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Abstract 

The Internet of Things (IoT) is a research topic the significance of which is continuously 

increasing. The devices taking part in the IoT are significantly more resource constrained 

than the devices used in today's networks. In order to cope with these restrictions, the 

protocols used in the Internet have to be reviewed and adapted to the requirements of 

these devices. One of these constraints is the combination of limited power and high cost 

for networking. To satisfy this requirement, many IoT protocols use compression 

techniques to limit the protocol overhead. The security protocols in use today already put 

a lot of strain on the large and complex infrastructures they have been designed for and 

are therefore too costly for IoT devices. The IPsec protocol suite is one such protocol, which 

is mainly designed for securely interconnecting large networks, but not for constrained 

devices. However, the proper design of the IPsec architecture, together with the separation 

of key exchange and data security to different protocols, would provide proven security 

features for IoT. In order to combine the security features of IPsec with the constraints of 

IoT devices, this thesis introduces Diet−ESP, which is an adaption of the ESP protocol. 

Diet−ESP considers the requirements of constrained devices but sustains the security 

features initially provided by IPsec. By introducing a compression context which can be 

directly accessed by the IPsec implementation, Diet−ESP allows high compression rates. 

Additionally, it is flexible and easy to implement. The results show that Diet−ESP is able 

to reduce the energy consumption by 40% which can nearly double the lifetime of a sensor. 

With the start of the standardization process of Diet−ESP at the IETF, it has the potential 

to be included to the ongoing development of the Internet of Things. 
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1 

 Introduction 

Microcontrollers and sensors in the Internet of Things (IoT) will significantly grow up in 

the near future. A few years ago, sensor networks were exclusively used for research or 

monitoring of infrastructure projects. One famous example is the Golden Gate Bridge in 

San Francisco, with its own sensor network, monitoring the oxidizing of the bridge’s metal 

components [38]. Such devices are bound to find their way into everyone's everyday life, 

be it through automated intelligent emergency systems, home automation or even Smart 

Cities. Vendors of infrastructure, like telecommunication companies, and manufacturers 

of such devices are spearheading this development together with public institutions like 

city governments. Especially metropolises like Paris are supporting this development in 

order to improve traffic flow, tourist movements and public internet access sometimes 

together with international governments like the European Union [52].  

These devices and networks can be used for all kinds of small applications and some of 

them may require secure communications. They can be life critical (like a fire alarm), 

security critical (like home theft alarms) or made for home automation. Smart grid [18] is 

one application where electricity is supplied by using information each home delivers. 

Similarly, home temperature might be determined by servo−controls based on 

information provided by temperature sensors.   

IoT devices come with specific requirements for security protocols. First of all, many 

sensors do not have an attached power supply why, therefore they need to operate with a 

battery, which limits the life time of the device. The power is needed for computation 

within the CPU and the network interface which sends and receives data. Most sensors 

have highly optimized processors for minimal power consumption. Although the network 

interfaces are also optimized, their power consumption is, on average, 10−100 times 

higher than for processor instructions (section 2.1). One of the reasons is that sensors 

often rely on wireless communication in order to make them more flexible. The higher the 

radius of the wireless interface the higher the energy consumption. In fact, the energy 

consumption increases exponentially to the distance between sender and receiver. Saving 

energy, many devices are configured as sleepy nodes, shutting down in idle mode and 

waking up periodically to receive messages or for sending their information. Therefore 

the IEEE 802.15.4 [3] standard is designed for IoT communications supporting sleepy 

nodes. The standard also defines a low Maximum Transmission Unit (MTU) of 127 bytes 

in order to take the higher costs for network operations into account.  

The expected increasing number of IoT devices in the future is one of the reasons why 

internet providers adopt IPv6 [11] inside their network infrastructures. It ensures a 

unique IP address for every device, but for IoT it comes with a new problem, the increasing 

packet size due to the bigger IP addresses of 16 bytes. The IP header itself needs 40 bytes 

and therefore nearly one third of the available 127 bytes of IEEE 802.15.4. Including the 

MAC layer headers of maximum 25 bytes, there are only 62 bytes left for Transport and 

Application Layer. Because of this issue 6LoWPAN [17] (IPv6 for Low Powered Area 

Networks) defines header compressions, mainly for IPv6 and UDP [60], in order to reduce 

the size of the header sizes. This standard is designed for sensors behind a gateway, which 

connects them to the Internet. The gateway decompresses all compressed headers, ergo 

the connection endpoint always receives a regular IP packet structure.   
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This works perfectly, as long as the connection does not need to be confidential. Therefore 

IEEE 802.15.4 specifies Link−Layer−Security by using AES−CCM [82] requiring another 

21 bytes but offering only Hop−by−Hop Security without the possibility of 

End−to−End−Security. For securing the connection from endpoint to endpoint, one may 

use TLS [7], DTLS [39] or IPsec [37] providing approved protocols for securing internet 

communications. But since compressing encrypted payload cannot be done securely, the 

compression within other layer has to be discussed. The compression itself may be done 

with already existing protocols like 6LoWPAN or ROHC (RObust Header 

Compressions [3]).  

Since TLS is widely spread over the Internet, there is a lot of research interest in porting 

TLS or DTLS on constrained devices, but IPsec would provide some advantages for 

securing End−to−End communications, such as:  

 IPsec secures application communications transparently as security is handled at 

the IP layer. As a consequence, applications do not need to be modified to be 

secured.  

 IPsec does not depend on the transport layer which leads to the security framework 

remaining the same for all transport protocols, like UDP or TCP [62]. 

 IPsec is well designed for sleepy nodes as there are no sessions. Information about 

the secured communication are stored in the Security Policy Database (SPD) which 

can be seen like firewall rules. The security relevant data for one connection like 

cipher keys are stored in the Security Association Database (SAD). This databases 

are set up once for a connection and can be stored on the device even if it shuts 

down. 

 IPsec defines security rules for the whole device, which outsources the device 

security to a designated area. Therefore IPsec can be seen as a tiny firewall 

securing all communications for an IoT device. 

IPsec needs access to the devices IP stack that is why it is mostly implemented in the 

Kernel, whereas application are in the user space. This turns out to be a common 

disadvantage of IPsec, because application developers want to control the security which 

isn’t feasible when using IPsec. Additionally, an application developer has to trust the 

operating system and has to rely on the correct setup of the IPsec connection. On the other 

hand, since there are no real distinctions between these two spaces in IoT devices, being 

mostly designed for a specific and unique task, this may not be an issue anymore. At the 

time of designing IPsec, IoT constraints have not been considered and IPsec has been 

mainly designed for secure infrastructure. 

Even though IPsec is a requirement for IP communication and every IP implementation 

has to provide it, there is always room for improvements. Some researchers picked up the 

idea of using IPsec in IoT environments using 6LoWPAN or other compression protocols 

to reduce the protocol overhead. But all of them stuck in compressing the encrypted ESP  

[36] payload. The most common idea is a second, modified ESP−stack handling the 

compressions before the encryption occurs. Assuming that the endpoint has the same 

modification of the ESP−stack for decompression, this may work fine, but it looks more 

like a hack of ESP than a proper designed protocol. 

This thesis describes a new ESP extension called Diet−ESP, enabling a flexible 

compression of all ESP protocol fields, additional cipher data and Transport Layer 
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protocols like UDP or TCP, but also allows future extensions for other protocols and layers. 

Diet−ESP takes advantage of the already existing IPsec databases storing many data that 

can be used for compressions. IP addresses, transport layer protocol and ports are the most 

common of them.  

The compression mechanisms defined in this work are based on ROHC and 

ROHCoverIPsec [15–17]. However, ROHC has been designed for flexible and robust 

bandwidth optimization, but not necessarily for constrained devices. Especially the 

robustness of the protocol works against IoT requirements defined section 4. In order to 

enable maximum robust compression, ROHC defines a set of signaling messages, 

compression states and complex compression algorithm. Such an implementation, 

together with the increasing networking overhead makes ROHC not useable in 

constrained environments.  

In order to achieve the specific goals for IPsec in sensor networks, this document describes 

the Diet−ESP context. The context contains all parameters necessary to compress an ESP 

packet by using the mechanism defined for ROHC frameworks. More detailed, it describes 

how to derive a ROHC compression context from the Diet−ESP context and the IPsec 

databases. The advantage of using ROHC is that compression behavior follows a 

standardized compression framework. On the other hand, deriving profiles and methods 

from the Diet−ESP context makes the use of ROHC and ROHCoverIPsec dependent on 

the implementation, and any implementation that behaves in a similar way will be 

interoperable. This is what makes light implementation for IoT devices achievable. 

The context can be synchronized between the security endpoints during the Key Exchange, 

which usually sets up the IPsec databases. The context is stored as in the SAD where the 

ESP stack has access to its information and it will survive even if the device shuts down. 

This way of compression enables removing all protocol specific fields from an IP packet, 

leaving IP header compressions to 6LoWPAN. In best case scenarios the IP payload can be 

compressed by 80 bytes which significantly increases the sensor lifetime (see section 7.3) 

This thesis is structured as follows: 

Section 2 describes the background necessary for this work. It lists all information 

necessary for sensor networks, including their functionality. Moreover the specific 

standards like IEEE 802.15.4 or 6LoWPAN are defined. In section 2.2 the IPsec protocols 

are explained with a detailed overview over the specific packet formats and the differences 

between the IPsec modes.  

Security Management in section 2.2.3 clarifies how security information like cipher keys 

can be exchanged over a not trustable environment like the internet. Due to the proper 

design of the IKEv2 [34] protocol it became part of the IPsec protocol suite [37] and the 

most common used key exchange protocol in IPsec environments, but the basic ideas of 

this protocol are the same for TLS or DTLS. In the further thesis, section 3 describes the 

possible use cases of secured IoT connections where Diet−ESP should be used in. This use 

case lead to a couple of IoT specific requirements for IPsec and security protocols in general 

which are listed in section 4. Like mentioned in the beginning there is some work related 

to IPsec in constrained environments and other security protocols. This work is analyzed 

in section 5. At last section 6 describes the design of Diet−ESP. 
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At the beginning, the Diet−ESP context, which is based on the ROHC context explained 

in section 6.1, is defined in section 6.2. It specifies the compression context, which is later 

stored in the Security Association to a specific IPsec connection, enabling the compression 

of all ESP fields. Like already mentioned, Diet−ESP allows extensions of the Diet−ESP 

context. This thesis defines two Diet−ESP context extensions, the first one in section 6.3 

for the compression of encrypted upper layer protocols like UDP or TCP. The second 

extension in section 6.4 describes how the AES Initialization Vector for AES−CTR can be 

compressed. Section 6.6 describes a minimal ESP implementation, in order to provide the 

basic ideas of ESP. This is necessary to understand the add−on of Diet−ESP to a regular 

ESP implementation and the Diet−ESP protocol itself, described in section 6.7. 

Section 7 describes two implementations of Diet−ESP. They provide results for the 

evaluation. First of all they prove the possibility to implement Diet−ESP in an easy and 

straight forward way. In addition they show that Diet−ESP is configurable to communicate 

with already existing ESP implementation like the Linux specific ip xfrm. The 

implementation for Contiki [8] (section 7.2) shows a “prove of concept”, how to implement 

Diet−ESP for a sensor operating system and inside an already existing IPsec 

implementation as an add−on. 

Section 8 discusses Diet−ESP, before section 9 concludes the thesis and shows possible 

future work. 
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 Background 

This section points out the background related to this thesis. First, it describes how sensor 

networks are usually set up. Since this work describes a modification of ESP, which is an 

IPsec protocol, IPsec itself is described later, together with security management through 

untrusted networks with IKEv2 as an example.  

2.1 Sensor Networks 

Sensors can be used in different scenarios, for example to observe buildings, cities or 

natural environment to specific characteristics, like the temperature or to control 

attached devices, like garage doors. Of course, a sensor can be used for both scenarios in 

the same time as well. Home Automation is an area where sensors measure information 

and control other attached devices according to the measured data. Most likely they do 

not make the decisions or evaluate results. This is the reason why they are usually 

connected to another, more powerful device for collecting information or making decisions.   

A sensor network is a union of sensors, like shown in Figure 2.1. Usually, a couple of 

sensors are defined to interact with each other and connected to one defined gateway. 

This gateway represents the access point to the attached sensor network and sometimes 

it is even the same device like the connected sensors, but with other functionalities. If one 

sensor within the network communicates with the outer world, the connection is provided 

by this gateway.  

If one application is security critical, there are several potential attacking vectors, some 

of them are pointed out from Granjal et al. [22] and Jain et al. [30]. Generally speaking, 

the attack can be within the sensor network, if the sensor environment is not secured. 

This can be the case if the sensors are communicating with a wireless connection. 

Therefore IEEE 802.15.4 [3] introduces link−layer security, which provides hop−to−hop 

security for the data. The connection between the gateway and the endpoint of the 

connection could be not trustable as well, for example if the connection is established 

through a public network, like the Internet. Sometimes, the gateway can provide a secure 

communication to the endpoint with TLS, DTLS or IPsec, but only if it is a not constrained 

device. If the gateway is a sensor, it cannot carry that complexity in the current state of 

research. However, such a configuration can never provide real End−to−End−Security 

between sensor and the endpoint, which may be required in some setups. Granjal et al. 

[22] clarify that IPsec would be a valuable option for providing End−to−End−Security. 

They focused on the energy costs for encryption and authentication used for securing 

IPsec communications. 

The devices inside a sensor network are usually constrained in energy since they are often 

connected to a battery instead of a power supply. This is related to their location, for 

example inside a water pipe, but also to make them independent from external power 

supply which for example could be essential for fire alarms. Having a look on Table 2.1, 

one can say that networking is 10−100 times more expensive than computation. This 

causes the huge interest in reducing the network overhead by protocol compressions like 

done with 6LoWPAN. 
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 Power consumption 

Networking 

Low−power radios < 10 mW (CC1020 [78]) (100 nJ – 1 µJ) / bit 

Computation 

Energy−efficient microprocessors  

(CoolRisc [59] or MSP430 [77]) 

0.5 nJ / instruction 

High−performance microprocessors  (ARM9) 200 nJ / instruction 

Table 2.1 Energy Consumption for Networking and Computation in Constrained Environments. 

2.1.1 Wireless Standard IEEE 802.15.4  

Low−Rate Wireless Personal Area Networks (LoWPAN) uses a standard defined in IEEE 

802.15.4 [3]. It describes the MAC−Layer protocol, Low−Powered Devices in the Internet 

of Things can communicate with each other which is especially designed to work well with 

sleepy nodes. The specified Maximum Transmission Unit (MTU) of 127 Bytes is very small 

compared to the regular Ethernet MTU of 1500 Bytes [1] or the minimum MTU of 1280 

Bytes, IPv6 [11] requires. In the worst case, the MAC layer header of maximum 25 bytes 

leaves only 102 bytes for the payload. If AES−CCM−128 is used for protecting these 

messages, there are only 81 octets for upper layers left. If no compression is used for the 

IP and UDP headers, hence another 40 plus 8 bytes are needed and only 33 Bytes are left 

for the application layer data.  

Figure 2.1 Exemplary structure of a sensor platform. 
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IEEE 802.15.4 uses AES−CCM* for link layer security, which relies on upper layer key 

management. The IEEE 802.15.9 working group defines how to wrap existing key 

management protocols like IKEv2 [34], HIP [50] or 802.1X [2] to existing 802.15.4 frames. 

The specification of AES−CCM for Link−Layer Security coaxed sensor producers to 

implement AES in hardware most common inside the wireless module. Hence, all AES 

modes can benefit from this hardware acceleration which improves the costs of security of 

AES significantly.  

2.1.2 IPv6 Compression 

IPv6 is the standard for IoT communications, but due to the larger IP addresses of 16 

bytes, IPv6 has an essential disadvantage in IEEE 802.15.4 connections. 6LoWPAN [26] 

defines a compression standard for IPv6 packets which allows the reduction of the 

standard 40 bytes IPv6 header by using a 16 bit compression header (see Figure 2.2). 

Additionally, it allows compression of IPv6 extension headers and transport layer headers 

by using another set of compression headers. There are several RFCs or drafts for 

compressing protocols like UDP [26], IPsec [66], (D)TLS [68] or even generic headers [5]. 

6LoWPAN can be used in environments like the one depicted in Figure 2.1, in which a 

gateway is used to compress and decompress. The compression only affects the expensive 

wireless communication within the sensor network, but not the communication to the 

endpoint of the connection.  

Compression is mainly done by reducing large header fields. Some IPv6 fields for example, 

are compressed into one or two bit fields by defining most useful or well−known values in 

a few bits. Values that cannot be compressed within the 6LoWPAN header are added 

within the packet payload in the same order the protocol standard describes them. 

 

Figure 2.2 LOWPAN_IPHC Header, describing the fields for the compressed IPv6 format [26: p. 5]. 

The Hop Limit serves as a good example to clarify the idea of 6LoWPAN compression. In 

IPv6 this field is defined as an 8 bit field. 6LoWPAN offers a compression to 2 bit (see 

Figure 2.3) holding three common used values (1, 64 and 255). If the value “00” is used, 

the whole 8 bit Hop Limit is placed after the compression header. 

00: The Hop Limit field is carried in−line. (no compression is used) 

01: The Hop Limit field is compressed and the hop limit is 1. 

10: The Hop Limit field is compressed and the hop limit is 64. 

11: The Hop Limit field is compressed and the hop limit is 255.  

Figure 2.3 Hop Limit Compressions in 6LoWPAN. 

Compressing the IP addresses is the main advantage of 6LoWPAN, because the source and 

destination address inside the IPv6 header require 32 bytes (256 bits) together. The Source 
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Address can be compressed to 64, 16 and 0 bits using a combination of the fields SAC 

(compression algorithm) and SAM (compression mode) of the LOWPAN_IPHC header. The 

Destination Address is a bit more complex to compress, since it carries the more important 

information for delivering the packet. 6LoWPAN defines a reduction to 64, 48, 32, 16 and 

8 bits. Similarly to the Source Address, the DAC and DAM defines the level of compression, 

but additionally the M field specifies if the address is a multicast address or not.  

All possible combinations of these fields are specified in RFC6282 [26]. 

2.1.3 Application Protocols 

There are some well−known application protocols especially designed to manage the 

requirements of low powered devices. One of them is Constrained Application Protocol 

(CoAP) [7], an UDP based protocol providing similar functionality as HTTP but being 

optimized for sensors and stateless. The idea is to provide services over a stateless 

connection, which is handled within the application. It is widely spread for IoT 

communication, since UDP is the common used Transport Layer Protocol. CoAP defines 

four kinds of communication messages: 

 CON: Sending a message with needed confirmation. 

 NON: Sending a message without needed confirmation. 

 ACK: Acknowledgement of received message. 

 RES: Reset a connection. 

For setting up an unreliable transmission, the client only has to send a NON packet 

covering the normal case in an UDP connection (see Figure 2.4). Reliable transmission, 

the client sends a CON packet to the server and waits for receiving the ACK packet (see 

Figure 2.5). 

 

Figure 2.4 CoAP Unreliable message 

transmission [73: p. 11]. 

 

Figure 2.5 CoAP Reliable Message Transmission   

[73: p. 11]. 

2.2 IPsec 

IPsec is a security protocol suite that proposes to secure any IP based traffic by providing 

security services for both IPv4 and IPv6 and is described in RFC4301 [37]. The protocols 

of the suite are Authentication Header (AH, described in RFC4302 [35]) for authenticating 

and Encapsulating Security Payload (ESP, described in RFC4303 [36]) for data encryption 

and authentication. These two protocols can be used in two different modes. The Transport 

Mode is mainly designed for End−To−End communication whereas the Tunnel Mode is 

used for connecting networks, often called Virtual Private Network (VPN).  
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Both protocols use Security Associations (SA) as simple data structures holding the 

security parameters (e.g. encryption and authentication keys) for one connection. One SA 

is identified by the Security Policy Index (SPI). The set of SAs is stored in the Security 

Association Database (SAD), offering the security services for every incoming or outgoing 

traffic it carries. For a bidirectional connection, there are two SAs to protect both directions 

of the communication. The data for defining appropriate behavior facing incoming and 

outgoing traffic is stored within the Security Policy Database (SPD). The Internet Key 

Exchange protocol version 2 (IKEv2 [34]) is designed for a secure exchange of these 

information. 

2.2.1 IPsec Modes 

IPsec can be deployed in different scenarios. Depending on the concerned topology, the 

administrator has the choice between the Transport Mode and Tunnel Mode. Both modes 

use the same techniques and algorithms for encryption/decryption, but there are 

differences in the encapsulation and building of the packet. 

Both protocols AH and ESP can be used in Transport and Tunnel Mode in the same way. 

In the Transport Mode, designed for End−to−End−Security (see Figure 2.6), the original 

IP header is modified. The Next Header field is changed from its original value (e.g. UDP) 

to the new value AH or ESP. Both protocols include an own Next Header field in the AH 

header respectively in the ESP trailer. This field stores the original Next Header value of 

the IP packet whereby the protocol stack stays complete. Figure 2.10 and Figure 2.12 show 

the structure of AH and ESP packets in Transport Mode. 

In contrast, the Tunnel Mode is designed for Endpoint−to−Gateway (Figure 2.8) and 

Gateway−to−Gateway−Security (see Figure 2.9), but can be used for 

End−to−End−Security, too (Figure 2.7). The original IP header, processed by the IPsec 

stack, is not modified by any means. The AH and ESP protocols are constructed around 

the original IP packet and a new IP header is generated. This new IP header contains the 

Next Header value for AH respectively ESP. The Next Header field within the AH header 

respectively in the ESP trailer holds the value IP (resp. IPv6). With this processing, the 

whole original IP header is secured, whereas it is only partial secured in Transport mode. 

In ESP Transport mode the original IP header is not secured at all. Figure 2.11 and Figure 

2.13 shows the structure of AH and ESP packets in Tunnel Mode.  

Internet

IPsec Transport Mode

IPsec protected path
Host A Host B

 

Figure 2.6 Scenario: Transport Mode. 

Internet

IPsec Tunnel Mode

IPsec protected path
Host A Host B

 

Figure 2.7 Scenario: Endpoint to Endpoint 

Tunnel. 

Internet

IPsec Tunnel Mode

IPsec protected path

Host A

Host B

Protected Subnet
IPsec Security 

Gateway

Extremity of the tunnel Extremity of the tunnel

 

Figure 2.8 Scenario: Endpoint to Gateway Tunnel. 
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Internet

IPsec Tunnel Mode

IPsec protected path

Host A

Protected Subnet
IPsec Security 

Gateway

Host B

Protected Subnet
IPsec Security 

Gateway

Extremity of the tunnel Extremity of the tunnel

 

Figure 2.9 Scenario: Gateway to Gateway Tunnel. 

There is another IPsec Mode, which is not standardized yet. The “Bound 

End−To−End−Tunnel” (BEET) [47] is specialized for the scenario in Figure 2.7 but in 

contrast to the regular Tunnel Mode the inner IP header is not sent on the wire. Especially 

for IPv6 this reduces the ESP payload significantly. Even not standardized, it is 

implemented in the XFRM module of the Linux kernel [43], resulting in a 

“de−facto−standard”. 

In order to remove (resp. rebuild) the IP header, the IP addresses inside the Traffic Selector 

of the SPD have to be unique on both sides of the connection. The other fields of the IP 

header (Hop Limit, Traffic Class and Flow Label) are copied from the outer IP header. 

While building the outer IP header at the sending part of the connection, these values are 

copied from the original IP header to the new outer IP header. The payload length can be 

calculated while the ESP procession.  

2.2.2 IPsec Protocols 

Right now there are two protocols provided be the IPsec protocol suite, namely 

Authentication Header (AH) and Encapsulating Security Payload (ESP).  

The Authentication Header protocol can offer integrity, data origin authentication and 

optional anti−replay protection. Therefore an Integrity Check Value (ICV) is calculated 

including the IP payload and all immutable fields of the outer IP header. The payload 

includes the AH header format, which defines the Next Header holding the value of the 

protocol within the authenticated payload, an authentication length, the SPI and the 

Sequence Number of the AH packet (see Figure 2.10 and Figure 2.11). 

 

Figure 2.10 IPsec AH in Transport Mode. 

 

Figure 2.11 IPsec AH in Tunnel Mode. 

 

The Encapsulating Security Payload (ESP) protocol offers confidentiality, data integrity 

and optional anti−replay protection. It encrypts the IP payload concatenated with eventual 
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necessary padding and the ESP trailer. This trailer holds the Pad Length and Next Header 

field, holding the value for the protocol within the encrypted payload. Data integrity is 

done optional by calculating an Integrity Check Value (ICV) of the encrypted data and the 

ESP header holding the SPI and the Sequence Number of the ESP packet (see Figure 2.12). 

This value is attached to the ESP packet. ESP is able to offer data origin authentication if 

it is used in Tunnel Mode since the original IP header is included to the ICV calculation 

(see Figure 2.13). Due to this advantage of the ESP protocol, the AH protocol is defined as 

optional in the IPsec protocol suite [37]. 

 

Figure 2.12 IPsec ESP in Transport Mode. 

 

Figure 2.13 IPsec ESP in Tunnel Mode. 

2.2.3 IPsec Databases 

IPsec can be seen as a combination of two databases storing the necessary data shown in 

Figure 2.14. The Security Policy Database (SPD) holds policies about the connections to 

be secured. This connection is specified by a Traffic Selector including IP addresses, 

Transport Layer Protocols and ports. The information can be specified by using wildcards, 

too.  

Each entry in the SPD has a link to the current used Security Association (SA) stored in 

the Security Association Database (SAD). One SA holds all necessary information for 

securing the traffic. The most common ones are the keys for encryption and authentication 

but there are also other information, like the lifetime of the SA or mobility information. 

Figure 2.14 IPsec Databases. 



2 Background  

12 

Each unidirectional connection which should be secured has one entry in this database. 

For bidirectional connections, there is one entry for incoming and outgoing traffic. After 

one SA expires it is not allowed to be used again and a new entry has to be negotiated. 

Expiration can be caused by time, number of packets or manually e.g. due to weak keys. 

2.3 Security Management 

Using strong secrets for the different cipher algorithm is obligatory for every Security 

Protocol, like IPsec. Therefore a secure way of exchanging keys is absolutely necessary. 

The simplest idea for sharing a secret is to exchange it physically. Then, each side of the 

communication can determine the other side's identity. But this approach involves security 

risks if the exchange is done under an uncontrollable environment and in addition it is not 

scalable in a major infrastructure. Establishing a connection over the Internet will scale, 

but the Internet is a highly uncontrolled environment and not trustful at all. Therefore 

the Internet Key Exchange protocol in Version 2 (IKEv2) was developed and became the 

common way to exchange secrets for an IPsec environment. It is specified in RFC5996 [34]. 

IKEv2 basically defines two kinds of messages for exchanging secrets (see Figure 2.15). 

The first message IKE_SA_INIT establishes a secure tunnel with a Diffie−Hellman key 

exchange. This tunnel is used to exchange the key material within the IKE_AUTH 

messages. They include the supported ciphers, traffic selectors, authentication and the 

keying material. With that material the first IPsec SA is generated and the IPsec protocols 

have all the information and material they need to encrypt or authenticate the payload. 

Additionally, there are two other types of messages specified in IKEv2. The 

CREATE_CHILD_SA is used to create new SAs for the IPsec traffic in order to generate 

new keys after a specified time or when the SA expires. INFORMATIONAL is used to 

exchange additional information. Manually removing a SA from the SAD from the other 

peer is one of them, but it can also be used for other informational content.  

 

Figure 2.15  IKE INIT and IKE AUTH messages for the essential key exchange over IKEv2. 
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 Use Cases 

Sensor networks have to deal various use cases and one network is usually designed to 

fulfill exactly one task. However, in case of networking the task is not relevant and it is 

possible to extract four basic use cases for networking in sensor networks. These are the 

use cases, every network protocol should be able to handle and therefore necessary to 

describe for Diet−ESP. 

3.1 Use Case 1: Sending Only 

One basic use case for sensors is sending data to one specific gateway (see Figure 3.1). One 

expected scenario this can be useful for, is a sensor sending measured data (e.g. 

temperature) to a collector or gateway in a fixed interval (e.g. every minute), taking 

computations with these data.  

 

Figure 3.1 Use Case 1: Unidirectional connection to a sending uniquely identified gateway. 

3.2 Use Case 2: Receiving Only 

The second basic use case is a sensor, only receiving data from one specified endpoint (see 

Figure 3.2). In this case it is required, that this endpoint is never changed and always 

alive and reachable. One expected scenario is a sensor, which is able to control a plugged 

device, receiving remote signals, for example a garage door. 

 

Figure 3.2 Use Case 2: Unidirectional connection receiving data from a uniquely identified endpoint. 

3.3 Use Case 3: Sending and Receiving 

This use case combines the two previous ones (see Figure 3.3). There is exactly one 

endpoint for the communication, but the connection is bidirectional. An expected scenario 

could be a microcontroller, attached to a temperature sensor and a heating system. The 

microcontroller sends the measured temperature data to the gateway, which is computing 

the best settings for the heating system. Due to this computation the gateway sends 

control information to the microcontroller which regulates the heating system.  
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Figure 3.3 Use Case 3: Bidirectional connection to a uniquely identified endpoint. 

3.4 Use Case 4: Multiple Connections 

This use case is used if none of the previous fits the requirements and combines all 

previously defined (see Figure 3.4). There are two main reasons, this use case is designed 

for, which can be combined as well.    

The first is a sensor connecting to multiple endpoints and sending and receiving data. One 

expected scenario is the same as described in use case 3, but the information is send to 

multiple devices. There could be an additional dedicated control device, like a remote 

controller, which is only able to send control data but does not receive the measured values. 

Additionally, there could be a second endpoint like a smartphone, which provides the data 

to the user who is able to control the heating system with the smartphone. 

The second reason is more complex. If there is more than one connection to a specified 

gateway, working with different transport protocols or application protocols on different 

ports. In this case, each connection is handled like a connection to a different gateway. One 

scenario could be a microcontroller, connected to different measuring sensors (e.g. 

temperature, air pressure, humidity, etc.). The sensor sends the information to one specific 

gateway, but there is a dedicated application with a dedicated port working with the 

measured values. Of course there may be a bidirectional connection for control information 

as well. 
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Figure 3.4 Uni− and bidirectional connections to multiple endpoints. 
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 Requirements 

The use cases show the networking functionality of a sensor network from the view point 

of a single sensor device. IPsec can be used to secure all of these further represented use 

cases. Since IPsec defines the two database SAD and SPD storing all related information 

for a unidirectional communication (use case 1 and 2), there are no issues with 

bidirectional (use case 3) or multidirectional connections (use case 4). In fact every 

unidirectional connection will have its one entry in the two databases, why a bidirectional 

connection will have two entries in each of the databases. Granjal et al [22] support this 

theory, stating that IPsec is a viable option to secure all kind of communication within the 

use cases.  

In the remaining of this thesis, ESP is considered as the chosen security protocol for sensor, 

and investigated for IoT specific improvements. This section points out the requirements 

for the design of the ESP protocol for low powered devices and networks called Diet−ESP. 

In IoT environments, networking itself comes with a lot of requirements for protocols, 

especially for security protocols. There are some hardware specifics, a security protocol 

should be able to deal with. Special ciphers (section 4.1) is an example, but also costs for 

networking which leads to requirements for alignment (section 4.2) and compression 

(section 4.3). Above all, a sensor is a very constrained device, why a protocol should not be 

too complex (section 4.5), but flexible (section 4.4), easy to use (section 4.6) and compatible 

to other sensor specific protocols (section 4.7). This section describes all of these 

requirements the Diet−ESP protocol should be able to fulfill. 

4.1 Cipher Requirements 

Due to its good security features, AES is the common used cipher algorithm for most 

security protocols, like ESP, AH or TLS [13: p. 74, 46]. A comparison of the different ciphers 

and modes can be found in [58].  

AES can be used with different key length in 128, 192 and 256 bit and in four different 

modes. These modes are Cipher Block Chaining Mode (CBC [20]), Counter Mode 

(CTR [24]), Galois/Counter Mode (GCM [80]) and Counter with CBC−MAC (CCM [25]). 

CBC and CTR are the common used modes. While CBC is only able to encrypt and decrypt 

fixed block length of 128 bit, the output produced by CTR has the same size as the input. 

Because of the fixed block length, CBC requires padding of the plaintext to exactly 128 

bits. The two additional modes CCM and GCM use the same definition including an 

additional integrity check for the encrypted data. Both run encryption in Counter Mode 

(CTR), but CCM defines a CBC−MAC for the integrity check whereas GCM uses Galois 

MAC (GMAC). 

In order to find the optimal cipher algorithm for an ESP implementation there are three 

different arguments. The first is the interoperability, which is ensured by implementing 

the ciphers defined in [46].  

The second argument is an IoT specific one, where it is highly recommended to reduce the 

packet size. Since there is no valuable information included, padding is unnecessary data, 

sent on the wire. Table 4.1 compares AES in counter and block mode, but its results can 

be adapted to any other cipher algorithms. Any cipher running in block mode defines a 
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block size for the plaintext. Input data without this block size has to be extended to it by 

using padding. In case of AES this block size is 16 bytes. Padding may also be necessary 

to fit the IP required alignment of 32 bits [61] (resp. 64 bits in IPv6 [11]). Usually the 

counter mode of a cipher algorithm works like a stream cipher and without the need a 

specific input size. Therefore all stream ciphers and ciphers in counter mode will have the 

same behavior as the one of AES−CTR illustrated in Table 4.1. 

Interpreting the values in Table 4.1 one will see that CTR mode requires less or at least 

equal size of padding in every case. The packet size is less in every case, which is specific 

to AES−CTR because it defines an Initialization Vector (IV) of 8 byte whereas AES−CBC 

requires a 16 byte IV. However, even without considering the 8 byte less IV the packet size 

of AES−CTR is equal to AES−CBC in any case. Taking into account that AES−CTR 

requires an integrity check in form of the ICV one may argue that the overall packet size 

of AES−CTR plus a minimum ICV of 96 is higher than AES−CBC without ICV. But in that 

case AES−CTR delivers better security features than AES−CBC, because using 

NULL−ICV is not recommended.  

The last argument for choosing the best cipher algorithm is the performance. Hardware 

implementation usually improves the performances compared to software 

implementation, as it reduces the number of operation to be done inside the processor. 

AES−NI [23] for example leads to only 4 processor instructions for every round of the AES 

algorithm.  

IEEE 802.15.4 defines AES−CCM, for link layer security with upper layer 

key−management, thus it is often supported by hardware acceleration. 

REQ 1 In order to benefit from this hardware support, security protocols for sensors 

MUST support AES ciphers be able to take advantage of AES−CCM hardware 

acceleration.  

REQ 2 If encryption and authentication is enabled, a security protocol for sensors 

SHOULD be able to use AES−CCM as it is defined in IEEE 802.15.4 taking 

advantage of hardware acceleration for encryption and authentication. 

UDP  

Payload  

(Bytes) 

Padding (Bytes) Packet Size IPv6/ESP/UDP (Bytes) 

AES−CTR AES−CBC AES−CTR AES−CBC 
AES−CTR 

SHA1−96 

AES−CBC 

SHA1−96 

1 1 5 68 80 80 96 

2 0 4 68 80 80 96 

3 3 3 72 80 84 96 

4 2 2 72 80 84 96 

6 0 0 72 80 84 96 

8 2 14 76 96 88 112 

16 2 6 84 96 96 112 

Table 4.1 Differences in Padding and Packet Size of an ESP packet sent with IPv6 when using AES in 

Block or Counter Mode. 

4.2 Alignment Requirements 

IP extension headers need to have 32 bit Byte−Alignment in IPv4 (section 3.1 of [61] − 

Padding description) and a 64 bit Byte−Alignment in IPv6 (section 4 of [11]). As ESP [36] 
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is such an extension header, padding is mandatory to meet the alignment constraint. This 

alignment is mostly caused by compiler and OS optimizations dealing with a 32 or 64 Bit 

processor. In the world of IoT, processors and compilers are highly specialized and 

alignment is often not necessary 32 Bit, but 16 or 8 bit. Second, ESP will often be the last 

protocol inside the IP header, because everything below will be encrypted and not 

changeable before the other peer decrypts the payload. In this case padding of the header 

is not necessary, since the IP−length defines the end of the ESP payload. The alignment 

may also be relevant if Block−Ciphers like AES−CBC needs an aligned payload to perform 

the encryption. 

The RFC defines the Padding as a field with a variable length.  RFC4835 [46] defines the 

mandatory encryption algorithm that has to be provided by an ESP implementation. This 

list defines the block cipher AES 128 as absolutely necessary, which means completely 

removing the size of Padding is only possible by sending exact 128 bits of application data. 

Padding is also necessary to fit the right alignment of the ESP trailer. 

Is it possible to use a fixed value?  

The RFC4303 defines a padding pattern, but that one is not mandatory. Therefore it 

would be possible to define a fixed padding value for a specific size of padding.  

Is it possible to reduce the Padding? 

The padding field cannot be reduced to a fixed size, because different ciphers or packet 

alignments need different paddings. On the other hand side, clever alignment of the 

payload data reduces this field itself. By limiting the used ciphers, the maximum size 

of this field is the maximum block size of the used block ciphers. The padding may be 

reduced by specifying special alignment restrictions for one communication. 

Is it possible to remove the Padding? 

Due to the wide range of the Padding field (0 – 255 bytes) removing seems to be ideal 

in order to limit the packet size. But the problem remains that different ciphers need 

different fixed block size to encrypt data and the right alignment of the ESP trailer has 

to be secured. In order to remove the padding either the alignment has to be specified 

as unnecessary or the application size must have the size of the alignment.  

REQ 3 Since networking is extremely expensive in IoT communications, padding 

MUST be prevented whenever it is possible. Therefore security protocols SHOULD 

support Byte−Alignment that are different from 32 bits or 64 bits to prevent 

unnecessary padding.  

REQ 4 In order to agree on the used alignment, each peer SHOULD be able to 

advertise and negotiate the Byte−Alignment, used for Diet−ESP. This could be 

done for example during the IKEv2 exchange. 

4.3 ESP Compression 

In order to understand how ESP related fields can be compressed, one has to understand 

the effect of the different ESP protocol fields. This section starts inspecting all fields 

described in RFC4303 [36]. Every field is inspected for potential fixed values, reducing or 

even removing the field from the protocol. With this information is used to deduce the 

requirements for ESP compression in section 4.3.7. 
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4.3.1 Security Parameter Index (SPI) (32 bits) 

The SPI indexes the SA for incoming packets and is negotiated by the two peers (e.g. via 

IKEv2 or manually). It remains the same during the session and is chosen by the receiver. 

According to the RFC, the SPI is a mandatory 32 bits field and is not allowed to be 

removed. However, the SPI is arbitrary, thus it would be possible to use the IP or MAC 

address or a fixed value, except 1−255 because this values are reserved. The value 0 is 

only allowed to be used internal and it must not be sent on the wire. 

The SPI is an arbitrary 32−bit value that is used by a receiver to identify 

the SA to which an incoming packet is bound. The SPI field is mandatory.  

For a unicast SA, the SPI can be used by itself to specify an SA, or it may 

be used in conjunction with the IPsec protocol type (in this case ESP). 

Because the SPI value is generated by the receiver for a unicast SA, 

whether the value is sufficient to identify an SA by itself or whether it 

must be used in conjunction with the IPsec protocol value is a local 

matter. This mechanism for mapping inbound traffic to unicast SAs 

MUST be supported by all ESP implementations. [36: p. 9] 

Is it possible to use a fixed value? 

Fixing the SPI means there is only one possible connection to each client. On the other 

hand side using a fixed value may be problematic if the number is given on the other 

side of the connection. One may chose the IP address of the receiver for the SPI value, 

concerning that only one SA can be identified using this functionality. 

Is it possible to reduce the SPI? 

Reducing the SPI means to reduce the possible maximum number of connections the 

receiver is able to deal with. As a consequence the security endpoint may be vulnerable 

to Denial of Service. When every possible SPI number is given, no new connection can 

be set up any more.  

Is it possible to remove the SPI? 

By removing the SPI a Security Association could be set up by exclusively using the IP 

address. Therefore the Traffic Selector inside the SPD database must be unique in order 

to identify the correct Security Association for incoming packets. That means there is 

only one possible connection to each client and IP mobility cannot be handled. 

4.3.2 Sequence Number (SN) (32 bits) 

The SN is used for anti−replay protection and is modified in every packet. In default cases, 

the ESP Sequence Number will be incremented by one for each packet sent. The field 

wants to be present in the packet, regardless if the receiver decides to use it for anti−replay 

or not. Additionally it is possible to use an Extended Sequence Number (ESN) of 64 bits. 

However the additional 32 bit are not sent on the wire and only incremented and stored 

within the SA.  

This unsigned 32−bit field contains a counter value that increases by one 

for each packet sent, i.e., a per−SA packet sequence number. For a 

unicast SA or a single−sender multicast SA, the sender MUST increment 
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this field for every transmitted packet. Sharing an SA among multiple 

senders is permitted, though generally not recommended. [...] 

The field is mandatory and MUST always be present even if the receiver 

does not elect to enable the anti−replay service for a specific SA. [36: p. 

11] 

Is it possible to use a fixed value?  

Knowing that the receiver does not use anti−replay mechanism, fixing this value will 

prevent computing time. With a fixed Sequence Number, there is no protection for 

replay attacks in the IP layer. Concomitant with this, every packet has to be decrypted 

before a replayed packet can be recognized if the transport layer offers replay 

protection. This produces high computation overhead, especially on low powered 

devices like sensors.  

According to the RFC the SN has not to be incremented by one necessarily. Therefore 

it would be possible to use another, always increasing and already existing value like 

the time as a Sequence Number. 

Is it possible to reduce the SN? 

As a consequence of reducing the SN the SA expires earlier. Therefore re−keying has to 

be done more frequently, what may produce computing overhead especially if many 

packets are sent for one connection. Mechanism like the Extended Sequence Number 

can be used to reduce the SN sent on the wire preventing reducing the SN stored on 

the receiver. 

Is it possible to remove the SN? 

Removing the Sequence Number has the same problems like fixing it. Additionally it 

prevents the storing of the Sequence Number on the sender.  

4.3.3 Pad Length (8 bits) 

Pad Length indicates the length of the Padding field and is computed on a per−packet 

basis. The RFC defines Pad Length as a mandatory 8 bit value which means it can neither 

be reduced nor removed. 

The Pad Length field indicates the number of pad bytes immediately 

preceding it in the Padding field. The range of valid values is 0 to 255, 

where a value of zero indicates that no Padding bytes are present. As 

noted above, this does not include any TFC padding bytes. The Pad 

Length field is mandatory. [36: p. 14] 

Is it possible to use a fixed value?  

If the application payload is fixed sized, the padding is fixed and therefore the Pad 

Length, can be fixed, too.  

Is it possible to reduce the PL? 

The Pad Length cannot be reduced to a fixed size, because different ciphers or packet 

alignments need different paddings.  

Is it possible to remove the PL? 

The Pad Length is unnecessary to be sent in each packet as long as the size of padding 

is fixed or padding itself is not necessary. This fits to the sensor use cases because a 
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fixed number of bytes is sent by the sensor in general. So the padding size is fixed by 

the application and it is unnecessary to send it on the wire. 

4.3.4 Next Header (8 bits) 

The Next Header indicates the protocol of the next layer inside the ESP Payload. The RFC 

defines the Next Header as a mandatory field of 8 bits. 

The Next Header is a mandatory, 8−bit field that identifies the type of 

data contained in the Payload Data field, e.g., an IPv4 or IPv6 packet, or 

a next layer header and data. [...] the protocol value 59 (which means 

"no next header") MUST be used to designate a "dummy" packet.  A 

transmitter MUST be capable of generating dummy packets marked 

with this value in the next protocol field, and a receiver MUST be 

prepared to discard such packets, without indicating an error. [36: p. 15] 

Is it possible to use a fixed value?  

A fixed Next Header assumes that it becomes impossible to have different protocols on 

the transport layer, which does not mean that the number of possible application 

protocols is reduced. Because sensor assume to use UDP instead of TCP this might be 

possible. On the other hand side the Tunnel Mode becomes impossible or the only used 

mode, because therefore the Next Header has to be IP. 

Is it possible to reduce the NH? 

On sensors the number of protocols is much less than on computer networks nowadays. 

Therefore reducing the Next Header to a lower value may be a possibility to reduce 

packet size. 

Is it possible to remove the NH? 

Removing the Next Header carries the same issues like a fixed value. In order to use 

different next headers the protocol inside ESP has to be negotiated uniquely otherwise, 

e.g. during the Key Exchange and stored inside the Traffic Selector. 

4.3.5 Initialization Vector (IV) 

The Initialization Vector is used to initialize the encryption cipher algorithm with the 

correct value what is necessary to decrypt correctly. The length and value of the 

Initialization Vector is defined in specific RFCs defining the Cipher algorithms for ESP. In 

case of AES there are different lengths defined for the use of AES in Block and Counter 

Mode [20, 24, 25, 80]. For CBC the IV inside the packet must be 16 bytes, which equates 

the size of the Initialization Vector for AES. For CTR the IV sent in the packet is only 8 

byte. The remaining 8 byte for AES are built from the AES key and a counter, starting 

with 4 bytes of 0. In both cases the IV has to be unpredictable and unique for one key. 

Is it possible to use a fixed value? 

No, the IV must be unpredictable and unique for one communication key. 

Is it possible to reduce the IV? 

If uniqueness and unpredictability remains ensured, sending only an offset is possible. 

However the function calculating the IV on sender and receiver must always return the 

same value for one packet, whereas it needs accurate initialization and synchronization 

mechanism in case of lost or miss ordered packets. 
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Is it possible to remove the IV? 

If uniqueness and unpredictability remains ensured, removing is possible, with the 

same assumption made for reducing the field. 

4.3.6 Integrity Check Value (ICV) 

The ICV secures the integrity of the ESP packet. It includes the ESP header (SPI, SN), 

the ESP payload (IV, original IP payload) and the ESP trailer (Padding, Pad Length and 

Next Header). Note that the ICV is built after the encryption occurred whereas the original 

IP payload and the ESP trailer are encrypted. According to the RFC the ICV is an optional 

value and its length is specified by the integrity algorithm/function which is used for a 

connection. 

The Integrity Check Value is a variable−length field computed over the 

ESP header, Payload, and ESP trailer fields. Implicit ESP trailer fields 

(integrity padding and high−order ESN bits, if applicable) are included in 

the ICV computation. The ICV field is optional. It is present only if the 

integrity service is selected and is provided by either a separate integrity 

algorithm or a combined mode algorithm that uses an ICV. The length of 

the field is specified by the integrity algorithm selected and associated 

with the SA. The integrity algorithm specification MUST specify the 

length of the ICV and the comparison rules and processing steps for 

validation. [36: p. 16–17] 

However, the ICV can be mandatory in some cases, e.g. the encryption algorithm can 

require an authenticated IV value, which is the case for AES in Counter Mode. 

Since it is trivial to construct a forgery AES−CTR ciphertext from a valid 

AES−CTR ciphertext, AES−CTR implementations MUST employ a non− 

NULL ESP authentication method. [24: p. 5] 

Is it possible to use a fixed value?  

No, a fixed Integrity Check Value does not make any sense at all. 

Is it possible to reduce the ICV? 

The ICV can be reduced by using short size authentication algorithm, which may 

impact there security features. If one want to reduce the ICV by an external 

functionality, he has to ensure the correct rebuilding and point out security 

considerations due to the compression. 

Is it possible to remove the ICV? 

Without an integrity check, the encrypted data can be modified by interferences or 

attacks. Considering this fact it can be removed regardless if it is not required, by 

negotiating “NULL” as the ESP authentication method. 

4.3.7 Compression Requirements 

Sending data is very expensive regarding to power consumption, as illustrated in section 

2.1. Compression can be performed at different layers but usually it is performed in the 

MAC layer. Since 6LoWPAN is a common standard to compress IP packets in the IoT that 
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one should be used. Therefore Diet−ESP focuses on the encrypted ESP payload, which 

cannot be compressed inside the MAC layer. 

REQ 5 Diet−ESP SHOULD be able to reduce or remove all fields, directly related to 

the ESP protocol.  

REQ 5.1 Diet−ESP SHOULD be able to remove the SPI if there is only one 

connection. If more than one connections is possible, Diet−ESP SHOULD 

be able to reduce the SPI to an appropriate value. 

REQ 5.2 According to the frequency of sent packets, Diet−ESP SHOULD be able 

to remove the Sequence Number or reduce it to an appropriate value. 

REQ 5.3 Padding SHOULD be absence according to REQ 3. In that case, the Pad 

Length field MUST be removable by Diet−ESP. 

REQ 5.4 In many IoT scenarios UDP will be the only used protocol. Even if another 

transport layer protocol is used, it is usually unique at least for a specific 

connection. Therefore Diet−ESP SHOULD be able to remove the Next 

Header field from the ESP trailer. 

REQ 5.5 Diet−ESP SHOULD be able to define a reduced size of the ICV 

independent of the used algorithm. Diet−ESP MUST NOT support 

completely removing the ICV, as NULL cipher is defined in RFC4303 for 

that case. 

REQ 6 Diet−ESP SHOULD allow compressions of upper layer protocols, e.g. protocols 

of the transport− or application layer. 

REQ 7 Diet−ESP SHOULD NOT allow compressed fields, not aligned to 1 byte in 

order to prevent alignment complexity.  

REQ 8 If a block cipher with an Initialization Vector (IV) is used (like AES) Diet−ESP 

SHOULD be able to minimize the value sent on the wire. If so, it MUST define a 

proper algorithm to remain uniqueness and unpredictability of the IV.  

4.4 Flexibility 

Diet−ESP can compress some of the ESP fields as Diet−ESP is optimized for IoT. Which 

fields may be compressed or not, highly depends on the scenario and all the current and 

future scenarios cannot been foreseen. Diet−ESP and ESP differs in the following point: 

ESP has been designed so that any ESP secured communication on any device is able to 

communicate with another one. This means that ESP has been designed to work for large 

Security Gateway under thousands of connections, as well as devices with a single ESP 

communication. Because, ESP has been designed not to introduce any protocol limitations, 

counters and identifiers may become oversized in an IoT context. 

REQ 9 The developer SHOULD be able to specify the maximum level of 

compression. 

REQ 10 Diet−ESP SHOULD be able to compress any field independent from another 

one. 

REQ 11 Diet−ESP SHOULD be able to define different compression method, when 

appropriated. 

REQ 12 Each peer SHOULD be able to announce and negotiate the different 

compressed fields as well as the used method. 



4.5 Complexity 

25 

4.5 Complexity  

IoT devices have limited space for memory and storage.  

REQ 13 Diet−ESP SHOULD be able to be implemented with minimal complexity 

considering small implementation that implement only a subset of all Diet−ESP 

capabilities without requiring involving standard ESP, specific compressors and 

decompressors. 

4.6 Usability 

Application Developer usually do not want to take care about the underlying protocols and 

security. Standard IPsec addresses the goal by providing a framework that secures 

communication in any circumstances. Although application developers for IoT are 

expected to pay more attention to the device security and system requirements, they are 

not expected to be security developers. As a result, some default parameters that provides 

a standard secure framework for most cases should be provided. This is of course 

performed at the expense of some optimization, but it makes possible for application 

developers to have "standard" security and standard Diet−ESP compression by setting a 

single "DIET−ESP" flag. More advanced developers will be able to tune the security and 

compression parameters for their needs. 

REQ 14 Diet−ESP SHOULD provide default configurations, which can be easily set 

up by a developer. 

4.7 Compatibility 

IPsec/ESP is widely deployed by different vendors on different machines, why IoT devices 

may communicate with Standard ESP implementations. 

REQ 15 Diet−ESP SHOULD be able to interact with Standard ESP implementations 

on a single platform, without the need of implementing a second ESP stack inside 

the device. 

REQ 16 Diet−ESP SHOULD be able to communicate with Standard ESP gateways, 

by producing RFC4303 conform output. 

6LoWPAN is the common used standard for compression in IoT connections and ROHC 

defines compression for mobile communications, like Voice over IP (VoIP). These 

compressions appear within the MAC layer enabling higher compression levels, but they 

have disadvantages if the payload is encrypted, like it is done in ESP. This behavior will 

be similar in all future compression methods within the MAC−Layer. 

REQ 17 In order to keep compatibility to other compression protocols appearing at 

the MAC layer, Diet−ESP SHOULD be able to interact with IP compression 

protocols, without the need of modifying them. 
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 Related Work 

Other work already defines compression of security protocols. ROHC and 6LoWPAN are 

able to reduce the overhead of the ESP protocol and parts of the encrypted payload. Even 

though, the compression rate is not really satisfying and leaves a lot of space for 

improvements, they give some good practices which can be adopted to Diet−ESP.  

TLS and DTLS is another security protocol than ESP, but even there compression takes 

place and it shows that there is a high interest in compressing security protocols. In IoT 

environments, there is no actual difference between transport and IP layer, as the packet 

sizes are that small. However, TLS has to be developed for each application protocol, 

whereas IPsec can be used like a firewall securing all communication.   

5.1 TLS and DTLS 

There are several ideas implementing security on low−powered devices. In contrast to 

IPsec discussed in this thesis, there are a couple of investigations leading to TLS [13] 

(former known as SSL) securing the transport layer. As may be imagined, there are 

aspiration porting TLS on low−powered devices, too. Especially DTLS [71] is widely 

discussed providing best features to become the standard in securing the Internet of 

Things. In their paper “6LoWPAN Compressed DTLS for CoAP” [68, 70], Raza et al. 

discuss compressing DTLS with the already described 6LoWPAN header. The compression 

is especially defined for CoAP and they suggest four new header extensions for 6LoWPAN: 

 LOWPAN_NHC_R compresses the record header, which is used in each packet 

secured with DTLS (see Figure 5.1). This header allows deletion of DTLS version. 

It also describes compression of the fields Epoch (16 to 8 bit) and Sequence Number 

(32 to 16 bit). 

 LOWPAN_NHC_RHS compresses the TLS record header with additional 

information about the initial DTLS Handshake, usually described in the 

handshake protocol (see Figure 5.1). It uses the same compressions as Record Only 

with additional removing of the fragment_offset and fragment_length fields.  

 LOWPAN_NHC_CH compresses the ClientHello header, used by the client to 

establish a connection to the server (see Figure 5.2). This header allows deletion of 

Session Id, Cookie, Cipher Suite and Compression Method. The DTLS version field 

is always deleted and the default DTLSv1.0 is used. If the server does not support 

the default version, it sends his version in the ServerHello and the client can decide 

if it is supported. 

 LOWPAN_NHC_SH compresses the ServerHello header, used by the server to 

establish the connection (see Figure 5.3). This header allows deletion of the DTLS 

header fields DTLS version, Session Id, Cipher Suite and Compression Method. 
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Figure 5.1 LOWPAN_GHC_R(HS): 6LoWPAN 

compression for the TLS Record Header in 

optional combination with the Handshake header 

[70: p. 288]. 

 

Figure 5.2 LOWPAN_GHC_CH: 6LoWPAN 

compression for the TLS Client Hello header [70: 

p. 289]. 

 

Figure 5.3 LOWPAN_GHC_SH: 6LoWPAN 

compression for the TLS Server Hello header 

[70: p. 289]. 

These compressions can extremely reduce the packet overhead because they reduce the 

record header, added to every packet from 104 to 40 bit (63% reduction). The handshake 

is reduced from 96 to 24 bit (75%), the ClientHello from 336 to 264 bit (23%) and the 

ServerHello from 305 to 264 bit (14%).  

Using the compressions, the CoAP protocol can be secured with DTLS later called CoAPs 

or Lithe [69], including the compression mechanism. For setting up the DTLS connection 

Raza et al. use a lightDTLS implementation [51] which provides the mostly known ciphers. 

They set up their implementation on Contiki and show the possible maximum compression 

with their protocol as seen in Figure 5.4 and Figure 5.5. 

Another idea for securing IoT communication with DTLS is simplifying the protocol 

without using compression, like discussed in [40]. By implementing the protocol in a light 

version, it is easy to communicate with traditional hard− and software because no 

adaptations are needed on the other side of the communication. Kothmayr et al. use X.509 

certificates based on RSA to perform a two−way authentication. But it is exceptional 

because certificate based authentication needs additional computation. Additionally, 

asymmetric cipher−suites are more complex than symmetric ciphers. They performed it 

on sensors by adding special trusted notes to the network which acts as a proxy between 

usual certificates from the internet and sensor certificates. 

However, there is a common disadvantage of DTLS against IPsec. The application protocol 

needs to implement and set up the security. Hence, every new application protocol 

appearing in IoT environments has to be specified for the use of DTLS resp. TLS. One can 
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imagine that this leads to a lot of effort for the developers and may tempt them not 

implementing security. Additionally, the implementer of an IoT application needs to 

specify how the application should be secured. This does not fit to the usability 

requirement in section 4.6 defining that the application developer should be able to set a 

flag security and a standard security is provided for the whole device for all connections.  

 

Figure 5.4 UDP DTLS secured packet, without 

any compression [69: p. 3716]. 

 

Figure 5.5 with Lithe DTLS secured and 

compressed UDP message [69: p. 3716]. 

 

5.2 RObust Header Compression 

RObust Header Compression (ROHC [6] and ROHCv2 [56]) enables the compression of 

different protocols of all layers. It is designed as a framework, in which new protocol 

compressions appear as profiles. Usually ROHC compressions take place between IP and 

MAC layer, in which it does not take care on eventual IP alignment. 

The general idea of ROHC is to classify the different protocol fields. According to the 

classification, they can be removed in general, removed after sent ones or reduced to some 

bits. Compressor and decompressor are holding a context defining the way of compression 

for a specific connection, enabling safe and robust recovering. The first packet to be sent 

is usually not or only minor compressed as it establishes this context. Following packets 

can be highly compressed. In order to negotiate the level of compression, ROHC defines 

different compressor states, messages and modes. 

 States: 

o Initialization and Request (IR) State: In the IR−State, the static parts of 

the context are initialized or recovered at the decompressor context. The 

compressor sends complete header information, including all static and 

non−static fields together with some additional information. 

o First Order (FO) State: In the FO−State, irregularities in the packet stream 

are communicated between the two peers. The decompressor updates its 

context due to the information received in this state. 
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o Second Order (SO) State: In the SO−State the compression is optimal. The 

decompressor enters this state, if the compressed header is completely 

predictable. This means that the context is filled with all needed 

information to decompress the packet without any other information. If an 

update of dynamic fields occurs, the decompressor switches back to the 

FO−State. 

 Modes: 

o Unidirectional (U) Mode: Packets are sent in one direction only, from the 

compressor to the decompressor. Context changes are performed when the 

packet changes irregular, due to timeouts or periodically. 

o Bidirectional Optimistic (O) Mode: It is similar to the U−Mode, but it 

defines a feedback channel for error recovery between receiver and sender. 

On the other hand, periodically changes are not performed in the O−Mode. 

o Bidirectional Reliable (R) Mode: The R−Mode defines a more intensive use 

of the feedback channel and a stricter logic at compressor and 

decompressor. This can prevent the loss of packet synchronization and 

therefore maximizing the robustness of the compression. 

 Messages: 

o IR−Header: It associates a Context−ID (CID) with a specific profile and 

usually initializes the context. It can also update the context. 

o IR−Dyn−Header: In contrast to the IR−Header it can never initialize an 

uninitialized context, but update the profile or initialize or update the 

dynamic parts of the context.  

Since ESP may contain encrypted data, it is complex to define compressions for the 

encrypted payload. Therefore ROHC defines different compressions of the ESP protocol 

(see Figure 5.6). Regular ROHC can compress the ESP header only. If the packet is not 

encrypted, the rate of compression is extremely high because the whole packet including 

padding can be compressed with the regular ROHC stack as well. However, ESP is 

designed for confidentiality, whereas encryption is a common use case. ROHCoverIPsec 

[15–17] defines a method to compress the ESP payload before it is going to be encrypted. 

This leads to a second ESP stack, in which another ROHC compressor (resp. decompressor) 

works. Excluding the first packet which initializes the ROHC context, this enables a high 

compression rate. But it leads to two different compression and IPsec implementations, 

which is usually heavy for sensors as they may have restricted memory. In addition ROHC 

is a very complex compression protocol, not suitable for the constrained devices in IoT.  A 

developer may choose to simplify the ROHC and ROHCoverIPsec implementation. But, if 

one decides to implement only one of the two ROHC stacks he will lose the compression of 

the other stack. If he decided to implement only one IPsec stack, he will lose compatibility 

to not ROHCoverIPsec compliant gateways, which makes the protocol not flexible but 

complex and this should be avoided according to the requirements (see section 4.5 and 

REQ 7).  

Unfortunately, ROHCoverIPsec also limits the compression of the ESP protocol as it is 

asked in the requirements (see section 4.3.7), because of the IP restrictions. Padding 

remains necessary as IPsec is part of the IP stack which requires a 32 bits (resp. 64 bits 

for IPv6) aligned packet.  



5.3 6LoWPAN 

31 

With some modifications, ROHC would be able to compress even encrypted packets 

without a second ESP stack. Encrypted fields could be removed at the sender and rebuilt, 

encrypted and reinserted by the receiver. This could be achieved by clever context 

definitions at the beginning of the communication, but it has some restrictions. First of 

all, erasure can only be done in fixed block size, a cipher algorithm may be required (e.g. 

16 Byte in AES−CBC). Additionally, it leads to a high effort, without guaranteeing the 

compression to work safely. Since the receiver has to encrypt the compressed information 

and add them to the packet before it is able to check the integrity of the packet, one can 

easily construct a DoS attack. Flooding the receiver with invalid packet causes the receiver 

to perform the complex encryption and authentication algorithm for each packet, what 

could overcharge him. 

MAC-Layer

IPsec ESP
ROHCoverIPsec 

ESP

IP-layer

Transport Layer

ROHC

(de-)compressor

PHY-Layer

Layer 2

Layer 3

Layer 4

Layer 1

 

Figure 5.6 The two different ROHC layers in the OSI model. 

5.3 6LoWPAN 

The 6LoWPAN standard described in section 2.1.2 can be extended for compression of 

other protocols than IPv6 like ESP, AH. Raza et al. [66, 67] and Rantos et al. [64] describe 

such an extension for the ESP and AH header (see Figure 5.7 and Figure 5.8). Using all 

compression the AH header can be reduced from minimum 24 bytes to 18 bytes (see Figure 

5.9) and the ESP header can be decreased by 6 bytes (see Figure 5.10). Referencing Raza 

et al., the packet size overhead of compressed IPsec to the 6LoWPAN link layer security is 

between 3 and 9 Bytes depending on the required security parameters (authentication, 

encryption, cipher algorithm, authentication + encryption). In addition to Raza et al., 

Rantos et al. explicitly describe the use of AES−CCM* like requested in the requirements. 

 

Figure 5.7 LOWPAN_NHC_ESP: The ESP Header extension for 6LowPan [64: p. 61]. 
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Figure 5.8 LOWPAN_NHC_AH the extension header for 6LoWPAN for compressing IPsec 

Authentication Header protocol [66: p. 4]. 

 

Figure 5.9 LOWPAN_AH: IPsec Authentication 

Header secured UDP Payload with 6LoWPAN 

compression [65: p. 15]. 

 

Figure 5.10 LOWPAN_ESP: IPsec ESP secured 

UDP Payload using 6LoWPAN compression [65: 

p. 15]. 

However, for ESP the same problem as with ROHC appears, that it is not possible to 

compress the encrypted ESP payload. Therefore Raza et al. introduce a second IPsec stack, 

similar to ROHCoverIPsec, for the compression of the inner protocols like UDP or IP in 

IPsec Tunnel mode. That makes 6LoWPANoverIPsec inflexible, incompatible to regular 

ESP and complex to implement, which is asked to be prevented in the requirements.  

Of course one can develop similar functionality as described in the ROHC section above to 

compress encrypted payload, but he has to deal with the same restrictions. 

5.4 Comparison with requirements 

The two protocols ROHC and 6LoWPAN are able to compress not encrypted IP packets 

between the MAC and IP layer including the not encrypted ESP header. With specific 

extension they can also compress the encrypted IP, Transport and Application headers 

inside the ESP packet, by implementing a second or modified ESP procession. This enables 

high compression of the headers, but not of the ESP trailer and the encryption information, 

like the AES Initialization Vector. Table 5.1 shows which requirements are fulfilled by 

these two protocols.  

One can see that the alignment, IV and ICV compression requirements cannot be fulfilled, 

even by combining two protocols (e.g. ROHC and ROHCoverIPsec or 6LoWPAN and 

6LoWPANoverIPsec). Additionally, both protocols need to be implemented according to a 

special use case, which makes them not easy to be configured (REQ 14). As both ESP 

payload compressions need a second compression layer together with a second ESP stack, 

they cannot be implemented in a light way (REQ 13). Moreover, the ROHC framework 

includes that much compression negotiations that it cannot be implemented in a light way 

at all. Therefore, ROHC and ROHCoverIPsec can be seen as not useable for IoT 

communications. 6LoWPAN may be a good choice for basic compressions, but it is not able 

to fulfill the complete set of compression requirements (REQ 5.1 − REQ 5.5) and upper 

layer compressions are quite complex (REQ 6). 
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Requirement ROHC 6LoWPAN 
ROHCover 

IPsec 

6LoWPAN 

overIPsec 

REQ 1: Support AES ✓ ✓ ✓ ✓ 

REQ 2: Support AES−CCM ✓ ✓ ✓ ✓ 

REQ 3: Different Alignments ✓ ✓ X X 

REQ 4: Alignment Negotiation X X X X 

REQ 5.1: SPI compression ✓ ✓ X X 

REQ 5.2: SN compression ✓ ✓ X X 

REQ 5.3: PL removal X X X X 

REQ 5.4: NH removal X X X X 

REQ 5.5: ICV compression X X X X 

REQ 6: Upper Layer 

compression 

X X ✓ ✓ 

REQ 7: 1 Byte alignment X ✓ X ✓ 

REQ 8: IV compression X X X X 

REQ 9: Negotiation of 

compression level 

✓ ✓ ✓ ✓ 

REQ 10: Independence of field 

compressions 

✓ ✓ ✓ ✓ 

REQ 11: Different compression 

methods 

✓ ✓ ✓ ✓ 

REQ 12: Negotiation of 

compressed fields 

✓ X ✓ X 

REQ 13: Minimal 

implementation 

X ✓ X X 

REQ 14: Default configuration X X X X 

REQ 15: Implementable as 

ESP−Add−On 

X X X X 

REQ 16: Supports Standard ESP 

compatible compression level 

✓ ✓ ✓ ✓ 

REQ 17: Compatible with other 

MAC−Layer compressions 

✓ ✓ ✓ ✓ 

Table 5.1 Comparison of existing ESP compression protocols due to the requirements. 
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 Diet−ESP Protocol Design 

This section points out the design of Diet−ESP. It provides instruments to compress fields 

of the standard ESP. Section 6.2 and 6.6 will describe the Diet−ESP context and how the 

protocol works. Section 6.3 addresses the compression of the Clear Text Data. In fact, Clear 

Text Data usually includes application protocols, transport protocols like UDP/TCP and 

sometimes IP headers when the IPsec Tunnel mode is used. Some of their parameters 

could be compressed as they are negotiated out of band, and are stored in the IPsec 

databases. Other parameters may also be compressed by using specific methods like 

ROHC. Section 6.4 addresses how the IV can be computed on both peers, thus reducing 

the need to send the complete IV in each packet. Section 6.5 defines how all necessary 

parameters for Diet−ESP can be negotiated using IKEv2. The requirements ask Diet−ESP 

to be able to be integrated to an existing ESP implementation in an easy way. Section 6.7 

points out the special characteristics of the Diet−ESP protocol and shows how it can be 

integrated to a Minimal−ESP implementation as described in section 6.6. How Diet−ESP 

interacts with other compression protocols is outlined in section 6.8. 

6.1 The use of the ROHC context 

The compression mechanisms of Diet−ESP are based on ROHC and ROHCoverIPsec. 

ROHC defines mechanisms to compress and decompress fields of an IP packet. They have 

been designed for bandwidth optimization, but not necessarily for constrained devices. As 

a result, defining ROHC and ROHCoverIPsec profiles is not sufficient to fulfill the 

complete set of Diet−ESP requirements. Diet−ESP will result in a light implementation 

that does not require implementation of the full ROHC and ROHCoverIPsec. 

In order to achieve this goal, the Diet−ESP Context contains all necessary parameters to 

compress an ESP packet and the ROHC and ROHCoverIPsec framework is used to 

compress the ESP packet. More specifically, it describes how the ROHC context and profile 

can be derived from the Diet−ESP Context to proceed to the compression. The advantage 

of using ROHC and ROHCoverIPsec is that compression behavior follows a standardized 

compression framework. On the other hand, deriving profiles and methods from the 

Diet−ESP Context makes the use of ROHC and ROHCoverIPsec implementation 

dependent, and any implementation that behaves in a similar way will be interoperable. 

This makes light implementation for Diet−ESP for constrained devices achievable. 

6.2 Diet−ESP Context 

The Diet−ESP context provides the necessary parameters for the compressor and 

decompressor to perform the appropriate compression and decompression of the ESP 

packet. Table 6.1 shows and section 6.2.1 describes the different parameters. These 

parameters provide the generic Diet−ESP Context. Section 6.2.2 provides the Diet−ESP 

Context that makes Diet−ESP compliant with ESP. Finally Section 6.2.3 provides the 

default Diet−ESP Context. These are the expected values when the Diet−ESP Context is 

not specified. The goal of the default Diet−ESP Context is to simplify the use of Diet−ESP 

as a secure framework for IoT communications. 
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6.2.1 Context Description 

The Diet−ESP context is shown in Table 6.1. In the following, the fields of the context are 

described and their characteristics are discussed. 

Context Field Name Overview 

ALIGN Necessary Alignment for the specific device. 

SPI_SIZE Size in bytes of the SPI field in the transmitted packet. 

SN_SIZE Size in bytes of the SN field in the transmitted packet. 

NH Presence of the Next Header field in the ESP Trailer. 

PAD Presence of the Pad Length field in the ESP Trailer. 

Diet−ESP_ICV_SIZE Size of the Diet−ESP ICV in the transmitted packet. 

Table 6.1 Diet−ESP Context. 

6.2.1.1 ALIGN 

Alignment is the minimum alignment accepted by the hardware. Constraints may come 

from various reasons (see section 4.2). Diet−ESP reduces the ALIGN value from 32 bits 

for IPv4 or 64 bits for IPv6 to 8, 16, 32 and 64 bit alignment. 

The motivation to do so is to remove the padding and other mandatory fields of the ESP 

packet. Then, many IoT devices embed small 8 or 16 bit CPUs. Finally, even though ESP 

is an extension header, it is often the last extension header of a header−only IP packet. 

The ESP header is only read by the real receiver and is uninteresting for other devices like 

routers, placed between the two peers. As a result, there seems to be no real impact on the 

system if ESP extension header is not aligned. 

Note that the benefices of ALIGN also depends on the used cryptographic mode. More 

specifically AES−CTR has an 8 bit block whereas AES−CBC has a 128 bit block. As a 

result the use of AES−CBC with small Clear Text Data results in large Encrypted Data 

with embedded padding. In other words, the alignment for one packet is 

always 𝑀𝐴𝑋(𝐶𝐼𝑃𝐻𝐸𝑅_𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸, 𝐴𝐿𝐼𝐺𝑁). 

6.2.1.2 SPI_SIZE 

ESP Security Policy Index is 4 byte long to identify the SAD−entry for incoming traffic. 

Diet−ESP omits, leaves unchanged or reduces the SPI sent on the wire to the 0, 1, 2, 3 or 

4 LSB (Least Significant Bytes). 

Compressing the SPI can have security impact, since the inbound SAD−lookup has to be 

changed. In some variations, this lookup may result in Denial of Service (DoS) attacks, if 

the device is not configured properly. Therefore this number should be guided by the 

number of simultaneous inbound SA the device is expected to handle and reliability of the 

IP addresses in order to identify the proper SA for incoming packets. A sensor with a single 

connection to a Security Gateway may bind incoming packets to the proper SA based only 

on its IP addresses. In that case the SPI is not used for SAD−lookup but for integrity check. 

Other scenarios may consider using the SPI to index the SAs or having multiple ESP 

channels with the same host from a single host. In that case a reduced length for the SPI 

may be chosen. Note also that the value 0 for the SPI is note allowed to be sent on the wire 

as described in [36], since it is used to separate ESP and IKEv2 traffic within NAT 

environments.  
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6.2.1.3 SN_SIZE 

ESP Sequence Number is 32 bit and extended SN is 64 bit long and used for anti−replay 

protection. Diet−ESP omits, leaves unchanged or reduces SN sent on the wire to 0, 1, 2, 3 

or 4 LSB. 

Decompressing the SN at the receiver is guided by a linear extrapolation of the expected 

received Sequence Number and the LSB−SN sent on the wire. To avoid packet overhead, 

this configuration is stored within the Security Association, whereas it remains valid 

during its lifetime. An implementer has to avoid sending SN increasing higher than the 

maximum value of the LSB window. 

In some cases the received SN may increase by a higher number than one e.g. if the time 

is used as the SN or because of a high number of packet loss. If one decides to use a 

mechanism like the time, one has to deal with the following restrictions: 

1) The SN_SIZE is not allowed to be 0 

2) If the SN_SIZE is not 4: 

2.1) The SN_SIZE must be chosen in a way that the LSB of the time is not allowed 

to overlap between the sending of two packets. 

2.2) The start value of the SN must be ensured to be the same between the two 

peers. This can be done with time synchronization for example.  

Note that SN and SPI must be aligned to a multiple of the alignment value (ALIGN). 

6.2.1.4 NH 

Next Header in ESP is used to identify the first header inside the ESP payload. Diet−ESP 

is able to remove the Next Header field from the ESP−Trailer. 

Removing the Next Header is only possible if the underlying protocol can be derived from 

the Traffic Selector (TS) within the Security Association (SA). The Next Header indicates 

whether the encrypted ESP payload is an IP packet, a UDP packet, a TCP packet or no 

next header. The NH can only be removed if this has been explicitly specified in the SA or 

if the device has a single application.  

Note that removing the Next Header impacts how encryption is performed. For example, 

the use of AES−CBC mode requires the last block to be padded, reaching a 128 bit 

alignment. In this case removing the Next Header increases the padding by the Next 

Header length, which is 8 bits. In this case, removing the Next Header provides a few 

advantages, as it does not reduce the ESP packet length. With AES−CBC, the only 

advantage of removing the Next Header would be for data with the last block of 15 bytes. 

In that case, ESP pads with 15 modulo 16 bytes, set the 1 byte pad length field to 15 and 

add the one byte Next Header field. This leads to 15 + 15 + 1 + 1 = 32 bytes to be sent. On 

the other hand, removing the Next Header would require only the concatenation of the 

pad length byte with a 0 value, which leads to only 16 bytes to be sent. 

Other modes like AES−CTR do not have block alignment requirements. Using AES−CTR 

with ESP only requires the IP alignment. In fact, if an n byte alignment is required (for 

encryption or for packet format), data of length k * n + n − 1 bytes, where k is an integer, 

takes advantage of removing the Next Header and reduces the data to be sent over n bytes. 

In the case of sensor network it is very likely that data of fixed size k * n + n − 1 will be 
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used. Furthermore, if IP alignment is reduced to 8 bits alignment, Next Header is always 

an additional unnecessary byte being sent.  

6.2.1.5 PAD 

With ESP, all packets have a Pad Length field. This field is usually present because ESP 

requires IP alignment which is ensured with padding. Diet−ESP considers removing the 

Padding and the Pad Length fields. If PAD is present, it is computed according to ALIGN. 

Some devices might use an 8 bits alignment and in that case padding is not necessary. 

Similarly, sensors may send application data of fixed length matching the alignment. With 

ESP these scenarios would result in an unnecessary Pad Length field always set to zero. 

Diet−ESP considers those cases with no padding and thus the Pad Length field can be 

omitted.  

6.2.1.6 Diet−ESP_ICV_SIZE 

Integrity Check Value (ICV) is used to authenticate the Diet−ESP Payload. Diet−ESP 

considers sending the whole ICV or the first 1 byte (resp. 2, 4, 8 bytes). 

ESP negotiates an authentication protocol for every SA. These protocols generate an ICV 

of a length defined by the authentication protocol. These definitions do not provide ways 

to perform weak authentication, as there is no way to reduce the size of the ICV. IoT is 

interested in weak authentication as it may send a small amount of bytes, and the 

trade−off between battery life time and security may be worth. As a result Diet−ESP 

indicates the number of bytes of the ICV. Note that reducing the size of the ICV may expose 

the system to security flaws. Note also that ICV is optional so if one chooses not to perform 

authentication, one must negotiate the authentication algorithm to NULL as defined in 

[46]. 

The Diet−ESP ICV value differs from the Standard ESP value since the authenticated 

data is not the same. In the case of the Diet−ESP ICV, the ICV is computed over the 

compressed Diet−ESP payload, whereas in the case of the Standard ESP ICV the ICV is 

computed over the uncompressed packet. This means that the decompressed Diet−ESP 

ICV is not expected to match the Standard ESP ICV value (see section 6.7.2 for more 

details). 

6.2.2 Standard ESP compliant Diet−ESP Context 

Table 6.2 defines the Diet−ESP Context that produces regular ESP packets. This makes 

Diet−ESP compatible with standard ESP.  

Context Field Name  Default Value 

ALIGN  IP alignment (4 bytes for IPv4 and 8 bytes for IPv6) 

SPI_SIZE  4 bytes 

SN_SIZE  4 bytes 

NH  Present 

PAD  Present 

Diet−ESP_ICV_SIZE  Not compressed 

Table 6.2 Diet−ESP Context for regular ESP. 
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 ALIGN (IP alignment): The alignment is 32 bit for IPv4 and 64 bit for IPv6. 

 SPI_SIZE (4 bytes): This is not problematic for devices that handle a few simultaneous 

connections. 

 SN_SIZE (4 bytes): This causes a window of 232 lost packets for a regular incrimination 

of 1 for each packet. 

 NH (present): Next Header remains uncompressed, as compression cannot be 

performed in all scenarios. 

 PAD (present): Padding is computed according to the IP alignment. 

 Diet−ESP_ICV_SIZE (not compressed): The Diet−ESP ICV is computed. The length is 

determined by the authenticating algorithm, negotiated by the SA. This value is not 

truncated. 

6.2.3 Default Diet−ESP Context 

This section defines a default Diet−ESP Context. IPsec/ESP has been designed to provide 

a secure framework that remains secure in any scenarios. As a result, specific scenarios 

may carry unnecessary security parameters. As compression is performed on a 

per−scenario basis, the Diet−ESP Context configuration for a given scenario may 

introduce vulnerabilities in another scenario. As a result, Diet−ESP can hardly define an 

optimized Diet−ESP Context that matches with any scenarios. 

On the other hand, Diet−ESP is very flexible and makes it possible to compress any fields. 

Defining which field can be compressed without introducing vulnerabilities requires 

specific security knowledge not all application developer are expected to have. Instead, an 

application developer should be able to simply mention that a given application needs to 

be secured with Diet−ESP without specifying any parameters. In that case, a Default 

Diet−ESP Context will be considered. This Diet−ESP Context is probably not optimized 

for the given scenario, but at least it does not introduce vulnerabilities. The values for the 

Default Diet−ESP Context are specified in Table 6.3. 

Field Name  Default Value 

ALIGN  8 bit Alignment 

SPI_SIZE  2 bytes 

SN_SIZE  2 bytes 

NH  Present 

PAD  Removed 

ESP_ICV_SIZE  Not compressed 

Table 6.3 Diet−ESP default context. 

 ALIGN (8 bit): As most IoT devices CPUs are likely to deal with 8 bit alignment. 

 SPI_SIZE (2 bytes): The SPI is reduced to 2 bytes. This is not problematic for 

devices that handle a few simultaneous connections. 

 SN_SIZE (2 bytes): The SN reduced to 2 bytes which causes a window of 512 lost 

packets for a regular incrimination of 1 for each packet. 

 NH (Present): Next Header remains present in the packet, as compression cannot 

be performed in all scenarios. 

 PAD (Removed): Padding is removed as AES−CTR (AES−CCM*) is widely deployed 

for IoT, and most IoT devices can deal with 8 bit alignment. If AES−CBC is used, 

the padding is performed by the encryption mode itself. 
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 Diet−ESP_ICV_SIZE (not compressed): The Diet−ESP ICV is computed. The 

length is determined by the authenticating algorithm negotiated by the SA. This 

value is not truncated in order to remain the security provided by the algorithm. 

6.3 Diet−ESP Extension: Upper Layer Compressions 

The ESP payload includes transport layer (TCP [62], UDP [60], UDP−Lite [41]) and 

application layer header (HTTP [19], RTP [72], etc.). Inside the Diet−ESP framework, 

these upper layer headers can be compressed by any compression protocol, like 6LoWPAN 

or ROHC. However, both of them need additional information to be stored on the device 

(e.g. ROHC context) or information sent on the wire (6LoWPAN header or ROHC 

signaling). Therefore, this section introduces a Diet−ESP context extension for 

compression of transport layer headers.  

The main propose of transport protocols is the definition of the port where the packet 

should be sent to, identifying the program at the endpoint which is used for working with 

this packet. For (de−) compressions, one has to know the source and destination ports 

together with the transport layer protocol. All these information can already be found in 

the IPsec Security Association (SA), if it is established uniquely. If IPsec is working in 

Tunnel Mode, the ESP payload includes an IP [11, 61] header. Like for transport layer 

protocols, most information for (de−) compression of this header, can be found inside the 

SA or in the original IP header by applying mechanism like the ones used in the IPsec 

BEET mode described in section 2.2.1.  

6.3.1 Diet−ESP Context Extension 

This section provides the extension for the Diet−ESP context to enable inner header 

compressions shown in Table 6.4. 

Context Field Name  Overview 

USE_IPSEC_DATABASE  Defines the use of the Traffic Selector for  

(de−) compression. 

INNER_ROHC_COMPRESSION_PROFILE  Defines the ROHC profile used for 

compression. 

CHECKSUM_LSB  LSB of the UDP, UDP−Lite or TCP 

checksum 

Table 6.4 Diet−ESP context extension for upper layer header compressions. 

USE_IPSEC_DATABASE: 

The IPsec SAD holds some values which can be used for compressing a packet, but 

only if the values are static. If a developer chooses to use the context field 

USE_IPSEC_DATABASE, he must ensure that all necessary values for all profiles 

specified in INNER_ROHC_COMPRESSION_PROFILE are unique.  

INNER_ROHC_COMPRESSION_PROFILE: 

ROHC defines different profiles for protocols and protocol combinations [27]. The 

Diet−ESP context parameter INNER_ROHC_COMPRESSION_PROFILE specifies 

the profile(s) used for one session associated with one IPsec security association. Table 

6.5 shows an overview over the existing ROHC profiles during the time of writing this 

thesis. 
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CHECKSUM_LSB: 

If an inner header provides a checksum this can be compressed by the LSB mechanism. 

The way the checksum is compressed is specified by the related profiles, e.g. UDP 

Section 6.2, UDP−Lite Section 6.3 and TCP Section 6.4.  

Profile Number  ROHC version  Protocol  RFC 

0x0000  ROHC  uncompressed IP  RFC3095[6] 

0x0001  ROHC  RTP/UDP/IP  RFC3095[6] 

0x1001  ROHCv2  RTP/UDP/IP  RFC5225[56] 

0x0002  ROHC  UDP/IP  RFC3095[6] 

0x1002  ROHCv2  UDP/IP  RFC5225[56] 

0x0003  ROHC  ESP/IP  RFC3095[6] 

0x1003  ROHCv2  ESP/IP  RFC5225[56] 

0x0004 ROHC IP RFC3843[31] 

0x1004  ROHCv2  IP  RFC5225[56] 

0x0006  ROHC  TCP/IP  RFC6846[57] 

0x0007  ROHC  RTP/UDP−Lite/IP  RFC4019[55] 

0x1007  ROHCv2  RTP/UDP−Lite/IP  RFC5225[56] 

0x0008  ROHC  UDP−Lite/IP  RFC4019[55] 

0x1008  ROHCv2  UDP−Lite/IP  RFC5225[56] 

Table 6.5 Overview over currently existing ROHC profiles. 

6.3.2 Overview 

The Diet−ESP context extensions defined in section 4 have specific requirements for the 

values stored in the Security Association. Roughly speaking, Diet−ESP is able to remove 

all header fields which have unique values inside the Security Association. Most probably 

they are stored in the Traffic Selector, which defines the traffic to be secured with IPsec. 

Table 6.6 shows some header fields which can be adopted from the Traffic Selector. Table 

6.7 shows the compressed headers for the specific profiles, currently supported by 

Diet−ESP. Negotiating ROHC profile 0x0000 provides the same functionality as 

negotiating USE_IPSEC_DATABASE with “no”. 

Field  Protocol  ROHC class 

IP version  IP/IPv6  STATIC−KNOWN 

Source Address  IP/IPv6  STATIC−DEF 

Destination Address  IP/IPv6  STATIC−DEF 

Next Header  IP/IPv6  STATIC 

Source PORT  UPD/TCP  STATIC−DEF 

Destination PORT  UPD/TCP  STATIC−DEF 

Table 6.6 Required fields inside the IPsec Security Association. 

Diet−ESP considers none of the ROHC messages to establish the context between the two 

peers. The ROHC context is defined during the Key Exchange, which establishes the 

Diet−ESP context, before the first packet is sent. If the USE_IPSEC_DATABASE 

parameter is set to 'yes', all relevant values defined by the profile specified in 

INNER_ROHC_COMPRESSION_PROFILE are linked with the correlating values in the 

Security Association.  
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Profile Number Protocol Diet-ESP compression 

0x0000 uncompressed IP no compression 

0x0001 RTP/UDP/IP  not used 

0x1001 RTP/UDP/IP not used 

0x0002 UDP/IP UDP and IP in Tunnel Mode 

0x1002 UDP/IP UDP and IP in Tunnel Mode 

0x0003 ESP/IP not used 

0x1003 ESP/IP not used 

0x0004 IP IP in Tunnel Mode 

0x1004 IP IP in Tunnel Mode 

0x0006 TCP/IP TCP and IP in Tunnel Mode 

0x0007 RTP/UDP-Lite/IP not used 

0x1007 RTP/UDP-Lite/IP not used 

0x0008 UDP-Lite/IP UDP-Lite and IP in Tunnel Mode 

0x1008 UDP-Lite/IP UDP-Lite and IP in Tunnel Mode 

Table 6.7 Interaction of ROHC profiles with Diet−ESP compression. 

6.3.3 Upper Layer Header Compression Details 

This section describes the details, how the different protocols can be compressed using 

Diet−ESP upper layer compression. If compression occurs, one of the ROHC profile 

number listed in [27] is specified in INNER_ROHC_COMPRESSION_PROFILE. Note 

that IP compression only takes place if IPsec Tunnel mode is used for the Security 

Association. 

Later, this section points out the compression methods for all protocol headers which can 

be compressed by using ROHC profiles and how Diet−ESP uses them. 

6.3.3.1 IP (profile 0x0001 − 0x1008) 

This section shows the compression of ESP payload for all ROHC profiles including an IP 

header. This is only relevant if IPsec is used in Tunnel Mode and it only affects the inner 

IP header. How the different header fields are compressed is provided in Table 6.8. Note 

that in IoT usually IPv6 is used instead of IPv4, therefore this section focuses only on IPv6, 

but the adoptions can be made on IPv4 as well. 

Outer IP specifies values, which can be read from the IP packet, holding the ESP header. 

This one is not compressed by Diet−ESP and Diet−ESP must have access to uncompressed 

values. This mechanism is proven to work in IPsec BEET mode [47]. 
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Field  Class  Compression 

Method  

Diet−ESP 

ROHC class  

Data origin 

Version  STATIC  removed  STATIC  TS 

Traffic Class  CHANGING  removed  INFERRED  outer IP 

Flow Label  STATIC−DEF  removed  INFERRED outer IP 

Payload Length  INFERRED  removed  INFERRED  outer IP 

Next Header  STATIC  removed  STATIC  TS 

Hop Limit  RACH  removed  INFERRED  outer IP 

Source Address  STATIC−DEF  removed  STATIC−DEF  TS 

Destination Address  STATIC−DEF  removed  STATIC−DEF  TS 

Table 6.8 Header classification for IPv6. 

Version: 

The IP version is specified in the SA and can be copied to the ROHC context, before 

the first packet is sent/received. 

Traffic Class: 

Traffic Class can be read from the outer IP header. Therefore the classification is 

changed to INFERRED. 

Flow Label: 

Flow Label can be read from the outer IP header. Therefore the classification is 

changed to INFERRED. 

Next Header: 

The Next Header is stored in the protocol of the Traffic Selector and is fixed. It can be 

copied to the ROHC context, before the first packet is sent/received. 

Hop Limit: 

The Hop Limit can be read from the outer IP header. Therefore the classification is 

changed to INFERRED. 

Source Address: 

The Source Address is fixed in the SA and can be copied to the ROHC context, before 

the first packet is sent/received. 

Destination Address: 

The Destination Address is fixed in the SA and can be copied to the ROHC context, 

before the first packet is sent/received. 

6.3.3.2 UDP (profile 0x0001, 0x1001, 0x0002, 0x1002) 

This section shows the compression of ESP payload for all ROHC profiles including an 

UDP header listed in Table 6.9. 



6 Diet−ESP Protocol Design  

44 

Field  Class  Compression  

Method  

Diet−ESP  

ROHC class  

Data origin 

Source Port  STATIC−DEF  removed  STATIC−DEF  TS 

Destination 

Port  

STATIC−DEF  removed  STATIC−DEF  TS 

Length  INFERRED  removed  INFERRED  IP payload length 

Checksum  IRREGULAR  LSB  INFERRED  calc. 

Table 6.9 Header classification for UDP. 

Source Port: 

The Source Port is fixed in the SA and can be copied to the ROHC context, before the 

first packet is sent/received. 

Destination Port: 

The Destination Port is fixed in the SA and can be copied to the ROHC context, before 

the first packet is sent/received. 

Length: 

The length of the UDP header can be calculated like: IP header − IP header length. 

Therefore there is no need to send it on the wire and it is defined as INFERRED. 

Checksum: 

The checksum can be calculated by Diet−ESP and proved by comparing the LSB sent 

on the wire. The number of bytes sent on the wire can be 0, 1 and 2 stored in 

CHECKSUM_LSB. If 0 LSB is chosen, the checksum MUST be decompressed with the 

value 0. If the UDP implementation of the sender chose to disable the UDP checksum 

by setting the checksum to 0 Diet−ESP SHOULD be used with CHECKSUM_LSB = 0. 

6.3.3.3 UDP−Lite (profile 0x0007, 0x1007, 0x0008, 0x1008) 

This section shows the compression of ESP payload for all ROHC profiles including an 

UDP−Lite header listed in Table 6.10. 

Field  Class  Compression  

Method  

Diet−ESP  

ROHC class  

Data origin 

Source Port  STATIC−DEF  removed  STATIC−DEF  TS 

Destination Port  STATIC−DEF  removed  STATIC−DEF  TS 

Checksum Coverage  IRREGULAR  LSB  IRREGULAR  calc. 

Checksum  IRREGULAR  LSB  INFERRED  calc. 

Table 6.10 Header classification for UDP−Lite. 

Source Port: 

The Source Port is fixed in the SA and can be copied to the ROHC context, before the 

first packet is sent/received. 

Destination Port: 

The Destination Port is fixed in the SA and can be copied to the ROHC context, before 

the first packet is sent/received. 
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Checksum Coverage: 

The Checksum specifies the number of octets carried by the UDP−Lite checksum. It 

can have the same value as the UDP length (0 or UDP length) or any value between 8 

and UDP length. This field is compressed with CHECKSUM_LSB of 0, 1 or 2 bytes. If 

0 or 1 LSB is chosen, the field MUST be decompressed with the UDP length. If 2 LSB 

is chosen, the checksum has to carry this behavior. 

Checksum: 

The checksum can be calculated by Diet−ESP and proved by comparing the LSB sent 

on the wire. The number of bytes sent on the wire can be 0, 1 and 2 stored in 

CHECKSUM_LSB. If 0 LSB is chosen, the checksum MUST be decompressed with the 

value 0. If an UDP−lite implementation of the sender chose to disable the UDP 

checksum by setting the checksum to 0 Diet−ESP SHOULD be used with  

CHECKSUM_LSB = 0. 

6.3.3.4 TCP (profile 0x0006) 

This section shows the compression of ESP payload for all ROHC profiles including a TCP 

header listed in Table 6.11. The ROHC context is partly filled while the Diet−ESP context 

exchange and some values can be removed. Since TCP is not stateless only fields with the 

compression methods 'removed' and 'LSB' are allowed to be compressed, the other fields 

have to be sent on the wire uncompressed. 

Field  Class  Compression  

Method  

Diet−ESP  

ROHC class  

Data origin 

Source Port  STATIC−DEF  removed  STATIC−DEF  TS 

Destination Port  STATIC−DEF  removed  STATIC−DEF  TS 

Sequence Number  CHANGING  N/A  CHANGING   

Acknowledgement Num  INFERRED  N/A  INFERRED   

Data Offset  CHANGING  N/A  CHANGING   

Reserved  CHANGING  N/A  CHANGING   

CWR flag  CHANGING  N/A  CHANGING   

ECE flag  CHANGING  N/A  CHANGING   

URG flag  CHANGING  N/A  CHANGING   

ACK flag  CHANGING  N/A  CHANGING   

PSH flag  CHANGING  N/A  CHANGING   

RST flag  CHANGING  N/A  CHANGING   

SYN flag  CHANGING  N/A  CHANGING   

FIN flag  CHANGING  N/A  CHANGING   

Window  CHANGING  N/A  CHANGING   

Checksum  IRREGULAR  LSB  INFERRED  calc. 

Urgent Pointer  CHANGING  N/A  CHANGING   

Options  CHANGING  N/A  CHANGING   

Table 6.11 Header classification for TCP. 

Source Port: 

The Source Port is fixed in the SA and can be copied to the ROHC context, before the 

first packet is sent/received. 
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Destination Port: 

The Destination Port is fixed in the SA and can be copied to the ROHC context, before 

the first packet is sent/received. 

Checksum: 

The checksum can be calculated by Diet−ESP and proved by comparing the LSB sent 

on the wire. The number of bytes sent on the wire can be 0, 1 and 2 stored in 

CHECKSUM_LSB. If 0 LSB is chosen, the checksum has to be decompressed with the 

value 0. If a TCP implementation of the sender chose to disable the TCP checksum by 

setting the checksum to 0 Diet−ESP should be used with CHECKSUM_LSB = 0. 

6.4 Diet−ESP Extension: IV compression  

The Initialization Vector (IV) is defined as an input to the encryption function AES. It is 

the same value to encrypt and decrypt, whereas it is usually sent on the wire. Standard 

IPsec/ESP does not define the IV, but it leaves its definition to the encryption function (see 

RFC3602 [20] for AES−CBC and RFC3686 [24] for AES−CTR). The IV has to be unique 

for every packet secured by one encryption key and unpredictable for an attacker.  

As the IV is an implicit overhead for every packet (8 Byte in CTR, 16 Byte in CBC), this 

document introduces a Pseudo Random Function (PRF) to generate the IV explicit on both 

sides of the security communication. This enables the compression of the value sent on the 

wire, as it is predictable by the receiver but not for an attacker. 

This section defines a Diet−ESP extension using a Pseudo Random Function for safely 

generating the same IV on both peers in order to remove it from the ESP payload. 

6.4.1 Pseudo Random Function 

PBKDF2 standardized in RFC2898 [33] defines a PRF, which can be used with any HMAC 

algorithm like CBC−HMAC, AES−XCBC−HMAC, SHA1, SHA−256 or SHA3. Figure 6.1 

shows parameters and the output of PBKDF2. 

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ 
|PBKDF2 (P, S, c, dkLen)                                               | 
|                                                                      | 
|   Options:        PRF        underlying pseudorandom function (hLen  | 
|                              denotes the length in octets of the     | 
|                              pseudorandom function output)           | 
|                                                                      | 
|   Input:          P          password, an octet string               | 
|                   S          salt, an octet string                   | 
|                   c          iteration count, a positive integer     | 
|                   dkLen      intended length in octets of the derived| 
|                              key, a positive integer, at most        | 
|                              (2^32 − 1) * hLen                       | 
|                                                                      | 
|   Output:         DK         derived key, a dkLen−octet string       | 
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ 

Figure 6.1 PBKDF2 function parameters [33]. 
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For the explicit generation of the IV this extension considers the following parameters: 

 PRF: The PRF is negotiated with the IV_PRFT value in the Diet−ESP context.  

 P: The password is the encryption key. 

 S: The SN of the packet. 

 C: The number of iterations can be small, as the password is really strong (at least 

128 Bit for AES). While it is not negotiated otherwise, the value 1 is used. 

 dkLen: The output length is defined by the size of the implicit IV of the encryption 

algorithm (e.g. 8 Bytes for AES−CTR, 16 Bytes for AES−CBC). 

 

6.4.2 Diet−ESP Context Extension 

To enable the compression of the IV, the Diet−ESP context is extended with three values 

(see Table 6.12). 

Context Field Name  Overview 

IV_COMPRESSION Defines if IV compression is enabled. 

IV_PRFT  Defines the hash function used as the algorithm for the 

Pseudo−Random−Function. 

USE_IV_PBKDF2 Defines the use of PBKDF2 as the algorithm for generating the 

Pseudo Random values.  

Table 6.12 Diet−ESP context extension for compression of the IV. 

IV_COMPRESSION: 

Specifies if the IV is sent on the wire or not. If it is set, the IV is removed completely. 

If it is unset the IV is sent like specified in the encryption algorithm. This value can 

only be used in combination with a pseudo random function, for example by specifying 

USE_IV_PBKDF2 in order to take advantage of PBKDF2: 

IV_PRFT:  

Defines the Pseudo Random Function Transform used for the Pseudo Random 

Function. The usable IDs are defined in [28], by default the algorithm of the 

authentication function is used. If NULL authentication is provided and the algorithm 

of IV_PRFT is not useable, the IV compression cannot be used. 

USE_IV_PBKDF2: 

Defines if the PBKDF2 is used as Pseudo Random function to generate the IV or not. 

The algorithm used to derive a Pseudo Random value is specified by IV_PRFT. 

In regular ESP packets, the IV is included to the ICV generation, since it is placed directly 

after the ESP header. Therefore, if authentication is enabled, the IV must be included to 

the ICV. The IV has to be built and attached to the ESP payload before the ICV is going to 

be calculated. If IV_COMPRESSION is enabled, the IV is removed together with the ESP 

header, which is shown in Figure 6.2. In this case, the receiver must restore the IV before 

he calculates the ICV to ensure the integrity of the packet. 

If further developments want to define another PRF function instead of PBKDF2, one 

should add a USE_IV_[NEW_PRF_FUNCTION] to the Diet−ESP context. 
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Figure 6.2 IV before and after compressions. 

6.5 Diet−ESP Context Negotiation with IKEv2 

Usually the IPsec databases SPD and SAD (see section 2.2.3) are set up by an IKE daemon. 

Since IKEv2 is the most proper protocol for this set up, this section describes the 

negotiation of the Diet−ESP context between the peers with IKEv2. The context packet 

format is shown in Figure 6.3. This 38 bits context has to be stored in exactly that order 

in the Security Association of both peers. One or more of these configurations are included 

in the IKE_AUTH messages inside a DIET_ESP_SUPPORT Notify Payload, as it is shown 

in Figure 6.4. The initiator proposes some specific contexts he wants to support. The 

responder selects a context by answering with another Notify Payload including the 

chosen context. It has to be one of the set, sent by the initiator. The acronym ANY says 

that the responder is able to support all Diet−ESP contexts the responder may chose. If 

the responder does not return a DIET_ESP_SUPPORT Notify Payload, the initiator knows 

that the responder does not support Diet−ESP. Subsequently, the initiator can chose either 

to decline the connection or to use the “Standard ESP compliant Diet−ESP Context” (see 

section 6.2.2) without any extensions. For inner header compression, the receiver has to 

decide if the negotiated traffic selector can be used to decompress the encrypted ESP 

payload. If it is not unique, the USE_SA bit needs to be set to 0. Unique means, that there 

is no range of IP addresses, ports or protocols inside the TS.  

   0                                                                                                              
   0          1          2          3          4          5          6          7           
  +−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+ 
 0|        ALIGN        |            SPI_SIZE            |            SN_SIZE             | 
  +−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+ 
 8|    NH    |   PAD    |       Diet−ESP_ICV_SIZE        |  USE_SA  |  INNER_ROHC_PROFILE | 
  +−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+ 
16|                                   INNER_ROHC_PROFILE                                  | 
  +−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+ 
24|                        INNER_ROHC_PROFILE                       |    CHECKSUM_LSB     | 
  +−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+ 
32| COMPR_IV |                  IV_PRFT                  |USE_PBKDF2|       RESERVED      | 
  +−−−−−−−−−−+−−−−−−−−−−+----------+----------+----------+----------+----------+----------+ 

Figure 6.3 Diet−ESP Context packet format for IKEv2. 

In the following, all contents of this context are described and assigned to their specific 

values.  

ALIGN: (2 bits): specifies the alignment for padding as follows: 
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- 00:  indicates an 8 bit alignment. There is no need for padding in that case.  

- 01:  indicates a 16 bit alignment.   

- 10:  indicates a 32 bit alignment.   

- 11:  indicates a 64 bit alignment.   

SPI SIZE (3 bits): specifies the size of the SPI field length of the Diet−ESP header in byte. 

Values can be from 0 to 4. A zero value means the SPI does not appear in the Diet−ESP 

packet. The size depends on the use case, the connection should be used for.  

- 000:  indicates a 0 bit SPI. The SPI is removed from the packet.  

- 001:   indicates an 8 bit SPI in each Diet−ESP−packet.  

- 010:   indicates a 16 bit SPI in each Diet−ESP−packet.  

- 011:   indicates a 24 bit SPI in each Diet−ESP−packet.  

- 100:   indicates a 32 bit SPI in each Diet−ESP−packet. This configuration is 

according to the RFC 4303.  

- 101:   Unassigned.  

- 110:  Unassigned. 

- 111:  Unassigned.  

SN SIZE (3 bits): specifies the size of the Sequence Number field within the Diet−ESP 

header in byte. Values can be from 0 to 4. A zero value means the SN does not appear 

in the Diet−ESP packet. The size depends on the use case, the connection should be 

used for.  

- 000:  indicates a 0 bit SN. The SN is removed from the packet and anti−replay is 

disabled on the receiver.  

- 001:  indicates an 8 bit SN in each Diet−ESP−packet.  

- 010:  indicates a 16 bit SN in each Diet−ESP−packet.  

- 011:  indicates a 24 bit SN in each Diet−ESP−packet.  

- 100:  indicates a 32 bit SN in each Diet−ESP−packet. This configuration is 

according to the RFC 4303. 

- 101:  Unassigned.  

- 110:  Unassigned.  

- 111:   Unassigned.  

NH (1 bit): specifies if the Next Header field appears in the Diet−ESP trailer. NH unset to 

0 indicates the Next Header field is present and NH set to 1 indicates the Next Header 

is omitted.  

PAD (1 bit): specifies if the Pad Length field appears in the Diet−ESP trailer. P unset to 0 

indicates the Pad Length field is present and P set to 1 indicates the Pad Length is 

omitted.  

Diet−ESP_ICV_SIZE (3 bits): specifies the transmitted number of bytes to authenticate 

the Diet−ESP packet. If one chooses not to perform authentication, one has to negotiate 

the authentication algorithm NULL as defined in RFC4835. The minimum length 

greater than 0 for ICV is 96 bits and can be generated with the following hash functions: 

HMAC−MD5−96 [44], HMAC−SHA1−96 [45], AES−CMAC−96 [74], 

AES−XCBC−MAC−96 [21]. As a result Diet−ESP only specifies sizes smaller than 96 

bits.  
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- 000:   ICV is left untouched as it is specified by the authentication algorithm.  

- 001:  Diet−ESP ICV consists of the 8 most significant bits of ESP ICV.  

- 010:  Diet−ESP ICV consists of the 16 most significant bits of ESP ICV.  

- 011:  Diet−ESP ICV consists of the 32 most significant bits of ESP ICV.  

- 100:  Diet−ESP ICV consists of the 64 most significant bits of ESP ICV.  

- 101:  Unassigned.  

- 110:  Unassigned.   

- 111:  Unassigned.   

USE_SA (1 bit): specifies if the Traffic Selector of the SA should be used to compress the 

ESP payload like described in the Diet−ESP extension for Upper Layer Compressions 

(see section 6.3). The value 0 says, that no upper layer compression is used. If set to 0 

the following 18 bits for INNER_ROHC_PROFILE and CHECKSUM_LSB are not used 

but they have to be negotiated. The value 1 means, that the upper layer headers inside 

ESP payload are compressed, according to the profile specified in 

INNER_ROHC_PROFILE.  

INNER_ROHC_PROFILE (16 bits): specifies the ROHC profile used for compression and 

decompression the upper layer headers inside the ESP payload. The values are 

specified by IANA [18].  

CHECKSUM_LSB (2 bits): specifies the number of bytes sent on the wire for the checksum 

of upper layer protocols.  

- 00:   the checksum of the upper layer protocols are not send on the wire and have 

to be regenerated by the receiver.  

- 01:   the checksum of upper layer protocols consists of the 1 last significant byte of 

the original value.  

- 10:   the checksum of upper layer protocols consists of the 2 last significant byte of 

the original value. That says the checksum is not compressed.  

- 11:   Unassigned. 

COMPR_IV (1 bit): specifies if the AES−IV is compressed. The value 0 defines that the IV 

is not compressed and send on the wire like described in the cipher specific RFC. The 

value 1 says that the IV is removed completely.  

IV_PRFT (4bit): specifies the algorithm, used as an input of the pseudo random function 

of, for example for PBKDF2. Currently assigned numbers are 1−8 [28]. The value 0 is 

reserved. 

USE_PBKDF2 (1bit): specifies that the PKDF2 function is used to generate the AES−IV. 

The value 1 defines the generation of the IV with PKDF2, whereas 0 says that it is 

generated otherwise.   
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Figure 6.4 DIET_ESP_SUPPORT Notfiy Payload within the Key Exchange with IKEv2. 

6.6 Minimal−ESP implementation 

This section defines a minimal implementation guideline of the ESP protocol. Therefore 

the packet on the wire has to be conform to RFC4303 [36]. RFC4303 defines ESP for high 

interoperability, mainly used by huge IPsec infrastructures for secured Virtual Private 

Networks. A lot of these features are not necessary for a single point−to−point connections, 

usually used in the Internet of Things. Since sensors are usually constrained in memory, 

processor and power consumption, Minimal−ESP focuses on these three aspects by 

reducing computation and memory usage. Minimal−ESP requires a RFC4303 conform 

ESP packet, whereas packet compressions are not part of it. Anyway, it provides guidance 

how the packet size can be minimized without the use of compressions. 

First of all, the sensor should only implement the parts of IPsec respectively ESP it is 

going to use. If the sensor will only send data, there is no need to implement the incoming 

IPsec stack, and vice versa. 

Additionally, most of the ESP fields are designed for high interoperability and huge 

infrastructures. In the following, all fields are discussed for potential simplifications. The 

key idea is to fix the values if possible, like described in section 4.3.1 − 4.3.6. All fields not 

mentioned in the following are handled like described in RFC4301 or RFC4303. 

6.6.1 Security Parameter Index (SPI) 

Since the SPI is chosen by the receiver of the packet, a Minimal−ESP implementation can 

only chose this value if it is the receiving part of the connection. Anyway, to prevent storage 

on the sensor, the receiver should chose the least significant 32 bits of the IP address if it 

is unique. If that is ensured the Security Association can be found by using the IP address 

of the IP packet holding the ESP packet. 

Generally, this can be used by receiving implementations only. But if a sending 

implementation recognizes a known value for the SPI, it can free the memory for the 

storage of the SPI. 
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6.6.2 Sequence Number (SN) 

The Sequence Number cannot be fixed, since it must increase in every packet. To prevent 

the 32 bit of storage used by the SN one may decide to use the time, as an always increasing 

value.  

If not more than one packet every second is going to be sent, the current time in seconds 

may be a good choice. Using the seconds will provide an increasing value for roughly 136 

years. If minutes can be used the value is much higher with around 8,165 years. 

This is only for sending implementations. 

6.6.3 Padding 

The padding can be reduced by using ciphers in Counter Mode. Therefore it is 

recommended to use ciphers in Counter Mode for Minimal−ESP implementations. 

Additionally the padding can be reduced by clever alignment of the application size to the 

cipher block size or IP alignment. 

This is only for sending implementations. 

6.6.4 Encryption 

AES−CTR is defined as “SHOULD” in RFC4835 [46], why it is safe to assume that most 

IPsec implementations support AES−CTR. Additionally AES−CCM* is the cipher which 

has to be implemented by any IEEE 802.15.4 [3] device. 

A Minimal−ESP implementation should prefer ciphers supported by hardware 

accelerations. In addition, ciphers in Counter Mode should be used to reduce the padding. 

This is for sending and receiving implementations, but since no cipher in Counter Mode is 

explicit required for ESP, there may be a fallback to AES−CBC if the receiver does not 

support a cipher in Counter Mode. Note that it is required to support AES−CBC but not 

to propose it as the used cipher to the receiver, e.g. by IKEv2. Therefore a sender may only 

propose AES−CTR, but if the receiver does not support it, the connections will not be 

established. 

Some use cases may not require confidentiality. In that case ESP−NULL cipher can be 

used as well, but in that case authentication is required. 

6.6.5 Authentication 

As long as ESP−NULL encryption is not going to be used, the ICV is an optional value 

with variable length. Although optional, it is strongly recommended to use the ICV. IoT 

devices may allow weak security by removing the ICV, and gateways wanting to connect 

to IoT devices should be able to deal with NULL authentication. 

Like for encryption it is recommended to use ciphers supporting hardware acceleration, 

e.g. AES−XCBC [21] or AES CBC−MAC [25]. 

This is for sending and receiving implementations. 
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6.6.6 IPsec Databases 

For a minimal implementation of the ESP protocol, the databases should be small in order 

to reduce the storage. For a RFC4301 compliant IPsec implementation, the following three 

policy rules should be implemented: 

 The traffic IPsec should secure, for example UDP or TCP to and from a specific 

port. 

 The last rule of the IPsec policies should discard all traffic not matched by previous 

rules [37: p. 60]. 

 If IKEv2 is used, the IKEv2 traffic should be excluded by the policies. This can be 

done by bypassing traffic to and from UPD port 500. 

6.6.7 Packet Procession 

A Minimal−ESP implementation does not handle all the extensions IPsec provides. It is 

recommended to deal only with the minimal set of extension, in most use cases none of 

them. One example of unnecessary extension is NAT traversal. ESP can work behind NAT 

gateways by sending the ESP packet inside a UDP packet with the ports 500 or 4500. In 

IoT scenarios this is a not essential functionality, as IoT devices usually work inside an 

IPv6 environment in which NAT is not common.  

Figure 6.5 and Figure 6.6 show the outgoing and incoming packet procession for ESP 

without any extensions. Since ESP is unidirectional, there is no direct exchange between 

the peers after the keys are exchanged and the SA is not expired. The incoming and 

outgoing procession are quite similar, but in reversed order.  

First, there is the SAD lookup in order to get the correct keys and values from the Security 

Association in both cases. For outgoing packets, the properties of the IP packet are looked 

up for a Security Policy matching the IP packet. The found outgoing SPD entry contains a 

link to the associated SAD entry. If there is no entry in the SPD, the packet is either 

forwarded without securing or dropped. The SPD will hold an entry which is going to be 

done for not found packets. For incoming packets, the ESP header contains the SPI, which 

is unique in the incoming SAD. Once an entry is found the IP packet is rechecked for an 

entry in the SPD in order to prevent packet procession for incorrect packets.  

After succeeded lookup in the databases, the literal packet procession starts.  

During outgoing procession the IP packet is encapsulated. The procession differs for 

connections in Tunnel and Transport mode. In Tunnel mode a new IP header is built, 

according to the information in the Security Association. The original IP header is left like 

it was, the padding is calculated before the ESP trailer is added and encrypted together 

with the original IP packet. In Transport mode, the Payload Length and Next Header fields 

of the original IP header are modified and the ESP header is placed between IP and 

transport layer header, before the creation of the ESP trailer. The encryption parameters 

(encryption algorithm and key) are read from the SA. In most implementations, the 

encapsulation is embedded in an encryption function, since the padding generation and IV 

attachment depends on the used algorithms. The last step is the generation of the ICV 

with the authentication parameters (algorithm and key) with the result of an IP packet 

including an ESP secured packet.  
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The procession of an ESP packet inside an incoming IP packet is quite similar to the 

encapsulation, but of course in the reverse way. After the SAD−lookup the expected ICV 

of the ESP packet is generated and compared with the one attached in the packet. If they 

do not match there may be an error or malicious modification in the payload and the packet 

is dropped. Now the packet is checked for a replay attack by comparing the last sequence 

number stored in the SA with the one transmitted in the packet. In order to prevent 

dropped packets due to disordered packet arrival, there is an anti−replay−window for 

lesser sequence numbers defined in the SA. Packets with a sequence number lower than 

the stored one minus the anti−replay−window are dropped. After these security checks, 

the ESP payload can be decrypted and de−capsulated with the same differences for Tunnel 

and Transport mode already shown during the encapsulation. In Transport mode, the Next 

Header field of the IP packet is filled with the information in the ESP trailer. The payload 

length is calculated by subtracting the length of ESP header, IV, ESP trailer and ICV from 

the one stored in the IP packet. In Tunnel mode rebuilding is a bit simpler, since the inner 

IP packet can be moved to the position of the outer IP header. The inner IP header holds 

all necessary information for a correct procession of the IP packet. 



6.6 Minimal−ESP implementation 

55 

 

Figure 6.5 Minimal−ESP outgoing packet procession. 



6 Diet−ESP Protocol Design  

56 

 
Figure 6.6 Minimal−ESP incoming packet procession. 
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6.7 Diet−ESP Protocol Description 

This section defines Diet−ESP on the top of the ROHC and ROHCoverIPsec framework.  

6.7.1 Diet−ESP ROHC framework 

This section defines how the compression of all ESP fields is performed within the ROHC 

and ROHCoverIPsec frameworks. Fields that are in the ESP Header (i.e. the SPI and the 

SN) and the ICV are compressed by the ROHC framework. The other fields, that is to say 

those of the ESP Trailer, are compressed by the ROHCoverIPsec framework. The specific 

Diet−ESP ICV field is detailed in Section 6.7.2. 

Diet−ESP fits in the ROHC and the ROHCoverIPsec in a very specific way. 

1. Diet−ESP does not need any ROHC signaling between the peers. More specifically, 

ROHC Initialization and Refresh (IR), ROHC IR−DYN or ROHC Feedback packet are 

not considered with Diet−ESP. The first reason is, that fields are either STATIC or 

PATTERN and their value or profile is defined through the Diet−ESP Context agreed 

out−of band by the peers. Subsequently, the profiles are applied for each Security 

Association that is unidirectional. The SA negotiation results in two unidirectional 

SA’s. As a result, each SA is used for one direction only, which corresponds to the 

unidirectional mode (U−mode). 

2. Diet−ESP only exchange compressed data. How the compression / decompression occurs 

is defined by the Diet−ESP Context. Once the Diet−ESP Context has been agreed, both 

peers are in a Second Order (SO) State and exchange only compressed data. 

3. Diet−ESP itself only compresses ESP packets. It may include inner packet compression 

as an extension, but it does not make any assumption on the IP compression for the 

outer IP header used for sending the data. This is made in order to make Diet−ESP 

interoperable with multiple IP compression protocols. 

4. Diet−ESP compresses partially STATIC fields as they are used as indexes by the 

receiver and may not be removed completely. 

Similarly like in ROHC, the fields of the ESP−header are classified, what defines the 

method for compression and decompression. This ensures that sender and receiver use the 

same method, ensuring the correct decompression at the receiver. Table 6.13 defines the 

classification together with the used Encoding Method and the Diet−ESP Context 

Parameters used for compression and decompression. 

Field ROHC class Framework Encoding Method Diet-ESP Context  

Parameters 

SPI STATIC-DEF ROHC LSB SPI_SIZE 

SN PATTERN ROHC LSB SN_SIZE 

Padding PATTERN ROHCoverIPsec Removed PAD, ALIGN 

Pad Length PATTERN ROHCoverIPsec Removed PAD, ALIGN 

Next Header STATIC-DEF ROHCoverIPsec Removed NH 

Table 6.13 Classification of the ESP fields.  

6.7.2 Diet−ESP ICV 

With standard ESP the ICV is computed over the whole ESP Packet. If Diet−ESP were 

using the Standard ESP ICV value, then Diet−ESP would have to decompress Diet−ESP 
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to Standard ESP packet to check the Standard ESP ICV value. First, this is not in the 

scope of Diet−ESP that is looking for light implementation of ESP. Then, as there is no 

standard way to generate the padding, this may be impossible in most cases. 

The Diet−ESP ICV is defined to enable an integrity check without decompressing the 

Diet−ESP packet to Standard ESP before the integrity check is performed. Therefore the 

Diet−ESP ICV is computed over the Diet−ESP packet before the ESP Header is 

compressed. In other words, the Diet−ESP ICV is computed over the compressed ESP 

payload but before header (SPI, SN and IV) compression. 

The reason of building the Diet−ESP ICV over the uncompressed header is the anti−replay 

protection of IPsec. If anti−replay is enabled at the receiver of the packet, the ICV ensures 

the integrity of the SN sent on the wire. Suppose the SN is compressed to 0 byte and the 

Diet−ESP ICV is built over the compressed ESP Header. In that case, the Diet−ESP ICV 

would not consider the SN value and thus removes the ESP anti−replay mechanism, as 

the SN cannot be compared with the one chosen by the sender. The problem remains if the 

SN is compressed to less than 4 bytes and the sequence number chosen by the sender 

increases out of the range of the SN_SIZE sent on the wire. For example, if the SN_SIZE 

is 1 byte the maximum increasing can be 255. If the received SN is increased by 300, the 

receiver will recognize an increase of only 45, whereby the mechanism would be corrupted. 

Due to these issues the SN has to be decompressed to 32 bit SN before the Diet−ESP ICV 

generation takes place (see Figure 6.8). More specifically, the regular ESP header is used 

for the Diet−ESP ICV generation on sender and receiver. This mechanism ensures the 

correctness of the anti−replay mechanism and the possibility of sending Standard ESP 

conform packets remains. As the receiver includes the ESP header to the Diet−ESP ICV 

generation he always checks the whole 32 Bit SN. 

The algorithm used to generate the Diet−ESP ICV is the same as the one negotiated for 

ESP. As this field is computed for every packet, it is classified as PATTERN. The 

compressed Diet−ESP ICV consists in the Diet−ESP_ICV_SIZE LSB of the Diet−ESP ICV. 

Diet−ESP_ICV_SIZE is provided by the Diet−ESP Context. Profile parameters are 

summed up in Table 6.14 

Field  ROHC class Framework  Encoding  

Method  

Diet−ESP Context  

Parameters 

Diet−ESP 

ICV  

PATTERN ROHCoverIPsec/ 

ROHC  

LSB  Diet−ESP_ICV_SIZE 

Table 6.14 Diet−ESP ICV profile. 

The Diet−ESP ICV differs from the ROHC ICV described in section 4.2 of RFC5858 [15]. 

The ROHC ICV is computed over the Clear Text Data and encapsulated in the ESP 

payload. The goal of the ROHC ICV is to check the integrity of Clear Text Data output. It 

ensures that the compressed payload is not corrupted by an attacker. As a result, the 

ROHC ICV authenticates the Clear Text Data over the whole chain of 

compressor/network/decompressor. In contrast, the Diet−ESP ICV authenticates the 

Diet−ESP packet over the network transmission. Note that the ROHC−ICV can be 

disabled by negotiating the algorithm NULL in the ROHC_INTEG notify payload 

RFC5857 [16]. 
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Figure 6.7 illustrates the Standard ESP ICV, ROHC ICV and Diet−ESP ICV. The 

ROHC ICV can be used with Diet−ESP ICV or Standard ESP ICV. Diet−ESP considers 

ROHC−ICV as disabled, that is to say that ROHC_INTEG algorithm is set to NULL. 

 

Figure 6.7 Diet−ESP−ICV in IPsec Transport Mode 

 

Figure 6.8 Example of decompression of the header, before ICV generation and checking. 
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6.7.3 Integration to Regular ESP 

This section details how to use Diet−ESP for sending and receiving messages. The use of 

Diet−ESP is based on the IPsec architecture [37] and the ESP protocol [36], therefore only 

the adaptation that may be involved by Diet−ESP are listed below. 

The Diet−ESP context is stored in the Security Association Database (SAD) where it is 

accessible for the ESP implementation as shown in Figure 6.9.  

  

Figure 6.9 Integration of the Diet−ESP Context to the SAD. 

6.7.3.1 Packet Procession 

The procession of Diet−ESP packets can be easily embedded to every already existing ESP 

implementation. Diet−ESP defines two different compression layers, which has to be 

implemented and called at the correct location inside the ESP procession. The separation 

of these two compression layers are necessary, since the encrypted payload should be 

compressed as well as the ESP header. In this context, the two layers are called “Compress 

ESP payload” and “Compress ESP header + ICV” for outgoing packets (see Figure 6.10) 

and “Decompress ESP header” and “Decompress ESP payload” for incoming packets (see 

Figure 6.11). An explicit decompression of the ICV is useless, since it is impossible to 

ensure that the ICV bits which are not sent on the wire are the same as the one of the 

calculation. Therefore, only the compressed Diet−ESP ICV is compared with the 

negotiated part of the generated Diet−ESP ICV. If the cipher algorithm using an IV, it is 

compressed resp. decompressed in the header compression, which is contradicted to the 

common wording, in which the IV is part of the ESP payload. This is necessary, as the IV 

is part of the authenticated data, why it has to be compressed after the Diet−ESP ICV 

generation. 

For simplification reasons, the figures show the integration of the compression layers 

inside the Minimal−ESP packet procession. But there is no expected difference if a more 

complex ESP implementation is used, as the integration is at the end (resp. the beginning 
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for incoming packets) of the procession. This ensures, that a full compatible ESP packet is 

provided to the further ESP implementation. The full expanded flowchart diagrams for 

in− and outgoing procession and the flowchart diagrams for the different compression 

layers are provided in Appendix A. 

 

Figure 6.10 The Diet−ESP compression layers 

inside the outgoing packet procession. 

 

Figure 6.11 The Diet−ESP compression layers 

inside the incoming packet procession. 

6.7.3.2 Inbound Security Association Lookup 

Identifying the SA for incoming packets is one of the main reasons the SPI is sent in each 

packet on the wire. For regular ESP (and AH) packets, the Security Association is detected 

as follows: 

1. Search the SAD for a match on {SPI, destination IP address, source IP address}. If 

an SAD entry matches, then process the inbound ESP packet with that matching 

SAD entry. Otherwise, proceed to step 2.  

2. Search the SAD for a match on {SPI, destination IP address}. If the SAD entry 

matches, then process the inbound ESP packet with that matching SAD entry. 

Otherwise, proceed to step 3.  

3. Search the SAD for a match on only {SPI} if the receiver has chosen to maintain a 

single SPI space for AH and ESP, or on {SPI, protocol} otherwise. If an SAD entry 

matches, then process the inbound ESP packet with that matching SAD entry. 

Otherwise, discard the packet and log an audible event.  
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Devices configured to work with a single SPI_SIZE value can process inbound packets as 

defined in RFC4301. As such, no modifications is required by Diet−ESP. Devices 

supporting different SPI_SIZE values, the way inbound packets are handled differs from 

the one described above. In fact, when an inbound packet is received, the peer does not 

know the SPI_SIZE used to send the packet. As a result, it does not know the SPI that 

applies to the incoming packet. The different values could be the 0 (resp. 1, 2, 3 and 4) first 

bytes of the IP payload. 

Since the size of the SPI is not known for incoming packets, the detection of inbound SAs 

has to be redefined in a Diet−ESP environment. In order to ensure a detection of an SA 

the above described regular detection has to be done for each supported SPI_SIZE (in most 

cases 5 times), which most generally will return a unique Security Association. 

If there is more than one SA matching the lookup, the authentication has to be performed 

for all found SAs to detect the SA with the correct key. In case there is no match, the packet 

has to be dropped. Of course this can lead into DoS vulnerability as an attacker recognizes 

an overlap of one or more IP−SPI combinations. Therefore it is highly recommended to 

avoid different values of the SPI_SIZE for one tuple of Source and Destination IP address. 

Furthermore, this recommendation becomes mandatory if NULL authentication is 

supported. This is easy to implement as long as the sensors are not mobile and do not 

change their IP address what should not be the case in IPv6 environments. 

The following optimizations may be considered for sensors that are not likely to perform 

mobility or multi−homing features provided by MOBIKE (RFC4555 [14]) or any change of 

IP address during the lifetime of the SA. 

6.7.3.2.1 Optimization 1 − SPI_SIZE is mentioned inside the SPI 

The SPI_SIZE is defined as part of the SPI sent in each packet. Therefore the receiver has 

to choose the most significant 2 bits of the SPI in the following way in order to recognize 

the right size for incoming Diet−ESP packets: 

    00:  SPI_SIZE of 1 byte is used. 

    01: SPI_SIZE of 2 byte is used. 

    10:  SPI_SIZE of 3 byte is used. 

    11:  SPI_SIZE of 4 byte is used. 

If the value 0 is chosen for the SPI_SIZE this option is not feasible.  

6.7.3.2.2 Optimization 2 − IP address based lookup 

IP addressed based search is one optimization one may choose to avoid several SAD 

lookups. It is based on the IP address and the stored SPI_SIZE, which has to be the same 

value for each SA of one IP address tuple. Otherwise it can neither be ensured that one SA 

is found nor that the correct one is found. Note that in case of mobile IP the SPI_SIZE has 

to be updated for all SAs related to the new IP address which may cause in renegotiation. 

Figure 6.12 shows this lookup described below. 

1. Search most significant SA as follows: 

1.1. Search the first SA for a match on {destination address, source address}. If an SA 

entry matches, then process to step 2. Otherwise, proceed to step 1.2.  

1.2. Search the first SA for a match on {source address}. If an SA entry matches, then 

process to step 2. Otherwise, drop the packet.  
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2. Identify the size of the compressed SPI for the found SA, stored in the Diet−ESP 

context. Note that all SAs to one IP address must have the same value for the 

SPI_SIZE. Then go to step 3.  

3. If the SPI_SIZE is not zero, read the SPI_SIZE long SPI from the packet and perform 

a regular SAD lookup as described in RFC4301. If the SPI_SIZE is zero, the SA from 

step 1 is unique and can be used.  

Note that an implementation can collect all SPI’s matching the IP addresses in step 2 to 

avoid an additional lookup over the whole SAD. This is implementation dependent.  

If the sensor is likely to change its IP address, the outcome could be a given IP address 

associated with different SPI_SIZE values. This case can occur if one IP address has been 

used by a device not anymore online, but the SA has not been removed. The IP has then 

been provided to another device. In this case the Diet−ESP Context should not be accepted 

by the Security Gateway when the new Diet−ESP Context is provided to the Security 

Gateway. At least the Security Gateway can check if the previous peer is reachable and 

then delete the SA before accepting the new SA.  

Another case is a sensor with two interfaces with different IP addresses, negotiating 

different SPI_SIZE on each interface and then use MOBIKE to move the IPsec channels 

from one interface to the other. In this case, the Security endpoint should not accept the 

update, or force a renegotiation of the SPI_SIZE for all SAs, basically by re−keying the 

SAs. 

 

Figure 6.12 SAD lookup for incoming packets. 
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6.8 Interaction with other Compression Protocols 

Diet−ESP exclusively defines compression for the ESP protocol as well as the ESP payload. 

It does not consider compression of the IP protocol. ROHC or 6LoWPAN are proper 

standardized protocols which may be used by a sensor to compress the IP (resp. IPv6) 

header. How Diet−ESP interacts with these two protocols, is specified below. Since 

compression usually occurs between the MAC and IP layers, there are no expected 

complications with this family of compression protocols. 

If a compression protocol specifies the compression of the encrypted ESP payload it can 

only be compatible to Diet−ESP if Diet−ESP produces RFC4303 conform output (see 

section 6.2.2). Such a compression can only take place with a second ESP stack. In this 

case, the developer has to make sure that the ESP stacks are proper differed from each 

other.  

6.8.1 ROHC 

ROHC and ROHCoverIPsec have been used to describe Diet−ESP, although the 

interactions with these two protocols are described in the following: 

Diet−ESP smoothly interacts with regular ROHC implementation appearing between 

MAC and IP layer. If the used ROHC profile enables the ESP compression (e.g. profile 

0x0003 and 0x1003), the Diet−ESP context has to be negotiated with SPI_SIZE = 4 and 

SN_SIZE = 4. The ROHC implementation takes care of the IP and ESP header 

compression, even though the encrypted payload is compressed with Diet−ESP. 

If ROHCoverIPsec is implemented in one of the peers, the developer has to ensure the 

proper separation of ROHCoverIPsec and Diet−ESP traffic to two ESP stacks.  

6.8.2 6LoWPAN 

Diet−ESP smoothly interacts with 6LoWPAN. Every 6LoWPAN compression header 

(NHC_EH) has an NH bit. This one is set to 1 if the following header is compressed with 

6LoWPAN. Similarly, the NH bit is set to 0 if the following header is not compressed with 

6LowPAN. This section details two cases. First of all, how Diet−ESP is compatible with 

ESP not compressed by 6LowPAN and then how Diet−ESP is compatible with ESP 

compressed with 6LowPAN. 

Suppose 6LowPAN indicates the Next Header ESP is not compressed by 6LowPAN. If the 

peers have agreed to use Diet−ESP, the ESP layer on each peers receive the expected 

Diet−ESP packet. Diet−ESP is fully compatible with 6LowPAN ESP compression disabled. 

Suppose 6LowPAN indicates the Next Header ESP is compressed by 6LowPAN. ESP 

compression with 6LowPAN considers the compression of the ESP Header, that is to say 

the compression of the SPI and SN fields. As a result 6LowPAN compression expects a 4 

byte SPI and a 4 byte SN from the ESP layer. Similarly 6LowPAN decompression provides 

a 4 byte SPI and a 4 byte SN to the ESP layer. If the peers have agreed to use Diet−ESP 

and one of them uses 6LowPAN ESP compression, then the Diet−ESP must use SPI_SIZE 

and SN_SIZE set to 4 bytes. 
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If 6LoWPAN should support ESP payload compression in one of the peers, the developer 

has to ensure the proper separation of 6LoWPAN and Diet−ESP traffic to two separated 

ESP stacks.  

6.9 Evaluation of Diet−ESP 

In order to evaluate Diet−ESP, it is compared with the other mentioned compression 

methods ROHC and 6LoWPAN. Assuming an ESP packet in Tunnel mode and AES−CTR 

encryption, the maximum saving of Diet−ESP is 67 bytes in comparison with a regular 

ESP packet (see Table 6.15). In comparison with ROHC and 6LoWPAN (both considering 

the second ESP stack for ROHCoverIPsec and 6LoWPANoverIPsec) Diet−ESP still saves 

11 resp. 15 bytes. For the calculation of the ESP overhead, the ESP header (8 bytes) in 

addition to the ESP trailer (1 byte padding for AES−CTR, Pad Length and Next Header 

field) is added. ROHC and 6LoWPAN can compress the header, but not the trailer. 

Additionally, 6LoWPAN requires the 1 byte extension header to be sent in every packet. 

All protocols can compress the inner IPv6 header and the UDP header. Again, 6LoWPAN 

requires to send the compression information in every packet. 

Protocol Size of ESP 

overhead 

(+ICV size) 

Size of  

Encryption  

Overhead (IV) 

Size of  

Inner Pv6  

overhead 

Size of  

UDP  

overhead 

Size of  

IP payload 

(+ICV size) 

ESP 11+12 bytes 8 bytes 40 bytes 8 bytes 68+12 bytes 

ROHC 3+12 bytes 8 bytes 0 bytes 0 bytes 12+12 bytes 

6LoWPAN 4+12 bytes 8 bytes 3 bytes 1 byte 16+12 bytes 

Diet−ESP 0+12 bytes 0 bytes 0 bytes 0 bytes 1+12 bytes 

Table 6.15 Comparison of IP payload size when sending 1 byte of application data secured with 

AES−CTR. 

The additional savings of Diet−ESP against the other protocols, together with the 

simplified integration and improved usability makes it a valuable addition to the actual 

IoT protocols.  

The potential savings are possible because of the high flexibility of the Diet−ESP context 

together with the possibility of exchanging the context at the beginning of the 

communication and the already existing information about the connection in the IPsec 

databases.  

Together with the savings, Diet−ESP matches the requirements developed in section 4 as 

shown in the following. 

REQ 1: In order to benefit from this hardware support, security protocols for sensors 

MUST support AES ciphers be able to take advantage of AES−CCM hardware 

acceleration. 

Diet−ESP supports all ciphers specified for ESP. In the moment of writing this document, 

the four AES modes CBC, CTR, CCM and GCM are explicitly supported in [46].  

REQ 2: If encryption and authentication is enabled, a security protocol for sensors 

SHOULD be able to use AES−CCM as it is defined in IEEE 802.15.4 taking advantage of 

hardware acceleration for encryption and authentication. 
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Diet−ESP does not modify how encryption occurs. It only changes the encrypted payload, 

which is one of the parameters for the encryption function. Therefore Diet−ESP is able to 

work with any encryption defined in [46] which also includes AES−CCM [25]. 

Combined Mode algorithm (e.g. AES−CCM, AES−GCM) have an additional parameter, 

called Addition Authentication Data (AAD). This AAD requires the uncompressed ESP 

header that is to say the full SPI and SN. These parameters are not removed by Diet−ESP 

are not removed before encryption/authentication takes place, why these ciphers are fully 

supported. 

REQ 3: Since networking is extremely expensive in IoT communications, padding MUST 

be prevented whenever it is possible. Therefore security protocols SHOULD support 

Byte−Alignment that are different from 32 bits or 64 bits to prevent unnecessary padding. 

With Minimal−ESP explicitly mentions the use of AES in Counter Mode, whenever it is 

possible. In addition Diet−ESP allows the remove of Padding by specifying alignments of 

16 and 8 bits if AES−CTR is going to be used.  

REQ 4: In order to agree on the used alignment, each peer SHOULD be able to advertise 

and negotiate the Byte−Alignment, used for Diet−ESP. This could be done for example 

during the IKEv2 exchange. 

The Diet−ESP context contains the ALIGN field, which is used to negotiate the alignment 

between the peers. With the IKEv2 exchange of the Diet−ESP context, the sender can 

propose different supported alignments and the receiver will choose the value he can deal 

with. 

REQ 5: Diet−ESP SHOULD be able to reduce or remove all fields, directly related to the 

ESP protocol. 

The Diet−ESP context explicitly specifies all fields of the ESP header and trailer, which 

makes the compression of this fields possible. Table 6.16 shows how the different fields are 

compressed in order to fulfill REQ 5.1 − REQ 5.5. 

Field Encoding Method Diet−ESP Context Parameters 

SPI LSB SPI_SIZE 

SN LSB SN_SIZE 

Padding Removed PAD, ALIGN 

Pad Length Removed PAD, ALIGN 

Next Header Removed NH 

Table 6.16  Compression of the different ESP protocol fields. 

REQ 6: Diet−ESP SHOULD allow compressions of upper layer protocols, e.g. protocols of 

the transport− or application layer. 

With the Diet−ESP extension for Upper Layer Compressions (see section 6.3) it is possible 

to compress IP, UDP, TCP and UDP−Lite headers inside the ESP payload. As the 

compression is defined with ROHC profiles, all now available or further ROHC profiles 

can be used for the compression even of application protocols, which do not necessary need 

the context negotiation defined by the ROHC framework. If application layer compression 

takes place over the transport layer, Diet−ESP supports this compression as well. 
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REQ 7: Diet−ESP SHOULD NOT allow compressed fields, not aligned to 1 byte in order 

to prevent alignment complexity. 

With Diet−ESP all fields all compress fields are aligned to 1 byte. 

REQ 8: If a block cipher with an Initialization Vector (IV) is used (like AES) Diet−ESP 

SHOULD be able to minimize the value sent on the wire. If so, it MUST define a proper 

algorithm to remain uniqueness and unpredictability of the IV. 

With the Diet−ESP extension for IV Compressions (see section 6.4) it is possible to remove 

the IV from the Diet−ESP payload. Due to the use of PBKDF2 it defines a standard way 

of IV generation, which is proven to be secure by standardization. 

REQ 9: The developer SHOULD be able to specify the maximum level of compression. 

An application developer, who wants to secure his communication with Diet−ESP, can 

specify all Diet−ESP context he is willing to support. This mechanism allows minimum 

and maximum compression to be specified by the developer. 

REQ 10: Diet−ESP SHOULD be able to compress any field independent from another one. 

Due to the use of the Diet−ESP context, the compression of the ESP related fields, the IV 

and the different upper layer protocols, can be specified independent from any other field. 

This provides high flexibility to the application developer. 

REQ 11: Diet−ESP SHOULD be able to define different compression method, when 

appropriated. 

The different fields are compressed with different compression methods, for example LSB 

or removal. The compression method is chosen due to the properties and usage of the 

different fields. 

REQ 12: Each peer SHOULD be able to announce and negotiate the different compressed 

fields as well as the used method. 

During the negotiation of the Diet−ESP context, the peers can announce and negotiate the 

different supported contexts, which includes the fields which should be compressed. 

REQ 13: Diet−ESP SHOULD be able to be implemented with minimal complexity 

considering small implementation that implement only a subset of all Diet−ESP 

capabilities without requiring involving standard ESP, specific compressors and 

decompressors. 

As Diet−ESP does not need special negotiation functionality like ROHC only the 

compression itself has to be implemented by the device. This follows a straight forward 

way but it also allows optimization according to special use cases. As an example, the IP 

header compression must not be implemented if the device does not support Tunnel mode. 

Similarly, a developer can chose to only implement supported Transport Layer 

compressions, e.g. UDP.  

The (de−) compression itself is defined in to different layers, payload and header 

compression. The (de−) compression of the ESP trailer, for example can be minimized by 

not building the full ESP trailer before compression occurs, but directly compress the 

different fields while the ESP trailer is built. 
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REQ 14: Diet−ESP SHOULD provide default configurations, which can be easily set up by 

a developer. 

Section 6.2.3 defines a default context all Diet−ESP implementations have to support. If 

an application developer does not specify a specific context, this context is going to be used. 

REQ 15: Diet−ESP SHOULD be able to interact with Standard ESP implementations on 

a single platform, without the need of implementing a second ESP stack inside the device. 

Diet−ESP can be integrated to an existing ESP implementation as an add−on, leaving the 

core functionality of ESP untouched, if Diet−ESP should not be supported. 

REQ 16: Diet−ESP SHOULD be able to communicate with Standard ESP gateways, by 

producing RFC4303 conform output. 

With the context described in section 6.2.2 Diet−ESP is able to produce RFC4303 conform 

output. 

REQ 17: In order to keep compatibility to other compression protocols appearing at the 

MAC layer, Diet−ESP SHOULD be able to interact with IP compression protocols, without 

the need of modifying them. 

Diet−ESP is compatible to all compression protocols appearing between MAC and IP layer 

because these protocols are not able to compress the encrypted ESP payload. This 

statement remains true, even if one of this protocols compresses the ESP header, as 

Diet−ESP can be configured to produce a full standard compatible ESP header of 8 bytes.  
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 Implementation 

Diet−ESP described in section 6 is implemented in two different programming languages. 

The Python implementation results in a Minimal−ESP implementation, combined with a 

Diet−ESP implementation. The program includes some default configurations for the 

IPsec databases, networking setup and an additional AES−XCBC−MAC support. This 

code is less than 1,000 lines of code. The code for Diet−ESP itself is around 300 lines of 

code, including a basic ESP implementation.  

The implementation described in section 7.2 is for Contiki [8], a famous sensor operating 

system. It shows how Diet−ESP can be integrated into an existing IPsec implementation 

with small overhead. The IPsec implementation including Diet−ESP results in only 500 

Bytes of memory overhead, holding a RFC4301 [37] conform setup for the Security 

Policies.   

7.1 Diet−ESP demonstrator in Python 

ESP procession itself can be implemented straight forward like it is described in section 

6.6. The complexity of the security protocol is the encryption implementation and the 

interaction with the IP implementation of the kernel. Python includes solutions for both 

difficulties. First, the PyCrypto [42] library offers a set of implemented cryptographic 

function. In the following work AES is used for encryption, as well as AES−XCBC and 

SHA1 for authentication. The library offers a well−documented way to implement new 

cipher algorithms, as it is shown with the implementation of AES−XCBC which is not part 

of the library, but it is implemented with the AES cipher of the library and behaves like 

other authentication algorithms. Since Python programs run in user space, however, there 

is no way to intercept the IP traffic of the kernel. But it is possible to extract the raw 

MAC−layer traffic from the network interface in order to work with the raw IP traffic for 

incoming packets. For outgoing packets the shown implementation uses RAW−Sockets [12, 

48], allowing the sending of IP packets without interception of the kernel.  

In the following subsections, the key parts of the implementation are described. 

7.1.1 IPsec Databases 

The IPsec databases SAD and SPD are implemented in python dictionaries. This 

implementation uses one dictionary called “SPD” (an example is shown in Listing 7.1) 

having different sub−dictionaries for IPv4 and IPv6 entries. Like described in RFC4301 

there is another set of sub dictionaries for outgoing and incoming packets, for each of the 

previous dictionaries. Each of these entries has a traffic description, consisting of the IP 

address as the identifier for the entry, the transport protocol and the source and 

destination ports of the transport protocol. Furthermore the entry includes a link to one 

specific SAD entry with the SPI as identifier. An example for the second dictionary “SAD” 

is shown in Listing 7.2. It stores the cipher keys for encryption and authentication and is 

prepared for the AH protocol as well. Together with the keys, the used algorithm is 

specified for each entry. In addition, the currently set Sequence Number, the SA lifetime, 

support of anti−replay−protection, the IPsec Mode and a reference to the Diet−ESP (see 

Listing 7.3) configuration is stored inside each SA entry. For simplification, the Diet−ESP 

configuration is stored in a separate dictionary to avoid code duplication for equal 
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configuration, but of course it remains possible to store one configuration for each entry 

by filling the Diet−ESP directly inside the SA. 

SPD = { 
    4:{ ## IPv4 
        "outgoing": { 
            "10.193.160.108": { 
                "sa": SAD[0], 
                "transport_protocol": socket.IPPROTO_UDP, 
                "source_port": 65500, 
                "dest_port": 65500 
            } 
        }, 
        "incoming": { 
            "10.193.160.108": { 
                "proto": socket.IPPROTO_IP, 
                "sa": SAD[0], 
                "transport_protocol": socket.IPPROTO_UDP, 
                "source_port": 65500, 
                "dest_port": 65500 
            } 
        } 
    }, 
    6:{ ## IPv6 
        "outgoing": { 
            ip_address("aaaa::200:0:0:2").exploded: { 
                "proto": socket.IPPROTO_IPV6, 
                "sa": SAD[0], 
                "transport_protocol": socket.IPPROTO_UDP, 
                "source_port": 65500, 
                "dest_port": 65500 
            } 
        }, 
        "incoming": { 
            ip_address("aaaa::200:0:0:2").exploded: { 
                "proto": socket.IPPROTO_IPV6, 
                "sa": SAD[0], 
                "transport_protocol": socket.IPPROTO_UDP, 
                "source_port": 65500, 
                "dest_port": 65500 
            } 
        } 
    } 
} 

Listing 7.1 Implementation of outgoing and incoming SPD entries for IPv4 and IPv6. 
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SAD = { 
    0: { 
        "SN": 0, 
        "anti_replay": False, 
 
        "AH_INTEG": INTEG_ALGORITHM["HMAC_SHA1_96"], 
        "AH_INTEG_KEY": b'1'*16, 
 
        "ESP_ENC": ENC_ALGORITHM["AES_CTR"], 
        "ESP_ENC_KEY": b'1'*20, # 16 bytes AES−key + 4 byte IV 
 
        "ESP_INTEG": INTEG_ALGORITHM["HMAC_SHA1_96"], 
        "ESP_INTEG_KEY": b'1'*16, 
 
        "LIFETIME": 0, 
        "IPSEC_MODE": IPSEC_MODE_TRANSPORT, 
 
        "DIET_ESP": DIET_ESP_SA["diet1"] 
    } 
} 

Listing 7.2 SAD database with one entry as an example. 

DIET_ESP_SA = { 
    "diet1":{ 
        "ALIGN": 0b0, 
        "SPI_SIZE": 0b000, 
        "SN_SIZE": 0b000, 
        "NH": 0b1, 
        "PAD": 0b1, 
        "Diet−ESP_ICV_SIZE": DIET_ESP_ICV_TRUNCATION[0b000], 
        "USE_SA": 0b1, 
        "INNER_ROHC_PROFILE": 0x0002, #IP/UDP 
        "CHECKSUM_LSB": 0b0, 
        "COMPR_IV": 0b1, 
        "IV_PRFT": 0b0001, 
        "USE_PBKDF2": 0b1 
    } 
} 

Listing 7.3 Example of a Diet−ESP entry, supporting maximum compression. 

7.1.2 Cryptographic functions 

Depending on the chosen algorithm stored inside the SA, the PyCrypto library has to be 

initialized. Listing 7.4 shows this initialization for outgoing packets secured with 

AES−CTR. First a random IV has to be generated, which could be done with the PRF 

function of section 6.4 as well. Than the Counter object, consisting of the last four bytes of 

the AES−CTR−key and the previously generated IV has to be generated. With the 

AES−key and the Counter, the cipher object can be initialized. All of these cipher objects 

have an “encrypt” function which performs the encryption. Listing 7.5 shows the quite 

similar functionality for authentication of the ESP−packet with the three supported 

algorithms “SHA1−HMAC”, “AES−XCBC” and “NULL”. Like for encryption a cipher object 

has to be generated using the authentication key. 
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enc = self.sa["ESP_ENC"] 
if enc["NAME"] == "AES−CTR": 
 iv = os.urandom(8)  

# counter = NONCE || IV || ONE @see RFC3686 
 counter = self.sa["ESP_ENC_KEY"][−4:] + iv  
 ctr = Counter.new(32, prefix=counter) 
 cipher = AES.new(self.sa["ESP_ENC_KEY"][:−4], AES.MODE_CTR, counter=ctr) 
else: 
 print("Encryption %s is not supported"%enc["NAME"]) 
 return 
enc = cipher.encrypt(esp_packet) 

Listing 7.4 Initialization of the cipher object for AES−CTR encryption. 

integ = self.sa["ESP_INTEG"] 
if integ["NAME"] == "HMAC−SHA1−96": 
    cipher = HMAC.new(key=self.sa["ESP_INTEG_KEY"], digestmod=MD5) 
    cipher.update(esp_packet) 
    icv = self.truncate_icv(cipher.digest()) 
elif integ["NAME"] == "NULL": 
    icv = b'' 
elif integ["NAME"] == "AES−XCBC−MAC−96": 
    cipher = XCBCMAC.new(key=self.sa["ESP_INTEG_KEY"], digestmod=AES) 
    cipher.update(esp_packet) 
    icv = self.truncate_icv(cipher.digest()) 
    print("Sended ICV: ", cipher.hexdigest()) 
else: 
    print("Authentication %s is not supported"%integ["NAME"]) 
    return 

Listing 7.5 Initialization of the cipher object for different authentication algorithms. 

7.1.3 Networking 

For sending and receiving ESP or Diet−ESP packets, the implementation uses the socket 

functionality provided by Python, which uses the socket functionality of the operating 

system. Since IPsec usually runs in kernel inside the IP implementation it has access to 

the whole IP traffic of the operating system. With python it is impossible to intercept the 

IP traffic itself, thus another solution has to be found.  

Receiving 

For receiving packets, a physical socket is opened, with direct access to the traffic on the 

network card. Therefore the socket has to be bound to the physical device in this case 

“eth0”. 

sock = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.htons(3)) 

sock.setsockopt(socket.SOL_SOCKET, IN.SO_BINDTODEVICE,  
  struct.pack("%ds"%(len("eth0")+1,),str.encode("eth0"))) 

After the bounding, the data and the address can be extracted from the interface. This can 

be done inside a while loop for example: 

data, addr = sock.recvfrom(1024) # buffer size is 1024 bytes 

The data includes the MAC packet, therefore the MAC header should be removed and the 

version of the IP header can be checked: 
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data = data[14:] #remove ethernet header 
ip_ihl_ver = struct.unpack('!B', data[:1])[0] #extract IP version 

Now that the IP version is known, it is possible to extract all fields from the IP header, 

according to the IP version. 

if (ip_ihl_ver >> 4) == 4: 
    print("Received IPv4 packet") 
    (ip_ihl_ver, ip_tos, ip_tot_len, ip_id, ip_frag_off, ip_ttl, ip_proto, 

ip_check, ip_saddr, ip_daddr) = struct.unpack('!BBHHHBBH4s4s', 
data[:20]) 

elif (ip_ihl_ver >> 4) == 6 : 
    print("Received IPv6 packet") 
    (row, ip_payload_len, ip_proto, ip_hop_limit, ip_saddr, ip_daddr) = 

struct.unpack('!LHBB16s16s', data[:40]) 
else: 
    continue 

The values of the IP header can be processed like described in the specific RFCs. However, 

at the end of the procession the last Next Header field is checked for ESP. With this 

information, the IP header will be removed leaving the ESP packet for encapsulation. In 

this demonstration, the decrypted content is print on the console and not forwarded. If one 

wants to forward the encapsulated packet, he has to send the ESP payload to a local socket. 

if source_ip.version == 4: 
    hdr_len = (ip_ihl_ver % 0x10) * 4 # 4 bit of IHL_VER * 32 bit 
    esp_data = data[20:]# remove ip header 
    esp_data = esp_data[:(ip_tot_len−hdr_len)] 
elif source_ip.version == 6: 
    esp_data = data[40:] 
    esp_data = esp_data[:ip_payload_len] 
else: 
    print("unsupported ip protocol") 
    continue 
print("Content of ESP packet:") 
print(Diet_ESP_Daemon(dest_ip,source_ip,incoming=True).process_incoming_packet

(esp_data)) 

Sending 

Sending packets is simpler than receiving, but there is a difference between IPv4 and IPv6. 

The IPv4 stacks of Linux and Windows support the “socket.IP_HDRINCL” option, defining 

that the IP header is included in the data sent to the RAW socket. In IPv6 this option 

remains without effect to the resulting packet, which is why the packet has to be sent in 

another way. 

Opening a RAW_Socket is the same for IPv6 and IPv4, with the difference of setting the 

further described option: 

#IPv4 

s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ESP) 

#IMPORTANT: enables application made ip headers 

s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) 

 

#IPv6 

s = socket.socket(socket.AF_INET6, socket.SOCK_RAW, socket.IPPROTO_ESP) 
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For IPv6 the whole configuration is done with this step, which makes modifications of the 

IP header not feasible. In IPv4 one can construct his own IP header with all the fields he 

want to fill, like in the example in Listing 7.6. For IPv4 the packet to be sent includes the 

IP header, for IPv6 it includes only the ESP header. It can be sent to the socket with the 

following command. 

s.sendto(packet, (self.dest_ip, 1)) 

 

# ip header fields 
ip_ihl = 5 # IP header length 
ip_ver = 4 # IP version 4 
ip_tos = 0 
ip_tot_len = 0  # kernel will fill the correct total length 
ip_id = 54321   #Id of this packet 
ip_frag_off = 0 
ip_ttl = 255 
ip_proto = socket.IPPROTO_ESP 
ip_check = 0    # kernel will fill the correct checksum 
 
# Transform the adresses 
ip_saddr = socket.inet_aton(self.source_ip) 
ip_daddr = socket.inet_aton(self.dest_ip) 
 
# ip_ver and ip_ihl are 4 bit each, so put them together in one byte 
ip_ihl_ver = (ip_ver << 4) + ip_ihl 
 
# Build IP−Header 
ip_header = struct.pack('!BBHHHBBH4s4s' , ip_ihl_ver, ip_tos, ip_tot_len, 

ip_id, ip_frag_off, ip_ttl, ip_proto, ip_check, ip_saddr, ip_daddr) 
 
# build packet 
packet = ip_header + user_data 

Listing 7.6 Building of a user defined IPv4 header. 

7.1.4 Diet−ESP procession 

The relevant parts for compressing the ESP header and ESP payload are defined as two 

different layers. But for a minimal and efficient implementation the compression can be 

done instantly when the packet is built.  

First the ESP Payload (IP and Transport Layer Headers) can be compressed. As an 

example, the UDP header can be compressed. The compression uses the information of the 

Diet−ESP context. First the protocol and the inner ROHC profile is checked. If this is UDP, 

the ports and the UDP−length can be removed. The checksum of the UDP−header is 

compressed, depending on the “CHECKSUM_LSB” value. 
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def compress_transport_header(self, data, diet_esp): 
  if self.sp["transport_protocol"] == socket.IPPROTO_UDP and 

diet_esp["INNER_ROHC_PROFILE"] in [0x0001, 0x1001, 0x1002, 0x0002, 
0x0008, 0x1008]: 

      data = data[6:] 
      if diet_esp["CHECKSUM_LSB"] == 0: 
          return data[2:] 
      elif diet_esp["CHECKSUM_LSB"] == 1: 
          return data[1:] 
      else: 
          return data 

In order to build the packet, the struct.pack [63] function of Python is used. It allows 

constructing a string which handles the encoding of the date in the correct order (e.g. 

network byte order). It allows 1, 2, 4 and 8 byte values, in general numeric values, strings 

and padding bytes. The following code snippet shows the construction of the Diet−ESP 

content, Padding, PadLength and NextHeader. The payload “%ds” defines the payload 

with length of the app_data. The “%dx” defines pad_length padding bytes. Pad Length and 

Next Header are 1 Byte each (“L”) and filled depending on the “PAD” and “NH” value of 

the Diet−ESP context. 

packet_struct = '!%ds%dx'% (len(app_data),pad_length) 
# PAD LENGTH and NEXT HEADER  
if self.diet_esp_sa["PAD"] == 0b1: 
    packet_struct += 'L' 
if self.diet_esp_sa["NH"] == 0b0: 
    packet_struct += 'L' 

With this string one can use the struct.pack function to build the Diet−ESP payload, 

depending on the information of the Diet−ESP context. 

if self.diet_esp_sa["PAD"] == 0b1 and self.diet_esp_sa["NH"] == 0b0: 
    esp_packet = struct.pack(packet_struct, app_data, pad_length, 
self.sp["transport_protocol"]) 
elif self.diet_esp_sa["PAD"] == 0b1: 
    esp_packet = struct.pack(packet_struct, app_data, pad_length) 
elif self.diet_esp_sa["NH"] == 0b0: 
    esp_packet = struct.pack(packet_struct, app_data, self.sp["transport_pro-
tocol"]) 
else: 
    esp_packet = struct.pack(packet_struct, app_data) 

Now that the payload is built, it can be encrypted like shown before and the ESP header 

can be built. Like before, this values are compressed instantly when they are built but the 

ICV is built before in order to include the uncompressed header.  

# Authentication 
self.sa["SN"] = self.sa["SN"] + 1 
header = struct.pack('LL', self.sa["SPI"], bytes([self.sa["SN"]])) 
 
if integ["NAME"] == "NULL": 
    icv = b'' 
else: 
    cipher.update(header + esp_packet) 
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    icv = self.truncate_icv(cipher.digest()) 
 
esp_packet = esp_packet + icv 
 
# Add ESP headers  
if self.diet_esp_sa["SPI_SIZE"] > 0b0 and self.diet_esp_sa["SN_SIZE"] > 0b0: 
    header = struct.pack(self.build_struct_for_esp_header(), self.sa["SPI"], 
bytes([self.sa["SN"]])) 
elif self.diet_esp_sa["SPI_SIZE"] > 0b0: 
    header = struct.pack(self.build_struct_for_esp_header(), self.sa["SPI"]) 
elif self.diet_esp_sa["SN_SIZE"] > 0b0: 
    header = struct.pack(self.build_struct_for_esp_header(), 
bytes([self.sa["SN"]])) 
else: 
    header = b'' 
 
esp_packet = header + esp_packet 

Receiving packets works in exactly the same way. The string for the struct is built in the 

same manner, but the struct.unpack function is used instead of struct.pack. 

7.2 Diet−ESP Add−On for Contiki IPsec 

Contiki is an operating system, especially designed for IoT devices. Compared to a regular 

computer operating system, one can say that it is more a collection of functionalities, which 

are partially compiled for the specific use cases and hardware. One reason for using 

Contiki in this work is, that it provides a fully compatible but reduced IP and IPv6 stack, 

called μIP. In his master thesis Vilhelm Jutvik [32] developed an RFC conform ESP 

implementation for this operating system, which is available as open source. Using such 

an implementation as an entry point for developing Diet−ESP has the advantage that the 

functionality of ESP already exists and Diet−ESP can be integrated as an Add−On. 

Additionally it approves the possibility to integrate Diet−ESP to an ESP implementation.  

Another advantage of Contiki is that it is quite easy to extract parts to other hardware. 

The Orange SensOrLabs in Grenoble ported the Contiki IPsec stack to an Excelyo [10] 

platform1. For testing the Diet−ESP performance on a real platform, the following work 

was ported to this platform, but unfortunately this sensor has such limited storage that it 

was not successful. However, it was possible to reduce the code size to only 500 Bytes (see 

Table 7.1), including a single policy for securing one connection, which is sufficient for 

simple IoT scenarios. Having a look on the memory print, which is automatically generated 

by the compiler, one can compare ESP enabled with ESP disabled binaries. Without IPsec 

the binary has a size of 4032 Bytes versus 4600 Bytes with the Diet−ESP add−on enabled. 

Therefore the code size of IPsec + Diet−ESP is exactly 568 Bytes with space for one 

incoming and one outgoing static allocated SAD entry. 

                                                   
1 Orange Labs in Grenoble decided to build a own sensor platform, similar as described in [54] 

for observing the network behavior from the periphery. The result is a fully observable 

platform called SensOrLabs. 
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Implementation Size in hex Size in Bytes 

without IPsec and Diet−ESP 0x0fc0 4032 

with IPsec and Diet−ESP 0x11f8 4600 

Table 7.1 Memory footprint of different implementations. 

One of the most important files for a Contiki developer is the 

contiki−conf.h file. As its name implies, it holds configurations for 

the compilation and was extended by some IPsec specific 

configuration. Usually this file is placed in the same hierarchical 

order as the program written by the application developer. Some 

example programs for basic functionalities can be found in the 

/examples directory. 

The Contiki IP stack is located in the core/net directory (see Figure 

7.1). The IPsec code is placed in different files inside the ipsec 

subfolder (see Figure 7.2) and in the uip6.c file. This file 

represents the integration of IPsec into the IP stack, usually 

placed in the kernel. Here, every IP packet can be inspected itself. 

Therefore this file includes the SPD lookup for outgoing and 

incoming packets. If a policy matches the IP packet, ESP 

procession is started or the IP packet is dropped otherwise. The 

ESP procession in this file includes the building of the ESP header 

and the correct call of the encryption and authentication 

functionality.  

The IPsec databases are located inside the ipsec directory, 

including configuration files for static databases as well. They have the functionality to 

dynamically or statically allocate memory for the entries. The static allocation was added 

as part of this work, as it saves a lot of memory preventing standard functions like malloc.  

The encapsulation of the ESP payload is done during the encryption, in the 

transforms/encr.h. It has a wrapper functionality for all supported ciphers, in the current 

version only AES−CTR. There are two possibilities of AES encryption supported. First, 

there is a software implementation, called “Miracle AES”. It consists of a number of 

pre−computed values in order to prevent high computation overhead. The other possibility 

is a hardware supported ciphering with the CC2420 interface [76]. It is a wireless interface 

including hardware acceleration for AES like already described in section 2.1.  

The Diet−ESP specific implementation is included in the following parts of the IPsec 

implementation: 

 sad.h: includes the definition of the Diet−ESP context and the appropriated pointer 

in the sad_entry to a specific Diet−ESP context. 

 sad.c: includes new function for reading and writing the compressed ESP header, 

together with the changed incoming SAD lookup for compressed ESP headers. 

 encr.c: includes the compression of the ESP payload and the functionality for 

removing and restoring of IP and UDP headers. 

 uip6.c: the calls of the new functionalities (e.g. the ESP header compression) are 

added to this file. 

Figure 7.1 The Contiki 

/net directory structure. 
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 contiki−cont.h: This file includes the necessary 

configuration for ipsec, that is to say: 

o WITH_CONF_IPSEC_ESP: compilation of ESP 

support. 

o WITH_CONF_IPSEC_AH: compilation of AH 

support (not supported in the current version) 

o WITH_CONF_IPSEC_IKE: compilation of IKE 

support. 

o WITH_CONF_MANUAL_SA: manual SAD 

configuration. It can work together with IKE. 

o WITH_CONF_IPSEC_MALLOC: support of static or 

dynamic allocation of the storage for the SAD 

database.  

o IPSEC_SAD_INCOMING_SIZE: The size of the 

static allocated incoming SAD. 

o IPSEC_SAD_OUTGOING_SIZE: The size of the 

static allocated outgoing SAD. 

7.3 Experimental Set−Up 

The Contiki Diet−ESP implementation was tested with the Cooja 

simulator, provided by Contiki. The IPsec implementation for 

Contiki provides a preconfigured Cooja simulation file, which can 

be used for the tests with Diet−ESP as well. This simulation 

covers two sensors, one router and one IPsec endpoint. The 

router’s task is to enable packet forwarding between the 

operating system, running the simulator and the sensor network. 

It is a program included to every up to date Contiki system and 

placed in the folder example/ipv6/rpl−border−router. It has to be 

run inside the Linux system and creates a new tun0 network 

interface, routing the packets to the rpl−boarder−router (Node 1 

with IP address “aaaa::200:::1” in Figure 7.3) in the Cooja simulator. This router sensor 

forwards the packets to the connected sensors in the sensor network. It makes all the 

sensors accessible through the tun0 interface with their given IPv6 addresses. The IPsec 

endpoint is an IPsec enabled sensor with an example application. It opens a UDP socket 

on port 1234 awaiting packets (Node 2 in Figure 7.3). If a packet is received from the 

sensor it increases every byte from the UDP payload by one and responses this value. For 

example if one is sending a UDP packet with the payload “1234” to the sensor with IP 

address “aaaa::200:0:0:2”, it will response with “2345”. If the response arrives correctly at 

the initiator of the connection, the transmission was successful received by the sensor and 

sent packet accurately. This configuration allows to run some basic tests with the Cooja 

simulator. 

First, the interaction of Diet−ESP with regular ESP from the Linux Kernel, is tested. This 

provides information about the requested functionality of compatibility of Diet−ESP with 

a regular ESP implementation if the “Standard ESP compliant” Diet−ESP context is used. 

Tests are performed with both implementations of Diet−ESP. The Python implementation 

running on Linux and a Contiki implementation running on the same device in the Cooja 

simulator. Therefore the Linux Kernel IPsec databases are set up with a pre−shared secret 

Figure 7.2 The Contiki 

/ipsec directory structure. 
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using the ip xfrm [43] command and a packet is sent to the Contiki implementation with 

the command nc -u aaaa::200:0:0:2 1234. For the python implementation the same test 

can be performed with the IP address of the Linux system.  

Second, the Diet−ESP Contiki implementation and the Diet−ESP Python implementation 

are interconnected. This provides indication for the proper encapsulation of the packets 

on both sides, and proves the functionality of Diet−ESP embedded to the regular ESP 

implementation of Contiki. With this second configurations it is possible to perform a basic 

energy measurement.  

As mentioned earlier, the energy consumption for networking is highly correlated to the 

number of bits going to be sent, especially in wireless communications. Cooja offers two 

measurement methods. One is a packet sniffer (see ① in Figure 7.3), showing the contents 

and lengths of packets sent over the network interface of the sensors. Additionally it is 

possible to measure the simulated radio module, providing the time the module spent in 

receiving and transmission state (see ② in Figure 7.3). Comparing these two values for 

networking for different compression levels give some indication about the energy 

consumption of the network interface. Having a specific network interface for a hardware, 

one can pick out the specifications for energy consumption and calculate the absolute 

values for energy saving.  

The measurements are done with the current implementation for Contiki, which is able to 

(de−) compress the ESP related fields and the transport layer header, but not the 

Initialization Vector. The other side of the Diet−ESP connection is represented by the 

Python implementation, which is able to provide the same level of compression as the 

Contiki implementation. The tests are done by sending a UPD packet with the payload 

“1234” (4 bytes) from the Python implementation to the sensor (Node 2 in Figure 7.3) 

 1 

 2 

Figure 7.3 User interface of the Contiki−Simulator “Cooja”. 
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receiving this packet and responding with a UDP packet with the payload “2345” (4 bytes). 

This leads to the theoretical compression with Diet−ESP on Contiki as shown in Table 7.2. 

The size of the IPv6 header is read from the packet sniffer at the sensor. The received 

packet at Node 2 is greater than the minimum size IPv6 header size of 40 bytes, since 

there are some routing information added by the rpl−border−router. For sending from 

Node 2 to the Python implementation, the IPv6 header is smaller, since the routing 

information are added later at the rpl−border−router and the μIP stack provides some 

basic optimizations of the IPv6 addresses, which are later extracted by the 

rpl−boarder−router.  

The theoretical evaluation of compression in Table 7.3 and Table 7.4 considers that time 

and energy are proportional to the number of byte of the packet. The measured data from 

the simulator prove that the reduction of the packet size is like expected. Having a look on 

the measured times, the device is spending for sending and receiving, there are two 

conclusions. The time for sending decreases to a maximum of around 21% against the 

theoretical saving of around 26% whereas the time for receiving is reduced by 15% against 

the theoretical value of 23% for maximum possible compression of 20 bytes. The maximum 

compression for the expected packet would be 28 bytes, if the IV would have been removed 

as well. Figure 7.4 and Figure 7.5 show the expected savings for sending and receiving by 

extending the measured values with logarithmic estimations. These graphs also show the 

variances between theoretical and measured values. The growing energy consumption 

graphs resembles a linear function, which is like the theoretical function. Even the 

logarithmic extension of the energy saving is evocative to a linear extension. Therefore it 

is possible to assume that the energy consumption will decrease linear to the number of 

bytes saved by compression with Diet−ESP.  

The measurement results prove that Diet−ESP is able to reduce the power consumption 

significantly, but there remains a static part of around 20−40% (as shown in the last 

column in Table 7.3 and Table 7.4) which cannot be removed by compression. The static 

part is due to network specific overheads. One of them is the MAC layer overhead, which 

is neither be removed nor measured. Another reason is the time the sensor has to wait 

until it is getting a slot for receiving or sending. For receiving, this static part is bigger, 

since the device is not able to know when it should receive a packet. It will wake up 

periodically or will receive a notification, if there is a packet to be received. Once it woke 

up, it has to wait for a slot until it is allowed to receive the content.  

Nevertheless it is possible to approximate the energy saving with the number of bytes 

removed by compression. Assuming the energy consumption decreases linear to the 

number of bytes removed by the compression of Diet−ESP, maximum compression enables 

the reduction of the energy consumption on around 40% (see Table 7.5). The table assumes 

a regular IPv6 header of 40 bytes holding a UDP packet with a 15 bytes payload. As 

AES−CBC with a necessary 16 bytes alignment is used, this payload together with the 

ESP trailer leads to 15 bytes of padding and an ESP payload size of 80 bytes + ICV. With 

Diet−ESP, the ESP payload is just the UDP payload size of 15 bytes + the Pad Length field 

with the value 0, in order to fill the necessary 16 bytes alignment of AES−CBC. This leads 

to an overall ESP payload size of 28 bytes + ICV, and a saving of 88 bytes for the whole 

ESP packet. From this saving of 56% the average difference between the real and 

theoretical energy consumption identified during the measurements is subtracted 

producing a saving of around 40%. With an energy saving of 40% as shown in Table 7.5, 
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the life time of a sensor would have been increased by 80% which nearly doubles the 

lifetime of the device.  

However, as the compression rate highly depends on the whole packet size, the values have 

to be seen in a very specific context. Considering the use of 6LoWPAN which compresses 

the IPv6 header to only two bytes instead of 40, the percentage saving is even higher, since 

the relation between packet size and compressed bytes will grow up significantly. As an 

example, the size of the uncompressed packet in Table 7.2 for receiving would be 48 bytes 

(84 bytes − 40 bytes (IPv6 header) + 2 bytes (6LoWPAN header)). The size of the 

compressed packet would be 28 bytes, resulting in a compression rate of 58%.  

Field Uncompressed Size 

(bytes) 

Compressed Size 

(bytes) 

Difference 

IPv6 header receiving 42 42 0 

IPv6 header sending 33 33 0 

ESP SPI 4 0 4 

ESP SN 4 0 4 

AES−CTR IV 8 8 0 

UDP source port 2 0 2 

UDP destination port 2 0 2 

UDP length 2 0 2 

UDP checksum 2 0 2 

UDP payload 4 4 0 

ESP Padding 2 0 2 

ESP Pad Length 1 0 1 

ESP Next Header 1 0 1 

ICV 12 12 0 

Σ (receiving) 86    66 20  

(23.26 %) 

Σ (sending) 77    57 20  

(25.97 %) 

Table 7.2 Theoretical compression with Diet−ESP in the test bed. 

Compressed 

Bytes 

Packet  

Size 

(bytes) 

Saving 

(bytes) 

Sending 

Time (μs)  

Saving 

(μs)  
Diff. 

0 77 0 0,00% 3391 0 0,00%   

8 69 8 10,39% 3072 319 9,41% 9,46% 

12 65 12 15,58% 2944 447 13,18% 15,42% 

20 57 20 25,97% 2686 705 20,79% 19,96% 

Table 7.3 Energy Savings for sending. 
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Compressed 

Bytes 

Packet  

Size 

(bytes) 

Saving 

(bytes) 

Receiving 

Time (μs)  

Saving 

(μs)  
Diff. 

0 86 0 0,00% 9049 0 0,00%   

8 78 8 9,30% 8473 576 6,37% 31,57% 

12 74 12 13,95% 8281 768 8,49% 39,18% 

20 66 20 23,26% 7704 1345 14,86% 36,09% 

Table 7.4 Energy Savings for receiving. 

 

Figure 7.4 Energy consumption related to the bytes saved by compressing outgoing packets. 

 

Figure 7.5 Energy consumption related to the bytes saved by compressing incoming packets. 
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Field Uncompressed 

Size (bytes) 

Compressed 

Size (bytes) 

Difference Energy 

Saving 

Minimum IPv6 header 40 40 0  

ESP header 8 0 8  

AES−CBC IV 16 0 16  

Tunnel IPv6 header 40 0 40  

UDP header 8 0 8  

UDP payload 15 15 0  

ESP Padding 15 0 15  

ESP trailer 2 1 1  

ICV 12 12 0  

Σ  156 68 80 56.41 % 

−Static part (~30%)    39.49 % 

Table 7.5 Theoretical maximum compression with Diet−ESP. 
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 Discussion 

Securing IoT communication is a widely discussed topic. There were a couple of 

investigations, exploring the possibility of the use of security protocols for low powered 

devices. [30] and [22] focused on the encryption overhead, while [49] where focusing on the 

differences between the distinct protocol solutions in combination with different cipher 

algorithms. Migault et al. [49] measured the performances of different Homenet devices, 

starting with a low powered ARM processor over an energy efficient Intel® Atom to a high 

performance Intel® i5. The measurements include several IPsec and TLS configurations 

within a closed configuration environment. The results were made by collecting user 

relevant data like download time or CPU occupancy. Especially the results for the ARM 

processor are promising, since it is applicable IoT devices needing high computation 

performances. 

One important assertion from this paper is the performance differences between the AES 

modes for ESP. The results show that AES−CTR and AES−CBC have quite similar 

performances. This supports the statements of this thesis, saying that the Counter Mode 

should be used whenever it is possible in order to reduce the packet overhead caused by 

the fixed block size of CBC mode. The requirements for Diet−ESP defines the use of AES 

due to the possible hardware acceleration in microcontrollers. The measurements of the 

Intel® i5 processor, also supporting AES hardware acceleration, show that there is an 

advantage with the factor 1.5 to 2 relating to the time and CPU consumption, which can 

be directly applied to sensors. IoT devices usually try to use the sleep mode, when they 

idle. Every minute saved in computation will directly extend the lifetime of the device. 

Although, Migault’s investigations also show the significant cryptographic overhead. The 

analyses include a configuration in which not encrypted packets (ESP NULL encryption) 

are compared with the AES−CBC encrypted packets. The evaluation shows the overhead 

between encryption and ESP packet procession, meaning that the encryption is 3 times 

more time and computation expensive. Another result supporting this hypothesis, is the 

networking overhead of ESP, which does not produce significant overhead in comparison 

to not encrypted but authenticated packets. The measurement is done by comparing not 

encrypted ESP packets with clear text HTTP packets.  

The most important conclusion of Migault et al. relative to this thesis, is the comparison 

of ESP and TLS. Considering the different design of TLS and ESP, TLS should provide 

much better performance than ESP. This is due to the different network layers the two 

protocols are located in. Using TLS, the application data is secured, for example the 

payload of an HTTP packet. Even with bigger payloads, the whole data is encrypted and 

decrypted only once. In contrast, ESP is securing each IP payload, whose size is maximum 

216 bytes long (ca. 64 KB), as the Payload Length field of IP has 16 bits. In IPv6 there is 

an extension, called “Jumbograms” [4] supporting an extended size of 232 bytes (ca. 4 GB). 

Nevertheless, this has to be supported by the transport layer, otherwise the transport layer 

will fragment the application payload to 216 bytes as well. Overall one can say that the 

ESP payload has usually a maximum size of around 64 KB, whereas in ESP the encryption 

and decryption has to be performed much more often than in TLS, if the application data 

is bigger than 64KB. However, the measurements show that there is no significant 

performance improvement of TLS, especially on the low powered ARM and Intel® Atom 

processors which are more similar to the processor in IoT devices. Only the Intel® i5 shows 
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significant performance benefits of TLS, which is most likely caused by the highly 

optimized TLS implementation for this family of processor. 

Summarized, this analysis shows that ESP is an adequate protocol in order to secure IoT 

communication, as there are no expected performance differences between TLS and ESP, 

especially since IoT communication most usually deal with small packet sizes, lower than 

128 bytes. This eliminates even the theoretical performance advantage of TLS. 

The design of Diet−ESP picks up the results of these measurements with the requirements 

for specific ciphers. Since the procession of the ESP packet does not need significant 

performance, the only assumption to be made is the minimization of the code, provided by 

the Minimal−ESP design. Thus, the latter optimization to be made is the optimization of 

the packet overhead produced by ESP and upper layer protocols. This is achieved by 

requiring all unnecessary protocol overhead inside the ESP packet to be removed or 

reduced in a maximum flexible and usable way. The design of Diet−ESP is guided by this 

requirement, using the ROHC context as an already existing and proven concept. Due to 

the reuse and modification of this context, the compression rate provided by Diet−ESP can 

be extremely high, even though all ROHC mechanism needed for maintaining the context 

are removed and exchanged only at the beginning of the communication. Reflecting the 

results of the tests, Diet−ESP is able to fulfill the requirements providing an easy to handle 

and flexible security framework for IoT devices. The location of ESP inside the IP layer 

can provide a firewall−like behavior enabling secure communication to all configured 

connections. With maximum compression, Diet−ESP is able to compress all protocol 

overhead, except the application protocol and the application data.  
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 Conclusion 

The more IoT devices affect the public, the more people are asking for security 

considerations. Since devices in IoT are small and constrained in resources, securing them 

is a significant challenge for researchers. A lot of different attacks breaching such 

networks have been already described before [22, 30]. In today’s sensor networks, these 

breaches remain controllable, since the networks usually have exactly one functionality in 

a closed environment. But with the increasing number of sensor network, accompanied by 

their increasing spacious and interconnectivity, the networks become uncontrollable 

leaving an open door for attackers. However, the challenges of securing the networks are 

similar to the former challenges while securing the World Wide Web, which is why there 

is a lot of know−how among experts.  

Generally speaking, security has to be ensured in different levels during the development 

of such sensor networks, which are equal to the ones defined for nowadays networks like 

the Internet. There are a lot of standards, like the OSI−Security Architecture [79], the ISO 

IEC 27000 series [29] or the OWASP Developer Guide [53]. All of them define similar 

layers of security, but differ in their detailed description and differentiation between them. 

In terms of the OSI−Security Architecture, the Access Control is one basic security layer 

that has to be provided by the manufacturer in terms of hardware manipulation and by 

the users by securing the access to the location of the device. Authentication is another 

layer that has to be provided by the infrastructure. X.509 [9] is a format supporting a 

public key infrastructure (PKI). Attempts have also been made to adopt the PKI used in 

the WWW to sensor networks [81].  

The remaining three layers of the OSI−Security Architecture are Data Confidentiality, 

Data Integrity and Non−Repudiation, which can be provided by the security protocols TLS, 

DTLS, ESP and AH (see section 2.2 and 5.1). Confidentiality is provided by encryption, 

integrity with checksums and Non−Repudiation with Message Authentication Codes 

(MAC). This thesis is supporting current investigations of porting these network protocols 

for sensor networks by providing an optimized version of ESP called Diet−ESP, supporting 

the same security features as ESP.  

The major challenges for adopting network protocols for sensors are the constraints of the 

device, basically in terms of energy, computation and storage. This requires optimization 

of protocols and implementations. Implementation can be easily optimized by extracting 

only necessary features as done in several minimal implementation of current standard 

protocols (e.g. Minimal IKEv2 [39]). In contrast, the optimization of protocols require 

investigations of compressing the protocol without loss of information and interoperability 

they were designed for. There are a couple of existing ideas for compressing all of the 

related security protocols by using compression frameworks like ROHC or 6LoWPAN. 

Nevertheless, they do not provide the maximum compression levels, they are inflexible in 

compression handling and complicated to embed into the existing protocols. For this 

reason, this thesis takes another path by designing a compression add−on for ESP 

providing two major differences with existing compression protocols. First, it is designed 

for enabling simple integration to existing ESP implementation. Additionally, the 

compression level is negotiated out of band of the ESP protocol by defining a context which 

is exchanged during the always necessary key exchange. As opposed to the other 
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compression protocols, since Diet−ESP is an ESP add−on, it has direct access on the IPsec 

databases, which may contain information that can be used for optimizing the 

compression. Diet−ESP uses this information for the compression of protocols inside the 

ESP payload, that is to say the transport and IP layer protocol. Proceeding like that 

enables high level compression by exchanging only a couple of bytes at the beginning of 

the transaction, conserving the compression context throughout the whole lifetime of the 

Security Association even across reboots or shut downs of the device.  

The results for energy saving and packet reducing show that Diet−ESP is working as 

expected. The implementations in Python and Contiki provide examples, how to 

implement the compression and prove the easiness of the integration to an existing ESP 

implementation. The measurements provides an impression of the expected energy 

savings with Diet−ESP, but the percentages are only estimations with a simulator. 

However, since the number of compressed bytes is directly associated with the Diet−ESP 

context, it is easy to calculate the energy savings of Diet−ESP for a specific use case with 

specific hardware. The port of the Contiki implementation to the Excelyo platform shows 

that ESP itself together with the Diet−ESP add−on works without significant memory 

usage. Unfortunately, even 568B of memory usage were too much for the Excelyo sensor, 

thus the tests must be shifted to future development. This could contain the minimization 

of the current implemented features on the Excelyo platform or the deployment within a 

new platform.  

Future investigations for the protocol should be a standardization of the Diet−ESP context 

at the standardization committees, like the IETF. The standardization process will clarify 

questions, like possible security flaws by security and protocolling experts. There is also 

space for improvements of the Diet−ESP context. The design is very conservative so far, 

as it contains all relevant information. One possible improvement could be the reducing of 

the ROHC profile number. 

Furthermore, the number of Diet−ESP implementations should be extended. One 

application may be a native C implementation which can be used as the server side 

implementation of a Diet−ESP connection. Thus, the IP stack of the underlying operating 

system (e.g. Linux) does not necessarily need to be modified. The C−implementation can 

be run on the system awaiting Diet−ESP packets from a sensor network and forward them 

to the application working with the data of the sensor. Another possible investigation could 

be the implementation of Diet−ESP inside an IP stack of a common operating system, like 

the Linux Kernel. This implementation should be quite similar to the implementation in 

Contiki, but since the Linux Kernel provides much more features than Contiki, it should 

be done by developers familiar with the Kernel, in order to minimize the risks of security 

flaws due to implementation mistakes. 

This thesis describes a basic way to include the Diet−ESP context to the IKEv2 protocol, 

which may be improved by experts before it is going to be implemented. Thus, the IKEv2 

extension should be standardized and implemented for existing implementations, like 

StrongSwan [75]. With an existing implementation for exchanging the Diet−ESP context, 

the use of the protocol can be significantly simplified. Additionally, a proper 

standardization of the exchange can help minimizing the security flaws which may be 

caused by not security affine application developers, using the Diet−ESP context but do 

not take care on the security considerations.
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Appendix A Flowchart Diagrams 

A.1 Flowchart Diagram: Outgoing Diet−ESP packet procession 
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A.2 Flowchart Diagram: Compress ESP header 

 



A.3 Flowchart Diagram: Compress ESP payload  
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A.3 Flowchart Diagram: Compress ESP payload 
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A.4 Flowchart Diagram: Incoming Diet−ESP packet procession 

 



A.5 Flowchart Diagram: Decompress Diet−ESP header  
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A.5 Flowchart Diagram: Decompress Diet−ESP header 

 



Appendix A Flowchart Diagrams 

106 

A.6 Flowchart Diagram: Decompress Diet−ESP payload 
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