisoner A silent Prisoner A betrays
Prisoner B silent Both 2 years A: Free B: 5 years
Prisoner B betrays B: Free A: 5 years Both 4 years

Table 2.1: Rules of the prisoner’s dilemma

The optimal solution for both players is to cooperate. If they stay silent they will receive a moderate punish-
ment of 2 years. But, from a game theory’s point of view, the optimal strategy for every player is to betray. If
the other player stays silent, he will be free, otherwise he will have one year less of punishment. The dilemma
is that both players can not develop a strategy, as they are separated and even if there were a cooperation no
prisoner knows if the other will not betray. Here we have a clear lack oftrust .

The game has a Nash equilibrium, which describes the core of the dilemma. The only strategy, in which no
player has a gain in changing his own strategy is the “both cheat” situation. The obvious “both cooperate”
case, leaves every player the opportunity to cheat and receive a gain.

If the game is played repeatedly, there are different strategies to play this game, but first an abstracted form of
the game needs to be introduced.

Player B:

Player A:

b1 b2

a1
H

H
H

H
H

+5
+5 H

H
H

H
H

+8
-5

a2
H

H
H

H
H

-5
+8 H

H
H

H
H

-3
-3

Table 2.2: Abstracted rules of the prisoner’s dilemma

In this game both players have an abstract “choice”, receiving points for their actions in each iteration of the
game. Now we see more clearly that we deal with a non null-sum game, as it is not the fact that in every
outcome a player gains as much as the other looses. There has been a large number of research carried out on
the dilemma and different strategies arose: To name only twothere is the forgiving strategy, that always plays
nice, hoping for the other player to do the same. The “nice” strategy, starts playing nice until the other one
betrays, sanctioning the other player and returning to a “nice” strategy after the other cooperates. It is also a
forgiving not vengeful stategy. The latter also pays out most, as it prevents revenge and relies on the opponent
to play nice in the end.

6

2.4 Trust in computer science

Hofstadter’s Modifications There have been multiple modifications of the game. We will have a look at
the version of Douglas Hofstadter [Hof85], which was designed to reflect business habits. Now both players
have a bag and exchange them. Both agreed previously that onebag contains a product and the other contains
the payment. But every side can also handle an empty bag. Again all strategies applied to the prisoners game
can be applied. The chosen act will boil down for both playersto the same outcome. One is receiving ashort
high gain by receiving payment for no product, or not paying for a product. This will of course stop further
interactions. The other is alongstanding moderate gain by behaving correctly. This leaves the possibility to
do further business with that customer.

The Prisoner’s dilemma and especially the modification of Hofstadter serve in the case of the Internet as
business platform as a very good model. It has already been proven in reality and is now stressed by the
special attributes of the Internet. Most people even today believe that there is a certain kind of anonymity on
the Internet. This misconception produces a relative feeling of security that in turn increases the probability of
betraying.

Most striking however is the fact that on the Internet, especially in P2P systems, there is a high degree of
transaction between people who have never met an will likelynot meet in the future. When facing a possibly
anonymous vendor, that is unknown to a peer, giving away credit card information is a sensitive task. It can
therefore only be hoped, that the other player will play using the “nice” strategy, as a fair player will be the
one having loss.

Pavel Watzlavick notes in his book “How Real is Real?”, thatevenif the prisoners can communicate and settle
an agreement, they will need todependon the other being cooperative and the dilemma starts again:

“each [prisoner] will invariably realize that the trustworthiness of the other depends largely
on how trustworthy he appears TO the other, which in turn is determined by the degree of trust
each of them has FOR the other – and so forth ad infinitum.”[Wat76]

2.4 Trust in computer science

The Prisoner’s dilemma already introduced the importance of the topic. While previously different definitions
of trust in sociology were given, computer science offers a broad spectrum of trust applications, involving
different subjects and appliances of their trust relation.Blaze et al.describes the duty of a trust management
system in their work as follows:

“Does the set C of credentials prove that the request r complies with the local security policy P?”
[BFL96]

Blaze uses the system for authorisation. Therefore some more elements need to be added, to have a sufficient
set of trust elements:

Entities These are the basic acting elements. There can be different kinds in trust interaction. They include
humans interacting via a computer, but may at the other extreme be purely digital entities, as for example a
X.500 directory, that interacts with a X.509 certificate, aschapter 3.1.3 will show. Another common name is
principals.

Credentials Associated with Entities are sets of credentials which describe them and their relationships. A
classicAccess Control List (ACL), as the UNIXTM style system, describes possession of files by individuals.
Chapter 3.1.5 will introduce certificates describing membership in groups and the ability to delegate trust as a
set of credentials.

Authenticity Both previously mentioned systems form the basis of each andevery trust system. Entities and
their Credentials are the basis for all decisions. Therefore it is critical, that the peer canproveits authenticity.
As cryptography provides this functionality, its importance in the area of trust systems needs to be stressed. It
will receive attention in chapter 3.1.1.

7

2 The Notion of Trust

Policies The authority which decides about the validity of the request and comes up with a trust decision.
Policies can be distinguished, depending on the type they operate on. In [KR97] the authors define three types:

• Principal-Centric Policies: Describe who is allowed to access resources at a given privacy level

• Object Centric Policies: Commonly a ACL style policy. Each object is associated with a list of autho-
rized users.

• Action Centric Policies: Bases decisions on which action isto be performed by a given “token”.

Relation On behalf of a policy relations are established. Fundamentally any kind of interaction between
peers can be a relationship. Once again it includes a wide range of possible appliance. After a successful
authorisation a peer could be certified by another, or dependon another. The web of trust serves here as an
example. After a meeting in person, both parties certify each others keys, to be a valid identifier of the person.
The web of trust will be explained in chapter 3.1.4.

Trust Classes The resulting trust, can be divided into classes, given the involved credentials and policies,
as described in [AJ05]:

• Provision Trust: The party’s trust in a service or resource provider. This kind of trust is commonly
encountered when being prompted to install digitally signed ActiveX applets, when updating a windows
installation.

• Access Trust: Describes the trust a party grants others whenallowing access to resources. ACLs are a
closely tied concept to this kind of trust.

• Delegation Trust: The trust into a party, to act and decide onthe behalf of the other party

• Identity Trust: The trust that an agent is who he claims to be.

To sum up a trust system, as seen in figure 2.3 may be seen as a system, that lets other nodes join after
fulfilling a set of constraints (e.g. a successful authentication). After joining the system, a peers credentials
will be evaluated by a set of policy rules. These define the relations systems have with each other, that in turn
authorize the use of resources and allowed actions.

D

C
B

A
Trust System

Figure 2.3: A trust system with three nodes B,C and D. A needs to join the system, to build relations

2.5 Developing Trust by Reputation

In the previous chapters different sources of establishingtrust were introduced. A closer look reveals that these
have been subjective measurements. However, a person normally does not totally rely on his own impression
of a person. A very common source of trust is what other - possibly already trusted - people think about others,
especially when the third party is unknown. The previous experience of others will be used by a person, to

8

2.5 Developing Trust by Reputation

fill in a gap in his knowledge. For example when searching for an online store for the first time, it is common
to ask others for their recommendations. This information will be weighted by giving a high importance to
recommendations of already trusted persons, or simply counting the number of positive votes for a certain
shop. Following this step, a trust decision will be produced, influenced by the previously collected data. A
possible source of trust to somebody or something is therefore a good reputation. Before going into details a
definition will formally define this process.

Reputation: Reputation is what is generally said or believed about a person’s or thing’s character or standings.
[AJ05]

This definition stresses that reputation is a kind of collective measurement of trust. While trusting someone
usually means that this person has a good reputation, the reverse is not true, expressing only a “general” view.

It is important to stress the difference between trust and reputation: [AJ05]

• I trust you because of your good reputation

• I trust you despite of your bad reputation

Using reputation information as basis for trust decisions seems to be sensible. It was already stated that
problems arise when encountering a unknown peer, because they cannot be judged using normal social style
interaction. Therefore the rather common task of collecting information from “other sources” will be used,
thus discovering the reputation of that peer for making a trust decision. Using this method, an interaction is
based on the experience other users had before with this party.

A reputation system is therefore a way to enhance a trust system. Given a set of peers that are already in a
trust relation and another peer that has a trust relation with one of the other peers, a reputation system helps
establishing a trust relation between previously unknown peers, as illustrated in figure 2.4.

A
?

B

D

Figure 2.4: A reputation system used to establish a trust relation between node A and D by using the trust
relations between (A,B) and (D,B)

Reputation in sociology enforces a system of social control. Because it is a publicly available measurement
of trust, misbehaving clients can no longer hope that their acts will be “not noticed”. The availability of
information will therefore put pressure on them as their acts are available to everyone. The information can
easily be extended to a “cooperative sanctioning systems” based on reputation.

For a common example of reputation, examine a popular fairy tale: A sheep guard was bored, as nothing
happened all day. That is why he yelled “wolf”, pretending being in danger. When everyone came to help
him, of course there was no such danger. He repeated his game so often, that when there was a real wolf no
one came to help him.

This fairy tale illustrates how deep the concept of reputations is integrated into everyones social lives, leaving
an advantage to “honest” peers with a good reputation and punishing the dishonest. The sheepguard managed
to have such a bad reputation that no one trusted him any longer.

9

2 The Notion of Trust

Reputation Systems and Trust Systems Jøsang et al.sum up the main differences between a reputa-
tion system and a trust system, as the difference between a subjective and a collective measurement. Further-
more, the measurement of trust varies. While trust systems take into account subjective and general measure-
ments as factors for trust decisions, reputation systems rate information about specific events, like transactions.
Also when making a trust decision, a reputation system needsto assume some kind of transitivity of trust to
come to a trust decision, while in an trust system this is an explicit action.

Reputation Systems Commonly these kind of systems are divided into two categories. A centralized
scheme aggregates the reputations at a central location andreturns the scores to participants, when needed.
Examples include the eBay systems or Googles PageRank. These systems will receive attention in chapter
3.2. The second type are distributed systems. Each client maintains a own repository of experience and returns
it, when needed. In that case a client seeking for that information has to actively aggregate it from the clients.
The P2PRep solution fromSamarati et al.[DdVPS03] and the Eigentrust algorithm ofKamvar et al.[KSGM]
will be presented in chapter 3.3.

System Design In this work it was decided, to design a distributed reputation system. These systems not
only fit into the application scenario described in the introduction and will elaborate in chapter 2.7, but are
both more reliable and efficient, as by distributing the information across a network a “single point of failure”
is eliminated. These system are further not “owned” by s.o. that could possibly influence the information in
some way.

2.6 Trust Metrics

In chapter 2.5 it became evident that a reputation system is asuitable way to establish trust relationships.
Obviously reputation is a complex topic that yields more questions about usage. This will be illustrated in the
next paragraph.

To formalize the concept of reputation it can be thought of interms of mathematics. Let A,B and C be peers
and let◦ be a binary operation expressing trust. The question is whether trust has a concept oftransitivity.

(A ◦ B) ∧ (B ◦ C) ⇒ A ◦ C (2.1)

This means that if A trusts B and B trusts C, is it true that C trusts A? As this work’s concepts are based
on reality, the decision is not obvious to answer yes, but it is likely. The area of research touched with this
question is huge and centers aroundsocial networks.

Definition Trust Metric There are three inputs to this trust metric: a directed graph, a designated ”seed”
node indicating the root of trust and a ”target” node. We wishto determine whether the target node is
trustworthy.

Each edge from s to t in the graph indicates that s believes that t is trustworthy. The simplest possible trust
metric evaluates whether t is reachable from s. If not, thereis no reason to believe that t is trustworthy, given
the data available.[Lev04]

Note that Trust Metrics are also referred as “Reputation Computation Engines” in literature.

Given a set of four nodes A, B, C and D and a set of trust relations as seen in Figure 2.5, the Question trust
metrics center around is whether to trust D and to what extent. There are different metrics, that refer to that
problem. A linear approach called “linear pool” was presented in [Gen86]. Another one is the noisy OR
[Pea88] by Pearl. Further elaborate examples will receive attention in chapter 3. Trust Metrics and Reputation
Systems have not only application domains in apparent situations, as encountering peers, they also are the
underlying technology for Googles PageRank system [BP98].

10

2.7 Scenario on Distributed Trust Management

B

DC

A
?

100%

85%

10%

90%

Figure 2.5: A sample trust metric with a trust root (A) two trusted parties (B,C) and an unknown party (C)

Given the research on trust networks, there has also been research on possible attacks on these in [Lev04],
[Dou02]. After defining the general surroundings of trust, the next chapter will present the specific application
domain of this work, upon which the scenario is based.

2.7 Scenario on Distributed Trust Management

Trust and Reputation systems are in widespread use today. The first use of Access Trust is the trust system by
Balze, that will receive attention in chapter 3, was introduced in 1996. The Public Key techniques, which form
the basis for every kind of Identity Trust, date back to 1976.With the rise of the Internet, online platforms
caught up and used trust models as oriental guide for customers. While the solutions seem sufficient for
most applications, another area, where the lack of trust hasnot been addressed sufficiently, can be identified:
The area of P2P systems. These distributed networks requirevirtually no authentication and even actively
help users to hide their identity. For those two reasons these systems have been abused for sharing copyright
protected material. This work, of course, wants in no way to support any kind of copyright violations and
distances itself from it.

However when a user chooses to download a piece of information from a peer to peer network, let it be a CD
image of a popular LINUX distribution, how can he be sure to download a correct copy of the distribution and
not a tampered image? Cryptographic hashes usually assist the user in his decision, but what if there is no such
extra information? The peers, that share the image will unlikely be known to the user, therefore there is little
assistance from that source of information. The peer might end up downloading an unknown file.

A reputation system might help in that situation. If the userlacks trust in the services offered by other clients,
he lacks - as referred in chapter 2.4 -Provision Trust.However there is no direct trust relation between the
user offering and the peer searching for information. Therefore a user needs to come to a decision based on a
collective measurement of trust, which is in turn a reputation system. The user could query for the reputation
of the offering peer and base his decision on that.

Designing a reputation system, that fits the needs of a P2P system, especially the needed flexibility is a chal-
lenging, but feasible task. P2P features a large userbase, that often encounters unknown peers. The openness of
these systems makes them different to other existing trust systems. While normally every system has to fulfill
some constraints to participate in a trust system - let it be an authentication after a registration process - P2P
systems are open and usable for every user. Therefore a reputation system needs to handle every client and also
resist every client’s attacks. P2P research has been designing algorithms to be faster in locating information in
a vast distributed network, which is a problem that every distributed reputation system also faces.

This work will present a reputation system that is designed to fit the needs of P2P systems, by integrating it into
a core protocol. Recommendations will be retrieved by employing a distributed hash table, chosen in chapter
4. The table will retrieve a key of a node as input and provide the key of a node managing the inputs nodes as
output. The returned node will provide a number of votes collected from all peers, that want to express their

11

2 The Notion of Trust

recommendation. The integrity of votes will be guarded by a digital signature, attached to the vote. For this
purpose, the system will use a decentralized private key infrastructure, that will provide the required public
keys. The system will work under the assumption that the majority of voters will provide a reliable basis, while
weighting their input on the basis of their previous performance. To get a closer idea of this sketch of design,
the next chapter will introduce existing solutions for enabling trust. Based on components of these solutions
and on a platform, evaluated in chapter 4, the system will be presented in chapter 5.

12

3 State of the Art

In the previous chapter the scenario of this work has been described. This chapter will introduce the current
state of research. Different solutions, that can provide valuable input to the design of this thesis have been
implemented during the years. As it is intended to collect information from different peers about the reputation
of a third peer, mechanisms for identifying these need to be found. Furthermore, it was postulated, that this
system needs to be resistant to attacks.

Commonly in computer science, when the validity of s.o. or s.t. needs to be ensured, cryptographic methods
are chosen. The first subchapter will research existing solutions in that area.

Furthermore, as a reputation system needs to be designed, both chapter 3.2 and chapter 3.3 introduce existing
systems. The first chapter focuses on the central architectures. While these systems do not meet the design
goal of building a distributed system, a number of very capable trust metrics have been developed.

In subchapter 3.3, two distributed reputation systems willbe closely analyzed. The system which fits best the
needs of the scenario will be chosen as basis for this work.

In the last chapter, the security research on reputation systems will receive attention, which enables an analysis
of the the potential risks and attacks to the system.

3.1 Cryptography based solutions

Every possible trust solution today relies partially on features provided by cryptography. The solutions pre-
sented in this chapter address the problem ofIdentity Trust.As defined in chapter 2.4 the presented solutions
will enable another entity to trust in the authenticity of the peer. It could identify itself using the presented
techniques. As an introduction this chapter starts with a brief overview on encryption, to refresh the knowledge
of the basic functionality and then have a look at further developments.

3.1.1 Asymmetric Encryption

Historically encryption was a difficult task because of the need to exchange the key before being able to use
encryption, as the symmetric key - used for encryptionanddecryption - had to be known to both parties. Yet
it would have been impossible to create a lager scale system of many different nodes, as the key management
would have overtaxed the system. A trust management solution would not have been possible. Public key
cryptography, also calledAsymmetric Encryption,described in a paper by Whitfield Diffie and Martin Hellman
[DH76], solved the problem of key exchange. In contrast to the symmetric approach where there is only one
key, the encryption and decryption keys are separated into aprivate and a public key. The private key, also
calleddecryption key,is used to decipher messages encrypted with the corresponding public key.

This technique creates and enforces the important basic features of transaction:Privacy and Authenticity.
Privacy guarantees that only the receiver of the message candecode and read the message. The latter enables
a recipient of a message to be certain about the identity of this communication partner, as normally only the
key holder can use the key, with which the message is guarded.When using a digital signature the feature of
Integrity is also provided. Integrity prevents data change during transmission.

For this work it means, that both the integrity of the voting information and the voter’s authenticity could
be proven. This is a fundamental need for a system that establishes trust on information received from third
parties, as otherwise this information could have been altered during transmission.

Some examples for Public Key techniques are:

13

3 State of the Art

• Diffie-Hellman

• RSA encryption algorithm

• ElGamal

The RSA algorithm, described 1978 in [RSA77], works according to [Inc05] as follows:

Upon key generation two random prime numbers and their Product n = p ∗ q are generated. Both primes have
to be big although significantly differ in dimension. Furthermore, let there be a public exponent e and a private
one d, that comply with the following rules:

• e < n ∧ ggt(e, (p− 1)(q − 1)) == 0

• (ed − 1) mod ((p − 1)(q − 1)) == 0

The primesp andq have to be deleted after findinge andd.

• A messagem can be encrypted by usingc = me mod n

• A messagec can be decrypted by usingm = cd mod n

An important part of this work is theIntegrity feature. But first the motivation for cheating a trust systemwill
receive attention. The scenario is based on the fact that peers lack a lot of meta information on the Internet
when deciding if it is safe to transact with a given peer. Thiswork therefore wants to provide a trust system
to support that decision. Given the evidence that a possiblehostile peer is encountered, the possibility to cheat
that system needs to be eliminated, because otherwise this would lead or the system ad absurdum. A possible
attack to such a system would be to tamper the trust information. A client requesting reputation information
for a given peer could easy be mislead in its trust decision ifthe published information could be altered. This
is why the integrity of the trust information needs to be ensured. This is done by providing a digital signature
of the data. This requires further information:

Digital Signatures enable their users to assure that the signed message has not been tampered in any way
during transmission. It is achieved by creating a unique hash of the message. To prevent the hash itself from
tampering it isencryptedwith the senders private key. The resulting checksum will beattached to the message.
The recipient can validate the message by computing the hashof the message once more. The hash attached
to the message can bedecryptedusing the public key of the sender. If both hashes are equal, the integrity of
the message has been proven, as seen in Figure 3.1 on page 15.

Furthermore, the transaction could take place on encryptedchannels. Although the information is public
available and already equipped with a signature, the subject of the reputation information should be hidden
from a possible attacker. By hiding the content of the transaction from others, attacks on the trust information
of specific peers could be prevented. Also the Authenticity information is of great value. Every trust system is
useless if an attacker could pretend to be a trustworthy peerand circumvent the security mechanisms.

Disadvantages of Public Key Cryptography include higher computational costs, besides a pressing disad-
vantage, that is not a problem of the concept, but limits in practice the level of security: previously it was
mentioned that Privacy, Integrity and Authenticity are supported. In practice however the key management
remain a problem. If an attacker manages to get hold of the private key, he could impersonate the key holder.
Common attacks to rob a private key are simply breaking into acomputer, or a “man in the middle” attack
during the key exchange. Using the latter technique the attacker does not even need to hold any peers private
key, as he simply replaces the peers public key with his own key.

After getting familiar with the basics of public key encryption it is now possible to move forward and inspect
trust system, that are built basing or using the services provided by this fundamental technique.

3.1.2 Trust Centers and PKI

The advent of Asymmetric Encryption reduced the importanceof key exchanges, while other problems of both
asymmetric and symmetric encryption remained. This chapter will present solutions found for managing the
life cycle of the key pair. PKI stands forPrivate Key Infrastructure,which as the name already hints, provides
means of managing public keys. In a centralistic approach the heart of the PKI is a trusted instance, theTrust

14

3.1 Cryptography based solutions

Figure 3.1: Creating and verifying digital signatures [AC05]

15

3 State of the Art

Centerthat serves as central authority managing certificates and keys. It is responsible for key distribution,
providing a central place to retrieve public keys, or if a keycan no longer be trusted, the key can be revoked.
When a key expired, actions can be taken. Given this set of features the trust center serves as instance to
validate keys. For example a web browser may request verification of a certificate issued by this authority.
Furthermore, the validity of public keys can automaticallybe checked.

The decentral pondain is a self managing network of public key distribution, that relies on a set of servers for
key retrieval.

This management of life cycles of certificates and keys from creation until expiry enables to more secure
authenticity, as now a user can be mapped to a given key and also undo that mapping with a reasonable
amount of work.

In the following two examples of a public key infrastructurewill receive attention.

3.1.3 X.500 Directories

The X.500 directory standard was developed as a joint project of the CCIT and the ISO committee. Both
institutions started researching in 1984 separate solutions that were in term merged. The first standard dates
from 1988 [CCI88b] . The directory was designed to hold objects and their attributes of different kinds,
including information concerning systems, organisationsand people. Per directory, the concept follows a
centralistic approach, storing information in one place. The directory is represented as a tree, whose root
represents the root object, like an organisation. Each subtree below the root contains finer grained units,
following the organisation example e.g. a department. Leafs could describe employees of the department. An
attribute of such a leaf could be the email address of that person.

Particular interesting from the cryptographic point of view are the X.509 certificates [CCI88a], which were
developed with X.500. There were primary designed as a an access control mechanism, so that users could
authenticate to alter their data in the X.500 directory. A certificate binds a user with a particularDistinguished
Name, email address or other credentials to a public key. The Standard also includes ways of revoking
certificates viacertificate revocation lists.

Fields of a X.509 certificate include:

• Issuer: The Certificate Authority that signed this Certificate

• Subject

• Subject Public Key Info:

Subject Public Key

• Signature Algorithm

While the X.500 standard was never fully implemented X.509 remains a standard for certificates. For this
work it is of course interesting to have a look at the trust metric propagated of this model:

Root CA

CA 1 CA 2

Figure 3.2: Trust relation between X.509 certificates. If the root CA is trusted, all certificates are trusted too

16

3.1 Cryptography based solutions

The Trust Center serves asTrust Root.Every node that is known to the root is fully trusted in the system.
Therefore, figure 2.5 from chapter 2.6 should be altered in the following way: Let A,D be a local client. C
is the Trust Center. The resulting trust model is described in figure 3.3. Obviously the trust root is no longer
inside the client (A) that tries to judge trustworthiness, but is now transferred to a central instance (C). As that
instance is considered totally secure, client D is considered trustworthy by providing conformity to the PKI
policies. In this example trust istransitive.

C

A
100%

D

100%

100%

Figure 3.3: Trust metric with a trust center (C). Ultimate trust applies to all members of the PKI

A closer look reveals some imminent shortcomings for a trustsystem.

• Central Trust Management Approach

• Full trust in the Central Authority

• No possibility to express distrust

The system suffers from problems every central system has. Acentral concept provides a single point of
failure, which could in case of an attack be exploitable to denial of service (DoS) attacks. Furthermore, if a
malicious peer manages to have its key signed from the authority, other peers assume it is trustworthy.

However, this technique describes a mapping between a person and a cryptographic key, which is signed by a
trusted third party. Under ideal circumstancesi, the goal of authenticity has been reached. This can be used to
base access control features on top of that concept.

3.1.4 Web of trust

In the previous chapter, a way of binding a subject to a certain key by using a trusted root certificate authority,
was introduced. While this may fit for most needs, a both trivial and powerfully approach is the transfer
of social live into virtual space. As humans always tend to find contact to others there has been a rise of
virtual communities, where anonymity is overcome by getting to know each other on a virtual basis. These
communities form the basis for the “Web of Trust”.

The principle is rather simple. Users receive public keys ofother users commonly in electronic form from a
keyserver. These servers store the public keyring of a user.To ensure the authenticity of the received public
key, it is necessary to compare the key, or more specific it’s fingerprint, with the original key. This can be done
by meeting the owner in public, e.g. at special “key signing partys”, or by comparing with a printed version,
received from the owner of the key on some other channel, e.g.printed on his business card. After checking
validity, the key is signed, expressing the successful completion of that process. As it is not possible to know
every communication partner in person, it becomes necessary to rely on others, that have already checked the
key and testified its authenticity, which is a form oftrust. By uploading the signed key back to the keyserver,
a user provides his validity information to others.

The binding is ensured to be correct by other users that provethe correctness. However, there may be malicious
users, that aim at circumventing the system, by incorrectlyverifying other user’s keys. This could easily lead
to a trust relation about the binding of a key to an identity, which is incorrect. Therefore a trust system is
employed. Users can rate other user’s ability of correctly verifying other user’s keys in five different levels:

17

3 State of the Art

1 = I don not know
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
5 = I trust ultimately

Note, that the word trust is hereby used to mean trust in an owner and trust in a key. The trust in an owner in-
formation is kept private, the trust in a key information is expressed by signing and uploading that information
to a keyserver. The policy, that decides, whether a given keyis valid yields a positive result if the following
conditions are met:

1. it is signed by enough valid keys, meaning

• you have signed it personally

• it has been signed by one fully trusted key

• it has been signed by three marginally trusted keys

2. the path of signed keys leading from the key back to your ownkey is five steps or shorter

Alice

Bob

Chloe

Dharma

Elena

George

direct trust
indirect trust

Figure 3.4: Trust relations in a Web of Trust. Starting from Alice a chain of direct trust relations enables an
indirect trust relation between Alice and George

This approach moves away from the central structure of few Certificate Authorities to a more public model.
Users are not forced to have ultimate trust in a certificate authority they only know by name, but can rely on
their social contacts to support their trust decision. In fact every user is his own trust center, issuing his own
certificate and relying on a trust chain he defines. Everyone can start a web of trust, as these can coexist and
can be linked by member in both “groups”.

3.1.5 Decentralized Trust Management

Another approach directed at establishingAccess Trustwas done byBlaze et al.in [BFL96]. The goal was to
replace existing ACL solutions, whose main problems were described according to [BFK99]:

• Authentication: While it is convenient for local only computers to have knowledge of every user access-
ing the system, it is not the case in a distributed system. Therefore, a new model had to be developed
allowing to unify Authentication and access control.

• Delegation: As large distributed systems tend to suffer increasing complexity, administrative tasks need
to be decentralized. This allows more than one administrator. In the past these mechanism were imple-
mented using Access Control Lists (ACL), the Unix systems typically used group permissions to handle
this need, which add unnecessary complexity to the system.

• Extensibility: The traditional ACL systems were not designed to be extensible. The common distinction
between the owner of a file, members of the files group and all others is not scalable.

18

3.1 Cryptography based solutions

• Local trust policy: A concept not known to traditional systems are all kinds of trust polices and the rela-
tions between other systems. While it is now possible to build some kind of trust between machines by
adding their public keys to the local trust policy more complex interactions - for example the mentioned
transitivity of trust- are not possible.

A typical workflow for processing a signed message was introduced in its paper as:

1. Obtain certificates verify signatures, possibly. determine public key of signer

2. Verify that certificates are unrevoked

3. Attempt to find “trust path” from trusted certifier to certificate of public key in question

4. Extract names from certificates

5. Look up names in databases that maps names to the actions that they are trusted to perform

6. Determine whether the requested action is legal, based onthe names extracted by certificates and
whether the certification authorities are permitted to authorize such actions according to local policy

The papers by Blaze suggests, to replace steps 3 to 6 by submitting all data together with a local trust policy
to a central service. The service is required to form a trust decision based on the given data. The question“is
user A allowed to perform the task B?”is replaced by“Does the set C of credentials prove that the request
r complies with the local security policy P?”which is handled by aTrust Management Engine“providing a
result in the context of(r, C, P).

A prototype implementation of a trust management engine called PolicyMaker was presented in the first paper
of Blaze. In [BFK99] a second engine calledKeyNotewas presented. Both implementations differ in the
architectural boundaries that were drawn.

First to note is that no longer only humans are accepted as entities. The mapping of a cryptographic key to a
real name was replaced, as the system checks only the validity of the givenkey,which is the principal of this
trust solution. The system is enabled to be layered on top of already existing PKIs, including X.509, as it relies
on cryptography for providing the trust root. Another aspect is the type of the policy, which isAction Centric
as defined in chapter 2.4:The PolicyMaker system provides a simple language in which to express conditions
under which an individual or an authority is trusted, as wellas conditions under which trust may be deferred.
[BFL96] The general nature of this concept does not explicitly implement a trust metric, but does implicitly
allow to build one based on the programability of polices.

By enabling an application to specify a policy, the burden ofenforcing and creating policies is passed away
from a central instance. This enables flexibility to implement any kind of trust metric that is suitable for the
needs of a system. Furthermore, the locality that this approach represents avoidsthe need for the assumption
of a globally known, monolithic hierarchy of “certifying authorities” [BFL96].

For a better understanding, imagine a web browser that commonly accepts SSL keys, that are under a month
outdated, without normal user interaction. But when receiving an outdated key from a online banking system
it would warn the user and refuse connection to that system. This example shows the support of a special
contextof operation, that could be supported by a programmable policy. As different applications and even the
programs may require different trust decisions, dependingon the situation, this concept is highly promising in
the trust research.

3.1.6 Conclusion

The solutions presented in this chapter, as already stated in the introduction, are systems providing Identity
Trust, with the solution by blaze shifting focus towards Access Trust. They will form an important basis, as
every trust solutions needs to layer itself on top of an identity trust solution, as already stated in chapter 2.4.
They are, however, not sufficient for our work, as it aims ultimately at a solution enabling Provision Trust in a
P2P system.

19

3 State of the Art

3.2 Central Reputation Systems

A variety of reputation solutions, relying on a central instance exist already today in mostly web based algo-
rithms. The classic example of such a service is the eBay system, that will be described in the following. Other
solutions use elaborate algorithms to provide the system with a better trust recommendation. The systems de-
scribed in this chapter are Google and Advogato.

3.2.1 eBay

One of the most common reputation systems on the web is built in the form of a “feedback forum”. This
technique is widely used and presents users with the possibility to express a vote at the end of a transaction.
But first recall the “prisoners dilemma”: Without any kind ofreputation system there would be both for
customers and vendors virtually no reason to buy or sell products. Vendors would have little reason to sell
high quality products, as even if there is sanctioning, few other potential customers will be informed about it.
So it would be highly probable for customers to buy a pig in a poke. Vendors that provide quality products
would not be able to match the prices of the betrayers and customers would not be able to distinguish them
from the others. This would destroy the market.

eBay The Internet business platform eBay www.eBay.com will serve in the following as an example. The
platform provides an infrastructure for managing, buying and listing auctions articles. Being - simplified -
just a platform for listing items, there is of course no warranty of any kind for products sold via its interface.
Much research has been carried out on eBay because of its reputation system, that is considered successful in
a market as“ripe with the possibility of large-scale fraud and deceit”[Kol99].

In [RKZF00] the author exploited 3 key features for reputation systems:

• Long living entities: provided for future interactions

• Feedback captured and distributed: stored for reference

• Feedback guide buyers decision: use it

While the features defining a reputation system were extracted problems were also observed in the eBay
system. As most systems depends on the “quality” of their service reputation systems stand and fall with the
quality of the reports. It seems trivial to note that reportshave to be done, the asynchronous “workflow” of an
auction platform hinders this. To file a report, the outcome of the transaction will be judged, but the system
has to wait until the transaction really finishes. On an auction platform, this includes big delays resulting from
the individual transaction partners and the parcel service. So expressing a report can be forgotten or simply is
considered too much work. It must of course be noted that in the case of a bad outcome the voting mechanism
will more likely be used, but by judging only bad outcome the quality of reports is lowered significantly.
Another form of lowering the quality leads to the second point: Reports must be honest. When reports are
truly wrong few techniques can be used to filter those. With most existing clique detection algorithms needing
a huge amount of input, these will bein dubio inaccurate. As eBay’s system allows feedback on feedback,
there is also the possibility of getting punished for givingtrue reports. Therefore most reports tend to be neutral
or good for the sake of avoiding negative consequences. Of course, this way the data that can be obtained is
mostly irrelevant, as it does not reflect an objective expression.

One last problem, that must be noted is the limited scope of common reputation systems. Appliance is mostly
limited to the target platform it was designed for. If however there is a technical possibility for interoperability
the “political” problem have to be considered, as the ownersof these systems have little interest in cooperation.
More common is that it is tried to make the features of their systems unique by trying to patent them. Upon
receiving a patent, methods of enforcing these will more likely be used than cooperating.

From a trust metric point of view the eBay system leaves the decision, of whom to trust totally to the user. The
system provides all information about all peers, so the useris theoretical enabled to check the trustworthiness
of every voter. The system aims at enabling Provision Trust,which in turn relies on Identity Trust. The latter is

20

3.2 Central Reputation Systems

ensured by using a password based identification scheme, which leaves the door wide open to attacks ranging
from brute force to phishing.

3.2.2 The PageRank Algorithm

A common principle of search engines is based on a trust decision. The rank of a page in the list of matches
is computed using a reputation like concept, that bases its decision on the amount of pages pointing at it. The
PageRank is therefore an expression of a trust relation, of the entity search engine, in the entity website. As
Google puts it:

In essence, Google interprets a link from page A to page B as a vote, by page A, for page B. But,
Google looks at more than the sheer volume of votes, or links apage receives; it also analyzes the
page that casts the vote. Votes cast by pages that are themselves “important” weigh more heavily
and help to make other pages “important.”[Goo04]

The described recursive algorithm uses votes as reputationinformation and weights it according to the repu-
tation of the voting page and the number of votes. The original paper on Google, found in [BP98], describes
the behaviour as emulating a “random surfer”. The probability of finding a page intuitively increases, when
a page is referred by many other pages and if only few links have to be followed, beginning from a starting
page. To sum it up, two credentials of a website exist: Distance from a given starting page and number of
referrals from other sites. Google started out as an academic research project and is now one of the major
search engines available on the Internet. As the project is now on a commercial basis, further research on the
PageRank algorithm is kept private. The original paper defines the PageRank (PR) of a page A, that is referred
from pagesT1 to Tn, as follows:

PR(A) = (1 − d) + d(PR(T1)/C(T1) + · · · + PR(Tn)/C(Tn)) (3.1)

d is a constant damping factor, that is set to 0.85, expressingthe probability that a surfer will further browse this
path. C(A) is defined as the number of links going out from pageA. Further development on the Algorithm
is not published, therefore a complete trust metric for Google cannot be presented, but known facts can be
summed up in figure 3.5.

C

...

A

D
m

?

n

Figure 3.5: The Google trust metric combines two credentials: The length of the path (n) from a trusted starting
point (A) and the number of votes (m)

The algorithm also has a description in linear algebra. PageRank values are the entries of the dominant eigen-
vector of the modified adjacency matrix. [Fou05b].

21

3 State of the Art

R =











PageRank(p1)
PageRank(p2)

...
PageRank(pN)











R =











q/N
q/N

...
q/N











+ (1 + q)













l(p1, p1) l(p1, p2) · · · l(p1, pN)

l(p2, p1)
. . . · · ·

... l(pi, pj)
l(pN , p1) l(pN , pN)













R

The adjacency functionl(pi, pj) is 0 if pj does not link to pagei, further it is normalized to ensure that
∑N

i=1 l(pi, pj) = 1.

Google has defined a set of trusted websites, that serve as trust root for the algorithm. These websites also
form the entities Google works upon. The links between websites and the previously described damping factor,
form the credentials, which are combined to a ranking decision. Concerning which entities to use, the original
paper proposes to use theindex.html file of each webserver, but this seems unrealistic from a practical
point of view. It is also unclear whether the starting pointsare identified by any means of IP address, DNS
name, or a certificate. It can therefore not be reasoned aboutany kind of used Identity trust. Although not all
facts about the algorithm in its current form are known, given the accuracy and success of Google, this work
can benefit from the idea of the technique: an algorithm managing a large network of reputation, should not
only take the sheer number of votes into account, but should combine it with the credibility of the voter.

3.2.3 Advogato

Advogato is a community platform for free software developers. It uses a specialgrouptrust metric, developed
in [Lev04], to rate members of the community.The members of this site certify each other, specifying one of
three skill levels [Lev00a].The system takes these certificationcredentialsas input and uses its “Group Trust
metric” as policy, which in turn decides on a trust level. Depending on the trustworthiness of a member, it
receives benefits on the site. These include posting news items, comments and editing project information on
the site.

Group Trust Metric The algorithm computes a “global” trust value of all nodes. Accounts and certificates
are modeled as a graph, where nodes are connected via a directed edge, if a user has certified the other. Its
trust root is formed by a set of “trusted accounts”. Startingat these roots a shortest path search in the graph
determines the distance between a “root node” and a given noden. Depending on the distance value, the node
is associated with a capacity. The graph is then in a state similar to the system, that can be found in figure 3.6.

After these capacities are assigned, the graph defines a single source, multiple sink problem. Furthermore,
capabilities are assigned to nodes, instead of edges. Therefore the graph has to be modified, by introducing a
“supersink” node is added to the system. By connecting everynode of the system to this new created node the
problem is redefined to a “single source, single sink”. As figure 3.7 illustrates, the supersink is connected with
nodes, by splitting nodes into a+ and− part. Another edge from every newly created+ node is added to the
system with a capability of 1. The connection from the+ to the− node is assigned the original capability of
the node minus one.

The global trust value is computed by using a maximum networkflow algorithm on the resulting graph, under a
last constraint: If it computes flow from a− to a+ node, there must also be flow from− to the supersink. The
actual algorithm used is a standard Ford-Fulkerson algorithm. This algorithm repeatedly finds an augmenting
path through the residual graph, until no such path exists. After the computation of the network flow, the
algorithm certifies each node, that has a connection to the supersink, based on the computed flow.

Advogato performs its kind of certification at three different levels: Apprentice, Journeyer and Master. This is
actually done by running the basic trust metric three times with modified rules for creating edges.

22

3.3 Distributed Reputation Systems

Figure 3.6: An capacity assigned graph, used to compute the Advogato trust information of a node by combin-
ing capacities of their referring nodes [Lev00b]

The Advogato system has seen much attention, as it is said to be a community of professionals, with very few
not trustworthy, so called “trolling” user. The systems shows that a trust metric can be successfully derived
from a maximum network flow algorithm.

3.3 Distributed Reputation Systems

This section will introduce reputation systems that are designed for operation in a distributed manner. Since
these systems are based on P2P technology, the first chapter will present a short history of P2P systems. Two
solutions will receive attention in the following subchapters. Beginning with an adaption of thePageRank
algorithm, from chapter 3.2.2, a work, that is more focused on the architecture of such a system, bySamarati
et al. will be discussed.

History of P2P P2P development started with theNapstersystem in 1999. This system allowed every
node in the network, besides being a client to a service, to provide the services, acting as a server. The
problem of locating information was solved with the introduction of central index servers, which where run by
the corresponding company. Napster was soon followed by theGnutella Networkin 2000, providing a fully
decentral system. P2P systems have received much attentionin science over the last years. Research has been
carried out about the sociological and technical aspectsetc. . One main part of research that was put in by
computer science was the question of efficiently locating information in a network, called adistributed hash
table. These systems work similar to a common hash table. Data is identified via a key. A hash function returns
the location of the corresponding data in the system. The distributed case returns the corresponding nodes on
a network, the data has been mapped to. This enables every node to have a “global view” of the network.
Two recent examples of this technique are the Chord system ofRobert Morris et al.[MKKB01], introduced
in the year 2001 and theKademliadistributed hash table byMaymounkov and Mazieres[MM02]. In the year
2001Robert Morris et al.proposed in [MKKB01] theChordDHT, which was followed byKademliain 2002
[MM02].

3.3.1 Eigentrust

A distributed trust metric was presented byKamvar et al. in [KSGM]. The system aggregates alocal trust
valuesij by the ratings of transactions between the own nodei and the peerj. Positive transactions increase
the trust value by one, negatives decrease it by one. Therefore sij =

∑

rij with rij ∈ (−1, 1) representing
the ratings. The proposal goes on normalizing the values as follows:

23

3 State of the Art

Figure 3.7: Reduction of the “single source, multiple sink problem”, to a “single source, single sink problem”
[Lev00b]

cij =
max(sij , 0)

∑

j max(sij , 0)
(3.2)

Note that in the case of a zero denominator the equation is undefined. In that case the normalized trust value
is replaced with a predefined trust valuep, that comes from a predefined trust vector, that was defined before
starting the system. When there is a decision based on trust to be made covering peerk the algorithm weightens
the options of other peers depending on the trust he places inthem:

lik =
∑

j

cijcjk (3.3)

This equation could be written in matrix notation: If allcij values were be added to a global matrix - con-
taining all local trust values of all peers -C = [cij] and lik could be written as vector~li containing allk
recommendation trust values, the computation could be written as:

~li = CT ~ci (3.4)

Currently only the local trust values in friends and their recommendations are included. Using the matrix
notation simplifies the expression of a recommendation of a friend’s friend. This would be~li = (CT)2~ci.
After n for a largen the trust vector~li will converge to the same vector forall peers i.~l represents a global
trust vector, which is the left Eigenvector ofC.

Every peer can compute its own global trust value, witha as a damping factor, for including the predefined
trust values:

l
(k−1)
i = (1 − a)(c1il

(k)
1 + · · · + cnil

(k)
n) + api (3.5)

24

3.3 Distributed Reputation Systems

As a decentral computation of the trust values is possible, the proposed distributed system delegates the com-
putation of trust values to so calledscore managers.As a P2P system is sketched, every client on the network
is the score manager of another peer - his so calleddaughter peer-, computing a part of the global trust vector
~l. To identify these peers Chord [MKKB01], a distributed hashtable, that will be presented in chapter 4.1, is
proposed. Besides the computation of the global trust valuethe peer has to maintain the local trust values of
its daughter peer. To compute an appropriate trust vector, all score managers of peers that have downloaded
from each others’ daughter peers need to stay in contact, sharing the local trust values and computed global
trust values with each other.

3.3.2 P2PRep

There have already been successful attempts to equip a P2P protocol with a trust management feature, done by
Samarati et al.in [DdVPS03]. The System calledP2PRep, built on top of theGnutella protocol, enables
peers to keep track and share with others information about the reputation of their peers. As the system relies
on a P2P system as storage for reputation information it is categorized as adistributed reputation system.In
the following the Gnutella system will be sketched, a detailed explanation can be found in [Cli01].

Gnutella TheGnutella network appeared in 2000. It was the first system to work in a totally decentral
fashion. Previous P2P solutions like Napster relied on a central index server. The system is “open” for every
client, called servent, to join. Clients are identified not by IP address, but by their associatedservent id ,
that is not assigned by the network, but is created on the fly bythe client. For providing search functionality
the protocol featured a new approach - the horizon. Every peer is connected with a number - commonly up
to 10 - of other peers, called the “neighbours”. That topology is called a mesh. If a node searches for a key,
it broadcasts aQuery request to its neighbours, which in turn will contact their neighbours. The request is
equipped with a “time to live”(TTL), that is decreased when passing the search further. When the lifetime
counter is zero, the search terminates. The concept is very similar to theTTL field of theIP header. For a
better understanding of the taken approach, a extract from the Gnutella protocol is shown in figure 3.8 on page
26. Clients search for information in the first phase viaQuery messages and retrieve it in a second phase,
from clients that have sent aResultSetcontained in aQueryHit message.

P2PRep Samarati et al.add two more phases to enable reputation sharing capabilities to Gnutella,polling
andvote evaluation. “After receiving the responses to its query, p can select a servent [. . .] based on the
quality of the offer and its own past experience. Then, p polls its peers by broadcasting a (Poll) message
requesting their option about the selected servents”[DdVPS03]. To protect the messages from tampering the
system makes use of the previously described asymmetric cryptography.Poll requests are equipped with a
dynamically created public key. The voters will reply with aPollReply message containing their option
along with their IP, Port and serventid. In the enhanced version of the algorithm1 the voter will digitally sign
the data with its private key. The corresponding public key of the voter, the data and its signature, are then
sent back to the polling client, encrypted with the given public key, contained in thePoll message. The
polling algorithm will then check the validity of votes. Theencryption of reply messages provides privacy
and integrity features. As the contained data is signed and the involved public key is provided, integrity is
even more provided. To prevent fake IPs, the algorithm usesAreYou messages containing the provided
serventid, sent to the IP, contained in the vote. On a successfulAreYouReply the client can select a client
based on the votes, which may be weighed using previous experience. The different phases are illustrated in
figure 3.9 on page 27.

Trust Model Using the trust classification given in chapter 2.4, it is obvious, that the whole area of P2P sys-
tems needs to establish provision trust, as every peer is a service provider. Any trust related work in that topic
aims ultimately to enhance the quality of service. The presented trust solution aggregates experiences with
peers in a repository, as a set of triplesΨ= (serventid, numplus, numminus). It further aggregates measure-
ments of voters, reflecting the number of times their recommendations met the expectationsθ= (serventid,

1For a description of the basic algorithm see [DdVPS03]

25

3 State of the Art

Figure 3.8: The Gnutella Protocol for searching and retrieving Information ([DdVPS03])

26

3.3 Distributed Reputation Systems

Figure 3.9: The Gnutella Protocol for searching and retrieving Information enhanced by P2PRep ([DdVPS03])

27

3 State of the Art

numagree, numdisagree).Collecting information on the voters enables the system to establish a history of
previous performance, not only concerning previous transaction, but also on previous reliability as voter, as
a large number ofnumdisagreereveals bad performance also in this area. In other words, anentity gets a
set of credits assigned that reflect its previous performance and voting actions. A policy takes these credits
into account and decides, whether a relation (here: transaction) is sensible (figure 3.10). The end results of a
transaction are used as input for another policy based decision, which yields an updated relation between the
two peers and produces a new set of credentials.

F
CE

D

A B

Figure 3.10: P2PRep: Aggregation of votes

Trust Metric The trust metric consists of two parts: aggregation of experience values into votes and ag-
gregation of votes, to come to a trust decision. Votes are created using anaggregation operatorφ : Ψ →
{0, 1}, that can be chosen by each voter independently. The paper lists two possible definitions, a conserva-
tive approach, that definesφ(Ψ) = 1 only if numminus = 0otherwise it is set to zero and another more
forgiving approach, settingsφ(Ψ) = 1 if num plus − num minus ≥ 0. The aggregation of votes is
based on the data from theθ repository. As in the previous step the operatorφ : θ → {0, 1} is used. If
num agree − num disagree > k for a givenk > 0 the function yields a positive resultφ(θ) = 1. The pa-
per makes a number of suggestions on computing the final trustvalue, including local conjunction, weighted
averages, but does not go into details here.

3.3.3 Conclusion

The two presented solutions differ in complexity and trust metric. The Eigentrust algorithm roots in PageRank,
used in Google, which models the trust decision as a path of variable length from a peer, representing the trust
root, to another peer, with a given probability of not reaching the other peer in each step. The design of the
solution implements the computation of trust at an authority other than the requester, which to the author of
this work sees as a mayor design flaw. For this work aims at basing trust decisions on a similar concept as
reality, it is chosen, to compute the trust decision locally. P2PRep matches this decision. It is also simpler from
its design. However, the underlying architecture Gnutellaallows trust decision only in a very limited scope,
based on the recommendations of a horizon, which is limited,compared with the scalability of a distributed
network. The P2PRep solution takes into account a credibility repository for weighting the recommendations
each voter gives. However it does not require the network to compute the trust vector for peers, as they can
operate on the given credibility data using any algorithm they choose.

Summing up P2PRep was a step into the right direction, but an adaption to another P2P protocol needs to be
done to overcome limitations in the P2PRep system, especially the limited horizon a client is bound to and the
design of the solution, which involved an enormous network traffic.

28

3.4 Attacks on trust metrics

3.4 Attacks on trust metrics

Another section of research concerning trust is their resistance to certain attacks. One of the most widespread
attacks, the so called “Sybil Attack” was named after the famous (alleged) multiple personality case of Sybil
Dorsett. This patient, whose disease was described in a 1972book of Flora Rheta Schreiber, suffered 16
different identities.

Sybil Attacks A Sybil attack is an attack on a system that involves a single person that creates multiple
identities, with the aim of taking influence in a process of voting. John Doucer from Microsoft Research
showed in [Dou02], that these simple frauds are nearly to always possible.

Most systems today, however, rely on building their trust root on a set of well known nodes. As already
introduced, PageRank uses a set of websites to assure stability. Advogato and other more P2P based systems
use a set of well known users. Furthermore, it is argued, thatin the beginning of these systems most of its
users are developers or early adopters, which decreases theprobability of an malicious attack, as they are not
assumed to be hostile. Besides the existence of a trust root,both previously mentioned systems feature some
kind of attack resistance built into the algorithms. Googles PageRank has been resistant to most attacks to the
current day. However the algorithm takes into account the number of links, that point to a page, which is a
weak spot in nearly every search engine. To exploit this so called “link farms” can be found on the web. whose
purpose is to create a tight web of links, providing references to each other.

Advogato The Advogato system is claimed to be more attack resistant than other reputation systems before.
In [Lev00b] the author explains the robustness. It is assumed that a group of malicious nodes have entered the
network. As a matter of fact the “bad” nodes will certify eachother, building a closely tied mesh of computers,
equal to the “good” nodes. Both networks will be connected bya small group of “confused” nodes, that
initially enabled the “bad” nodes to enter. The situation ispresented in figure 3.11.

Figure 3.11: A possible attack scenario on Advogato [Lev00b]

The reason why the impact onto the network is not catastrophic is the assumption that a malicious peer will
not be able to be certified by a highly trusted node on the network. As seen in chapter 3.2.3 trust declines
depending on the distance from the seeding node. Given that fact the system remains in a good state, even
though bad peers are able to certify each other, because thiswill not have a huge impact on the global trust
values, seen by the system.

29

3 State of the Art

3.5 Conclusion

In the course of this chapter various solutions have been presented, that form - at least partially - a trust system.
Table 3.1 sums them up and compares them, whether they are useful for this particular scenario.

While the solutions presented in section 3.1 are of great useproviding Identity Trust, they do not fully match
this models needs, as we aim at enabling Provision Trust in a distributed network. The sketched approach
matches best the algorithm of theWeb of Trustfrom chapter 3.1.4. Both solutions provide a decentral public
measurement of trust, using features from cryptography, toprotect their information. These solutions, however,
differ significantly.

The only public trust information given by the Web of Trust isa signature, expressing the confidence of the
signer, that the signed key isreally the key of that person. The possibility to rate a peer is both local only
and targets only the peers reliability in verifying the relation between keys and owner. The hereby presented
solution publishes information expressing if the peer is trusted ornot. This difference is critical to note, as the
web of trust does not allow to express distrust, even in its scope. A user can choosenot to sign a key if he
does not trust in the key - owner binding, but can not publish this information. This lies in the architecture of
the system. While this solution creates a public available repository ofall available information, the Web of
Trust centers around creating a path from a clients own key, to another key, by combining signatures of already
known clients, with the level of trust he puts in them. Beeingrestricted to information that is only reachable
using this path, the client is not able to use all available information in the system. Especially P2P systems
are considered, to be too huge to build a sufficient trust pathto other users, especially since these are limited
in size. Therefore this approach bases its trust decision onthe majority of recommendations, but includes also
the ability to weigth every vote, by a local “credibility” factor.

As a last point the Web of Trust requires a static key infrastructure, that is not flexible enough for the needs
of a P2P system. Public keys need to be published at a central instance, which destroys the idea of a real P2P
system. This solution uses a self signed PKI, in which every client can request the public key of another client
from this client itself, which reflects truly the P2P idea. More information on this solution can be found in
chapter 5.

Furthermore there have been centralized systems, that are able to compute a global trust value, upon receival
of new input, or upon periodic execution of an algorithm. These system feature elaborate trust metrics, ranging
from vector geometry to network flow algorithms. While serving as a good example for reputation, or trust
systems in general, the architecture is quite different to the decentral structure, we want to research on. All
systems require clients to fulfill some constraints, that enable them to access the system, while we focus on a
“open” approach. Similar to the previously mentioned cryptography, they serve as the foundation of our work.

In chapter 3.3 existing distributed solutions received attention. For the reason stated in chapter 3.3.3 P2PRep
clearly meets the needs the requirements of our scenario best. Recent development in P2P show, however,
that the chosen basis, the Gnutella protocol suffers some weaknesses. Firstly, the limited horizon does not
provide a global view on the network, while still requiring enormous traffic. Secondly the search algorithm is
in no way as efficient as algorithms used for distributed hashtables, that manage to provide search operations
in logarithmic time. Thirdly is the enormous message overhead on the network. Every client that needs to
establish a trust relation needs to poll its horizon for votes. Even if another client starts the exact same poll,
messages are by no means cached.

For that reasons we will base our work on the fundamentals researched in its surroundings. We will, however,
change the underlying protocol to a P2P Protocol based on a distributed hash table. This will be chosen in the
next chapter.

30

3.5
C

onclusion

Trust Model Distributed Global Network View Trust Computation Cryptography
X.509 Identity Trust No. System uses oneYes. Central Server Client side Yes

central trust root
Web of Identity Trust No. System uses oneYes. Central Server Client Side Yes
Trust central server

architecture
Blaze Access Trust System uses centralYes. Central Server Client Side Yes

server architecture,
supports delegation

PageRank Provision Trust Central approach Yes. Central Server Server Side No
Advogato Provision Trust Central approach Yes. Central Server Server Side No
Eigentrust Provision Trust Yes. P2P Approach Yes. P2P system Not local, delegated No

to other peers
P2PRep Provision Trust Yes. P2P Approach No. System relies on Client Side Yes

Gnutella, that provides
only limited horizon

This Provision Trust Yes. P2P Approach Yes. Distributed Hash Client Side Yes
Solution Table based, provides

all votes available

Normal Text Met Requirement
Grey Text Unmet Requirement

Table 3.1: Comparison of all solutions

3
1

4 Choice of a Peer to Peer Model

As seen in the previous chapters there are a variety of Reputation Systems and Trust Metrics already in use
today. However, this thesis covers a distributed reputation system incorporated into an existing P2P system,
because these system feature the following benefits:

• Decentralised: Not a single server; the whole network provides information

• Broad userbase: The Kademlia DHT is said to currently feature up to 5 Million users at a time

• Frequent transactions between strangers: P2P is ann to n relation, central systems have an to 1 ratio

• Speed: As information is distributed, load is balanced across the network

Copyright As those systems are abused for any kind of thievery the author wants to once more clearly
separate his work from these frauds. This work wants in no kind support the violation of copyrigth law. In the
meantime however even commercial interest in P2P has been awakening. This seems to be rooted in the fact,
that distributed network solves a problem that vendors of digital media over the Internet face. A typical pop
song encoded with a compressed format consumes roughly 3 Megabytes of space. Classic centralised vending
platforms like theiTunes Music Storeprove that they can handle the distribution of digital music. The iTunes
Japan store sold 4 Million tracks in four days, which would bebased on the previous assumption 12 Terabytes
of Data. But with the advent of better Internet connections and video codecs, digital media distribution is no
longer limited to music. Video data, which takes from 700 Megabytes of space for acceptable quality, setting
nearly no limit on space consume for high end data.

Providing this load of data to consumers is a challenging task, as bandwidth costs explode. This can be solved
by employing P2P technologies, as already done bywww.peerimpact.com. This solution enables customers
to download data directly from other customers. The only need for a central server are the billing part of
the transaction. Customers providing their data for download get credits for providing their bandwidth. Thus
a cheap bandwidth saving opportunity is employed which offers even more benefits, like the reliability of a
distributed network.

Copyright violations, however may prove that the feeling ofanonymity is on these systems imminent. Basi-
cally, this is the case, because most P2P implementations actively hide the identity of the user. In conjunction
with the large userbase of P2P techniques, providing a lot ofunknown users, serves as a basis for the spread
of abuses. A first fraud, that is cited in combination with P2Pand security problems is theGnutella.VBS
worm [KSGM]. The worm appeared in 2000 and replicated itselfupon execution, by copying itself into the
Gnutella shared folder under different names. It also modified the configuration of the program, to allow its
distribution. As users need to actively click on the worm to become infected, one could argue, that the impact
of this worm could not be that large. However, worms that spread via emails need also to be activated by user
interaction and in spite of this manual invocation they havebeen very successful.

4.1 Chord

In 2001 the Chord distributed hash table was developed at theMIT Laboratory for Computer Science. A
distributed hash table works equal to its local counterpart. It maps keys to values, using a given hash function.
However in a local case, information may be a pointer to a memory location, while this kind produces pointers
to nodes in a network.

32

4.2 Technical Introduction to Kademlia

Network Topology The architecture of chord is a ring, clients joining the network will be included by
inserting them between their corresponding neighbours. See also figure 4.1. Basically a node only needs to
know its successor, to be able to pass a query on the network toits successor. For efficiency reasons clients in
the chord ring have routing information, commonly referredas “finger table”, containing a list of nodes.The
ith entry in the table at noden contains the identity of the first node,s, that succeedsn by at least2i−1 on the
identifier circle [. . .] [MKKB01]. By using this technique chordresolves all lockups via O(log(n)) messages
[MKKB01].

Figure 4.1: A sample Chord Network, equipped with nodes and their routing tables([MKKB01])

Simultaneous Node Joins The described architecture works fairly well when used in a sensible manner.
However when scaling the system to the size of the Internet, the weakness of the system can be identified as
the need for a node, to know its successor. Nodes joining the system, need to make other nodes aware of their
presence. If multiple nodes join simultaneously the network, it is possible that the mechanism fails and the
ring is split up into two or more fractions, as described in the original paper. Normally, this problem is caught
by a stabilisation protocol that is needed, to keep the ring consistent. However, in the worst case the system
ends up with two rings, that both appear consistent to the stabilizing protocol. In [MKKB01] it is noted, that
there is currently no way to detect this kind of failure.

4.2 Technical Introduction to Kademlia

Kademlia is another peer-to-peer distributed hash table (DHT), developed at the New York University in 2002.
While providing the features of a DHT, it adds some unique features which make it fast and scalable. Key
benefits are:

• Small protocol, not requiring an extra configuration protocol

• Speed:O(n) = log(n) + c for a system withn nodes [MM02]

• Efficient Caching Mechanism

• Open Source Implementation

Before explaining the functionality of the Distributed Hash Table, it is substansial to understand the basics of
the network. This subchapter will start with the employed network topology, and proceed with the distance
metric, most operations in the network are based upon. Afterrevisiting the basic protocol, it will be possible
to understand the used routing system and it’s benefits.

33

4 Choice of a Peer to Peer Model

4.2.1 Network topology

While chord’s network topology is a ring, Kademlia is modeled as a binary tree, with each leaf representing
a node. Figure 4.2 illustrates this. The difference betweenthe two solutions is obvious: A ring requires every
element to know at least its successor. To ensure this assertion, a stabilisation protocol is required, as similar
joins to the network could destroy the topology of the network. A binary tree solution needs none of this
special treatment. Similar to Chord, each node in the tree isidentified by a unique identifier, which happens to
be a 160 bit key.

1

b

1111
b

1110

b

110.

b

10..

0

b

011. b

0101
b

0100

b

001.
b

000.

Figure 4.2: The Kademlia binary tree with 4 bit IDs: Leaves inthe tree are nodes, dots in the IDs represent
hidden subtrees

4.2.2 Distance Metric

The paper defines a special distance metric for Kademlia. Distance is computed by using a bit wiseXOR
of a nodes ID with a target ID. As all distances are computed bitwise, numbers, expressing distances will
in the following be written in binary notation. An illustrated example, as in figure 4.3 will help for a better
understanding:

a)
xor 0 1

0 0 1
1 1 0

b)
011

xor 110
= 101

c)
1

b

111
b

110
b

101
b

100

0

b

011
b

010
b

001
b

000

Distance = 101

Figure 4.3: The Kademlia Distance Metric for 3 bit node IDs: Truth Table of XOR a), sample distance com-
putation b), illustration of b) in c)

The Distance between two nodes, for example 110 and 011, is 101, as seen in the a) and b) part of the figure.
An interpretation of this number is illustrated in the c) part of the image. This distance notion is not the
traditional notion of distance, but maps implicitly to distances in the binary tree. Huge distances mean very
distant subtrees, small distances represent “close” subtrees.

4.2.3 Protocol

Kademlias protocol is designed to have a small footprint. Itrelies on 4 primitives.

• Ping: This command checks for a hosts existence, similar to ICMP requests.

• Store: A request to publish information is sent to a given node, including the key, which identifies
the information and the data itself. The target node will then check whether a given key should really be
stored at its location. This is done by employing the alreadymentioned distance metric.

• Find Node: The basic routing primitive of Kademlia. It is used for location other peers in the tree.
It employs a recursive algorithm that is described in a following paragraph.

34

4.2 Technical Introduction to Kademlia

• Find Value: A request to locate a given key in the node ID space. It works inthe same manner, as
the routing primitive.

It has already been stated, that no specific stabilisation protocol is needed. Further the efficiency of the system
is increased, as ever message of the protocol will be taken into account for routing functionality.

4.2.4 Routing

The protocol primitivesFind Node andFind Value both are based on the routing subsystem. Routing
information is held in a data structure calledk Buckets, wherek determines the size of the buckets.”For each
0 ≤ i < 160, every node keeps a list of [. . .] nodes of distance between 2i and 2i+1 from itself“[MM02].
The meanin of distance in the context of Kademlia has been introduced previously in the paragraph ”Distance
Metric“. The range ofi is chosen, because of the 160 bit identifiers, which allow 159subtrees, that do not
contain the node. The size of the buckets,k is suggested to be set to 20, which represents themaximumsize, a
bucket can grow to, smaller, or even empty buckets are valid.If a represents a node andID is the nodes own
identifier, it can be expressed as:

∀a∈ki
: 2i ≤ a ⊕ ID ≤ 2i+1

A graphical representation of a tree with 4 bit IDs andk = 2 is presented in figure 4.4 accompanied by table
4.1.

1

i=3

b

1111
b

1110

b

110.

b

10..

0

b

011.

i=1

b

0101
b

0100

i=0

i=2

b

001.
b

000.

Figure 4.4: The Kademlia routing tables illustrated. Dashed subtrees represent the 4 Buckets available in the
tree.

Bucket Node List Bucket Node List
i = 0 0100 i = 2 0010

0011
i = 1 0110 i = 3 1111

0111 1000

Table 4.1: A sample Kademlia routing table, for 4 bit node IDsand a bucket sizek = 2

These buckets are filled with nodes, which are set up and kept up to date by using the information network
traffic provides. When nodes exchange messages, e.g. for searching, the contacted node can not only return
information to the requester, but also add him to the corresponding bucket in its routing table. If the client is
already contained, it will set the client alive, marking it with a “last time seen” timestamp.

Because nodes are stored in buckets, the routing algorithm can choose the “optimal” path along nodes regard-
ing speed or node failures by contacting a subsetα < k of nodes and in turn contacting the fastest replying
node. So the routing system is failure redundant.

Of course thek factor limits the size of the bucket. When the bucket is full,nodes could no longer be added
to the bucket. It would be convenient to add the contact immediately to a bucket, dropping another client.
Research however has shown, that the probability for a client going offline decreases, the longer he stays
online. So the routing algorithm will prefer already known clients over unknown clients andnot add it to the
bucket. This technique makes the algorithm resistant to a number of Denial of Service attacks, as attacking
clients can not easily fill the targets routing tables with bogus, or their own, entries.

Buckets are further periodically checked for offline nodes by sendingPing commands to nodes, that have
not been set alive in a while. If these do not reply, they are removed from the pool and considered offline.

35

4 Choice of a Peer to Peer Model

After discussing the involved data structures the routing algorithm will receive attention.

4.2.5 Finding Nodes in the DHT

The implementation ofFind Node is a recursive algorithm. The Figures on the following page present a
graphical illustration of the process.

1. The searching client with ID 001 looks up the target node 111, in its routing tables. If it is found the
algorithm terminates and returns an IP address. Otherwise it picks the “closest” node to the target node,
from its routing tables - in this example the client with the smallest distance to 111 will be 101 - and
executes step 2.

2. The chosen client is contacted by 001 (Figure 4.5). Again,“close” means that the bitwise xor of the
target node’s and chosen node’s ID is minimal. Upon receiving the query, the chosen node looks up 111
in its routing tables and similar to step1 returns ak−sized set of closest nodes, either containing the
searched node, or just closer nodes, e.g. a node 110.

3. If the queried node returns the target, the algorithm succeeds (Figure 4.7), if the result yields no closer
nodes, that the already known the algorithm terminates, reporting a failure. Otherwise a new target node
is picked from the set of results and step2 is repeated (Figure 4.6).

During each iteration of the routing algorithm, client 001 might be added or set as alive in the correspondingk
Bucket. This information is, as described earlier, used to enforce the usage of long living clients in the routing
tables. Furthermore this is an example on how closely configuration messages are integrated into the core
protocol primitives.

4.2.6 Publishing information

Publishing information on the network is the task of adding the data to the distributed hash table. It involves
identifying the node where the information needs to be stored, by sending aFind Value command and
uploading it using aStore command.

Keys Kademlia addresses both data and nodes as 160 bit keys. The function of the Distributed Hash Table
that maps the keys of data to nodes on the network is indeed very simple: Thek closest nodes to a givendata
key will store the values of the keys. So the binary tree structure of the node network is resembled in a parallel
data tree. A simplified illustration can be found in figure 4.8. In this example data and node keys are only 3
bit wide. The table shown in that figure consists of data keys,computed from the file and the corresponding
node, where data would be mapped in the right hand side binarytree. For example, the key of file B is 001. It
is mapped to node 000, as the distance between key and node is 001, while the distance between key and node
010 is 011.

Publishing Adding information to the network employs 3 steps. First, a corresponding key to the value
is computed, using a well known hash function. The paper suggests the SHA-1 hash function, but this is
implementation specific. The second step is retrieving thek closest nodes to the returned key by searching
for the closest nodes to this key on the network. This is exactly the basic routing algorithm, that has been
discussed in the previous chapter. When the set of the closest nodes is found, aStore command is sent to
thesek nodes, requesting them to publish the information togetherwith the key at their position.

By storing atk nodes, an efficient cache is installed, because nodes searching for information will have a list of
thek closest nodes. By contacting a subsetα of k, the fastest replying node can be contacted. To avoid loosing
information, by node failures, or nodes closer to that key joining the network the key must be republished in a
given interval, usually one hour.

36

4.3 Conclusion

4.2.7 Retrieving Information in the DHT

Retrieving information is a two phased task, similar to a normal hash table. First, a key has to be found, second
the information has to be retrieved.

Finding Information As the user can not compute the key of a set of data, he does not own, several ways
to publish those keys exist. It is common practice to publisha key on a given website. For example most Linux
distributions use this technique to publish pointers to their free products on their homepage. Independently
from other networks, the information can be published on thenetwork itself. By publishing a hash of common
search strings or the filename along with a pointer to thereal hash key, an easy way to locate the desired key
can be established.

Retrieval For finding a value corresponding to a known key, the algorithm resembles the routing algoritm. A
lookup of the closest node to the given key via aFind Value command is performed. In the recursive step,
the recursion breaks if hitting a node that stores the required value. In that case, the node will return the value.
Otherwise it returns a set of closer nodes and the recursion continues. So the only difference between locating
a node and retrieving information is the returned value, instead of an IP. Besides the routing configuration
information, this search spreads across the network. The design features also a caching mechanism described
in the next paragraph.

4.2.8 Caching

Kademlia caches〈key,value〉 pairs across its network. This is done after information lookup: a node, that has
successfully completed a query will store the result at the last node, that did not return the information. By
installing such a cache it shortens the path of its query by one routing message. The probability of other nodes
hitting such a cache is high, because the xor distance metricis unidirectional. This means that the closer a
peer is to its target, the more likely it is to hit a path another client already used. For a proof, see the original
paper [MM02]. Therefore, if the key is popular this caching technique enables fast lockups, as it “balances”
the load. A side effect is that even after multiple node failures the information is likely to be available in the
network. The information itself is already stored not only on one host but is distributed to thek “closest” hosts
as seen in the section Publishing in subchapter 4.2.6.

4.3 Conclusion

The need for a stabilizing protocol, that need to maintain the integrity of the Chord ring, explains the choice
of the Kademlia solution, which is described to be self configuring and maintains its stability via the normal
search operations.

From a clear practical aspect, the decision is based on the fact, that Kademlia is in widespread use by the
eMule1 client. It is the second implementation of the system, besides the reference implementation. There is
also at least one more public available implementation in theArzeurus2 client. All of these implementations are
open source, which enables modifications to the code base in an easy manner. The available implementations
have also proven, the chosen solution scales up to 5 Million users, according to a developer of the eMule client.

Table 4.2 sums up the reasons, that lead to the choice of the Kademlia system.

1www.emule-project.org
2www.arzeurus.org

37

4 Choice of a Peer to Peer Model

Chord Kademlia
Implementations 1 3
Implementation Maintained No Yes
Protocol Overhead Stabilisation Protocol None
Search Operations log n log n

Normal Text Met Requirement
Grey Text Unmet Requirement

Table 4.2: The Chord and Kademlia distributed hash tables compared

1

b b b

101
b

100

0

b

011
b

010
b

001
b

000

Find Node 111

Figure 4.5: Searching for node 111: Node is not contained in the routing tables of 001, contacting a known
node 101 close to the target

1

b b

110
b

101
b

100

0

b

011
b

010
b

001
b

000
Find Node 111

Figure 4.6: Searching for node 111: Contacting node 110, which is closer to the target, after updating routing
tables with results from 101 (dashed)

1

b

111
b

110
b

101
b

100

0

b

011
b

010
b

001
b

000

Figure 4.7: Searching for node 111: Found node and updated routing tables with results from 110 (dashed)

Key Node
File A 110 111
File B 001 000
File C 111 111

1

b

111
b b b

0

b

011
b

010
b b

000

Figure 4.8: Mapping data keys to nodes

38

5 Model of a Trust-Aware Solution

A vital part of a network of potentially anonymous1 users is not only the availability of information, but also
their quality and integrity. To reach that goal, this chapter proposes a reputation system, based on sharing
information about users, among clients. The subsequent subchapters will introduce the design of policies and
a proposal for an integration into the Kademlia network, providing a secure facility for reputation sharing. The
next chapter 6 will introduce the details of the reference implementation of the system.

5.1 Sketch of Design

The proposed solution is designed to be a distributed reputation system. It works, as described in chapter
2.5 by enabling users to express their experiences with other users in a way that every other user could base
his decision on the recommendations of other users. In figure5.1 on page 40 this procedure is divided into
three different phases. In the first phase user A receives a set of votes about a third peer B, from another
peer C. A was able to locate this information, as the distributed hash table provides amapping function,see
chapter 5.4, that takes a peer’s identifier as input and returns another peer’s id, that is chosen, to collect all
votes concerning the given peer. This solution is based on the Kademlia distributed hash table, therefore the
information is distributed to multiple peers, to improve reliability and balance the load between nodes.

Peer A has in the second phase a number of votes, consisting ofmeta data and a binary identifier expressing
whether the voter recommends a transaction with that peer, or not. A description of a vote’s components
can be found in chapter 5.3. The decision of peer A can be basedon these votes. The received data is a
collection of votes, so the peer has to combine all the received data, to form its decision. Other systems
already return a global trust value, already combined. Thissolution, however, allows the peer to form its
decision independently.

A may have no previous experience with peer B, but it might have had interaction with some of the peers,
e.g. D, that expressed their recommendation. If so, it should weight the votes according to the voters previous
performance. The Policy section in the next subchapter willintroduce this decision phase.

If A chooses to interact with peer B, it is able to rate this transaction after it has finished. By rating the
authenticity of the exchanged information, separating an attempt to provide malware from a valid exchange
of information, the peer distinguishes between a positive and a negative outcome. This information has to be
published into the network, by assembling a vote and publishing it to net node, the set of votes was received
from. The details of the publishing are found in 5.5.

In a final step, A is capable of remembering, how helpful the recommendations of the voters have been.
If the outcome matched the recommendations of a voter, an agree value could be increased, otherwise a
disagree value will be updated. More on theseexperience repositorieswill follow in the next subchapter under
“Credentials”.

5.2 Expressing Trust

In chapter 2 it became evident that there are different ways to establish trust, based on sets of credentials and
polices. The basic components used in this work will receiveattention first.

1Here: not known among each other

39

5 Model of a Trust-Aware Solution

Trust Classes Every Trust System is a social network with entities and the relationships between them. In
this model, entities are agents that behave on the actions ofa user. It is the goal of this work to enable them
to base their actions on a trust decision. Chapter 2.4 definedcomponents of trust and also a classification of
trust. In the course of chapter 3 it became evident, that a trust system for P2P ultimate deals withprovision
trust. The assumption that every class of trust is based onidentity trustis also central to this work, as entities
need to be able to identify each other.

Credentials To have a history of an entity’s prior performance, another entity that interacts with it, has to
measure the outcome of this interaction and store it. By publishing this information, a decentralized reputation
system, based on the experiences of its users, can be built, providing trust relations. In figure 5.1 this is
illustrated. An entity A can retrieve credentials, of node B, published at node C. Depending on the credentials
it can interact with B and assign, based on the interaction a new set of credentials to B, that need to be
republished to C. When analyzing the workflow of such an entity, two actions that serve as a sensible basis for
credentials can be identified. Clients actively search and retrieve information. A first credential is therefore the
authenticity of the provided information. In other words: “is the provided data of client X relay what it was
said, that it would be? Is it infected with viri?”. This credential will be calledreputation as download source.
The second important measurement lies in the nature of the reputation system itself. User’s experiences with
other clients should be used, but what happens if they are dishonest? To provide an appropriate measurement
for the voting information a client provides, the second credential will be calledreputation as voter.

A C

B

3. Rating

1. Evaluation

2. Interaction

Figure 5.1: The workflow of a Reputation System. Credentialsof user B are retrieved from a node C to A.
On this basis a trust decision is made. New assigned Credentials, based on the interaction will get
published back to C.

Aggregation of Credentials To collect a set of credentials a number of repositories is needed to record
both good and bad performance of a given node. In the previousparagraph, two measurements for client’s
performance were identified:reputation as download sourceandreputation as voter.In chapter 3.5 it has been
decided to base this trust solution closely on the P2PRep solution bySamarati et al.presented in subchapter
3.3.2. Therefore, the same nomenclature will be used. So thereputation as download sourcerepository is a
set of triplesΨ= (serventid, numplus, numminus), while thereputation as voterrepository will be calledθ=
(serventid, numagree, numdisagree).

40

5.3 Layout of Votes

Policy To form a trust decision the the collected information needsto be evaluated. The evaluation is
done by the policy of the system. While primary research willfocus on developing trust by reputation, the
system is flexible enough to cover a broader spectrum of of trust decisions. In the following, a policy for trust
management based on reputation is presented. In the comclusion another possible policy, which establishes
trust by the usage of a hierarchical structure and adapted credentials, will be sketched.

To keep consistent with the P2PRep approach, the policy is using theaggregation operatorφ : Ψ → {0, 1} that
was already used in the context of subchapter 3.3.2. A forgiving strategy will be selected, that yields a positive
recommendation, even if there has previously been “bad” behaviour, if the number of positive experiences
with a peer is greater or equal to the number of negative ones.If there is no previous interaction, a positive
result is yielded. The value is a public measurement of trustof a voteri into a clientj , which will be call the
global trust valuevij in this work. When publishing this value along with metadatadescribed in subchapter
5.3, it will simply be referred as “vote”. The publisheri will be calledvoter, j will be called subject.

vij = φ(Ψj) =

{

1 : num plus− num minus ≥ 0
0

(5.1)

For consistency reasons, the computation of the “reputation as voter”,φ is defined asφ : θ → {0, 1}. The
number of times the vote matched the experience of the clientmust be greater or equal to the number of times
it did not match the clients experience. The latter is a private value, that measures, whether the votes of a client
j can be trusted; its credibilitycj .

cj = φ(θj) =

{

1 : num agree − num disagree ≥ 0
0

(5.2)

Given these definitions, the global trust relations are limited to a binary attribute. This is expandable and will
not limit future work. For the current scope however it is assumed to be sufficient for most use cases.

It should also be noted, that the aggregation operator isclient dependent.A client may use a forgiving strategy,
as presented in this subchapter. Other clients could be morestrict and vote negative after the first negative
experience (numnegative> 0).

Before describing the publishing of votes in subchapter 5.5, the terminiology needs to be explained. Since this
solution is designed to be a distributed network and these values will be stored on the network, it is convenient
to define a name for a peer that holds the information about peer j. This node will be called thestorage peer
Sj of peerj.

Aggregation of locally Credentials The aggregation ofθ andΨ will be explained in this chapter. Ag-
gregation of credentials happens local on every client. Thecredentialreputation as download sourcewill be
republished, if the value changed. Commonly the better a reputation system is integrated into an application,
the more information can be collected without any user interaction. Automatic collection of reputation infor-
mation could already take place at the block level: existingKademlia clients use hashes to detect corrupted
parts received from the network, so the client can record anduse these exceptions to adjust the trust level
of that peer. Furthermore after a successful transaction the file type could be checked automatically using a
similar approach as in the UNIXfile command. In this solution it is done by the user, who needs to rate
peers directly on the basis of a completed download. If a peeris positively rated, the credibility of the voters
θ could be adjusted automatically, by adjusting thenumagreeandnumdisagreevalues.

5.3 Layout of Votes

The two most obvious elements of votes to enable reliable andsecure operation is a Tuple consisting of the
information needed for reputation sharing and a digital signed hash of this information. By distributing the
information in this form, it is certain that - given the fact that the signature check succeeded - the data has not
been tampered either by a malicious peer or the storage peer itself.

41

5 Model of a Trust-Aware Solution

Furthermore the ID of the subject of the vote needs to be addedto the meta information. As votes may change
over time, it is absolutely necessary to add a timestamp, which prevents malicious peers from sending outdated
information. As the outdated vote would seem valid, there would be no possibility to detect this fraud. These
frauds are called “replay attacks”. Adding the IP address orsimilar data for evaluation votes, as done in
previous work is depreciated by the usage of cryptographic methods. More work on security can be found in
section 6.4. In summary, up a vote is proposed like this:

aj = vj + IDvoter + IDj + time()

vote = aj + encrypt(sha1(aj), private key)

a is a temporary placeholder. The basics of digital signing can be found in chapter 3.1. Note that explicit
knowledge of the voter’s public key is required with this definition. It is not possible for a peer to check the
validity if he does not have the public key of the voter. If thepublic key were included in the vote, it would
open the door for a large scale fraud by the node storing the vote, as it could provide an infinite set of votes,
all signed with bogus keys. This fundamental data structureenables us to store votes, even at untrusted places,
as the data can not be tampered, or replayed. The only fraud that could happen, is that the data gets dropped
by the storage. As Kademlia caches the information onk notes, this is unlikely.

5.4 Mapping Function

Kademlia maps (key,value) pairs to the closest node. A reputation system built on that basis should also store
votes in a similar fashion at a central place. To accomplish this a function is needed, that maps given IDs of
clients to a key. This is needed to identify thestorage peersj that handles the reputation information of peer
j. A constraint is that this function never mapsf(x) = x, or following the nomenclature of that worksj = j.
This means that no client should ever be able to manage votes about himself.

The original Kademlia paper suggests the SHA-1 hash for creating keys of data. This choice is driven by the
need to identify different chunks of data uniquely and needsto be 160 bit wide. This solution could easily rely
on a much simpler function, as a 160 bit key is already presentand only a direct mapping of data needs to be
prevented. Thenot function (¬) will be used bitwise on the subject’s ID. This function doesnot only prevent
direct mapping between ID and storage peer, but also maps to the “most distant” node on the network, in the
xor distance metric. To prove this, look at the definition of xor, with⊕ meaning xor and| meaning not and:

x ⊕ y = (x | (x | y)) | (x | (y | x))

the definition ofnot andis

x | y = (x ∧ y)

and then compute the distance betweenx and¬x

x ⊕ ¬x = (x | (x | ¬x)) | (¬x | (x | ¬x))
= (x | (x ∧ ¬x)) | (¬x | (x ∧ ¬x))
= (x | 1) | (¬x | 1)
= (x ∧ 1) | (¬x ∧ 1)
= ¬x|x
= (¬x ∧ x)
= 1

Given 160 bit identifiers, the distance would be2161 − 1

42

5.5 Publishing a Vote

Since Kademlia identifiers are free to choose, this leaves room for malicious users attacking the system with
clients managing each others reputations, dropping negative votes. But the fact that the system publishes
each informationk times makes this increasingly difficult. A clique detectionalgorithm together with an add
on to the reputation system, described in Section 6.4 shouldminimise that impact even more. Solving this
Kademlia-wide problem is outside the scope of this work.

5.5 Publishing a Vote

The most visible change by adding a reputation system is the ability to “rate” a peer. By presenting the user
the possibility to express his satisfaction about other users, judging if the provided information in terms of viri
or authenticity, the system can updateΨ accordingly, effectively updating its local trust relation to that user.
To update the global information the following steps are required.

To publish a vote, concerning a node ID 0000, the voter 0100 needs to prepare a vote, as described in chapter
5.3. Then it computes the storage peers0000, that handles votes for 0000, as described in the previous chapter.
Similar to the algorithm described in 4.2.5 the set ofk closest nodes tos0000 are computed via aFind Node
command. These nodes will receive aStore command containing the vote. The recipient of this message
will store the vote in a basket associated with 0000 (Figure 5.2). Further action is not required from the
recipient. Error checking or building a mean of all trust values would be insecure and is therefore a duty of the
client. Other clients searching for votes can now retrieve this updated basket.

1

b

1111
b

1110

b

110.

b

10..

0

b

011. b

0101
b

0100

b

001.
b

000.

Store(vote 0100,0000)

Figure 5.2: Node 1111 is contacted by node 0100, to store a vote on 0000 in its associated vote basket

Figure 5.3: The Vote Basket needs to be updated

Due to the fact that votes fluetuate, the author suggests a short republish interval to keep the votes basket up to
date. 60 minutes should be sufficient, the normal republish interval is 5 hours for sources and even 24 hours
for everything else.

43

5 Model of a Trust-Aware Solution

5.6 Retrieval of Votes

Retrieving votes from its associated storage peer involvesthree phases:

Retrieval of Votes After retrieving the ID of a potential download sourcej, the storage peer that holds
the reputation information is computed, which is, in this example,sj = ¬j. The storage peer is found via the
Find Node command. The Network then returns a list of Nodes “close” to the target ID. The fastest found
node will be contacted with aFind Value command. The information is retrieved.

Verification of Votes Phase two is vote verification. A possible solution that was done by P2PRep, is
contacting each voter from the voting basket and validatingthe given vote directly. As this method created
too much traffic on the network while delaying the verification phase, especially on low speed links this
technique was replaced, by using digital signatures. Whilethe notable gain of speed an simplicity may not be
underestimated, once again the need forassymetric cryptographyand a decentralized distributen of public keys
is eminent. Every peer needs to know the public key of peers hewants to interact with. Otherwise a secure
vote verification would not be possible. Fortunately, existing clients already support this for built in credits
systems. This implementation specific part will be touched in the implementation specific part in chapter 6.
The sole existence of this system is not only a good basis for further work but proves this concept as solid.
With the existence of a PKI the retrieval and management of public keys can be transferred to the existing
systems. Therefore, upon receiving a set of reputation information, the integrity of data can be verified by
checking the signature that is contained in the votes. If it yields a positive result, the timestamp of the vote
needs to be checked. If the second check succeeds, the vote isverified and can be further processed.

Decision The appliance of a policy to the collected and verified votes forms the final step before down-
loading. The outcome will decide on the trust relation between both peers, which ranges fromtrust to distrust.
P2PRep presents in its paper different choices to do so. Indeed the selection and implementation is completely
client specific and does not need a global defined algorithm. Afundamental basic approach was choose for
this solution, that can be extended on behalves of special requirements.

The first step of the policy is to combine the collected votes with the credibility repositoryθ defined in chapter
5.2. This process will be calledweighting.Using the aggregation operator every votevij of voteri is multiplied
with its credibilityci. The result of the operationvij ·φ(θi) defines the set of votes that will be used to compute
the trust relation. As both votes and the operatorφ are defined to{0, 1} votes from untrusted sources will be
dropped.

The policy can now decide on the the trust relation, using theweighted averages technique. For this purpose
the votes are summed and divided by the number of votesn, producinggj the global trust value.

gj =

∑n

i=1 vij

n
=

{

≥ 0.5 trust
distrust

(5.3)

If these yield a positive result,j is contacted. Otherwise the search for another download source should be
initialised. It may be argued that the system gets more secure if transactions are carried out only with peers
that have a higher global trust value. We object against this, as peers with no reputation information have to
be treated equal, as this would otherwise bully clients joining the network for the first time.

5.7 Extended Reputation System

In the previous chapter, the basic capabilities have been added to the voting system. To enhance the function-
ality even further, the different subjects that are involved in the process should be reconsidered:

44

5.7 Extended Reputation System

• A trivial subject, when using a reputation system is the peer, that this transaction is about. We may
or may not have had previously interacted with that peer before. After a transaction one can express a
rating and update the local notion of that subject. Then the systems global view of that subject will be
updated.

• When retrieving votes, there will be one or more ratings fromother users. These should be weighted
depending on previous performance. After a transaction,voterscan easily be rated, because it is clear
to which votes the client agreed and which he disagreed. Judging the quality of their votes by adding
previous experiences adds a “history” feature to the algorithm.

• Also, the retrieval of votes is an interesting task. Malicious peers may try to hide their operations by
giving reliable votes and even may carry successful transactions out. But in an attempt to pollute the
voting system it is possible that they play unfair in their role asstorage peer.

By looking at the different subjects involved in the process, another credential was identified: thereputation
as download source. We could identify peers that try to pollute the voting system. While we have tried
to assure a maximum of security for votes, it has already become clear in chapter 5.3 that a node dropping
votes is a flaw that can currently not be handled. A voter could, however, periodically check the nodes, that
previously received aStore command, whether they still return his vote. Furthermore, other clients could
detect malicious storage peers using the cryptographic hashes. Also in this phase the clique detection and
decision techniques from [DdVPS03] are extremely useful. They check the source of a vote for its IP address
and try to resolve the IP range. If all votes come from the samesubnet, a clique is highly probable.

45

6 Prototype Implementation

In this chapter, the integration work that was done to add reputation sharing capabilities to the open source
eMule client, will be introduced. The first subchapter will present the existing architecture of the client, further
subchapters will present the extensions to this architecture and the protocol used by the client. As malicious
users may tend to circumvent protection, trying to attack clients more easily by pretending to be a high trusted
user, the system requires an analysis of security considerations, which will conclude this chapter in subsection
6.4.

6.1 Architecture

The eMule client, which is at the time of writing at version 0.46a, started as an implementation of the EDon-
key2000 protocol in 2002. It has received much attention, asit was the first open source client, that im-
plemented it. While providing compatibility to the alreadyexisting client, it introduced a far number of
improvements. These include a credits based queue system, which will be analyzed in paragraph PKI. It fur-
ther overcame the limitation of the EDonkey network, which is based on central server, by providing a C++
implementation of the Kademlia protocol, based on Maymounkov’s reference implementation in Java. The
subsystem is cleanly separated from the eMule core and encapsulated in a ownKademlia namespace. The
specification in [MM02] is closely followed, although the system is based on 128 bit identifiers, instead of the
proposed 160 bit, as27 is an integer on the basis of two.

The sourcecode of the client including the eDonkey2000 protocol already consists of 428 source and header
files in the code’s top level directory. The Kademlia implementation, found in thekademlia/ subdir adds 48
files. The classes, that were added during this work can be found in the fileskademlia/kademlia/vote
. {cpp,h }, extensions to the source code are distributed across the Kademlia subdirectory. Grapical User
Interface related changes were integrated into files located in the root directory of the source code. The
nomenclature across the sourcecode is unique. Every class is implemented using a source and header file, that
are named using the contained classes name. For example the classCKadUDPListener is implemented in
theUDPListener. {cpp,h } files.

The task of integrating trust management into an existing client requires an understanding of its architecture.
For this purpose, the components shown in figure 6.1 will be described in the following section.

UDPSocket All protocol communication is done via UDP. A transmitted message will be received by the
CClientUDPSocket::OnReceive() callback of the windows API. The client implements both the
EDonkey and Kademlia protocol. If the message starts with a magic number associated with Kademlia, like in
figure 6.2, it will call theCKademlia::ProcessPacket() function, which forwards the request to the
UDPListener instancesCKademliaUDPListener::processPacket() function. As messages may
be compressed, the client might previously decompress the encapsulated data.

TheProcessResponse() function calls appropriate functions on behalf of theOPCODEfield of the pro-
tocol. Valid opcodes includeKADEMLIAPUBLISH REQ or KADEMLIASEARCHREQ. The first of both
opcodes branches into the index service, while the second returns the results of a search. The component is
the central point to send messages via thesendPacket() call.

Routing The routing service, offers all services described in the technical introduction in chapter 4.2. It
adds Nodes to the internal routing bins and returns the IP address of a given contact. It is also the central place
to receive the contact list from the system, via a call togetAllEntries() . All known contacts will be

46

6.1 Architecture

Internet

SearchManager UDPSocket Routing

Index

processPacket()
sendPacket()

getContact()
add()

addKeyword()
addNote()

startSearch()
processResult()

Timer
CKademlia::Process()

User Interface

Contact List

C
S

e
a

rc
h

M
a

n
a

g
e

r:
:ju

m
p

S
ta

rt
()

C
R

o
u

tin
g

Z
o

n
e

::
O

n
B

ig
T

im
e

r(
)

12

6

39

Figure 6.1: The components of the Kademlia implementation in the eMule client

47

6 Prototype Implementation

+-------------------+--------+------+
| OP_KADEMLIAHEADER | OPCODE | DATA |
+-------------------+--------+------+

Figure 6.2: The header and opcode of a Kademlia packet

stored in this list. The graphical user interface of the client uses these functions to display a list of all known
contacts in the upper part of figure 6.14. The complexity of the routing system is hidden behind a simple API,
but unfortunately the search for closest nodes is not cleanly separated from the general query implementation.
Routing messages that are sent across the network to discover thek nearest nodes to a key have the Opcode
set toKADEMLIAREQ replies are identified withKADEMLIARES. To get a better understanding of the
routing elements in a query have a look at the explanations inthe following “Search Manager” and see figure
6.3.

UDPSocket

remainingcontacted

CSearch Object Routing

Contact List

getClosestTo()

processResponse() Search
Manager

processResponse() KADEMLIA_RESclosest

sendPacket(KADEMLIA_SRC_VOTES)

sendPacket(KADEMLIA_REQ)false

true

jumpStart()

tim
el

in
e

Search Target
Search Type

12

6

39

Figure 6.3: The routing part of a search request. A list of close nodes to a target is retrieved and subsequently
contacted. If no closer nodes can be found the algorithm terminates.

Index The clients server capabilities are implemented in the Index subsystem. It provides the storage part of
the distributed hash table. Data identified by its keys is addressed and provided in the internal data structures
of this index. When the client encounters e.g. aKADEMLIAPUBLISH REQ, the index service is contacted
to publish the given data at the given keywords location using a functionaddKeyword(). Currently,
clients can add themselves assourcefor a given key, registerkeywordsor leavenotesassociated with the
corresponding hash key. The data structures used for storing key/value pairs will receive attention in chapter
6.2.

Timer Besides events from the user interface and the UDP based network, a third instance provides events,
that require actions from the system. The timer subsystem periodically checks for various conditions. It
ensures, that both the provided sources, keywords and notesare kept consistent by republishing them on
change or in the defined interval and deletes on its server capabilities key/value pairs that have expired and
have not been republished in time. Various other timers keepthe routing bins up to date using a function
calledCRoutingZone::onBigTimer(). As described in the specification, it is done by sendingPing
messages if entries are near expiration, or delete bins whennodes seem to be down after a given period of time.
It also calls a method in the SearchManager calledjumpStart(), that checks if search results have arrived
and provides them to the associatedCSearch object.

Search Manager Both searches that are initiated by the user - e.g. searchingfor a keyword - and those
by the system, e.g. node lockups, are registered at a centralinstance: the “Search Manager”. This object,
identifies all searches, using the associated hash key they are searching for. This technique enables it to

48

6.1 Architecture

receive packets from the Kademlia UDP listener and forward it to the appropriateCSearch object, while
explicitly preventing simultaneous searches for the same key.

The interface for creating a search inside the SearchManager is the functionprepareLookup(). The
function requires a “search type”, a bool value, that controls if the search should also be started imme-
diately and the search key, as arguments. A new search objectis created and if advised to do so, the
CSearch::go() method is called, which starts the routing part of this query. k nodes closest to the passed
key, will be located by calling the functionCSearch::sendFindValue(). The routing messages,
marked withKADEMLIAREQ will be sent andKADEMLIARES messages will be received. These routing
messages will be passed to theSearchManager::ProcessPacket() function, which forwards them
to CSearch::ProcessPacket() that will contact the returned closer nodes. If no closer nodes can
be found, the routing algorithm terminates and the actual query will be sent to the discovered nodes. These
packets will have an opcode set to the appropriate type of thequery, as described in the previous UDPLis-
tener paragraph. Results for this query will finally be forwarded to the search via theprocessResult()
function. There is also a graphical representation, as seenin the lower part of figure 6.14.

PKI Among the components that were shown in figure 6.2, the used client has already asymetric key cryptog-
raphy and functions to retrieve the public key from another peer, which added additional value to the platform.
In previous chapters, it was analyzed, thatidentity trustis the fundamental basis forProvision Trust. Further-
more subchapter 5.3 explained the use of cryptographic techniques in this solution. This implementation relies
on self signed keys, without the use of a Certificate Authority. Clients exchange keys the first time they make
contact. The current use of these keys is a credit system thatrewards other users: eMule uses a key handshake
method to ensure the authenticity of this user. Users assigncredits to each other, depending on the volume of
the transferred data between them. Credits stored for a userare only granted if this authentication has been
successful.

The strict queue system in eMule is based on the waiting time auser has spent in the queue. The
credit system provides a major modifier to this waiting time by taking the upload and download
between the two clients into consideration. The more a user uploads to a client the faster he
advances in this client’s queue. [Pro06]

The existence of a repository for keys of other users and standardized ways of exchanging keys, allows this im-
plementation to be based on existing services. The client uses the Crypto++ library from
http://www.eskimo.com/˜weidai/cryptlib.html.The library is a C++ interface to various one way hashes, in-
cluding SHA-1, MD2, MD4, MD5 and both symmetric and asymmetric cryptography functions.The
library makes extensive use of templates. The client’s cryptographic functionality is implemented in the
file ClientCredits.h. The algorithm used in the client is the RSASSA-PKCS1-v15 algorithm de-
scribed in RFC2437 [KS98]. The signature standard is therefore PKCS #1, SHA-1 is the chosen hash func-
tion. On startup the client reads the keys from the filecryptkey.dat and stores the private key in a
datastructure calledmpSignkey of typeRSASSAPKCS1v15 SHASigner. The public key is of type
RSASSAPKCS1v15 SHAVerifier and is written in a byte array calledmabyMyPublicKey. If the
keys are not available, a new keypair is created on startup.

For the intended usage of this work, signing and verifying votes, two functions were added to the
ClientCredits class:

Listing 6.1: The function definitions for signing and verifying Votes

uint8 SignBlock(uchar * pachOutput, uint8 nMaxSize,
Kademlia::Vote &t);

bool VerifyBlock(CClientCredits * pTarget,
const uchar * pachSignature, uint8 nInputSize,
Kademlia::Vote &t);

These functions both take as an argument aVote. The functionSignBlock will write a signature of
the passed vote to the temporary bufferpachOutput, not exceedingnMaxSize. It sets up a ran-
dom number generator from the Crypto++ library, serializesthe vote into abyte[] array and calls the
PK Signer::SignMessage function. The PK Signer interface is implemented inside the

49

6 Prototype Implementation

RSASSAPKCS1v15 SHASigner class. The signature will then be stored in the callersupplied buffer.
As it will become clear in the course of this subchapter, the caller will proceed by creating a special kind of
CTag storing the signature and append it to theVote.

The verification of a receivedVote is done in similar fashion. Before callingVerifyBlock, the client
needs to remove the signature from the vote. This is convenient, as the signature was not contained in the
vote block at the time of signing the vote. Both are passed separately to the function. The public key of
the voter is retrieved from hisCClientCredits structure. With this information, a new instance of the
classRSASSAPKCS1v15 SHAVerifier is created. TheVote is written into a temporary buffer and
the functionVerifyMessage is called, which will yield a positive or negative result.

6.2 Integration into the eMule Client

The approaches and solutions used will be presented here. The previous chapter introduced the key compo-
nents, that need to be adapted, when adding the proposed solution. Serving votes requires additions to the
protocol that enable sharing and retrieving of votes and theindex to provide the serving capabilities of votes
and the contacts list, to store the users own experiences with the contact. Furthermore, timers are needed, that
republish the vote information. Finally, a graphical user interface needs to be added. Figure 6.4 reflects the
required changes to the infrastructure.

UDPListener The implementation required four new opcodes. The first two denote a request to pub-
lish votesKADEMLIAPUBVOTESREQand the appropriate reply opcodeKADEMLIAPUBVOTESRES.
The remaining opcodes are used for searching and retrievinga set of votes from a given key are called
KADEMLIASRCVOTESREQ andKADEMLIASRCVOTESRES. TheprocessPacket function of the
classCKademliaUDPListener was extended to branch to four additional created functions:

KADEMLIA_PUB_VOTES_REQ --> processPublishVotesRequest ()
KADEMLIA_PUB_VOTES_RES --> processPublishVotesRespons e()
KADEMLIA_SRC_VOTES_REQ --> processSearchVotesRequest()
KADEMLIA_SRC_VOTES_RES --> processSearchVotesResponse ()

Furthermore a helper function was defined, implementing themapping function from chapter 5.4, that returnes
the binary negative of a given KADCUInt128 identifier. It is call called contactToNode.

Listing 6.2: The definition of the mapping function

CUInt128 contactToNode(CUInt128 &contact);

Experience Repositories and Vote Structure For the implementation of this work, two incarnations
of a vote exist. The first is the direct representation of the repositoriesθ andΨ . The second representation is
the global trust valueφ(Ψ), along with additional information.

To represent both the reputation and the credibility repository a new type of object was designed in the
Kademlia namespace, theExperienceRepos class. This class is designed to provide all functional-
ity the client requires to use and contribute to a reputationsystem. A part of the public interface of the class is
defined as the following:

Listing 6.3: The class ExperienceRepos

class ExperienceRepos
{

friend class CVotePage;

public:
ExperienceRepos(CUInt128 key);

50

6.2 Integration into the eMule Client

Internet

KADEMLIA_PUB_VOTES_REQ
KADEMLIA_SRC_VOTES_REQ

KADEMLIA_PUB_VOTES_RES
KADEMLIA_SRC_VOTES_RES

processSearchVotesReply()
processSearchVotesRequest()

processPublishVotesReply()

UDPSocket Routing

Index

getContact()
add()

Timer

Contact List

Client’s Votes Storage

Client

CKademlia::Process()

m_nextVoteCleanAndUpdate

CContact::PublishVotes()
CContact::ReoveOtherVotes()

CIndex::Clean()

sendPacket()
processPacket()

SendValidVotesReply()
AddVotes()

Other Votes Storage

User Interface

User

Kademlia::reputationSearch()
Kademlia::VoteClient()

update/retrieve reputaion
information

processPublishVotesRequest()

addOtherVote()
getMyVote()
setMyVote()

12

6

39

Figure 6.4: An extended architecture, allowing reputationsharing

51

6 Prototype Implementation

˜ExperienceRepos();

uint8 getReputation();
uint8 getCredibility();
uint8 getVoteSourceRep();

void alterReputation(uint8 how);
void alterCredibility(uint8 how);
void alterVoteSourceRep(uint8 how);

bool isValid();
bool isModified();
Vote &getVote();

protected:
uint8 getReputationRep(uint8 &pos, uint8 &neg);
uint8 getCredibilityRep(uint8 &pos, uint8 &neg);
uint8 getVoteSourceRep(uint8 &pos, uint8 &neg);

uint8 setReputationRep(uint8 pos, uint8 neg);
uint8 setCredibilityRep(uint8 pos, uint8 neg);
uint8 setVoteSourceRep(uint8 pos, uint8 neg);

private:
uint8 getGlobalTrustValue(uint8 pos, uint8 neg);

};

The class is implemented as described in the previous chapters. Repositories of positive and negative perfor-
mance can be accessed by its public interface. The calls togetReputationRep() and similar functions
return the positive and negative baskets, while thesetReputationRep() class of functions overwrites
them. These functions can only be called from a specially authorizedfriend class. Currently, only one
friend class, that is tied to the graphical user interface, described in chapter 6.3, may access these functions,
theCVotePage class.

To retrieve the previously describedglobal trust value,a set of functions are provided, starting with CKadem-
liaUDPListenergetRepuation() that return a eigth bit integer. These functions currently call all the
privategetGlobalTrustValue() function, that computes its result on behalf of the policy defined in
chapter 5.2. As it has been decided in the current implementation, only zero, for a negative recomondation, or
one, for a positive recommondation, is returned, which could easily be extended.

By providing this critical functionality encapsulated in asingle class, a client that wants to alter the behavior of
the system, just needs to subclass and overwrite specific methods. To alter the behavior of every trust decision,
the function that returns the global trust value could be overridden, for finer grained access, the repository
specific functions, likegetCredibility() could be altered.

The functiongetVote() needs some explanation. The signature returns a reference to a data structure
calledVote which is also called aTagList . It stores the global trust value, along with the required meta
data, as described in subchapter 5.3.

The classTagList is a list from the standard template library, whose elementsare of typeCTag. This
abstract class is used in the client to store data of a defined type and identified by a name. Commonly,
every kind of published data in theIndex subsystem is available in this form. For easier management of
these lists, a classCEntry is available, which provides searching facilities, along with records of the IP
address, the source port and the ID of the client that transmitted the data. TagLists can easily be serialized1

to a binary representation, that can be stored in a file, or transmitted over the network, using simple APIs
provided by the client. The available datatypes can be extended by subclassing theCTag class. Types include

1For the serialized representation of a TagList, proceed to subchapter 6.2.1

52

6.2 Integration into the eMule Client

strings, integers, or bytes. The widespread use and the simplicity made us choose to implement the second
representation of votes in this form.

For an example on how to use tags, the following will define a tag needed for reputation sharing and storing
the global trust valueφ(Ψ). In subchapter 5.2 it was agreed upon, that mapping it to an eigth bit integer
is more than sufficient, for it currently has only two states.TheCTagUInt8 subclass is therefore chosen.
Furthermore a name is needed to identify the stored data.TAGREPUTATIONwas chosen as identifier. To
access a received global trust value, a list can be scanned for this identifier. A figure might help to explain the
relation between tags and entries.

CTagString

length

TAG_TITLE

VALUE

CTagUint128

TAG_VOTER

VALUE

CTagUint8

TAG_REP

VALUE

CEntry

GetIntTagValue()

GetStringValue()

GetUInt128Value()

TagList taglist

Figure 6.5: A CEntry is a datastructure, facilitating the access to a TagList

Besides a tag for reputation values a set of additional tags was defined, to comply with the requirements for
votes from subchapter 5.3. The complete set of tags is:

TAG_REPUTATION
TAG_CREDIBILITY
TAG_VOTESOURCE
TAG_TIME
TAG_SIGNEDTUPLE
TAG_VOTER
TAG_VOTED

The values of the tags are eigth bit integers for the measurements of performance, 32 bit for timestamps and
128 bit integers for the IDs. The SIGNEDTUPLE represents thedigital signature, which is abyte[] value.

Contact List After becoming clear on the representation of a vote, an association between theCContact
class and the trust data was made by adding methods and attributes to the class.

Listing 6.4: Functions, added to theCContact class

bool PublishVotes();
bool RemoveOtherVotes();

void ScheduleOtherVotesRemoval();

ExpiriencesRepos * getMyVote();
void setMyVote(ExperienceRepos * x);

void addOtherVote(Kademlia::CEntry * pEntry);
const VoteList& getOtherVotes();
uint8 getOthersTrust()

VoteList m_OtherVotes;
time_t m_lastPublishTimeKadVotes;
time_t m_removeOtherVotesBasket;

Both of the first two functions, are needed for the timer interface described in the next paragraph. The
{get,set }MyVote() functions return the associated trust repositories that were described in the previous

53

6 Prototype Implementation

chapter. If a reputation search was initiated via the Kademlia wide global functionreputationSearch()
the processing of incoming results will add received votes via theaddOtherVote() function. Once again,
an object of typeCEntry, which facilitates the processing of the containedTagList, is passed.
To retrieve all currently known votes a list ofCEntrys can be retrieved by callinggetOtherVotes().
The time t variables are used to monitor the expiry of votes. After publishing a vote, the timer
mlastPublishTimeKadVotes is set appropriately and is accessed in thePublishVotes() func-
tion, to determine, if the published votes need to be refreshed. In that case the function will returntrue, as
illustrated in figure 6.6

False True

m_lastPublishTimeKadVotes
m_Vote

CContact

PublishVotes()

m_Vote−>isModified()

m_Vote−>isValid()
m_lastPublish
TimeKadVotes

<= time()

Figure 6.6: The callgraph ofPublishVotes()

The second timer monitors the age of received votes. These will automatically expired, to ensure that only
valid votes will be used as base of a trust decision, via the functionScheduleOtherVotesRemoval() .
The timeframe of this decision was set to be 15 minutes.

#define KADEMLIARVOTEXPIRY MIN2S(15)

After this interval the votes need to be received again from the storage peer. This timeframe was chosen, to
allow a “cached” trust decision in the case of subsequent transfers with a peer, while still ensuring an up to
date trust decision.

To compute the trust decision, another function is providedwhich analyzes and weights all votes according to
the global credibility values each voter is assigned. As described in 5.6, the functiongetOthersTrust()
comes up with a trust recommendation, based on the public available information.

Timer An additional timer is needed for the implementation that expires, votes from the Index and prevents
client’s own votes from expiring, from the global index, by republishing them. As previously described the
main timer routine isCKademlia::Process(). For this purpose another timestamp was introduced,
with the signaturetime t CKademlia::m nextVoteCleanAndUpdate. that is checked in inter-
vals ofKADEMLIAREPUBLISHTIMEV.

#define KADEMLIAREPUBLISHTIMEV HR2S(1) //1 hour

That timer loops through the list of contacts, by calling appropriate functions of the routing subsystem. Each
contact is asked toPublishVotes(), which was already described. It further cleans up the received
votes of other uses, that have been cached by a previous reputation search. Then the next contact is checked.

54

6.2 Integration into the eMule Client

The index subsystem is contacted via theCIndexed::clean() function, which expires votes, that were
explicitly published at this node.

The timer runs in an interval defined by theRECVOTESDELETE variable, which is set at compile time of
20 seconds.

Index In figure 5.3, this part of the index system was already sketched. A set of so called baskets, one for
every voted subject, stored on the node, should hold a list ofvoters for that subject. Instead of a list, a set of
hash tables are used in the system calledSrcHash , that use voters ID as key, providing a pointer to aCEntry
representing the data. To be able to quickly retrieve the voters hash table associated with a vote subject all
hash lists are added to astd::map derived data structure.

Listing 6.5: The data structure storing votes

CMap<CCKey,const CCKey&,SrcHash * ,SrcHash * > m_VotesMap;

This map stores the¬ IDs of the subjects of the votes as keys and returns references to the previously described
hash tables containing their votes. Figure 6.7 reflects these changes.

Voter 1011

Vote: 1
Date: 20050401
Signature: XXX

Signature: XXX
Date: 20050301
Vote: 0

Voter 0100

Signature: XXX
Date: 20050301
Vote: 0

Voter 0100

SrcHash Sourcem_VotesMap

Index

Figure 6.7: Data structures involved in the implementationof Vote Baskets

To add votes to the index, the data set is manipulated via theAddVotes() method. This method is called
from the UDPListener in response to aKADEMLIAPUBVOTESREQ. Before adding the received data to
the list, the function will check the distance between the node’s own ID and the key, to prevent storing values
at wrong locations in the distributed hash table. It will also require a creation time encapsulated in the vote,
which is used to check if the vote is still valid. This prevents replay attacks, as they will be described in
subchapter 6.4.

When the data has been validated, themVotes map is queried for the given key. In the trivial case, the query
yields no result and a newSrcHash is added to the map, containing only oneSource entry, identified by
the given voters key. If the map returns an existing hash table, but the voter is not already contained, a new
Source data structure is allocated. The object references theCEntry containing the actual vote and then
added to the hash using the ID of the voter as key. If both already exist, the vote is considered to be more
recent than the previous vote, which is ensured by checking both TAGTIME tags. If the vote is more recent
the previous version is discarded and replaced by the newer data. If for some reason a older vote was received,
almost certainly some kind of fraud was detected.

To return a set of votes to a given key, the functionSendValidVoteResult is provided. If a lookup in
the map yields a hash table, a packet containing all available votes is constructed and sent to the query issuer.
The detailed assembly of these packets will receive attention in the protocol description in the next subchapter.

As a termination of the program would otherwise remove the indexed votes, a filevote index.dat is
written on program termination in the destructorCIndex:: ∼CIndex , storing votes permanently on disk.
On startup thereadFile() method reads them back into memory, by adding them via theAddVotes()
method, that ensures the validity of the vote, by checking the TAGTIME of the vote. So no outdated votes
will be distributed to clients.

55

6 Prototype Implementation

Searches The search API of the client is generic, so that no changes arerequired to the core system it-
self. The remaining task in this subsystem was to add two new search types that allow a specific process-
ing of results, on search termination. The typesVOTES andSTOREVOTESwere added in the namespace
CKademlia::CSearch. When receiving a query, the type of the search is checked for these additions.
If a search with typeSTOREVOTESterminates, no further action is required, as this means that a vote has
successfully been published. If results for a votes query are received, they need to be checked for validity and
added to the appropriateCContact structure, by calling theaddOtherVotes() function of the object.
This function will search for the voter in the internalmotherVotes data structure. If an entry is found, it
is assumed, to be outdated and is deleted, after the proposedvote has been verified. If a dialog, that displays
the key’s reputation information, is currently open, it is informed of the addition of data.

6.2.1 Protocol Description

There have been four additions to the already implemented protocol. Their binary representation and the
further processing will be introduces in the following.

CTags CTags were chosen to represent votes inside the clients. Fortransmission purposes these need to be
serialized. Therefore, we will start with the binary representation of CTags in figure 6.8, to be able to describe
them in the rest of the subchapter using their name attribute. A TagList will be serialized in the same way, but
the packet will be preceded by the number of tags, that will besent.

+------+--------------+------+---------------+----- -+
| Type | LENGTH(NAME) | NAME | LENGTH(DATA) | DATA |
+------+--------------+------+---------------+----- -+

Figure 6.8: Serialisation of a CTag

Retrieval of Votes Normally a search for votes is initiated on behalf of the user. This high level function-
ality is provided by therepuationSearch function, defined in thevote.h header file. This function
creates aCSearch object and sets its type to VOTES. Using thecontactToNode() function it computes
and sets the search key. If no other query for the key is currently active, the call toSearchManager::startSearch()
succeeds, otherwise an alert informs the user about the running search, asking him to repeat the query later.
The search object will first try to locate the storage peers nearest to the key. As previously described,
KADEMLIAREQ packets are sent for this purpose. When this routing phase succeedes, the closest nodes
are contacted withKADEMLIASRCVOTESREQ packets, containing the search key and the queries own ID.
The packet will look like figure 6.9.

+---------------------+------------------------+--- -------+----------+
| OP_KADEMLIAHEADER | KADEMLIA_PUB_VOTES_RES | TARGET | SOURCE |
+---------------------+------------------------+--- -------+----------+
| | | | |
0 8 16 32 48

Figure 6.9: The elements of a search votes request

On the server side a storage peer will receive the packet in the UDPListener and branch into the function
processSearchVotesRequest(). It will extract the queried key and the source of the query. Then
it will contact the index subsystem by callingSendValidVoteResult() along with the source and the
search key as parameters. As described in the previous paragraph, the the index will look up the key in
the datastructuremVotes map. If no results are found the algorithm terminates and no response packet

56

6.2 Integration into the eMule Client

is produced. Otherwise it iterates over all elements in the hash map and produce packets with 50 votes at
maximum. Figure 6.10 illustrates these packets.

+-------------------+------------------------+----- ---+-------+---------+
| OP_KADEMLIAHEADER | KADEMLIA_SRC_VOTES_RES | TARGET | COUNT | VOTER |
+-------------------+------------------------+----- ---+-------+---------+
| | | | | |
0 8 16 32 34 50

+---------+
| TAGLIST | * COUNT Times
+---------+

Figure 6.10: Elements of a search votes reply

When the client, that inited the query receives this packet it will pass it to theSearchManager::
processResult() function. Using the search key, the search object that sent the query is located and
the packet is further passed via theCSearch::processResult() function. Using the objects search
type, that was set when creating theCSearch object the function callsprocessResultVotes() to
complete the processing.

This function, calls addOtherVotes() to add each received vote to theCContact structure. It further no-
tifies an open Votes dialog of the new arrived data, by callingCContact::UpdatedData(). This
triggers a UM DATACHANGEDnotification, to be sent if a dialog displaying the reputation of this client
is open. This will be discussed in detail in subchapter 6.3.

contains(Vote)
m_OtherVotes−>

Find Voters CContact *

m_OtherVotes.AddHead(pEntry)

FindClientByUserHash()

validateSignature() vote−>remove(TAG_SIGNEDTUPLE)

FAILED

addOtherVote(Vote)

Remove old Vote

vo
te

−
>

g
e

t(
T

A
G

_
B

U
D

D
Y

H
A

S
H

)

Figure 6.11: A callgraph of the addOtherVotes() function

Publishing of Votes The process of publishing a vote is initiated by the timer subsystem, described in
the previous subchapter. If a republish interval is hit, or votes changed previously, thePublishVotes()
function will return true. The Kademlia::CSearchManager::prepareLookup function, will

57

6 Prototype Implementation

be called, to instantiate aCSearch object, setting the search type toSTOREVOTES.The search subsystem
will go through all steps described previously, calling therouting subsystem, in order to retrieve the closest
known nodes, contacting them for closer nodes. If no closer nodes could be found, theVote::getVote()
function will be invoked, returning the signed vote. This will be sent to allk clients, that were found to be the
closest nodes. The packet will include all fields, found in figure 6.12.

+---------------------+------------------------+--- -------+----------+
| OP_KADEMLIAHEADER | KADEMLIA_PUB_VOTES_REQ | TARGET | SOURCE |
+---------------------+------------------------+--- -------+----------+
| | | | |
0 8 16 32 48

+----------------+-----------+-----------+--------- -+----------------+
| TAG_REPUTATION | TAG_VOTER | TAG_VOTED | TAG_TIME | TAG_SIGNETUPLE |
+----------------+-----------+-----------+--------- -+----------------+
|
49

Figure 6.12: The elements of a publish votes request

A limitation of the eMule client forced us to include anotherelement in the protocol, not included in the
above figure. Since the client supports both the Kademlia andthe eDonkey2000 protocol, the implementation
requires a given eDonkey user ID to identify the stored public key of a client. After discussing the details
of searching the complete list of public keys, it was decided, that the eDonkey ID, calledbuddy hashwill be
included in the vote for practical reasons. This hash is contained in theTAGBUDDYHASHtag of the vote and
can safely be removed from the system after the programming interface has been changed accordingly.

The storage peers will reply to the received packet with a packet containing an opcode set to
KADEMLIAPUBVOTESRES. This packet has attached load parameter that expresses howmuch data is
already published at this node. Nodes will only publish a fixed amount of data. To make the network aware of
this possible overload, a load parameter is returned after every publish request.

+---------------------+------------------------+--- -------+-------+
| OP_KADEMLIAHEADER | KADEMLIA_SRC_VOTES_REQ | TARGET | LOAD |
+---------------------+------------------------+--- -------+-------+
| | | | |
0 8 16 32 33

Figure 6.13: The reply to a publish votes request

6.3 User Interface

The actual user interface, that can be used to express trust in the credentials of another clients is implemented
as a “Tab” page in a Dialog. This implementation was chosen over a single dialog, as this addition should
remain extensible via different “snap ins”. It was Incorporated into the Kademlia section of the eMule client,
using a new created context menu, that is illustrated in figure 6.14 on page 59.

The dialog itself shows up when a contact is selected in the Contact list in the Kademlia window and the “View
reputation of this user” entry of the context menu is selected. Figure figure 6.15 shows the resulting window.
It is divided into two sections. The first is entitled “Your vote”. This contains the experience repositories of
the user, with this contact. The lower half of the dialog is called “Other User’s Votes” and presents a list of
votes.

58

6.3 User Interface

Figure 6.14: The Kademlia Window of eMule

59

6 Prototype Implementation

In the experience repository section, users can express their trust in other users, by setting a positive negative
ratio. Two editboxes, with associated spinboxes allow to manipulate the positive experiences, which are altered
in the left box and the negative side, which is the right box. Next to the boxes, every line contains a trust
recommendation. In the reputation line, the text can read “This client is trusted” and “This client is not
trusted”, dynamically updated on the decision of thegetReputation() function. If one of these values is
altered and these changes are accepted by pressing the “Apply” or “OK” button, the vote is set to a “modified”
state and will be republished on the next iteration of the timer subsystem, which checks every vote for being
modified.

The list in the lower section of the dialog is set up using theTAGREPUTATION, TAGVOTER and
TAGVOTESOURCEdata that is provided with votes. The list only shows currently cached votes. How-
ever, using the “Search KAD” button, a new reputation searchis initiated. If results arrive while the dialog is
open, the list is dynamically updated with the received votes. Below of the list of votes, another text label sums
up the recommendations given by other users. It can be set to “Other Users recommend to trust this user” or
the expression of distrust. On an update of the list, this text label will be computed again.

Implementation The user interface was designed using the guidelines and examples given by the eMule
source code. The client uses theMicrosoft Foundation Classes (MFC),so all graphical user interface work
was done accordingly.

The first task was to decide where to integrate a trust management user interface. As the Kademlia system,
has an own window in the eMule client, that currently displays a list of all known contacts and active queries,
it was chosen to add context menu to the contact entries.

Figure 6.15: The new created vote dialog

The implementation of the dialog was done in similar fashion. Every control in the MFC is associated with
a name, that can be chosen in the graphical user interface designed ofVisual Studio. This dialog was named
IDD VOTEDIAG, which has to be passed to the constructor of the base classCResizablePage . Using this
identifier the Windows runtime can load the dialog from the description in the resource fileemule.rc and
display it.

Every element in the User Interface is also associated with an arbitrary identifier. In the Microsoft Foundation
Classes there are two possible ways to access these. The firstis to directly access the element by calling a
function inherited from the parent class, calledGetDlgItem(). Passing the name of the desired control,

60

6.3 User Interface

the runtime returns the associated object. The object representing the list, that shows the votes of clients is e.g.
created with the following call:

Listing 6.6: Microsoft Foundation Classes supply functions to retieve pointers to GUI elements

CListCtrl * pList = (CListCtrl *)GetDlgItem(IDC_LIST);

This method is sensible for getting pointers to GUI objects.The second way is suited to keep local variables
consistent with the displayed data is calledDirect Data Exchange (DDX).This technique is provided by the
windows runtime. To use the DDX feature, a method must implement theDoDataExchange method,
which specifies a mapping of GUI item names to local variable names. Macros for mapping controls to objects
DDXCONTROLandDDXTEXT, mapping text to variables were used in the following example:

Listing 6.7: An example for Direct Data Exchange

//Map first negative spinbox to control
DDX_Control(pDX, IDC_SPIN_N1, m_repSpinNeg);

//Map contence of edit box to variable
DDX_Text(pDX, IDC_REP_EDT, m_RepVotPos);

DDX is automatically invoked by the windows runtime, however, if needed, the functionUpdateData() is
provided, for manual invocation.

For the user interface to work, the last action taken is the declaration of aMessage Map.A message map
is a central component of the Windows Operating System. Interprocess Communication (IPC) is done using
messages. Drivers ofHuman Interface Devicesgenerate events, that are sent to the central windows message
queue. This queue is periodically checked for new data. If a new message arrives it locates the current
active window and inserts the message in the message queue ofthe GUI thread. There are predefined actions
depending on the type of the message. When providing a user interface, it is sensible to overwrite some of the
standard handlers. This is done by overwriting parts of the standardMessage Map.

The user interface presented in this subchapter is not very complex, but needs to react on some messages to
ensure the validity of the entered data, or to react on changes in the trust values. The following is an export of
the used map.

Listing 6.8: The Message Map of the vote dialog

BEGIN_MESSAGE_MAP(CVotePage, CResizablePage)
ON_WM_DESTROY()

ON_MESSAGE(UM_DATA_CHANGED, OnDataChanged)
ON_EN_CHANGE(IDC_DLVOT_EDT, OnEnChangeEdt)
ON_EN_CHANGE(IDC_DLVOT_EDT_N, OnEnChangeEdt)
ON_EN_CHANGE(IDC_CRED_EDT, OnEnChangeEdt)
ON_EN_CHANGE(IDC_CRED_EDT_N, OnEnChangeEdt)
ON_EN_CHANGE(IDC_REP_EDT, OnEnChangeEdt)
ON_EN_CHANGE(IDC_REP_EDT_N, OnEnChangeEdt)
ON_BN_CLICKED(IDC_KADBUTTON, OnBnClickedKadbutton)
ON_NOTIFY(UDN_DELTAPOS, IDC_SPIN_P1, OnDeltaposSpinP1)
...

END_MESSAGE_MAP()

The first messageUMDATACHANGEDis a IPC message, similar to a signal from the UNIX environments.
The message was defined in the fileUserMsgs.h and is used for notifying windows about an event. The
message is sent from search objects, if votes on the currently displayed client were found. In response to this
message the functionOnDataChanged() calls UpdateList(), redisplaying the list of votes and the
recommendation information on the bottom of the dialog.

ONEN CHANGE() is a notification of changed controls. The listed controls are the input boxes that represent
the experience repository. Their associated function manually calls the DDX functions, to update the local

61

6 Prototype Implementation

CVotePage+m_repSpinPos:CSpinButtonCtrl+m_credSpinPos:CSpinButtonCtrl+m_votSpinPos:CSpinButtonCtrl+m_repSpinNeg:CSpinButtonCtrl+m_credSpinNeg:CSpinButtonCtrl+m_votSpinNeg:CSpinButtonCtrl+m_repInputPos:CEdit+m_credInputPos:CEdit+m_votInputPos:CEdit+m_repInputNeg:CEdit+m_credInputNeg:CEdit+m_votInputNeg:CEdit+m_RepVotPos:uint8+m_CredVotPos:uint8+m_DlVotPos:uint8+m_RepVotNeg:uint8+m_CredVotNeg:uint8+m_DlVotNeg:uint8#m_strCaption:CString'm_ID:Kademlia.CUInt128'c:Kademlia::CContact*+CVotePage()+~CVotePage()+SetClients(_c:Kademlia::CContact*)+SetClients(paClients:constCSimpleArray<CObject*>*)#Localize()#RefreshData()#UpdateTitle()#UpdateList()#UpdateTexts()#OnInitDialog():BOOL#DoDataExchange(pDX:CDataExchange*)#OnTimer(nIDEvent:UINT)#OnDestroy()#OnDataChanged(:WPARAM,:LPARAM)#OnSetActive():BOOL#OnApply():BOOL+OnEnChangeEdt()+OnBnClickedKadbutton()+OnDeltaposSpinP1(pNMHDR:NMHDR*,pResult:LRESULT*)+OnDeltaposSpinP2(pNMHDR:NMHDR*,pResult:LRESULT*)+OnDeltaposSpinP3(pNMHDR:NMHDR*,pResult:LRESULT*)+OnDeltaposSpinN1(pNMHDR:NMHDR*,pResult:LRESULT*)+OnDeltaposSpinN2(pNMHDR:NMHDR*,pResult:LRESULT*)+OnDeltaposSpinN3(pNMHDR:NMHDR*,pResult:LRESULT*)
Figure 6.16: The class implementing the vote dialog

62

6.4 Security Considerations

variables to the entered results. After data is consistent,the interface reflects the updated global trust value by
refreshing the appropriate messages via the functionUpdateText() .

The click handler connects theIDC KADBUTTONwith the functionOnBnClickedKadbutton . This
function’s purpose is to call thereputationSearch() with the classesmID property. Various
ONNOTIFY functions follow. They connect the SpinButtons to their associated edit fields.

Most previously mentioned functions will be called in theOnInitDialog() method of the class. It sets
up variables by manually invoking DDX, sets up the lists calling UpdateLists() , editboxes and text labels
via a call toUpdateText() .

6.4 Security Considerations

This subchapter will try to come up with common attacks to this reputation system and its possibilities to resist
these attacks.

For an introduction the features that are considered to enhance the security of this system will briefly be
summed up. The basic design of Kademlia comes with a feature rich caching mechanism. While this was
designed to enhance the robustness and scalability of the network it serves also as a mechanism to circumvent
malicious clients. As it is not certain that every client hits a malicious user, the impact the fraud could have
on the network is limited. Cryptographic methods are used toprotect data, which eliminates the possibility
of “tampering” values. The data itself includes the publisher and a timestamp, disabling the possibility to
return valid but not updated votes. Clients have already built in features of a simple private key infrastructure.
Possible false votes and bogus storage peers are measured within the client.

Client IDs are currently freely choosen. Therefore, impersonation is a problem. This problem, is however,
considered structural and out of the scope of this work. The problem can be solved in various ways ranging
from a registration process for users, or adding an authentication layer in the protocol basing on cryptographic
information. This work relies on cryptographic information to secure its information. This spots the possibility
for an attack by circumventing the caching feature.

Information is published to thek closest host of a network. An attacker could insert that number of hosts
into the network providing the nearest matching clients himself. The client will hit a bogus client and retrieve
malicious reputation information that could influence its reputation decision. Looking at the positives the
client could hit a dynamical created cache on the network notunder control of these peers. Furthermore a
list of clients, that misuse their storage peer position is used. If the client is blacklisted already another client
could be connected, or if all caches are blacklisted try to work on the data given by the peer. This data can
be tampered in multiple ways. A first step is to match the list of voters against the clients own “reputation of
voters” list. This could filter some of the worst voters. Withthe help of this list one could also gain knowledge
about which peer should be “advertised” to the client. Therefore, one could decide not to use this peer. A
common technique is “clique detection” that could be used when there is no previous knowledge on voters.
We therefore refer to [DdVPS03]. Analyzing the data in that way could also help to detect the “pushed” client.
If after applying these techniques, it is not possible to come to a decision, the network is under an attack and
therefore no transaction with unknown clients should be carried out at all. Even if the reputation system is in
that scenario not able to assist the users decision it can make the user aware of a high risk of transactions and
warn him to handle transactions with extreme care. Therefore, such a system will not be totally useless even
under worst case scenario.

Another possible problem that springs to mind when automatically receiving public keys from other hosts for
verification purposes is the following scenario. Letb be a malicious client that tries to denial of service the
network by creating an enormous traffic. This could be accomplished by exploiting the need to collect public
keys from unknown hosts. While we agreed to see this capability as “built in” it is a problem. Ifb would be the
storage peerof a clientc and a clienta would try to collect reputation information aboutc, bcould produce a
large number of votes from potentially unknown - or even nonexistent - clients.a would need to contact every
peer listed in the data set given byb to retrieve the public key. This would create a lot of load allover the
network.

63

6 Prototype Implementation

There are several possible “workarounds” for this problem.The first is to limit the number of entries to a
constant value. The client would only request a certain amount of votes. While this would limit the impact of
this fraud it would certainly harm the reputation system, asit is open to thestorage peerwhich votes to return
as result.

Sybil Attacks In subchapter 3.4 a technique called the “Sybil” attack was analyzed. The author claims
that a network will always be vulnerable, as long as an attacker can create multiple identities. Most systems
are indeed vulnerable to this treat, but the impact of these attacks is overestimated. The already presented
trust implementation ofSamarati[DdVPS03] and this work share a common ground in the handlingit. Both
solutions require every “personality” to have a unique IP address. An attacker therefore needs to hold enough
resources, to fool the system, which raises the barrier for asuccessfull attack immense.

64

7 Discussion

In the course of this work, we succeeded in creating a scalable distributed system for reputation sharing and
thus created a trust system. We serveprovision trustin the hope to raise the level of security on distributed
networks by applying methods taken from real life. For building an abstraction, that closely resembles reality,
a short survey of the sociological surroundings of trust wasmade. Furthermore, a variety of approaches on the
topic of trust were taken into account and analyzed on the basis of current research on trust.

Initially, cryptographic solutions were presented, providing identity trust,which was identified to be the basis
for all further trust research. Central reputation systemswere then analyzed to get an overview of current re-
search on trust metrics, policies and credentials. These were superseded by the distributed reputation systems,
which were presented in the form of the Gnutella based systemP2PRep bySamarati et al.

We started from the P2PRep system and tried to remain compatibility with the given semantics. The adaption
the the Kademlia architecture, however, changed the underlying system dramatically. P2PRep relied on the
Gnutella Protocol, which does not employ any kind of distributed hash table. Our architectureis DHT based
and we therefore had to make different adaptions.

P2PRep did not use any kind of centralized storage therefore, the polling phase would create an enormous
network overhead for every request. Our architecture solves this by usingk central nodes per voted clients,
that collect all votes, that should be included in a poll reply. The costs for just one run of the poll are equal
in terms of messages, as all peers need to push their poll to the collecting node, but on a second poll only a
request and its response are transmitted.

Moreover, the problem of the limited horizon is solved with the chosen topology. All clients send their votes
to a set of nodes, that collect them in order to be able to servevotes to a requester. The horizon itself is an
interesting question as well: a central storage concept provides an easy way to pollute the public measurement
of trust by adding bad votes. Instead of trying to get into theneighborhood of the attacked client, as in
the Gnutella system, the attacker can create a large set of votes and publish it to the responsible client. In
other words the attacker does no longer need to be “near” the attacked client. However, as every major
P2P architecture, including the Gnutella network, switches to distributed hash tables and attack scenarios are
possible in both models, this is not seen as a critical downside of our approach.

With the new scalable search algorithm, serving inlogn requests, withn as number of nodes in the network,
we created a scalable alternative, even when running on a large scale network. Recall, that the number of
neighbours in the Gnutella network is up to 10. In contrast, in order to search a network with 60 000 000
nodes the search algorithm takes 7,778 hops, to find the responsible node.

P2PRep uses, in contrast to our work, even encryption of all data. Our work does not require this, as we rely
on the integrity and authenticity features of the encryption solution. We do not use the privacy feature, because
of different network topologies. In P2PRep a client encrypts the date of hisPollReply with a public key,
that is provided by thePoll message. The reply will then be routed back to the poller via all nodes between
the responding and polling node. A malicious node that should route the packet, could decide to drop the
packet if the contained vote does not suit its needs. Therefore traffic is hidden from all clients between start
and endpoint of the route. In Kademlia, however, there is only direct connection between a poller and the node
storing votes. This is why a privacy feature is not needed.

Of course during this period, we faced a number of problems, which will be described in the following.
Most of our considerations were driven by the overhead such anetwork employs, when coming to a trust

65

7 Discussion

decision. We believe, that a large scale adaption is only possible, if the footprint in number of messages is
small. As previously described, we needed to make adaptionsto the P2PRep systems to reflect our needs. We
chose to include no optional verification phase for votes, asthe digital signature proves, the integrity of votes.
Furthermore, the node storing the votes already checks for the IP address of the voter. If a voter tries to leave
a vote for an IP address that does not match his own, he will be blocked.

It has also been discussed, to include the public key of the voter in the vote, to avoid, the already mentioned
need for exchanging public keys. This was drawn down due to the fact that it would be possible for the
node, that is storing votes, to execute large scale frauds. It was chosen, to rely on the public key signature,
which protects the system from this treat, but requires a number of message exchanges. This decision added
flexibility and even security to our work. By using the PKI of the eMule client users bound their reputation
to the built in credits system of eMule. A user could not abandon its Kademlia ID - and so his bad reputation
- easily, as he would also lose the associated credits, that effectively identify his rank in other clients waiting
queues. But other solutions are possible as well. Further keys retrieved from existing PKIs, as the web of trust,
or public key servers could add a better foundation of trust to existing solutions.

Another interesting feature would have been the publication of the reputation as voter. By retrieving the
attributes separately, a more elaborate policy would have been possible, with more fine grained control over
the mechanisms leading to trust relations could have evolved. We chose to not include this feature, as it would
have involved anotherk n messages forn voters, to different storage nodes. For enabling more control over
relations we talk in the next chapter about the concept of risk, which will enable some of these benefits.

Further problems were implementation specific. As Microsoft migrates its compiler to become fully ISO C99
standard compatible, there were issues with the compilation and runtime of the program, that needed to be
addressed. The code quality of parts of the eMule source did not allow us any deeper integration into the
system. At last, the testing of the provided features neededsome additions to the code base, as we found no
default ways to debug a large scale distributed system locally.

66

8 Conclusion

With this work, we have created an established basis for further research in all main directions of trust research.
While the presented trust solution is both scalable, secureand fully decentral, further research could extend
the system in some areas. We want to give some pointers in the chapter.

Integration One problem that could easily addressed is finding more credentials. Both automated as half
automated credentials would provide a set of additional information, that could be used to define tighter trust
policies. These would include measurements of speed, registered port scans from other nodes or manual
interactions with the peer, like whether a chat between bothusers had been initiated previously. By using more
and more provided data, techniques from common intrusion detection systems like snort1 or their information
could be used. This would also serve as a testbed for data mining techniques in the surrounding of computer
science.

Sanctioning Strategy The policy system presented in this thesis is currently using a pessimistic approach.
This strategy is intuitively safe. However game theory draws an interesting picture. In chapter 2.3 we transi-
tioned from sociology to computer science using the “prisoners dilemma”. Although the only Nash equilibrium
in the game is the “both cheat” situation, research has proven that a optimal strategy is the “nice” strategy. This
strategy returns to playing fair, after sanctioning a cheating player. This is an interesting scenario for a P2P
systems, that should receive attention. Currently after settling a negative trust decision, it is possible, that a
sanctioned client will not be distrusted, as enough other clients still believe in its trustworthiness. But if a
majority of voters certifies the client as not trustworthy, how could the client regain its trust? In the current
implementation this was considered out of scope, since the client gains its trustworthiness, as the voter leaves
the system. After the republish interval of his votes has ended, they will be discarded. It is also possible that
another client does an interaction, although the peer is nottrusted. The client has a chance to gather a positive
recommendation. However in a work based on this thesis a “expiry” could be introduced, that invalidates votes
after a period of time, resetting the trust relation back to the initial state. It would be interesting to see, how
this approach would affect the trust relations on the network, as a whole.

Credibility and Reliability Our current approach is designed to enable users to build a trust decision,
when they face peers, they have never had interaction before. It would also be interesting, on how to combine
the information, when there has been previous interaction between the peers. How could a possible trust
decision be computed? Should the users own vote be included with a double weight? Further how should the
credibility of voters be computed? If they are trusted as download source, should this count more as a couple
of bad votes? These are definitively questions that should beanswered on the path to a fully automated system,
that operates without user interaction, on the recommendations a trust system produces.

Trust Model and Policy Another interesting work in this area, would be the switch from reliability trust,
to decision trust, as defined in chapter 2.1. This change would introduce a user specific risk concept. In the
current form of our system, there is no opportunity to influence the decision of the policy, that controls the
trust relations. However for building fully automated trust systems, it would be feasible, to add parameters to
the computation, that allow influence on the risk factor. Clients, that accept trust relations, even at high risk, or
change the risk factor depending on a specific context come tomind. The idea is similar to the approach taken
by Blaze, described in chapter 3.1.5, that supports fully programmable policies, depending on the context. A
P2P system could provide these concepts, based on the requested usage. Just like the web browser, that accepts

1http://www.snort.org

67

8 Conclusion

expired SSL keys in a given interval, rejecting them from mission critical sites, like a bank, a P2P system used
for downloading a PGP key, should adapt its risk tolerance tolow. In contrast when retrieving information in
“secure” formats, e.g. textfiles could accept even a high risk, as these files do not contain executable code and
are usually small in size. So downloading and even executingthem is acceptable, even at high risk.

Credentials A completely other set of credentials becomes mandatory, when porting this application of
trust in another scenario. For a applied scenario, we will model a trust system for a real world scenario.

The well known CERT institute from Genve possesses the worlds largest particle accelerator. When doing
experiments a incredible amount of data has to be handled. For that purpose there exists a escalation strategy,
where the data is distributed to a couple of large scale electronic data processing centres (EDPC). The analysis
and storage of the data is then once more escalated from the large scale EDPC, to smaller centres. For example
one such smaller center is the “Leibnitz Rechenzentrum” in Munich. Of course when analyzing that strategy,
we will find out, that the topology is a tree, with the data producer as root and smaller workstation, that actually
do the processing of data as leafs.

Of course these scientific networks also face the problem of trust relations. At the present time, all nodes are
chained with cryptographic keys, that only provideidentity trust.However a strategy to check the validity of
the given services, that would provideprovision trustis not developed. A possible attack scenario that would
be caught by applying that kind of trust would be an attack on the data, or the analysis of it. The computations
could be altered by an attacker and as long as the cryptographic key chain is not altered, there would be no
possibility to detect this.

So what would a trust model, that supports a use case, like theabove mentioned, look like like? In the course
of this work we were using a reputation system, for the evaluation of trust relations. As we now have a
hierarchical trust model, with an ultimately trusted root,we need to adapt our credentials. We no longer need
a publicly available measurement of trust, but need a structured measurement of trust. For the leaf nodes in
the tree, the trust relation between their parent nodes is not interesting. The only trust chain, that is really
interesting is the “top-down” approach, as the information“provider” needs to be sure that the next computer,
on the path to the leafs is trusted. This approach is already resembled and well tested, in the cryptographic
identity trust checking mechanisms. When passing data to the next node, the public key of that machine is
checked. After the identity has been proven, the further distribution is done by the “lower” node.

Checking the credentials of provision trust would mean thatany given node could pass data down totwo
different machines. These machines would do storage, or analysis on the given sets of data. By doing so the
“parent node” would waste some storage or CPU cycles, but could compare the results of both operations and
compare them for differences.

Finally Due to the size and rapid development of both the P2P and the trust system area this work can only
provide a snapshot of the current state of the art. The futurewill hopefully bring a wide spread usage of
these techniques. The problems of central systems, like thePKI systems, in use today have been spectacular
demonstrated, by a fraud described inhttp://www.heise.de/newsticker/meldung/69598.A malicious user has
been able to provide a SSL certificate, signed by GeoTrust, that identified him as the Mountain America bank.
As GeoTrust is a well known Certificate Authority, this marksa new generation of frauds and identifies some
of the weaknesses of relying on a centralized Identity Trustsystem.

68

Bibliography

[AC05] Inc. Apple Computer. Security concepts, 2005. http://developer.apple.com/documentation/Security/
Conceptual/SecurityOverview/Concepts/chapter3 section6.html.

[AJ05] Colin Boyd Audun Jøsang, Roslan Ismail. A survey of trust and reputation systems for online
service provision. InDecision Support Systems, 2005.

[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote: Trust management for
public-key infrastructures (position paper).Lecture Notes in Computer Science, 1550:59–63,
1999.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. Technical Report
96-17, 28, 1996.

[BG99] Dan Brickley and R.V. Guha. Resource description framework (rdf) schema specification. Tech-
nical Report http://www.w3.org/TR/rdf-schema/, 1999.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[CCI88a] CCITT. The directory: Authentification framework. Draft Recommendation X.509, 1988. Ver-
sion 7.

[CCI88b] CCITT. The directory: Overview of concepts, models and services. Draft Recommendation
X.500, 1988. Version 7.

[Cli01] Clip2. The gnutella protocol specification v0.4, 2001.
http://www.clip2.com/GnutellaProtocol04.pdf.

[DdVPS03] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Managing and sharing
servents’ reputations in p2p systems.IEEE Transactions on Data and Knowledge Engineering,
15(4):840–854, July/August 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. New directionsin cryptography.IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

[Dou02] John Douceur. The sybil attack. InProceedings of the 1st International Peer To Peer Systems
Workshop (IPTPS 2002), March 2002. http://www.cs.rice.edu/Conferences/IPTPS02/101.pdf.

[Dum02] Edd Dumbill. Finding friends with xml and rdf, June 2002.

[Fou05a] Wikimedia Foundation. Social networks, 2005. http://en.wikipedia.org/wiki/Socialnetworks.

[Fou05b] Wikimedia Foundation. Social networks, 2005. http://en.wikipedia.org/wiki/PageRank.

[Gam88] Diego Gambetta.Can We Trust Trust?, chapter 13, pages 213–237. Basil Blackwell, 1988.
Reprinted in electronic edition from Department of Sociology, University of Oxford.

[Gen86] J. V Genest, C. Zidek. Combining probability distributions: A critique and an annotated bibliog-
raphy.Statistical Science, 1:114–148, 1986.

[Goo04] Google. Google technology, 2004. http://www.google.com/ technology/.

[Han00] Rob Handfield. What does it mean to trust?, 2000.
http://scrc.ncsu.edu/public/DIRECTOR/dir110503.html.

[Hof85] Douglas Hofstadter.Metamagical Themas: questing for the essence of mind and pattern, chap-
ter 29. Bantam Dell Pub Group, 1985.

69

Bibliography

[Inc05] RSA Security Inc. Crypto faq, 2005. http://www.rsasecurity.com/rsalabs/node.asp?id=2214.

[Kol99] Peter Kollok. The production of trust in online markets. InAdvances in Group Processes (Vol.
16). JAI Press, 1999. http://www.sscnet.ucla.edu/soc/faculty/kollock/papers/ onlinetrust.htm.

[KR97] Rohit Khare and Adam Rifkin. Weaving a web of trust.World Wide Web J., 2(3):77–112, 1997.

[KS98] B. Kaliski and J. Staddon. Pkcs #1: Rsa cryptography specifications version 2.0. RFC 2437, oct
1998. ftp://ftp.isi.edu/in-notes/rfc2437.txt.

[KSGM] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks.

[Lev00a] Raph Levien. Mission statement, 2000. http://www.advogato.org/ mission.html.

[Lev00b] Raph Levien. Mission statement, 2000. http://www.advogato.org/ trust-metric.html.

[Lev04] Raph Levien. Attack resistant trust metrics, 2004.

[MC96] D. Harisson McKnight and Norman L. Chervany. The meanings of trust. Tech-
nical Report 94-04, Carlson School of Management, University of Minnesota, 1996.
http://misrc.umn.edu/wpaper/WorkingPapers/9604.pdf.

[MKKB01] Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. InACM SIGCOMM 2001, San Diego, CA,
September 2001.

[MM02] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the
xor metric, 2002.

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible interference, 1988.

[Pro06] Emule Project. Credit system, 2006. http://www.emule-
project.net/home/perl/help.cgi?l=1&topicid=134.

[RKZF00] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputation systems.Com-
mun. ACM, 43(12):45–48, 2000.

[RSA77] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Technical Report MIT/LCS/TM-82, 1977.
http://theory.lcs.mit.edu/ rivest/rsapaper.pdf.

[Wat76] Paul Watzlawick.How Real is Real?Vintage, 1976.

70

	Introduction
	Motivation
	Conceptual Formulation
	Proceeding

	The Notion of Trust
	Trust in sociology
	Social Networks
	The Prisoner's dilemma
	Trust in computer science
	Developing Trust by Reputation
	Trust Metrics
	Scenario on Distributed Trust Management

	State of the Art
	Cryptography based solutions
	Asymmetric Encryption
	Trust Centers and PKI
	X.500 Directories
	Web of trust
	Decentralized Trust Management
	Conclusion

	Central Reputation Systems
	eBay
	The PageRank Algorithm
	Advogato

	Distributed Reputation Systems
	Eigentrust
	P2PRep
	Conclusion

	Attacks on trust metrics
	Conclusion

	Choice of a Peer to Peer Model
	Chord
	Technical Introduction to Kademlia
	Network topology
	Distance Metric
	Protocol
	Routing
	Finding Nodes in the DHT
	Publishing information
	Retrieving Information in the DHT
	Caching

	Conclusion

	Model of a Trust-Aware Solution
	Sketch of Design
	Expressing Trust
	Layout of Votes
	Mapping Function
	Publishing a Vote
	Retrieval of Votes
	Extended Reputation System

	Prototype Implementation
	Architecture
	Integration into the eMule Client
	Protocol Description

	User Interface
	Security Considerations

	Discussion
	Conclusion
	List of Abbreviations

