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Abstract

In modern multiprocessors, hardware manufacturers employ a hierarchy of CPU caches to
mitigate the considerable latency associated with accessing main memory. These CPU caches
leverage the temporal and spatial locality of an application’s data access patterns to serve a
portion of the main memory at significantly reduced latencies. The operation of CPU caches
is governed by cache policies.

While this solution is effective in the majority of scenarios, an application may encounter
difficulties in performing optimally under a given cache policy, potentially leading to issues
such as thrashing. Awareness of the policy would facilitate the restructuring of the application
to align with it. Such knowledge can be further applied to the domain of cache-based side-
channels, from both a hardening and an attacker perspective.

However, manufacturers typically refrain from disclosing the details of their cache policies,
particularly those pertaining to the placement and replacement of data within the cache.
Prior research has focused on the reverse-engineering of replacement policies, yet we are not
aware of any investigation into placement policies. Moreover, to the best of our knowledge,
there is currently no generic framework for the reverse-engineering of CPU caches.

In this work, we devise such a framework and also develop a methodology for the reverse-
engineering of placement policies. We provide a corresponding open-source implementation,
called CacheHound, and benchmark it on several x86- and ARM-based systems. Finally, we
employ the gained knowledge to explore use cases in the fields of security and high-performance
computing (HPC).
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1. Introduction

The ongoing advancements in CPU design, multi-core computing and semiconductor tech-
nology have resulted in a situation where the speed of processors is outpacing the rate at
which data can be transferred with the main memory. Recent benchmarks show a memory
access latency of 70ns on the Intel Skylake and an even higher latency of 110ns on the newer
Intel Cannonlake architecture [Lem19]. In light of the aforementioned access latencies, a
typical processor with a clock frequency of 3.4GHz must await the availability of requested
data for 238 and 374 cycles, respectively. It is important to note that each instruction fetch
entails a memory read. Consequently, even CPU-bound applications are concerned about
memory speed. The phenomenon whereby a specific threshold is reached and memory speed
subsequently becomes the limiting factor for performance is referred to as the memory-wall
problem [WM95].

CPU manufacturers employ various approaches to heighten this threshold or, figuratively
speaking, to move the memory-wall further into the future: Techniques such as pipelining,
superscalar execution, instruction-level parallelism, branch prediction, speculative execution,
out-of-order execution and prefetching are employed with the objective of hiding memory
access latency [Mac02].

This work focuses on CPU caches which are another technique to hide the latency. CPU
caches are SRAM units situated between the CPU and main memory. These CPU caches
exploit the temporal and spatial locality of an application’s data access patterns to serve
a fraction of the main memory at significantly lower latencies. A CPU cache must operate
according to a specific logic that determines which data to retain in the relatively smaller
SRAM and which to discard. This operation is governed by a cache policy.

It is common practice among processor manufacturers to refrain from disclosing the details
of their cache policies, particularly the placement and replacement policies, which dictate
where data is stored within the cache and which data is evicted when the cache reaches its
capacity. The objective of this work is to develop a solution for reverse-engineering these
CPU cache policies.

1.1. Motivation

Applications that are structured in a manner that optimizes the use of the CPU cache
are referred to as cache-friendly. In the domain of high-performance computing (HPC),
cache-friendliness is a highly sought-after property, as it has a considerable influence on
the overall performance of the application. Consequently, one of the initial improvements
implemented by software developers is the optimization of an algorithm’s memory accesses.

Typically, these optimizations consider only the cache size and neglect to take the cache
policy into account, e.g., the widely applied technique Cache blocking processes data in
cache-sized chunks [Sha19]. Incorporating the cache policy into the optimization process can
facilitate additional enhancements.
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1. Introduction

For instance, one potential issue that can arise with CPU caches is thrashing. Thrashing
describes a situation in which the same cache line is repeatedly swapped in and out of
memory [Han98a]. This phenomenon occurs when two or more data accesses in a hot code
path are handled by the same cache set. Knowledge about the placement policy would
enable compilers and linkers to layout the code in such a way to prevent this situation. This
knowledge could also be employed to use a CPU cache as scratchpad memory. They differ in
that scratchpad memory offers explicit control whereas a CPU cache is transparent to the
user.

Lastly, the placement policy is also interesting from a security perspective since many
studied cache-based attacks implicitly assume a textbook index function and break otherwise.
Knowledge of the non-standard placement policy would allow these attacks to be carried out.

1.2. Contribution

Prior research has concentrated on the reverse-engineering of cache replacement policies (cf. sec-
tion 3.2), employing a variety of methodologies. Nevertheless, to the best of our knowledge,
no investigation into placement policies has been conducted thus far. This apparent absence
of research can be attributed to the fact that the placement policy is typically expected
to be based on an index function that performs a simple modulo on the memory address,
as can be found in any textbook on CPU caches [Han98b; HP18; Fox24a]. However, the
Fujitsu A64FX ARMv8 microprocessor deviates from this pattern by employing a non-trivial
index function [Fuj22]. We believe that this is the only microprocessor which is publicly
documented not to follow the textbook.

We note that both architectures considered in our work, x86 and ARMv8, allow for
such deviation from the textbook function. In the case of x86, the “Deterministic Cache
Parameters Leaf” on the CPUID instruction includes a “Complex Cache Indexing” bit which
denotes that a “complex function is used to index the cache, potentially using all address
bits” [Int24]. This bit is usually set for the sliced L3 cache on Intel. For ARMv8, the
architecture reference manual states that “the set number is an IMPLEMENTATION DEFINED
function of an address” [Arm24a].

Moreover, prior reverse-engineering methodologies have been developed within the context
of the analyzed platform, which has typically been Intel machines. We are not aware of
any attempts to develop a generic framework within which various cache reverse-engineering
techniques can be implemented.

Our contribution encompasses these two elements. In particular, we present a mathematical
model of cached memory that serves to abstract the reverse-engineering of CPU caches. In
this model, we present our approach for inferring the placement policy. Additionally, we
demonstrate how an existing approach for the reverse-engineering of replacement policies can
be implemented within this model.

Furthermore, we contribute an open-source implementation of our framework and method-
ology which we call CacheHound. CacheHound features an architecture that minimizes noise
when reverse-engineering the CPU cache by offloading measurements to a dedicated CPU
core. The accompanying CacheHound kernel module is compatible with 64-bit Intel, AMD
and ARMv8 systems running Linux.

2



1.3. Overview

1.3. Overview
In order to achieve the objective of this work, we first explore the design of CPU caches and
cache policies in chapter 2. This is followed by a literature review on existing studies on
this or related to this topic in chapter 3. In chapter 4 we devise strategies and approaches
of reverse-engineering, and implement these in chapter 5. We then use the implementation
to reverse-engineer cache policies on various systems in chapter 6. Table 1.2 serves as an
overview of the systems we examine. Lastly, in chapter 7 we explore use cases in HPC as
well as security, and discuss this work.

This work is only concerned with CPU data and unified caches. There are other caches
present within modern CPUs, such as the TLB, BTB and the Micro-OP-Cache, which
are not covered. Although the TLB and instruction caches fall outside the scope of our
implementation, they are compatible with our approach. We discuss how they can be
incorporated into CacheHound in the final chapters.

System / Mainboard CPU Instruction set Memory

Raspberry Pi 5 BCM2712 (Cortex-A76) ARMv8 4GiB
Supermicro X9DRH-7TF Intel Xeon E5-2680 v2 x86_64 (Ivy Bridge EP) 64GiB
HPE ProLiant DL385 Gen10 Plus AMD EPYC 7302 x86_64 (Zen 2) 128GiB
Cray CS500 Fujitsu A64FX ARMv8 64GiB

Table 1.2.: Overview of systems selected for examination.

3





2. Cache design

CPU caches are static random-access memory (SRAM) units located between the CPU and
main memory to serve a fraction of the memory at significantly lower latencies. This chapter
provides an overview of CPU caches, including their types, parameters and implementation
principles. The second half of the chapter discusses the various choices for cache policies,
specifically cache line replacement options.

2.1. Principle of locality
Main memory can be accessed randomly, but practice has shown that program data accesses
typically follow a certain pattern, known as the principle of locality (or locality of reference).
This means that data which has been accessed recently is likely to be accessed again shortly
(temporal locality) and other data which is in close proximity to it is more likely to be
accessed than data further away (spatial locality) [Han98c; Fox24a].

Listing 2.1 demonstrates the principle of locality: The function int sum(int*, size_t)
calculates the sum over all entries in the contiguous C-array starting at int* ptr. For
the implementation, the variable int acc acts as the currently accumulated value while a
for-loop iterates over the entries from low to high addresses.

int sum(int* ptr, size_t len) {
int acc = 0;
for(size_t i = 0; i < len; i++) {

acc += ptr[i];
}
return acc;

}

Listing 2.1: Exemplary code which follows the principle of locality.

The iteration over the array exhibits spatial locality as the accessed entry is in close
proximity to the previously read one. The variable int acc demonstrates temporal locality
as it is updated regularly, specifically in every iteration. If one were to trace the memory
accesses during code execution, the resulting plot would resemble1 fig. 2.1.

2.2. Memory hierarchy
The memory hierarchy leverages the principle of locality by storing frequently accessed
data in small but fast storage, while still providing the advantages of larger but slower
storage. The fastest storage available in a computer system is that provided by CPU registers.

1In practice, a compiler is likely to store the variable int acc in a processor register.
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Figure 2.1.: Exemplary memory accesses plotted over time.

However, only a limited number of data words are available per core. The slowest available
storage is dependent upon the system in question and may range from flash storage, spinning
disks, or even magnetic tape, which the operating system is able to utilize for memory
swapping [Fox24b].

CPU caches constitute a specific type of storage situated between the CPU registers and
main memory within the aforementioned hierarchical memory structure. Typically, there are
multiple levels of CPU caches, denoted as L1, L2, and so on, with lower levels being closer to
the CPU. The specific composition of the caches varies depending on the CPU manufacturer
and model. Some caches are dedicated to each CPU core, whereas others are shared between
multiple cores [Fox24a].

The modern computer typically adheres to the von Neumann architecture, whereby the
main memory stores both data and code. This is distinct from the first level of CPU caches,
which commonly follows the Harvard architecture with a split instruction cache (L1i) and
data cache (L1d).

Table 2.1 serves as a reference for the typical latencies and sizes of CPU registers, different
levels of caches and main memory.

Storage class Latency Size

CPU register 0.5 cycles 64 bits
L1d cache 5 cycles 48 KiB
L2 cache 13 cycles 512 KiB
L3 cache 42 cycles 8 MiB
Main memory 42 cycles + 64 ns 16 GiB

Table 2.1.: Overview of typical sizes and latencies of storage classes [Pav19].

One of the systems examined in this work is equipped with the AMD EPYC 7302 processor,
which comprises 16 physical CPU cores (32 SMT threads). Figure 2.2 shows the cache
hierarchy on this chip. Each core, and, thus, each pair of SMT threads, is equipped with a
32KiB L1 instruction cache and a 32KiB L1 data cache. The instruction cache is exclusively
utilized for the retrieval of instructions, whereas the data cache is employed for the reading
and writing of data to memory. Each pair of L1 instruction and data caches is backed by a
single L2 cache which is significantly larger at 512KiB. A single L3 cache, with a capacity of
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2.3. High-level overview of caches

128MiB, is shared among the entire socket.2 This cache is also referred to as the Last-Level
Cache (LLC), as it represents the final cache before the main memory. Although the cache
organization used by AMD is also found in other chips, such as those from Intel, there is no
standardization across different manufacturers.
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Figure 2.2.: Cache hierarchy of the AMD EPYC 7302.

2.3. High-level overview of caches
As illustrated in fig. 2.2, all loads and stores pass the cache hierarchy in a layer-by-layer
fashion. The CPU is not directly connected to the main memory; rather, it is linked to the
first level of caches. In the event that the first level cache is unable to satisfy a request (cache
miss), the request is then forwarded to the second level cache, and so on. This process is
repeated until either a cache is able to fulfill the request (cache hit) or the main memory is
reached [Fox24a].

In this manner, the caches are managed transparently by the CPU. From the perspective
of software, including the operating system, caches are hidden and operate implicitly, without
requiring explicit control. It is noteworthy that the figures illustrate the logical configuration.
Hardware designers have various implementation options and some architectures permit the
deliberate bypassing of caches. Additionally, the L3 cache is not typically a single, large
SRAM unit, but rather divided among the number of cores, with each core holding a slice of
the L3 cache. This allows for the parallelization of L3 cache accesses [HWH13], and is likely
also done to modularize the chip and aid in product binning.

2.3.1. Cache lines

A cache is comprised of multiple entries, known as cache lines. In order to operate, it is
necessary for the system to have a method for determining whether a requested memory

2The information on the cache sizes was obtained by exploring the files under the sysfs directory
/sys/devices/system/cpu/cpu0/cache/ on the AMD EPYC 7302 system running Linux.

3A FETCH is performed during the Fetch-Decode-Execute cycle to obtain the next instruction.
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2. Cache design

location is cached, that is, whether a cache line exists that contains a copy of that location.
To achieve this, each line is assigned a tag based on the address in the main memory [Han98b].
Cache lines are not single bytes or words, but rather larger, to take advantage of spatial
locality and the more efficient transfer of contiguous chunks of memory in DRAM [Fox24a].
The size of cache lines in contemporary processors varies at the discretion of the processor
manufacturer. Intel and AMD processors have 64-byte cache lines, while Apple’s M1 processor
lineup and other ARM processors like the A64FX use 128-byte and 256-byte cache lines,
respectively.

Each time the CPU accesses a location in main memory, the entire cache line is loaded
into the cache. The memory address that points to the beginning of a cache line is obtained
by zeroing the lower bits according to the line size. These lower bits are used as the offset
into the cache line [Fox24a]. Given a cache line size of 2boffset bytes, boffset lower offset bits
are used. For instance, a 64-byte cache line uses a 6-bit offset.

The remaining upper bits uniquely identify the cache line in the cache. Depending on the
cache parameters, the upper bits are split between tag and index bits. The following sections
will address this topic in greater detail.

2.3.2. Associativity

An additional crucial element of a cache, in conjunction with its capacity, is its associativity.
A cache is classified as a fully associative cache if it possesses the capability to store a copy
of a given memory location within any of its cache lines. In this type of cache, the tag of the
memory address is compared to each cache line to determine if the address is cached [HP18].

Tags Data

Comp
btag

Comp
btag

Comp
btag

Comp
btag

Tag Offset
btag

&

8× 2boffset

&

8× 2boffset

&

8× 2boffset

&

8× 2boffset

8× 2boffset

Figure 2.3.: Schematic of reading from a fully associative cache [Dre07].

Figure 2.3 depicts the schematic of this setup, with the cache lines divided into the tag
section on the left and the data section on the right. The width of the wire is indicated
by the accompanying letter or term, or by 1 in the absence of a letter. Each cache line is
equipped with a comparator and an AND-gate which are used to make a comparison between
the stored tag bits and the btag tag bits of the requested address. In the event of a match,
the cached copy of 2boffset bytes (8× 2boffset bits) is returned.

8



2.3. High-level overview of caches

The schematic depicts a cache with only four lines, yet a 2 MiB cache with 64-byte lines
would have nearly 33,000 entries in a fully associative configuration. This would necessitate
33000 comparators, each requiring btag XNOR-gates for bit-level matching and log2(btag)
AND-gates to aggregate the results. These gates are composed of several transistors each,
resulting in a large chip space requirement. An iterative comparison could reduce the
number of transistors needed for implementation at the expense of increased latency which
is incompatible with the nature of caches [Dre07]. In practice, most caches are not fully
associative.

At the opposite end of the associativity spectrum is the direct-mapped cache, in which each
memory location can only be stored in a particular cache line. As a result, the direct-mapped
cache only needs to check a single cache line, unlike the fully associative cache, which must
compare the tag to every line [HP18]. Figure 2.4 illustrates this concept.
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btag 8× 2boffset

btag 8× 2boffset

btag 8× 2boffset

btag 8× 2boffset

Comp
btag

Tag Index Offset
btag bindex

&

8× 2boffset

8× 2boffset

Figure 2.4.: Schematic of reading from a direct-mapped cache [Dre07].

The implementation of this cache necessitates only a single comparator, as only one cache
line must be compared. However, a multiplexer is necessary to select the line to compare. The
number of transistors required to implement a multiplexer grows in the order of O(k logN)
where N is the number of cache lines and k is the width of the wire [Dre07]. In the depicted
case there are N = 2bindex cache lines and k = btag+8×2boffset bits required per line. Therefore,
the chip space necessary for a direct-mapped cache grows only logarithmically and it is already
smaller to begin with.

Note that a portion of the requested address is used to select the cache line. There are
bindex index bits to select from one of the 2bindex cache lines. Since every 2boffset addresses the
next cache line is mapped to, the bindex lower bits are redundant and, thus, stripped from
the tag [Dre07].

Although a direct-mapped cache is easier to implement, it has the drawback of not handling
unevenly distributed memory accesses well. In situations where a program frequently accesses
two or more addresses that map to the same cache line, the cache lines get replaced repeatedly,
reducing the effectiveness of the cache [Dre07].

To address this issue, both techniques can be combined to create an n-way set-associative
cache. In this setup, cache lines are grouped into sets of size n, where the associativity n is a
relatively small number like four as shown in fig. 2.5. Most modern CPU caches typically have
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2. Cache design

an associativity n of 2, 4, 8 or 16. An associativity of 1 corresponds to the direct-mapped
cache. In the set-associative cache, each memory address can be stored in a single set of n
cache lines. The n lanes of cache lines are also referred to as ways [Dre07].
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Figure 2.5.: Schematic of reading from a 4-way set-associative cache [Dre07].

This setup operates in two steps. Initially, a multiplexer is used, analogous to that employed
in a direct-mapped cache, to select the set for the requested address. Then, in the second
step, n comparators are utilized to determine the cache line in which the data is stored.

2.3.3. Replacement

The preceding section addresses the process of reading from caches in the context of data
that has already been cached. When data that has not been previously cached is loaded into
the cache and the cache’s storage capacity is reached, it must remove a cache line to create
space for the new data. This process of removal is also referred to as eviction [Han98d].

The cache lines that are permitted to be evicted are contingent upon the associativity of
the cache. Naturally, in the case of a fully associative cache, any cache line may be evicted.
In contrast, for a set-associative cache, it is all cache lines in the same set that may be evicted.
The direct-mapped cache is the simplest case, as there is only one possible cache line to evict.

When multiple cache lines are permitted to be evicted, the cache adheres to the specified
replacement policy. The replacement policy is designed in such a way that the number of
cache misses is minimized for the targeted workload. There are numerous strategies for
replacements – a random cache line could be selected, for example. The majority of strategies
necessitate the incorporation of supplementary metadata bits within each cache line or set for
the purpose of bookkeeping [Han98d]. A comprehensive examination of replacement policies
can be found in section 2.4.
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2.3. High-level overview of caches

2.3.4. Writing

In addition to the removal or overwriting of a cache line, the eviction of data from a cache may
also entail the writing of any changes back to the next layer of memory, with the exception
of the L1 instruction cache. The precise process is determined by the write policy [Han98d;
Fox24a].

In a write-through cache, any write to the cache is immediately written to memory. This
approach simplifies the system design, as it ensures that the memory always has an up-to-
date copy of the cache line. This is particularly the case in the context of shared-memory
multiprocessor systems, where it is necessary for writes initiated by one processor to be
observable by another processor eventually. However, in such systems a write-through policy
would also generate high memory bus traffic as every single write of every processor would
be announced [Han98d; Fox24a].

The solution is a write-back policy in which the update to a cache line is only copied back
during eviction. The implementation is more complex, requiring particular attention to be
paid to the issues of memory coherence which is concerned about keeping multiple caches and
main memory coherent. The typical cache employs a write-back policy [Han98d; Fox24a].

2.3.5. Placement

Direct-mapped and set-associative caches require a methodology for mapping a cache line to
a corresponding cache set deterministically. Figures 2.4 and 2.5 assume the non-offset bits of
the requested address to be divided up into the upper bits for tagging and the lower bits
for indexing. This is the textbook example which presupposes an index function based on
modular arithmetic as the placement policy. An index function maps an input address to
the index used for set selection, i.e., [0, 264) 7→ [0, 2bindex) on a 64-bit machine. The index
function as used in figs. 2.3 to 2.5 is of the form I(a) =

⌊
a

2boffset

⌋
mod 2bindex or, expressed in

code, (a >> offset_bits) & ((1 << index_bits) - 1).
This work is concerned with reverse-engineering more complex index functions such as the

one used in the L2 cache on the Fujitsu A64FX processor which is publicly documented [Fuj22].
Figure 2.6 shows the index function.

56 48 40 32 24 16 8 0

Index

Figure 2.6.: Schematic of the Fujitsu A64FX L2 cache index function.

The index function uses the lower eleven non-offset bits of the physical address as the
index. However, unlike the textbook example, the upper three bits of the index are XORed in
triplets with bits 36 to 34, 32 to 30, 31 to 29, 27 to 25, as well as bits 23 to 21 of the address.
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2.3.6. Virtual and physical indexing

Caches can operate on either virtual or physical memory and are designated as virtually
indexed (VI) or physically indexed (PI), respectively. The advantage of virtual indexing is
that no translation of the address is required, which is costly in the event of a TLB miss.
Conversely, the use of virtual addresses for cache coherence introduces an additional overhead,
as multiple virtual addresses may refer to the same physical address. This phenomenon is
also referred to as aliasing. Moreover, when context switching between processes, a virtually
indexed cache must be flushed, as the virtual address space of the two processes may overlap
and map to different memory locations. Finally, it is difficult to share a virtually indexed
cache between multiple cores, as it is unlikely that they will all execute the same process
with the same virtual memory simultaneously [Bot04].

Some of the issues associated with virtual indexing can be mitigated by tagging the cache
line using the physical address in lieu of the virtual address. Such physically tagged (PT)
cache is also referred to as a VIPT cache. In a VIPT cache, the lookup of the cache line and
the address translation, i.e. TLB lookup, can commence simultaneously. Once both results
become available, the tag can be verified [Bot04].

Private L1 caches are typically implemented using VIPT, whereas shared higher-level
caches use PIPT [Lip+20]. In a processor employing SMT, the L1 caches are shared between
multiple SMT threads. In such instances, a thread identifier is typically incorporated into
the tag, leading to threads competing on the cache.

2.3.7. Inclusiveness

In cache hierarchies, the inclusion policy controls whether data available in a lower-level
cache is retained in the higher-level cache. A cache can be inclusive, exclusive [Dre07; HP11]
or non-inclusive [HP11] of its lower-level cache.

An inclusive cache contains any data which is also present in the lower-level cache. Con-
versely, an exclusive cache is never populated with data from the lower-level cache [Dre07;
HP11]. In contrast to those two strict policies is the non-inclusive policy. A non-inclusive
cache may or may not contain data from the lower-level cache [HP11].

It is evident that an inclusive cache results in the inefficient use of chip area due to the
presence of redundant copies of the data. Although Intel has previously employed inclusive
caches, many contemporary processors utilize non-inclusive caches. AMD has always used
non-inclusive caches [Dre07].

2.4. Replacement policies

There are various approaches for replacement policies that describe which cache line of a
set to evict to make new space. This cache line is called the victim. The choice of the
policy is a tradeoff of different factors, including the anticipated workload and the associated
management overhead. In this section we present a variety of options for policies, beginning
with fundamental ones and progressing to more sophisticated ones. While there are an
infinite number of potential replacement policies, we focus only on the most well-known and
documented ones.
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2.4.1. Random and Round-robin

The Random replacement policy, as the name implies, selects a random cache line for eviction.
That is, an integer in the range of the number of ways is drawn from a pseudo-random
number generator (PRNG). Since the Random replacement policy does not store any historic
data in a set, it requires no extra bits in the cache. The exception is the shared PRNG which
usually requires some bits to store the state.

The Round-robin replacement policy, or Cyclic replacement policy, is more predictable. It
keeps a victim counter per set which points to the next cache line to evict and is incremented
afterwards. It cycles back to 0 when it reaches the maximum number of ways. This policy
requires dlog2(n)e number of extra bits per set to store the victim counter where n is the
number of ways, or associativity.

The round-robin policy can also be viewed in a First-in-First-out (FIFO) fashion. In that
view, each cache set is treated as a queue. The victim cache line is picked from the tail of the
queue and re-added to the head when filled with new data. Note that only misses change the
queue. On a hit, the queue remains unchanged. Given the queue of cache lines [a, b, c, d],
line d is selected as victim in the case of a miss. The new queue becomes [d, a, b, c] [Rei+07].

Both policies make no use of prior cache accesses and, thus, do not take full advantage of
temporal locality. Use cases include situations where the implementation needs to be simple
or easy to simulate. Both policies can be found in the cache of a ARM Cortex-R Series
processor which are designed for real-time applications [Arm14].

An extension to the random replacement is the Not Last Used (NLU) replacement policy
which excludes the last accessed cache line from the selection process. The idea behind
NLU is that the hit rate can be increased by avoiding the inherent possibility of evicting
the last used line. The NLU implementation requires dlog2(n)e bits per set to store the
last accessed way [Han98b]. It is also alternatively referred to as Not Most Recently Used
(NMRU) [ZMN08].

2.4.2. Least Frequently Used (LFU)

In the Least Frequently Used (LFU) replacement policy, a frequency counter on each cache
line keeps track of the number of accesses. The cache line with the lowest counter value (i.e.
fewest accesses) is chosen as the victim to evict. Special care needs to be taken to prevent
stale cache lines from polluting the cache. Hence, an aging policy is typically employed as
well [ZMN08].

Besides the significant space requirements to store the counters for each cache line, the
implementation also requires a way to compare the counters. This can either happen
iteratively or through a tree of comparators, both solutions adding to the latency of the
cache.

2.4.3. Least Recently Used (LRU)

The Least Recently Used (LRU) replacement policy uses a queue that is updated on every
access of a cache line. This is in contrast to FIFO (cf. section 2.4.1) where only a cache miss
updates the queue. On any cache hit, the cache controller looks up the cache line in the queue
and moves it to the head. The head is also referred to as the MRU position. On a cache
miss, the line at the tail position, or LRU position, is chosen as the victim to evict [Han98b].
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2. Cache design

LRU is expensive to implement in hardware since every possible state of the queue needs
to be encoded resulting in a space requirement of dlog2(n!)e bits per cache set making for
super-linear space complexity O(n log n).

Additional to the space requirements, there is significant overhead involved in updating
the state. Firstly, the position of the hit cache line needs to be decoded from the queue state.
In a software-implemented cache this would typically be solved either by iterating over the
queue or using a hash map of pointers to queue node for constant lookup. The compact
state encoding in the hardware cache requires a complex decoding unit. Secondly, the new
compact state needs to be encoded and written back. Crucially, the write back has to happen
in the same processor cycle in order to serve the next request [Han98b].

2.4.4. Pseudo-LRU (PLRU)

Intel developed a replacement policy called Pseudo-LRU (PLRU) which approximates LRU
at the advantage of a simplified implementation. This policy maintains a binary tree per
set where each node keeps a bit that points to the half that was accessed more recently. A
cache hit updates all bits along the path to point to the MRU position. On a cache miss,
the cache line in the LRU position is evicted. The LRU position is obtained by going the
opposite ways of the pointers. An exemplary PLRU binary tree is depicted in fig. 2.7. Solid
lines mark the half that was accessed more recently.
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Figure 2.7.: Exemplary PLRU tree for an 8-way set-associative cache.

2.4.5. Not Recently Used (NRU) and Most Recently Used (MRU)

The Not Recently Used (NRU) replacement policy is another variant of approximating LRU
behavior. Alternative names are bit-PLRU [PJ15] or PLRUm [AMM04], with the traditional
PLRU being called tree-PLRU.

This policy is implemented using a NRU-bit per cache line. The NRU-bit denotes whether
the cache line was recently accessed (0) or not (1). When a cache line is filled, the corresponding
NRU-bit is set to 0. The victim cache line to evict is selected as the first line (e.g. left-to-right)
in the set with the NRU-bit set to 1. In the case that all NRU-bits are 0, all bits except for
the first one are set back to 1 and the first line is evicted [Jal+10].
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A variation of this policy, the Most Recently Used (MRU) replacement policy, differs only
in the implementation of the last step. Instead of resetting the NRU-bits back to 1 at victim
selection, they are already updated after the last NRU-bit is zeroed [AR20; Rei+07]. Note
that there is no established consensus on the policy naming. For instance, in [GD11] MRU
replacement actually means choosing the most recently accessed cache line as a victim. This
denotation is congruent with the naming of the other policy names.

2.4.6. Hybrid policies

While LFU is preferred for workloads with frequent accesses, it fails for workloads where
recency (e.g., LRU) is the appropriate heuristic. Conversely, for some workloads a replacement
policy based on recency is not appropriate. For example, a memory-intensive application that
regularly scans over a working set larger than the cache size will result in thrashing under
the LRU replacement policy [Han98a]. This is because while a new cache line is initially
inserted at the MRU position, it traverses to the LRU position without ever receiving a cache
hit. The continuous traversal cycle results in inefficient use of cache space [Qur+07].

There are replacement algorithms that take both, recency and frequency, into account such
as LRFU [Don+01], LRU-K [OOW93], or FBR [RD90]. However, they are not designed for
CPU caches as several parameters need to be tuned on a per-workload basis to make use of
them. As noted by Jaleel et al., several adaptive replacement algorithms that self-tune these
parameters exist. Nevertheless, algorithms like ARC [MM03] or CAR [BM04] significantly
increase the hardware overhead and complexity [Jal+10].

One solution is a hybrid approach where the cache controller can choose between multiple
replacement policies at runtime, depending on the detected workload. Intel introduced a
mechanism called Set Dueling for selecting between two competing policies. In Set Dueling,
a few sets of the cache are dedicated to each policy. The policy that performs better on the
dedicated sets is inherited by all other sets, termed the follower sets. It has been shown that
32 to 64 dedicated sets are sufficient for Set Dueling to choose the better policy [Qur+07].

The concrete implementation discussed by Intel separates the LRU replacement policy into
an insertion policy and an eviction policy. In the traditional LRU policy (cf. section 2.4.3),
the eviction policy selects the cache line at the LRU position as the victim. The traditional
insertion policy inserts new cache lines at the MRU position. Intel introduced further insertion
policies such as the LRU Insertion Policy (LIP) which puts newly filled cache lines into the
LRU position. The enhanced Bimodal Insertion Policy (BIP) is randomized and puts most
cache lines into the LRU position. Set Dueling is employed to build a Dynamic Insertion
Policy (DIP) that switches between BIP and the traditional insertion policy [Qur+07].

When Set Dueling detects that, for instance, the traditional LRU policy performs poorly
on the current working set, it switches to LIP (or BIP). Given the same aforementioned
situation where the working set is larger than the cache size, since LIP puts all new cache
lines into the LRU position, this traversal cycle is broken and cache lines are kept in the
cache until they are eventually accessed again and result in a hit. Note that the insertion
policy is adopted by the whole follower set. Hence, for applications which mix incompatible
working sets, with DIP it is not possible to dedicate different policies to different ranges of
cache sets [Jal+10].
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2.4.7. Re-Reference Interval Prediction (RRIP)
Another class of replacement policies introduced by Intel are based on Re-Reference Interval
Prediction (RRIP). The idea of RRIP policies is that, instead of ordering cache lines by their
recency of access as in the case of LRU, they are ordered by their predicted re-reference.
The head of the queue points to the cache line that is predicted to have near-immediate
re-reference, i.e., it is expected to be access again soon. On the other side, the line at the tail
of the queue is predicated for distant re-reference. The victim is always selected as the cache
line at the tail. In the RRIP point of view, LRU is just another policy that uses recency as
the predictor for re-reference [Jal+10].

Instead of establishing a strict total-order on all cache lines in a set, the M-bit Static
RRIP (SRRIP) uses 2M buckets of predictions. An M -bit register per cache line is used to store
the index of the bucket, termed the Re-reference Prediction Value (RRPV) where 0 denotes a
near-immediate re-reference prediction and 2M − 1 a distant re-reference prediction. Initially,
a cache line receives a RRPV that represents a long re-reference interval 2M − 2 [Jal+10].

How the RRPV is lowered is governed by the RRIP hit promotion policy. The Hit
Priority (HP) policy approximates LRU behavior by predicting that a cache line which
receives another hit will be re-referenced in near-immediate future. Thus, any further hit
updates the RRPV from 2M − 2 to 0. Alternatively, the Frequency Priority (FP) policy takes
frequency of re-references into account. It decrements the RRPV by one on every hit but not
less than 0 [Jal+10].

In victim selection, the first cache line (e.g., left-to-right) with an RRPV of 2M−1 is chosen.
If no such line exists, all RRPV registers are incremented by one and the process is repeated.
Note that 1-bit SRRIP is equivalent to the NRU replacement policy (cf. section 2.4.5) [Jal+10].

Analogous to the BIP (cf. section 2.4.6), there is also the Bimodal RRIP (BRRIP) which
uses an RRPV of 2M − 1 at high probability and only occasionally assigns the RRPV of
2M − 2. Similarly, the Dynamic RRIP (DRRIP) uses Set Dueling to switch between SRRIP
and BRRIP [Jal+10].

Intel refers to the family of 2-bit RRIP policies as Quad-Age LRU (QLRU) [Jah+12; AR20]
since the 2-bit RRPV per cache line is supposed to represent four levels of age. Modern
Intel processors starting at Skylake employ variations of QLRU in the higher-level CPU
caches while low-level caches use PLRU [Abe20]. Presumably, this design was chosen because
low-level caches have a filtering effect on data accesses handled by the higher-level cache, i.e.,
L2 accesses are L1 misses and L1 hits do not touch L2. Hence, PLRU is not considered a
proper policy for handling the L2 access pattern [KHM01; Jal+10].
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In this chapter we present prior literature on the topic of reverse-engineering of CPU cache
policies. We are particularly interested in the placement and replacement policies.

As noted in chapter 1, we are not aware of prior research on the reverse-engineering of
placement policies. However, there has been research on other hash functions found in modern
multiprocessors, termed microarchitectural hash functions, which we present in section 3.1.
The presented research includes LLC slice functions, which are related to placement policies.

In section 3.2 we cover prior work on reverse-engineering of replacement policies.

3.1. Microarchitectural hash functions

Many components of modern CPUs, such as sliced L3 caches, TLBs and DRAMs, use hash
functions. The advent of sliced L3 CPU caches in the Intel Sandy Bridge architecture
sparked interest in reverse-engineering the undocumented hash function which maps physical
addresses to cache slices.

Hund, Willems, and Holz [HWH13] were one of the earliest to reverse-engineer this hash
function to allow for side-channel attacks against KASLR using the x86 rdtsc instruction.
Their approach was to allocate a large chunk of physically contiguous memory, and then
finding pairs of set-aligned addresses differing in one bit to observe whether they collide on
the same slice through timed probing. Through the obtained information they were able
to manually recover the hash function. Their results were later verified and confirmed by
Seaborn [Sea15].

Maurice et al. [Mau+15] extended on this work in that they used performance counters
instead of the rdtsc instruction. They also automated the recovery process in that they
used the pairs of addresses to find how flipping a bit changes the slice. The large chunk of
physically contiguous memory was allocated using huge pages. A similar approach was taken
by McCalpin [McC21]. This approach was further adopted for the reverse-engineering of
other microarchitectural hash functions, including work on DRAM addressing [Pes+16] and
TLB attacks [Gra+18; Kos+20].

Irazoqui, Eisenbarth, and Sunar [IES15] proposed to model the hash function as a con-
catenation of linear boolean functions. They recovered the hash function by solving each of
the boolean functions using a system of linear equations. Lipp et al. [Lip+20] adopted this
approach.

Previously cited work is constrained to hash functions with 2n possible outputs. Yarom
et al. [Liu+15; Yar+15] studied the hash functions of L3 caches featuring 6 or 10 slices. They
used the captured mapping of addresses to cache slices in order to reverse-engineer the hash
function manually.

In their study of microarchitectural hash functions, Gerlach et al. [Ger+24] developed an
automated method for reverse-engineering a wide range of hash functions, particular those
exhibiting non-linear characteristics as identified in [Yar+15]. However, their approach is
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constrained by the inherent limitations of the proposed framework, which “is rather slow,
requiring days in order to recover the targeted function” [Ger+24].

To the best of our knowledge, we are the first to propose a solution for reverse-engineering
the placement policy. Our approach relies on modeling the index function as an affine
transformation that can be recovered by collecting mappings of addresses to set indices.

3.2. Replacement policy reverse-engineering
Few authors have approached the problem of learning CPU cache replacement policies with
most prior work being authored by Abel and Reineke.

John and Baumgartl [JB07] studied the LRU replacement policy and its derivatives. They
devised an approach of identifying the underlying replacement policy by observing which
way is evicted given a manually prepared sequence of loads. The evicted way is determined
by counting cache misses when accessing a prepared set of addresses a second time after they
have been accessed initially on an invalidated cache.

Abel [Abe12] found a flaw in their approach and introduced the class of permutation
policies. Permutation policies are replacement policies which maintain an order of the ways,
i.e., from the MRU- to the LRU-position. On a hit on a particular way, a permutation
vector for that way describes how the order is adjusted. Likewise, there is a permutation
vector corresponding to a miss. Abel reverse-engineered the class of permutation policies
by first establishing a known initial state, then triggering a particular permutation on the
replacement policy and lastly reading out the transitioned-to state. This approach has been
reused in [AR12; AR13; AR14; Abe20; AR20].

Rueda Cebollero [Rue13] noted that some replacement policies cannot be modelled as
permutation policies such as MRU. This restriction also includes SRRIP. He suggested to use
automata learning as implemented in the LearnLib library1 in order to obtain the replacement
policy as a mealy machine. However, while the solution worked in theory, it took more than
72 hours of runtime to learn the replacement policy of a cache with more than six ways. Also,
the author failed to run the implementation against a real system.

Vila et al. [Vil+20] adopted Rueda Cebollero’s approach to build Polca and CacheQuery
which establish a link between the LearnLib library and the actual system. They further
implemented a function to synthesize a replacement policy automaton into readable code.
While their approach reverse-engineers policies such as FIFO, LRU and LIP in a few seconds,
it takes 4 hours to learn the MRU and 34 hours to learn the PLRU policy on a software-
simulated cache with an associativity of 12 and 16, respectively. The authors mention an
overhead of 1500x when applied on a real system.

Abel [Abe20] later introduced a second approach to [Abe12] based on a pre-defined set of
replacement policies. In this approach, sequences of loads are generated and each sequence is
executed on the system under test as well as all replacement policy candidates. A hit counter
keeps track of the number of hits that occurred during the execution. Candidates with a
hit counter different from the one obtained from the system are discarded until one (or no)
candidate remains.

Given the significant runtime of the solutions based on automata learning is impracticable
for our purposes, we base our approach of reverse-engineering replacement policies on the
work of Abel [Abe20].

1https://learnlib.de/
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4. Methods

The objective of this research is to develop an automated system for reverse-engineering CPU
cache policies. To achieve this, we first construct a reverse-engineering framework tailored to
CPU caches, which we describe in this chapter. Based on this framework, we then develop
algorithms for obtaining cache policies, specifically the placement and replacement policy.
The subsequent chapter is devoted to the software implementation of this framework.

4.1. Mathematical model of cached memory

We present a mathematical model and notation for cached memory to provide a formal
description of our approach. A reference of all mathematical symbols used in this document
is provided in appendix B.

4.1.1. Abstract memory

The fundamental model underlying our approach is termed abstract memory. This term
refers to regions, or chunks, of allocated memory that are backed by a set-associative cache
(hierarchy) on which memory accesses can be performed. It is assumed that accesses are
serialized and that a state cannot decay into another, i.e., there are no side-effects.

We define abstract memory M as the quintuple 〈A, L, S, s0, δ〉, where:

• A is the set of accessible addresses (a subset of the available address space) where no
two distinct addresses join a cache line,

• L is a strictly totally ordered set of symbols representing each cache level, including
one for the main memory, where the minimum element min(L) represents the level
closest to the CPU (i.e. L1),

• S is the set of possible states of M , including all caches,

• s0 is the initial state, and

• δ : S ×A→ S × L is the accessor function that, given an address, transitions M into
the next state and yields the symbol representing the cache layer that served the access.

The model of abstract memory is intentionally devoid of further constraints that have no im-
pact on the functioning of the subsequent algorithms. To give a practical example, contiguous
abstract memory can be described by A =

{
a ∈ N | ab ≤ a < (ab + n) ∧ a mod 2boffset = 0

}
,

where ab represents the base address and n denotes the number of bytes. Assuming three
levels of CPU caches, the set of cache level symbols can be represented by L = {1, 2, 3, 4},
where 1 represents the L1 cache and 4 the main memory.
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Assuming an initial state s0 in which all CPU caches are empty (or invalid), when one
accesses the same address twice consecutively, the L1 cache is expected to serve the second
request. In other words, ∀a ∈ A : δ(δ(s0, a)1, a)2 = min(L).1

The above definition is not concerned with virtual and physical address spaces. In practical
terms, any memory allocation routine in user space and kernel space operates on virtual
memory. Consequently, A is typically a subset of the virtual address space.

Given a mapping of physical to virtual addresses m : Ap → Av, new abstract memory Mp

can be constructed by encapsulating the virtual memory’s accessor function δv in the new
function δp(s, ap) = δv(s,m(ap)). This approach allows any algorithm to operate with both,
the virtual and physical address spaces, by substituting the accessor function. This concept
is essential for reverse engineering physically indexed caches. Further details are discussed in
section 5.3.2.

4.1.2. Replacement Policy

In addition, our model incorporates the concept of replacement policies. A replacement
policy Π is managed per cache set, where a cache set consists of α ways.

We define replacement policy Π as the quintuple 〈W,R, r0, δH , δM 〉, where:

• W is a set where each symbol represents a way in the corresponding cache set, e.g.
{0, 1, . . . , 7} for an associativity α of 8,

• R is the set of possible states of the replacement policy,

• r0 is the initial state of the replacement policy,

• δH : R×W → R is the hit function which is invoked whenever the cache line at w ∈W
receives a hit, and

• δM : R→ R×W is the miss function which is invoked whenever space for a new cache
line must be made in the cache set. The victim cache line that should be replaced is
given by w ∈W .

We further introduce the property cyclically evicting. A replacement policy Π is called
cyclically evicting for a state r ∈ R if and only if repeated application of the miss function δM
forms a cyclic group with respect to the yielded way symbol. In other words, let δ 1

M (r) = δM (r)
and δ i

M (r) = δM (δ i−1
M (r)1) in order to denote the ith application of δM on state r. Then the

first α misses should touch every way once, i.e.,
{
δ 1
M (r), δ 2

M (r), . . . , δ α
M (r)

}
= W , and the

pattern repeats cyclically, i.e., ∀i, t ∈ N\{0} : δ i
M (r) = δ i+αt

M (r).
We denote a replacement policy that is cyclically evicting for r0 as initially cyclically

evicting and one that is cyclically evicting ∀r ∈ R as just cyclically evicting. Table 4.1 gives
an overview on this property on common replacement policies.

Policies based on set dueling (cf. section 2.4.6) can only be modeled per cache set using
this approach. Consequently, the interoperation between dedicated sets and follower sets
would require modeling at a higher level.

1Note that indices 1 and 2 refer to the first and second element of the tuple.
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4.1. Mathematical model of cached memory

Policy Initially cyclically evicting (r0) Cyclically evicting (∀r ∈ R)

FIFO Yes Yes
LRU Yes Yes

PLRU Yes Yes
2-bit SRRIP-HP Yes No

Table 4.1.: Overview of cyclically evicting property on common replacement policies.

4.1.3. Caching behavior

While the devised algorithms operate directly on our model of abstract memory, the concept
of replacement policies is hidden by the cache implementation. The caching behavior bridges
these two concepts.

Without loss of generality, we consider only the case of a single cache. We consider
multiple levels of caches in section 4.5. We also assume that the cache is set-associative,
which is consistent with all major processor architectures. Note that fully associative and
direct-mapped caches are special cases of set-associative caches. Therefore, they are also
covered by this assumption.

We denote the associativity by α (= |W |) and the number of sets by β. A fully associative
cache is implied by β = 1 and a direct-mapped cache by α = 1. An index function I :
A 7→ [0, β) maps an address to the corresponding set in the cache. The set-associative
cache maintains a replacement policy per set, denoted as Π0,Π1, . . . ,Πβ−1 and initialized
as r(Π0) ← r0(Π0), r(Π1) ← r0(Π1), . . . , r(Πβ−1) ← r0(Πβ−1) where the set of way symbols is
given by W = {0, 1, . . . , α− 1} . Typically, the cache is expected to use the same replacement
policy for all sets, except in the case of set dueling, where the replacement policy used in a
follower set can change at runtime.

The cache contents are given by a β×α 0-indexed matrix Γ of cache lines. For the purposes
of this work, we have no interest in the data that is actually in the cache. For this reason,
only the cache line tag is considered. A value of � denotes an empty, or invalid, cache line,
in contrast to a tag value given by the tag function τ : A 7→ T . The cache is initially empty:

Γ =



α ways︷ ︸︸ ︷
� � · · · �
� � · · · �
...

... . . . ...
� � · · · �


 β sets

When abstract memory is accessed with the accessor function δ, the cache first determines
the set corresponding to the address as i = I(a). Then it checks whether there is a cache
line for this address in set i, i.e., ∃w ∈W : Γi,w = τ(a). The positive case constitutes a cache
hit, hence r(Πi) ← δH (Πi)(r(Πi), w). In the case of a miss, the victim way is given by the
replacement policy as r(Πi), w ← δM (Πi)

(r(Πi)). Γi,w is evicted and replaced by τ(a).
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4.2. Eviction Strategy
We introduce the concept of an eviction strategy which is used to evict all cache lines from a
given cache set. By loading an address into the cache, evicting a cache set using this strategy
and then retesting whether the address remains in the cache, it is possible to map addresses
to cache sets. This mapping allows the index function I(a) to be reversed-engineered.

We devise two eviction strategies:

• The Eviction Set Strategy is a platform-independent strategy using eviction sets, and

• The CISW Eviction Strategy is based on the DC CISW ARM instruction [Arm24b].

Figure 4.1 illustrates how both eviction strategies evict the second cache set and implicitly
evict target address t ∈ A. A reaccess of t would reveal that t is no longer cached and, thus,
must have indeed been mapped into the second cache set.

α

β

t

Ẽ

t

α

β
α × DC CISW

Eviction Set Strategy CISW Eviction Strategy

Figure 4.1.: Visual comparison of the eviction strategies based on eviction sets and the
DC CISW ARM instruction.

4.2.1. Eviction Set Strategy
The eviction set strategy relies on the primitive of eviction sets. We call a set E of addresses
an eviction set if and only if it contains a subset Ẽ of at least α addresses which map to the
same cache set. We define the space of eviction sets as

E =
{
E ∈ ℘(A) | ∃Ẽ ⊆ E :

∣∣∣Ẽ∣∣∣ ≥ α ∧
(
∀a, b ∈ Ẽ : I(a) = I(b)

)}
.

We call Ẽ a congruent eviction set.
We are interested in eviction sets specific to a particular cache set which we denote as Ei

with i being the cache set index, or specific to a particular target address a which we denote
as EI(a) with a ∈ A and a /∈ EI(a). We use the same notation for Ẽ and E .

The term eviction set originates from research on side-channel attacks on CPU caches such
as Flush+Reload and Prime+Probe [OST05]. Section 7.2.1 is devoted to these attacks.
The intuition is that when all addresses in the eviction set are accessed, the contents (/∈ E)
in the cache set get evicted. Once one congruent eviction set is established per cache set, one
can map any address to its corresponding cache set, allowing for inferring (or approximation)
the index function I(a).
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4.2. Eviction Strategy

We devise a methodology for testing, finding, reducing, minimizing and locating eviction
sets.

Testing

Testing whether an arbitrary set of addresses forms an eviction set for some target address t
involves checking if accessing the addresses causes t to get evicted. To check whether t gets
evicted, t is first loaded into the cache by accessing it. After accessing the addresses from the
eviction set, a second access of t is performed which should not be answered by the (first
level) cache. We adopt this routine from Vila, Köpf, and Morales which is formalized in
algorithm 1 and has a linear time complexity of O(

∣∣EI(t)

∣∣) [VKM18].

Environment: Memory M = 〈A,L, S, s0, δ〉 and current state s ∈ S
Data: Eviction set candidate EI(t) and target address t

begin
s,_←− δ(s, t)
for a ∈ EI(t) do

s,_←− δ(s, a)
end
s, l←− δ(s, t)
return l 6= min(L)

end
Algorithm 1: IsEvictionSet (taken from [VKM18])

The following conditions must be met for the algorithm to work correctly generically:

1. The underlying replacement policy for the set i to which t is mapped must be cyclically
evicting for state s,

2. The first access to t must constitute a cache miss, and

3. The first α accesses to addresses from EI(t) which map to set i must constitute a cache
miss.

The rationale is as follows: Due to the cyclic eviction property, the initially accessed t
will be emplaced in way w, and, after α misses, way w, i.e., address t, will eventually get
evicted again. If condition 2 did not hold, there would be no guarantee that the replacement
policy would be cyclically evicting for the successor state after the cache hit on t. Similarly,
if condition 3 did not hold and any of the first α accesses to set i produced a cache hit, there
would be no guarantee either.

Exceptions exist when applied to certain replacement policies. Notably, in the case of
cyclically evicting (∀s ∈ S) policies such as FIFO, LRU and PLRU condition 2 can be
dropped and condition 3 can be relaxed to require α contiguous cache misses (not interrupted
by cache hits) on set i.

In the case of LRU in particular, the conditions can be relaxed even further. In LRU, the
first access to t, no matter whether hit or miss, moves t to the MRU position. The next α− 1
hits or misses then move t into LRU position, and the αth access will evict t.
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It is also important to consider that the algorithm is not deterministic. Firstly, the
addresses of EI(t) can be accessed in any order, which causes an access to a to hit the cache
on some occasions and miss it on others due to accesses to predecessor addresses.

However, there is another effect that, when taken into account, allows the use of sets in
place of sequences. It is conceivable that a call to the routine with a positive result may yield
a negative result in a subsequent call due to alterations to the abstract memory state induced
by the initial call. In such a scenario, the conditions that were applicable prior to the initial
call may no longer be applicable prior to the subsequent call to IsEvictionSet, potentially
leading to the erroneous classification of a set as not being an eviction set. This phenomenon
occurs when the first call loads the addresses from the eviction set into the cache and in the
second call condition 3, thus, no longer holds.

It is possible to accept false negatives in certain cases (cf. section 4.2.1), but in other
situations (cf. section 4.2.1) a probabilistic result is not desirable. It is therefore essential to
devise a solution that ensures the three aforementioned conditions are always met prior to
the execution of the algorithm in question.

One potential avenue for ensuring that all accesses constitute a cache miss (conditions 2
and 3) is to introduce a form of noise access, or cache pollution, using a set of disjoint
addresses, i.e., A\(EI(t) ∪ {t}), in the anticipation that these evict any previously cached
lines. An extension to the algorithm redoes the pollution if during any access a cache hit is
detected.

An alternative solution relies on an extension to the model of abstract memory. This
extension introduces a new invalidation function, δinv, which removes a cache line for a
given address from the cache. In essence, the invalidation function serves as the inverse
of the accessor function, in that ∀s ∈ S, a ∈ A : δ(δinv(s, a), a)1 6= min(L). Initially, the
algorithm invalidates all addresses that are to be accessed. Availability of the invalidation
function depends on architectural support. For example, the CLFLUSH instruction in the x86
instruction set serves this purpose in that it flushes the specified address from all caches.

In the case of policies that are not cyclically evicting but initially cyclically evicting, it is
necessary to bring the replacement policy into state s0 in order to ensure that condition 1
holds. On x86, it is possible to bring the entire memory and implicitly the replacement
policies into state s0 using the INVD/WBINVD instruction. Both instructions invalidate all
levels of caches, the difference being that latter writes-back any modified cached data before
invalidating. This is essentially equivalent to s← s0.

Finding

The methodology for finding eviction sets is based on the generation of sets of addresses and
subsequent testing to determine if they constitute an eviction set for the target address t.

One straightforward approach is to generate random sets of addresses or even consider the
entire address space as an eviction set. However, our methodology relies on the comparatively
expensive routine of minimizing eviction sets (cf. section 4.2.1). Therefore, when finding
eviction sets, it is crucial to ensure that they are as small as possible. At the same time, the
process of identifying eviction sets should be expeditious. It is possible to generate random
sets of size α, but the probability of such a set being an eviction set would be β−α. However,
the probably of a hit is significantly low even on the smallest CPU caches.

A practical approach is to start generating random sets at a certain size n and, following
a series of unsuccessful attempts x, multiply the size by a fixed factor q in an exponential
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backoff fashion. Algorithm 2 implements this approach.

Environment: Memory M = 〈A,L, S, s0, δ〉 and current state s ∈ S
Data: target address t, starting size n, attempts x and factor q
begin

while true do
for i←− 0; i < x; i←− i+ 1 do

C ←− selectRandomSubset(A,n)
if IsEvictionSet(C, t) then

return C
end

end
n←− dn× qe

end
end

Algorithm 2: FindEvictionSet

The objective is to minimize both, the average eviction set size and the time complexity of
the algorithm by identifying optimal parameters for n, x, and q. To that end, we begin by
describing the probability that a set of addresses is an eviction set for some address t. We
assume that addresses are distributed uniformly across cache sets, i.e., the probability of an
address to map to a particular set is p = 1−β. The random variable of X addresses mapping
to the same set as t can be modelled as a binomial distribution X ∼ B(n, p) [VKM18].

The probability of finding k addresses mapping to the same set as t can be approximated
as

P (X = k) ≈ λke−λ

k!
with λ = np.

A valid eviction set for address t is formed if at least α addresses map to the same cache
set:

P (X ≥ α) = 1− P (X < α)

≈ 1− e−λ
α−1∑
k=0

λk

k!

We define a cost function Cα,β(n, q) to find the probability-weighted cost of running the
algorithm with the given parameters. To simplify the calculations, the number of attempts x
is fixed as 1. We note that a factor adjusted for the number of attempts can be approximated
as q′ = qx. We define the cost of testing an eviction set as n and the cost of minimizing an
eviction set as n2 which is the worst case scenario (cf. section 4.2.1).

Cα,β(n, q) = n+ (P (is eviction set) · n2 + P (is not eviction set) · Cα,β(dn · qe, q))

= n+ ((1− p) · n2 + p · Cα,β(dn · qe, q)) with p = e−λ
α−1∑
k=0

λk

k!
, λ =

n

β

We can find the optimal parameters for a given cache configuration by solving for

(n∗, q∗) = argmin
(n,q)

Cα,β(n, q).
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To account for multiple possible cache configurations 1, 2, . . . ,m, the cost can be minimized
for the average case by solving for

(n∗, q∗) = argmin
(n,q)

(
Cα1,β1

(n, q)

min Cα1,β1
(n, q)

+
Cα2,β2

(n, q)

min Cα2,β2
(n, q)

+ . . .+
Cαm,βm

(n, q)

min Cαm,βm
(n, q)

).

Reducing

The process of reducing an eviction set entails the removal of addresses from the set without
rendering it invalid. There are two reasons for why an address can be removed:

1. The address maps to a different cache set than t. Therefore, removal has no impact.

2. Without the address there are still at least α addresses that map to the same cache set
as t.

Two approaches are considered for reducing eviction sets. The first approach, as described
by Liu et al., involves removing an address from the set and verifying whether it still
constitutes an eviction set. In the negative case, the address is added back and marked as
critical to the set. This process is repeated until the target size n is reached. An empty set is
returned if the reduction failed. The time complexity is bounded by O(

∣∣EI(t)

∣∣2) [Liu+15].
The second approach, introduced by Vila, Köpf, and Morales, uses group testing to find

a solution in linear time. In each iteration, the eviction set is split into n + 1 equal-sized
subsets, designated as P1, . . . , Pn+1. Since n is given as the target size, there must be
at least one subset which can be subtracted from the eviction set without invalidating it:
∃P : (EI(t)\P ) ∈ EI(t). In the event that such a subset cannot be identified, the reduction
process is deemed unsuccessful. Algorithm 3 implements this approach with a time complexity
of O(

∣∣EI(t)

∣∣) [VKM18].

Environment: Memory M = 〈A,L, S, s0, δ〉 and current state s ∈ S
Data: Eviction set EI(t), target address t and target size n

begin
if
∣∣EI(t)

∣∣ = n then
return EI(t)

end
P1, . . . , Pn+1 ←− split(EI(t), n+ 1)

forall P1, . . . , Pn+1 do
if IsEvictionSet(EI(t)\Px, t) then

return ReduceEvictionSetFast(EI(t)\Px, t, n)

end
end
return ∅

end
Algorithm 3: ReduceEvictionSetFast

Minimizing

We introduce the notion of eviction set minimization which is the reduction to the smallest
possible size, i.e., the associativity α, without knowledge of that size. Hence, through finding
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and minimizing an eviction set, the cache associativity can be reverse-engineered.
The quadratic reduction can be adjusted slightly to perform minimization. The time

complexity remains to be O(
∣∣EI(t)

∣∣2).
The linear-time reduction algorithm 3 can be transformed into the minimization algorithm

algorithm 4 by performing a binary search on the target size n. The binary search is constrained
by a lower bound of 1 and an upper bound of αmax which is an educated guess. Consequently,
the overall time complexity is O(

∣∣EI(t)

∣∣ logαmax). The resulting minimal eviction set is, by
definition, a congruent eviction set.

Environment: Memory M = 〈A,L, S, s0, δ〉 and current state s ∈ S
Data: Eviction set EI(t), target address t and upper bound αmax
begin

EI(t) ←− ReduceEvictionSetFast(EI(t), t, αmax)

l←− 1
r ←− αmax
while l < r do

m←− l + b(r − l)/2c
C ←− ReduceEvictionSetFast(EI(t), t,m)

if C = ∅ then
l←− m+ 1

end
else

r ←− m
EI(t) ←− C

end
end
return EI(t)

end
Algorithm 4: MinimizeEvictionSetFast

Locating

Finally, we introduce another algorithm used for locating the eviction set for some address
t from a collection of congruent eviction sets Ẽ0, Ẽ1, . . . , Ẽn−1 with n ≤ β. This routine
is employed for the purpose of mapping an address to its corresponding cache set, thereby
enabling the index function to be learned.

The naïve implementation for locating the eviction set is by iterating through all sets and
returning the one that matches. Assuming an eviction set size of α, the time complexity is
bounded by O(αβ). We also introduce algorithm 5, based on group-testing, which has the
same time complexity but is more robust since the resulting eviction set is tested more than
once on average.

Strategy Initialization

The introduced algorithms are employed in the initial bootstrapping. Based on this bootstrap-
ping, inferring the placement and replacement policies is possible, as described in subsequent
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Environment: Memory M = 〈A,L, S, s0, δ〉 and current state s ∈ S
Data: Collection of congruent eviction sets Ẽ0, Ẽ[1], . . . , Ẽn−1 and target address t

begin
l←− 0
r ←− n− 1
while l ≤ r do

m←− l + b(r − l)/2c
if IsEvictionSet

(⋃m
i=l Ẽi

)
then

r ←− m
end
else

l←− m+ 1
end

end
return l

end
Algorithm 5: LocateEvictionSetGT

sections.
The initialization begins with the generation of a random address t ∈ A which is used to

find the first eviction set EI(t). This set is then minimized using one of the minimization
algorithms. The minimal eviction set, stored as Ẽ[0], has a size of α which implies the
associativity of the cache. Associativity α is typically known, allowing one the use of a
reduction algorithm instead, which is faster. The minimal eviction set Ẽ0 is then enriched by
adding t.

Next, further random addresses are generated repeatedly and the corresponding eviction
set is located. If an eviction set can be located, it is enriched by the random address. If such
an eviction set cannot be located, a new eviction set is found for this address. Instead of
minimizing, the eviction set is reduced using the determined α as the desired size, which has
a better time complexity. The reduced eviction set is stored as Ẽ[i].

The iteration stops when the process no longer fails to locate eviction sets which happens
once an eviction set has been derived per physical cache set, i.e., when β congruent eviction
sets are present. The termination can be based on a pre-supplied value for β, or probabilistic.
A simple probabilistic method is to use an educated guess βguess to calculate the number of
acceptable successful eviction set localization x with 95% confidence by solving (1−β−1

guess)
x ≤

0.05. It is also possible to dynamically estimate βguess during the initialization on the basis
of the preceding hit/miss rate.

After bootstrapping, the congruent eviction sets E0, E1, . . . , Eβ−1 are in an arbitrary order,
i.e., E0 may map to a physical cache set other than 0. In theory this would not matter
since the reverse-engineered index function would differ from the actual index function as
implemented in hardware only by some permutation vector. However, knowledge of the
physical cache set would simplify reverse-engineering and result in a more compact index
function.

We have not found a satisfactory solution to reordering the eviction sets in such a way
that the ordering approximates the corresponding physical cache sets. For now, we order the
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eviction sets by what we would expect the physical cache set to be given a textbook index
function.

4.2.2. CISW Eviction Strategy

The ARM instruction set includes instructions for the maintenance of both, instruction and
data caches. Of particular note are three instructions that enable the data cache maintenance
on a specific cache set and way:

• DC ISW: Data cache invalidate by set/way

• DC CSW: Data cache clean by set/way

• DC CISW: Data cache clean and invalidate by set/way

All three instructions take a 32-bit operand which encodes cache set, way and level to be
cleaned and/or invalidated [Arm24b]. A strategy based on the DC CISW ARM instruction is
devised to evict a particular cache set by iterating over all cache ways for this set and calling
the instruction.

4.3. Reverse-engineering the placement policy
By employing an initialized eviction strategy, it is possible to map addresses to cache sets
and thereby ascertain the index function.

There are numerous ways to construct an index function from the mapping. We anticipate
that most complex index functions are based solely on XOR- and NOT-gates. This includes
the A64FX L2 index function (cf. fig. 2.6). Our expectation can be explained as follows:

Firstly, for a uniformly distributed input these two gates produce uniformly distributed
outputs whereas AND- and OR-gates produce one output over the other in three of four
cases. This could lead to unbalanced mappings to cache sets.

Secondly, the placement policy must ensure that no two distinct cache lines mapped to the
same cache set have the same tag value. A proper tag value derivation is challenging for an
index function employing AND- and OR-gates. The straightforward approach would be to
use all non-offset bits as a tag value which occupies costly chip space.

Lastly, prior work on LLC slice functions (cf. section 3.1) has shown that Intel uses XOR-
based hash functions. Since these are closely related to index functions we expect similar
design choices.

In the event that automated recovery of the index function is unsuccessful, it would be
possible to export the mappings as a document and require a human to identify a pattern.

4.3.1. Affine transformation modeling

An index function based exclusively on XOR- and NOT-gates can be described as an affine
transformation ~y = A~x + ~t with coefficients in galois field GF(2). GF(2) encompasses the
ring of integers modulo 2, i.e., B = Z/2Z = {0, 1}, with addition being the XORing and
multiplication the ANDing of the two operands. Henceforth, we denote this field as B.

The input address ~x ∈ Bd (e.g. with d = 64, assuming 64-bit address space) and the cache
set index ~y ∈ Blog2 β are bit-encoded. Each row in the (log2 β)× d matrix A describes which
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bits of the input address are XORed into the corresponding bit of the set index. The vertex
~t ∈ Blog2 β contains 1s for the set index bits to negate.

Figure 4.2 shows the transformation matrix A corresponding to the index function of the
L2 cache on the A64FX. The translation vector ~t is the null vector. Characteristically, the
transformation matrix typically contains diagonals of ones. These correspond to contiguous
bits in the input address which are XORed into the index bits. A textbook index function
would contain just the right diagonal, as marked in the matrix, which corresponds to a simple
modulo on the input address without the offset bits (cf. section 2.3.5). Note also how the
lower eight bits of the address, i.e., the offset bits, do not influence the result. The A64FX
modifies the textbook index function slightly in that it XORes a few higher triplets of bits of
the physical address onto the three highest bits of the set index.
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Figure 4.2.: Transformation matrix A that corresponds to the index function used in the L2
cache of the Fujitsu A64FX for mapping physical addresses to cache sets.

4.3.2. Affine transformation recovery

Given a mapping of input addresses ~x (1), ~x (2), . . . to cache set indices ~y (1), ~y (2), . . ., the
objective is to recover the transformation matrix A and the translation vector ~t. We adopt
the solution by Tymchyshyn and Khlevniuk [TK19] for finding an affine transformation that
maps vertices of simplex ~x (1), ~x (2), . . . , ~x (d+1) into vertices ~y (1), ~y (2), . . . , ~y (d+1). The authors
show that, given the aforementioned vertices and an input vertex ~x, the mapped vertex ~y is
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calculated as

~y = (−1)

det
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.

Since division is undefined in B, we rewrite the formula using the multiplicative inverse such
that

~y = (−1) det
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.

We note that the multiplicative inverse is not defined in the case that the determinant is
equal to 0. This would correspond to division by zero in the authors’ formula. In the other
case of a determinant of 1, the inverse is the element itself. Consequently, the last factor can
be dropped if we can show that the determinant of the latter matrix is non-zero. Tymchyshyn
and Khlevniuk show that this conditions holds given that the vertices ~x (1), ~x (2), . . . , ~x (d+1)

indeed form a simplex, i.e., are affinely independent, as stated previously.
We further note that negation has no effect in B ((−1) = 1). Hence, we can also drop the

factor at the front giving us the formula

~y = det
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︸ ︷︷ ︸

= D

.

We can rewrite the formula into form ~y = M~x by first performing Laplace expansion along
the first column of the matrix. We use Si,j(D) to denote the submatrix of D with row i and
column j deleted. Note that we can neglect the Laplace cofactor (again, since negation has
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no effect). Thus,

~y =

(
d∑

i=1
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or, written as a matrix-vector multiplication,
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= (detS2,1(D), detS3,1(D), · · · , detSd+1,1(D),detSd+2,1(D), )︸ ︷︷ ︸
= M

·


x1
x2
...
xd
1


Similarly, we perform Laplace expansion along the first row for each of the submatrices.

detSi+1,1(D) =
d+1∑
j=1

~y (j) detS1,j(Si+1,1(D))

=
d+1∑
j=1

~y (j) detSi,j(D′) with D′ = S1,1(D)
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We can, thus, calculate component mi,j of matrix M as

mi,j = (detSj+1,1(D))(i)

= (
d+1∑
k=1

~y (k) detSj,k(D′))(i) with D′ = S1,1(D)

=

d+1∑
k=1

y
(k)
i detSj,k(D′)

This gives us the affine transformation in the form ~y = M(x1, x2, . . . , xd, 1)
T . We can treat

M as an augmented matrix M =
(
A |~t

)
to obtain the affine transformation in canonical

form ~y = A~x + ~t. An example implementation of the affine transformation recovery using
Python and NumPy2 is provided in appendix A.1.

4.3.3. Affine recovery optimizations

We have shown how A and t can be recovered using addresses ~x (1), ~x (2), . . . , ~x (d+1) and
their corresponding set indices ~y (1), ~y (2), . . . , ~y (d+1). We emphasize that our approach relies
on the expensive task of frequently calculating determinants of the D′ matrix which scales
quadratically with d. Hence, the objective is to keep d as low as possible.

This can be achieved by stripping the offset bits from all calculations since they are
expected not to influence the set index. Hence, for the purpose of the recovery process, ~x
only contains the non-offset bits of the address. After the transformation matrix is recovered,
it is expanded horizontally to the right by zeroes.

4.3.4. Iterative affine recovery

For correct recovery, the (stripped) addresses ~x (1), ~x (2), . . . , ~x (d+1) must form a d-simplex,
i.e., they must be affinely independent. A set of vectors

{
~v (1), ~v (2), . . . , ~v (n)

}
is affinely

independent if the set
{
~v (2) − ~v (1), ~v (3) − ~v (1) . . . , ~v (n) − ~v (1)

}
is linearly independent. In

the following we call a set of vectors affinely independent with respect to if the set is affinely
independent given a selection matrix is applied to each element.

In the optimal approach, affinely independent addresses would be generated systematically,
e.g., by flipping every bit once. However, this approach would have to take the complexity of
the set of accessible addresses A into account which is not guaranteed to be fully contiguous.
We use a simpler approach based on sourcing random addresses.

We also note that, unlike 32-bit systems, 64-bit systems do not suffer from a small address
space. On the contrary, it is challenging to have the accessible address space cover each
address bit in both states at least once (which is required for affine independence). This is
doubly true in the case of physical address space where the accessible address space is limited
to how much memory the system is equipped with. To cover a 64-bit physical address space,
an impracticable amount of 18 exabytes of memory would be required. We approach this
problem by iteratively increasing the number of bits we consider for the recovery process,
starting from the least-significant (non-offset) address bit.

2https://numpy.org/
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To get started, we find two addresses which differ in their least-significant (non-offset) bit.
This ensures that they are affinely independent with respect to this bit. These addresses
form set X where |X| = 2. Iteratively, the next generated address ~x∗ for which {~x∗} ∪X is
affinely independent with respect to the lower (non-offset) |X| bits. This step is repeated
until either all (non-offset) bits are covered (|X| = d+ 1) or a threshold is reached where no
new address can be found which extends the set. The vertices from X containing just the
least-significant (non-offset) |X| − 1 bits are then passed to the recovery process. Similarly
to handling the offset bits, the transformation matrix is expanded with zeroes on the left to
account for the non-recoverable most-significant bits.

Checking that X is affinely independent with respect to the low bits after each iteration
ensures that the recovery can be performed at any time when the loop stops. This is not
true if X was checked generally for affine independence because when iteration stops and the
uncovered high bits are dropped, the stripped vectors might no longer be. Vice-versa, if X is
checked for affine independence with respect to the lower n bits then there can still be some
address ~x∗ such that {~x∗} ∪X is affinely independent with respect to the lower n+ 1 bits.

This intuition can be explained geometrically. Dropping bits from ~x can be visualized as
projection into a lower dimension. If some addresses are affinely independent, they form a
simplex. Through projection, a simplex parallel to the dropped axis is no longer a simplex in
the lower dimension.

A confidence score for the recovered transformation is calculated as the quotient of recorded
mappings matching the index function.

4.4. Reverse-engineering the replacement policy

The address-to-cache-set mapping also allows learning the replacement policy used for a
particular cache set. To this end, a set of addresses which map to the same cache set (i.e., a
congruent eviction set Ẽ) is generated. When accessing an address from the set, one can
observe how it affects which cache layer responds when accessing another address.

We adopt the elimination-based approach by Abel and Reineke [AR20] which starts off with
a pre-defined set of replacement policies and performs a test for observational equivalence
between each policy and the system. The test is implemented by performing random accesses
and comparing the behavior. The primitive for comparing two replacement policies is that of
a sequence.

We define a sequence ω as an l-tuple of integers 〈i0, i1, . . . , il−1〉 with 0 ≤ i0, i1, . . . , il−1 <
b ≤ |Ẽ|, i ∈ N0. The integers of ω represent indices into congruent eviction set Ẽ for the
cache set for which the replacement policy should be reversed.

The hit count c ∈ N0 for sequence ω is measured by accessing the addresses in-order and
registering all cache hits with exception to the first access to an address. The exception is
necessary to obtain the same count no matter whether the address was already cached or
not. An implementation is available as algorithm 6.

Similarly, algorithm 7 simulates the behavior of a pre-defined policy Π on the given sequence.
The algorithm keeps an associative array C mapping ways to indices i, and another associative
array D mapping indices i to ways. The associative array C is used to simulate a cache set
in that it keeps track of which way holds which index. Array D allows for performing a
constant-time invertible lookup. A hit is registered if the next i from the sequence can be
found in the cache set, i.e., i = C[D[i]]. In the case of a miss, δH is called to obtain the way
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Environment: Memory M = 〈A,L, S, s0, δ〉 and current state s ∈ S
Data: Sequence ω and congruent eviction set Ẽ
begin

I ←− ∅
c←− 0
forall i ∈ ω do

a←− Ẽ[i]
s, l←− δ(s)
if i /∈ I ∧ l = min(L) then

c←− c+ 1
end
I ←− I ∪ {i}

end
return c

end
Algorithm 6: MeasureSequence

Environment: Replacement policy Π = 〈W,R, r0, δH , δM 〉 and current state r ∈ R
Data: Sequence ω
begin

I ←− ∅
C ←− {[w]⇒ �, ∀w ∈W}
D ←− {i⇒ �, ∀i}
c←− 0
forall i ∈ ω do

w ←− D[i]
if C[w] = i then

r ←− δH(r, w)
if i /∈ I then

c←− c+ 1
end

else
r, w ←− δM (r)
D[i]←− w
C[w]←− i

end
I ←− I ∪ {i}

end
return c

end
Algorithm 7: SimulateSequence

35



4. Methods

to evict and store i in.
The elimination-based approach begins with a set of pre-defined replacement policies and

then generates sequences repeatedly. All replacement policies with a different hit count than
the one measured on the system for that sequence are eliminated. This procedure is repeated
until either one replacement policy remains or none. We note that there can be no absolute
certainty regarding the replacement policy actually employed by the system unless all possible
states and transitions are tested. An exemplary execution trace is shown in table 4.3.

Sequence Measured LRU PLRU FIFO SRRIP

14, 19, 14, 11, 4, 4, 19, 10, 19, 3, 9, 14,
1, 3, 14, 12, 8, 12, 12, 11, 6, 0, 15, 13,
18, 7, 7, 1, 13, 1

11 11 11 11 10

5, 7, 19, 18, 1, 9, 17, 19, 17, 12, 7, 7, 4,
18, 12, 15, 6, 11, 15, 6, 15, 5, 2, 8, 12,
15, 4, 18, 18, 5

7 7 7 7 -

4, 6, 15, 18, 4, 0, 19, 10, 1, 14, 1, 7, 12,
12, 8, 6, 13, 17, 13, 17, 11, 2, 14, 8, 12,
13, 5, 9, 12, 17

6 6 6 6 -

14, 16, 9, 11, 1, 4, 9, 19, 13, 3, 0, 7, 3,
0, 11, 11, 11, 6, 2, 11, 5, 9, 6, 14, 3, 13,
17, 0, 8, 13

7 7 8 8 -

Table 4.3.: Exemplary execution trace of using the elimination-based approach to infer the
replacement policy. The LRU policy remains as the only candidate.

4.5. Cache hierarchy considerations

Thus far, we covered algorithms operating on the L1 cache in that algorithmic decisions
are based on comparing the responding cache level l with min(L). Hence, working with a
reduced set of two cache level symbols L′ = {min(L), Rest} would not change the execution.
We can employ the same algorithms to reverse-engineer higher cache levels by adapting the
underlying memory M to bypass the L1 cache. We call such adapter a bypass adapter.

The adapted accessor function δL2 which wraps δ is the key aspect of a bypass adapter.
Using δL2, an access is performed as if the L1 cache did not exist and the L2 cache was the
one closest to the CPU. Naturally, the adapter provides a modified set of cache level symbols
that excludes L1, i.e., LL2 = L\ {min(L)} .

Bypass adapters are designed to be stackable. Given a memory that was adapted for
the L2 cache, it should be possible to adapt it again to bypass the L1 cache as well as
the L2 cache. In that case, δL3 wraps δL2 and the set of cache level symbols is given as
LL3 = LL2\ {min(LL2)} . Without loss of generality, we only describe the first application of
a bypass adapter.

The actual implementation depends on the features supported by the underlying platform.
On ARMv8 systems we use a loop of DC ISW instructions before and after every access to
invalidate all ways of the L1 cache set that the access would fall in. This forces a miss on the
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L1 cache.
On x86 systems we prepare an eviction set per available L1 cache set. For any access we

check which cache level responded. In the case of a response from the L1 cache, we access all
addresses from the particular eviction set and perform another access to produce a hit in L2.
Otherwise, we remain with just the first access as a bypass is implied by the L1 cache not
responding.

Note that in both cases the index function for the L1 cache needs to be known to identify
the proper cache set. Hence, higher-level caches can only be reverse-engineered after the
index functions for all lower-level caches are found.
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In this chapter we describe how the models and algorithms are implemented in CacheHound.

5.1. Low-level considerations

We target the Linux operating system as it is the defacto standard in the area of high-
performance computing. An alternative would be to have CacheHound run bare-metal
without any operating system, similar to MemTest861. However, this would be not as easy to
use, and would require extensive source code to support the various hardware components.

5.1.1. Accessor function

A central component of the model of abstract memory is the accessor function δ. At its core,
this function performs a memory access, specifically a load in our implementation. However,
modern multiprocessors employ various techniques such as out-of-order execution which can
distort the results. To address this issue, we utilize platform-specific serializing instructions
which ensure that memory accesses occur in program order. These are CPUID/LFENCE under
x86 and ISB SY under ARM.

Additionally, the accessor function yields the cache level that responded to the loading
memory access. One potential solution to obtain this cache level is to define latency ranges
for each level, measure the latency of that memory access and return the corresponding cache
level. However, there are various side effects which could distort such measurement. One
common occurrence is an interrupt from the CPU timer, used for process preemption, or
other hardware, such as a network interface card. Additionally, the latency is susceptible
to fluctuations depending on the workload on the bus and the TLB state in the case of
virtually-indexed caches.

An alternative approach is the utilization of hardware performance counters. These are
specialized registers integrated within the CPU that collect and store various metrics related
to system performance. Each performance counter register can be configured to track a
particular event, such as those for CPU cache hits or misses. By reading the counter before
and after a memory access, it is possible to distinguish a hit from a miss.

The typical approach to using performance counters is through an interface such as perf2,
PAPI3, or Likwid4 under Linux. These interfaces incur an overhead caused by a routine
when reading a performance counter which is acceptable when many events are measured
over a longer time period. However, in our case, an overhead which modifies the memory
state is not acceptable as it distorts the measurements.

1https://www.memtest86.com/
2https://perf.wiki.kernel.org/index.php/Main_Page
3https://linux.die.net/man/3/papi
4https://hpc.fau.de/research/tools/likwid/
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Consequently, in the implementation, we directly use the instruction to interact with the
performance counters. These are RDPMC under x86 and MRS with the PMEVCNTR#_EL0 registers
under ARMv8.

5.1.2. Noise-free environment

The presented methodology assumes the abstract memory M to be deterministic and pre-
dictable and one state cannot decay into another (cf. section 4.1.1). This implies a noise-free
environment where any change on the cache state is controlled by CacheHound. In a multi-
threaded, preemptive operating system, it is unavoidable to have noise since at any time the
process can be preempted and execution switches into kernel space and/or another process.

Linux can be booted with the isolcpus flag which allows the isolation of one or multiple
CPU cores from the scheduler [Kro07]. This enables a process which is explicitly bound to
an isolated CPU core to run as the sole process on that core. However, this is not sufficient
since it does not disable periodic timer interrupts, or ticks, as called in Linux. It is necessary
to develop a method for disabling interrupts on a CPU core and granting 100% CPU time to
the CacheHound process.

The Linux kernel can be compiled in “full tickless mode” using the CONFIG_NO_HZ_FULL
option. However, in addition of affecting the ease of use, as outlined in [Jon13], this mode
is a misnomer as it merely reduces the frequency of ticks to one per second, without fully
eliminating them. A new task isolation feature in Linux, as described by [Mar20], appears
promising. However, at the time of writing, this feature has not yet been merged into the
kernel source code.

In order to achieve the desired level of isolation, the design of CacheHound encompasses
two processes: The director process runs the algorithms and manages data structures such as
for storing eviction sets, and the agent process performs the actual memory accesses on a
dedicated core. This agent process is implemented as a kernel thread and, through kernel
functions, can disable any interrupts. Both processes communicate through a core-to-core
channel. That is to say, the director process communicates the address to be accessed to the
agent process and the agent process responds with the cache level that answered. The setup
is sketched in fig. 5.1.

Core #0 Core #1

RAM RAM

Cache(s) Cache(s)

CPU CPU

Director process Agent kernel process
Address

Cache level

Channel

Instrumented
accesses

Figure 5.1.: Split architecture, comprising a director and an agent process running on different
cores, used to minimize interference.
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The advantage of this split approach is that the director process can be arbitrarily complex,
as its implicit memory accesses on the executing core do not distort the cache state on the core
running the agent process. This is in contrast to implementations such as the one described
in [VKM18], where data must be managed carefully in linked lists and 10–50 measurements
are needed to reduce the interference of context switches.

5.2. Project overview
We use C++ as programming language for the implementation of the director process and
GNU C with inline assembly for the implementation of the agent process. The source code is
available at5:

https://github.com/shilch/CacheHound

The project is separated into four parts:

• /lib contains the CacheHound library (cachehound namespace) featuring the imple-
mentation of our model and all algorithms described in the previous chapter,

• /sim contains a CPU cache simulator (cachehound::sim namespace) which can be
used to test new developments against,

• /kernel contains the kernel module which implements the agent process, and

• /cli contains a command-line tool (cachehound::cli namespace) to work with the
three other parts from the shell.

We describe the implementation of the four parts in the order they are listed.

5.3. Library
The CacheHound C++20 template library implements the our model and algorithms and
is meant to be useable standalone in third-party software. Only a fraction of the code
is non-templated and can be used header-only by setting the CACHEHOUND_HEADER_ONLY
macro (which is set by default).

5.3.1. Concepts and interfaces
The model of abstract memory introduced in section 4.1.1 is expressed in terms of an interface
such that the underlying implementation can be exchanged without requiring adaption of
algorithms. This static polymorphism can be achieved by using concepts in C++. The
concepts are described in the concepts directory.

The memory concept, defined in listing 5.1, is implemented in two stages: The memory
concept defines address space A and provides an accessor function which does not return the
cache level. The instrumented_memory concept which builds on top of the memory concept
provides a member function instrumented_access(uintptr_t) -> unsigned that returns
the cache level, i.e., this is the accessor function δ as specified in the model of abstract

5Archived version available at https://zenodo.org/doi/10.5281/zenodo.13828840
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memory. Hence, the instrumented_memory is the primary concept that algorithms operate
on.

The rational for this distinction is future extensibility. For instance, the design also includes
a timed_memory with a timed_access(uintptr_t) -> uint64_t member function which
returns the latency instead of the cache level. Using an appropriate memory adapter, or
wrapper, it would be possible to construct instrumented_memory from timed_memory, as
described in section 5.1.1.

Note that access(uintptr_t) and instrumented_access(uintptr_t) are expected to
behave the same with the only difference of the latter returning a value. If the return value
is not required, one should resort to former as the memory implementation might be able to
perform certain optimizations. Details are discussed in section 5.5.2.

template<typename M>
concept memory = requires(M memory, uintptr_t address) {

{ memory.access(address) };
{ memory.regions() } -> memory_region_range;
{ memory.offset_bits() } -> same_as<uint8_t>;

};

template<typename M>
concept instrumented_memory = memory<M>

and requires(M memory, uintptr_t address, unsigned level) {
{ memory.instrumented_access(address) } -> same_as<unsigned>;
{ memory.levels() } -> same_as<unsigned>;
{ memory.index_bits(level) } -> same_as<uint8_t>;
{ memory.ways(level) } -> same_as<size_t>;

};

Listing 5.1: Model of abstract memory defined as C++ concepts (simplified).

The member function regions() returns a list of memory_region. A memory_region is a
chunk of contiguously allocated memory that can be accessed through the object implementing
the memory concept. As shown in listing 5.2, it features functions to obtain the (virtual) base
address and a size. There further exists an extended_memory_region which additionally
supports reading the physical base address.

Concepts for placement and replacement policies are also available as shown in listing 5.3.
The placement policy is a functor modeling the index function, taking the address and
returning the corresponding set index. The replacement policy notably features the member
functions hit(size_t way) and miss() -> size_t which model the hit (δH) and the
miss (δM ) functions.

Lastly, the library encompasses the concept of an eviction strategy in listing 5.4 (cf. sec-
tion 4.2). The eviction_strategy implements the logic of evicting cache sets and features
a maps_to member function that returns true if the specified address maps to any of the
cache sets given by a range.

These are the core concepts used by CacheHound. Our library defines further concepts,
mainly to distinguish various features on the memory as supported by different architec-
tures (e.g., armv8_memory).
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template<typename R>
concept memory_region = requires(R region) {

{ region.base() } -> same_as<uintptr_t>;
{ region.size() } -> same_as<size_t>;

};

template<typename R>
concept extended_memory_region = memory_region<R> and requires(R region) {

{ region.physical_base() } -> same_as<uintptr_t>;
};

Listing 5.2: Memory region defined as C++ concepts (simplified).

template<typename P>
concept placement_policy = requires(P policy, uintptr_t address) {

{ policy.index_bits() } -> same_as<uint8_t>;
{ policy(address) } -> same_as<size_t>;

};

template<typename P>
concept replacement_policy = requires(P policy, size_t way) {

{ policy.ways() } -> same_as<size_t>;
{ policy.hit(way) } -> same_as<void>;
{ policy.miss() } -> same_as<size_t>;

};

Listing 5.3: Placement and Replacement policies defined as C++ concepts (simplified).

5.3.2. Backends and Adapters

Backends (backends directory) and adapters (adapters directory) both implement the
memory concept. The difference is that backends implement the core memory functions while
adapters add layers on top by transforming, or wrapping, existing memory objects.

The only backend provided by the library is that of kernel_memory which is the userland
interface to the CacheHound kernel module. Details are discussed in section 5.5.

There are three adapters provided by the library:

• physical_adapter which wraps memory to translate physical to virtual addresses,

• bypass_adapter which wraps memory to create a bypass to the second cache layer (i.e.,
L2 on the first application, L3 on the second), and

• armv8_bypass_adapter which wraps armv8_memory to achieve the same but using
instructions specific to the ARMv8 instruction set.

The physical_adapter requires regions which implement the extended_memory_region
concept to build a red-black tree mapping physical to virtual base addresses. For any physical
address to be translated, it performs a binary search on the tree to find the corresponding
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template<typename S>
concept eviction_strategy =

requires(S strategy, uintptr_t address, /* range type */ set_range) {
{ strategy.memory() } -> memory;
{ strategy.maps_to(address, set_range) } -> same_as<bool>;

};

Listing 5.4: Eviction strategy defined as a C++ concept (simplified).

mapping to virtual address space. Hence, the access complexity of the underlying memory is
multiplied by log(n) where n is the number of memory regions. This is more optimal than
the naïve solution of iterating over all pages to find the containing page in order to translate
a virtual address.

Figure 5.2 shows an exemplary setup of a physical_adapter wrapping a kernel_memory
by translating addresses from physical to virtual, where necessary, and remapping the base()
function on regions to their physical counterpart.

physical_adapter kernel_memory (x86)

Regions Regions

access() access()

instrumented_access() instrumented_access()

clflush() clflush()

wbinvd() wbinvd()

...
...

Algorithms

base() -> physical_base()

Translate

Translate

Translate
Passthrough

Figure 5.2.: Example case of a physical_adapter wrapping an instance of kernel_memory
by translating between the physical and virtual address spaces.

The bypass_adapter and the specialized armv8_bypass_adapter form another class of
adapters used to create a bypass to the second cache layer. Typically, the algorithms are
designed to operate on the first cache layer. A bypass adapter can be used to reuse these
algorithms for other layers of the cache hierarchy. The approach used in the implementation
is described in section 4.5.

5.3.3. Eviction Strategies

The library provides implementations for both eviction strategies (cf. section 4.2) in the
strategies directory:

• The eviction_set_strategy uses eviction sets in order to evict a cache set, while

• The cisw_eviction_strategy uses a CISW-instruction loop to achieve the same under
the ARMv8 instruction set.
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Note that the eviction_set_strategy only performs the eviction using pre-established
eviction sets. It is the callers responsibility to initialize those and pass them in the strategy’s
constructor. It also requires an is_eviction_set functor which is passed to the eviction set
algorithms. The memory provided through the eviction_set_strategy is stripped from the
addresses used in the eviction sets.

5.3.4. Eviction Set Algorithms
The algorithms for finding, testing, reducing, minimizing and locating eviction sets (cf. sec-
tion 4.2.1) are implemented in the algo directory. All algorithms take an is_eviction_set
functor which implements the eviction set testing logic. The purpose of this design is to allow
full customization by the caller to account for the various methods for testing including cache
pollution, memory resetting and multiple measurements (cf. section 4.2.1).

Two building blocks are provided: The unsafe unchecked_is_eviction_set() -> bool
and the safe checked_is_eviction_set() -> optional<bool> implement the core testing
logic of accessing the target address first, then accessing all addresses from the eviction set,
and lastly assessing whether the target address was evicted. The difference is that the checked
function performs instrumented accesses to ensure that all accesses produce a cache miss.
This is useful to monitor whether cache pollution needs to be repeated.

5.3.5. Pre-defined placement and replacement policies
The CacheHound library ships with a set of pre-defined cache policies in the policies
directory. The following placement policies are available:

• modular_placement_policy which implements the textbook index function,

• affine_placement_policy which implements an index function based on an affine
transformation on binary vector space (cf. section 4.3), and

• generic_placement_policy which wraps an arbitrary C++ lambda as the index
function.

The affine_placement_policy further features a string conversion function to return a
C-like form of the index function. This is used to print a reversed affine transformation in a
human-friendly output format.

The following replacement policies are provided by the library:

• fifo_replacement_policy,

• lru_replacement_policy,

• plru_replacement_policy,

• lru_plru_replacement_policy which is a combination of LRU and PLRU which Intel
uses for a cache associativity of 12,

• mru_replacement_policy,

• srrip_replacement_policy which can be templated with the bit width and the hit
promotion policy, and

• qlru_replacement_policy.
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5.4. Cache Simulation Library

Additionally to the main library, we provide an extension featuring a simulated_memory
backend that implements a simulated cache hierarchy. As such, it is possible to test various
kinds of cache policies, cache parameters and cache hierarchies against our methodology on a
single development machine. The source code is part of the cachehound::sim namespace.

Appendix A.2 shows an example use of this simulation library.

5.5. Kernel module

For actual measurements, a physical backend is required. As explained in section 5.1.2, the
presented approach necessitates a noise-free environment which is implemented using a Linux
kernel module. In this section, we given an overview of the userland interface of this module
(which is used by the kernel_memory backend), the isolation, the communication channel
and the instrumentation.

5.5.1. Userland interface

Upon initialization of the kernel module, the character device /dev/cachehound is made
available. An interface to the kernel module can then be requested by a userland application
via the open(2) syscall. The resulting file descriptor implements the ioctl(2) and mmap(2)
syscalls.

A call to ioctl(2) with the CH_IOC_ALLOC_MEMORY code is used to allocate a new mem-
ory region in kernel space. This allocation request expects an argument pointer to a
struct ch_ioc_alloc_config (cf. listing 5.5) which allows specifying the amount of mem-
ory to be allocated. The size is expressed in terms of 2order pages. Using the same structure,
the virtual and physical address of the newly allocated region are returned. The order is lim-
ited by what the zoned buddy allocator in Linux accepts in a call to __alloc_pages() [Gor04],
which we found is usually in the single-digit Megabyte range.

struct ch_ioc_alloc_config {
/* in */ unsigned order;
/* out */ uintptr_t virtual_base;
/* out */ uintptr_t physical_base;

};

Listing 5.5: Configuration structure used for the allocation of memory regions in kernel space.

After the desired number of memory regions have been allocated, ioctl(2) with the
CH_IOC_START_AGENT code can be used to launch an agent as a kernel thread. This launch
request expects an argument pointer to a struct ch_ioc_start_config (cf. listing 5.6)
which allows specifying the target CPU core, and the isolation level. The following isolation
levels are possible:

• CH_ISOLATION_OFF: No isolation guarantee. The kernel thread might be interrupted
at any time.
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• CH_ISOLATION_NO_PREEMPT: Disables preemption (through preempt_disable()), i.e.,
no other thread will run on the selected CPU core for the duration of the agent.

• CH_ISOLATION_DISABLE_IRQ: Disables preemption and interrupt handling (through
local_irq_save(flags)).

struct ch_ioc_start_config {
/* in */ unsigned cpu;
/* in */ unsigned isolation_level;
/* out */ uintptr_t channels_base; /* Address of the channels

inside kernel address space */
/* out */ size_t active_channel;
/* out */ size_t channel_count; /* # of channels allocated in

the kernel */
};

Listing 5.6: Configuration structure used for launching the agent in kernel space.

Notably, via the same structure the index of the currently active core-to-core channel and
the total number of allocated channels is returned. A channel enables the low-overhead
communication between userspace and kernel thread, primarily for the transmission of
addresses to be accessed. We discuss details in section 5.5.2. Channels can be mounted into
userspace by a call to mmap(2) on the file descriptor.

5.5.2. Communication channel

Communication channels between userspace and kernelspace are implemented as 64 bytes of
aligned shared memory. The size is chosen such that it fits into at most one cache line that
is kept hot in the cache. Hence, noise created by the communication from and to userspace
is minimized.

The channel is laid out in eight 64-bit words, with the first word being the control word and
the remaining seven words the data words. One data word can carry one address, allowing
for up to seven addresses to be communicated per pass.

The control word can be in two states. If the least significant bit is set, the control word is
non-zero and it is the agent’s turn to read the addresses from the data words and perform
the accesses. The next three lower bits of the control word denote the number of data words
in use. If all three bits are zero, the agent terminates gracefully. If the control word is zero,
it is the director’s turn to read the data words which contain the performance counters for
the last address before and after access.

The kernel_memory in the library is implemented in such a way that a call to access()
buffers the addresses until the capacity of seven is reached and the buffer is flushed. Any perfor-
mance counter values in the channel are ignored. However, a call to instrumented_access()
always flushes the buffer afterwards to ensure that the specified address appears as the last
address in the channel and is, therefore, instrumented.

Agent and director wait for their turn by spinning on the control word. Successfully gaining
control of the channel follows acquire semantics. After all data words are written, the control
word is written at last using release semantics.
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The layout is extended to support architecture-specific instructions: On Intel x86 the next
available bit in the control word is used to execute the WBINVD instruction. Furthermore, on
each data word, the most significant bit of the address can be toggled to produce a CLFLUSH
of this address instead of a load.

On ARMv8, the DC CSW, DC ISW and DC CISW instructions can be executed by toggling
either or both of the two upper bits on a data word. The lower 32 bits of the data word are
passed as the first operand to the corresponding instruction.

Since the channel occupies one cache line, it competes with the algorithms on the corre-
sponding cache set. Hence, multiple channels are allocated and the active channel is rotated
periodically during runtime.

5.6. Command-line interface
The CacheHound command-line interface (cli) can be used to interact with CacheHound
from the shell. The tool is built hierarchically to fit our model with the main entrypoint
for reverse-engineering being the reverse subcommand. The reverse subcommand is
responsible for the provision of the memory backend including the application of any adapters
such as for for physical to virtual address translation and bypass.

Nested below the reverse subcommand are the placement and replacement subcom-
mands which operate on the memory as parameterized and provided by reverse. Both
subcommands take further options for specifying the algorithm behavior such as the eviction
strategy to use. All subcommands aim to make sensible default choices.

Note that all subcommands provide a -h flag to show the possible options and arguments.
The root command cli can be supplied with the -V or -VV to enable debug or trace output,
respectively. A usage example is shown in listing 5.7.

sudo insmod cachehound.ko # Load the CacheHound kernel module

sudo ./cli -VV \ # Enable trace output
reverse \

-L 2 \ # Provide bypass to the L2 cache
-m 1073741824 \ # Allocate 1GiB of memory
--kernel-cpu 3 \ # Launch the kernel agent thread

\ # on CPU core 3
--kernel-isolation disable-irq \ # Disable IRQs in agent thread
--pmu rpi5 \ # Performance counter configuration

placement \ # Reverse the placement policy
-S cisw # CISW Eviction Strategy

Listing 5.7: Example of using the CacheHound command-line interface to reverse the L2
cache placement policy on the Raspberry Pi 5 using the CISW Eviction Strategy.

5.6.1. Performance counter events

As discussed in section 5.1.1, the performance counter values are read before and after a
memory access. This implies that three counters need to be programmed to track L1, L2 and L3
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hits/misses. On Intel x86 they are are configured by writing to the IA32_PERFEVTSEL# MSR,
and AMD requires writing to the CH_PERF_LEGACY_CTL#6 MSR instead. On ARMv8 this
configuration is performed by first selecting the register using PMSELR_EL0 and then configuring
it by writing to PMXEVTYPER_EL0. The event codes used per system are listed in table 5.2.

CPU --pmu Monitored events

BCM2712 (Cortex A76) rpi5 L1D_CACHE_REFILL_RD
L2D_CACHE_REFILL_RD
L3D_CACHE_REFILL

Intel Xeon E5-2680 v2 intel MEM_LOAD_UOPS_RETIRED.L1_HIT
MEM_LOAD_UOPS_RETIRED.L2_HIT
MEM_LOAD_UOPS_RETIRED.LLC_HIT

AMD EPYC 7302 amd-zen2 l2_cache_accesses_from_dc_misses
l2_cache_req_stat.ls_rd_blk_l_hit_x
l3_comb_clstr_state.request_miss

Fujitsu A64FX a64fx L1D_CACHE_REFILL_DM
L2D_CACHE_REFILL_DM
L2D_SWAP_DM7

Table 5.2.: Performance counter events recorded before and after each instrumented memory
access to count hits or misses per cache level.

5.6.2. Educated guess

In section 4.2.1 we describe the initialization process of the eviction set strategy which gener-
ates random addresses in the aspiration of uncovering a new cache set. Our implementation
initially assumes a textbook index function to perform educated guesses on which address
will uncover a new cache set and only uses random addresses as a fallback.

Similarly, when finding an eviction set we start with addresses which would be aligned under
a textbook index function and only use random addresses with larger eviction set candidates.
The address generation logic is implemented in the family of *_address_distribution
classes.

5.6.3. Solving the affine equation

For the recovery of the affine transformation, described in section 4.3, a library for linear
algebra is required. Our implementation uses the Eigen C++ library8.

Eigen allows custom data types with custom operators to be defined for any type of
computation. Our bit class implements B with composition over bool and custom operator+
and operator-.

6Using the legacy interface allows for code reuse.
7Fujitsu published an errata document which states that event L2D_CACHE_REFILL_DM should be corrected

by subtracting event L2D_SWAP_DM [Fuj22].
8http://eigen.tuxfamily.org/
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The library also provides an optimized function for computing the determinant of a matrix.
However, as of version 3.4.90 this is only possible on matrices containing floating-point
types. To move around this limitation, we use the mpq_rational type from the Boost
multiprecision library which is a wrapper around mpq_t from the GMP library. This type
can store an arbitrary-length rational number. Due to the licensing of the GMP library, the
affine transformation solver is part of the command-line interface and not the main library.

The determinant of a bit matrix is computed by copying it into a mpq_rational matrix
on which the routine provided by Eigen is then called. A final value for the determinant
of type bit is calculated by taking the mpq_rational value modulo 2. This workaround
produces the correct result since the determinant can be defined as a series of additions and
multiplications, and ∀a, b ∈ Z : a[2] + b[2] = (a+ b)[2] and ∀a, b ∈ Z : a[2] ∗ b[2] = (a ∗ b)[2].
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In order to evaluate CacheHound, we run it against the targeted systems to reverse-engineer
both, the placement and the replacement policies. The benchmarking of the routines for
reverse-engineering the placement policy is conducted in two steps. Initially, the routines are
run using some initial parameterization, and we discuss the validity of the obtained results.
Subsequently, the impact of modifying the parameters on the runtime, number of memory
accesses and error rate is measured. Afterwards, the routines for reverse-engineering the
replacement policy are benchmarked. Finally, we interpret the results.

6.1. Setup

We examine the systems outlined in table 1.2. Additionally, we provide table 6.2 which lists
the operating systems and compilers used on the examined systems. The commit of the
source code used to perform the measurements is tagged as v0.1.0 in the repository.

CPU Operating System uname -r Compiler

BCM2712 Debian 12 6.6.28+rpt-rpi-2712 GCC 12.2.0
Intel Xeon E5-2680 v2 Ubuntu 22.04.4 LTS 5.15.0-107-generic GCC 12.3.0
AMD EPYC 7302 Ubuntu 22.04.4 LTS 5.15.0-119-generic GCC 11.4.0
Fujitsu A64FX CentOS Linux 8 (Core) 4.18.0-193.19.1.el8_2.aarch64 GCC 13.2.0

Table 6.2.: Overview of the operating system and compiler configuration on the examined
systems.

While CacheHound is implemented for x86_64- and ARMv8-based processors, some
system-specific configurations are necessary.

6.1.1. Prefetcher disablement

Modern processors observe the memory access pattern and try to predictively load data from
main memory into the cache(s) before it is explicitly referenced. This mechanism, called
prefetching, can lead to unexpected behavior and measurements. Nevertheless, many systems
allow disabling the prefetcher.

On the BCM2712 (Raspberry Pi 5), the prefetcher can be disabled by setting the PF_DIS
bit of the CPUECTLR_EL1 register. This register is write-accessible in EL1 and EL2 only if bit
ECTLRLEN of the ACTLR_EL3 register is set. Since this is not the system default, we patch the
Pi 5 bootloader to disable the prefetcher in EL3 on all cores before dropping into EL2 when
booting into the operating system. We attach the patch in appendix A.3.

The Intel system allows disablement of the “MLC Streamer”, “MLC Spatial”, “DCU
Streamer” and “DCU IP” prefetchers in the BIOS settings.
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This is similar in the case of the AMD system which allows disablement of the “L1 Stream
HW” and “L2 Stream HW” prefetchers.

Fujitsu provides a HPC extension for the A64FX which can be accessed in EL0, if enabled.
The prefetcher operates in the Stream detect mode by default. In this mode, prefetching can be
disabled by setting the bits L1PF_DIS and L2PF_DIS of the IMP_PF_STREAM_DETECT_CTRL_EL0
register.

6.1.2. Additional system configuration

On the systems supporting Simultaneous Multithreading (SMT), i.e., Intel and AMD in our
setup, we disable this feature to avoid noise from another thread competing for the L1 cache
resources. On Intel this feature is called Hyperthreading. Both systems allow disablement in
the BIOS settings.

On both x86 systems we further boot Linux without the NMI watchdog. The NMI watchdog
issues non-maskable interrupts (NMI) on the CPU core occupied by the agent kernel process,
thereby disrupting the execution of CacheHound and creating noise. Furthermore, when it
(spuriously) detects a lockup, it produces a kernel panic requiring a reboot of the system.

We disable the NMI watchdog by setting the sysctl property kernel.nmi_watchdog=0 in
the file /etc/sysctl.conf and booting Linux with the nmi_watchdog=0 argument.

6.2. Placement Policy

6.2.1. Initial parameterization

We run CacheHound against each of the systems using an initial set of parameters. For each
system we start with the cache closest to the CPU.

We choose the following initial parameters:

Allocated Memory 1GiB
Isolation Level no preempt
Eviction Strategy CISW on ARMv8, Eviction Sets otherwise
Cache Pollution Accesses 10000 (used for Eviction Set Strategy)
Repetitions for is_eviction_set 1 (used for Eviction Set Strategy)

For each run we keep track of the elapsed real time, as well as the number of (plain)
accesses, instrumented accesses and channel flushes. We also record the confidence value as
determined by CacheHound (cf. section 4.3.4).

BCM2712 (Raspberry Pi 5)

On the Raspberry Pi 5, we reverse-engineer the placement policies of the L1D and L2 caches
successfully. The results are shown in table 6.5. In both cases, a textbook index function is
identified which is plausible since this is a type of function one would expect to find. The
confidence is also reported at 100% for both.

We fail to reverse-engineer the L3 cache because of unexpected caching behavior. More
precisely, when using the DC ISW or DC CISW instruction to evict some data from the L2
cache, we notice how the next request on the same data is handled by main memory, as
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reported by the performance counters, and not by the L3 cache as one would expect. This
breaks the assumptions of the bypass adapter under ARM which is based on this instruction.

We suspect that the observed behavior is a limitation of the ARM DynamIQ Shared
Unit (DSU) which combines multiple CPUs into a multicore cluster and also implements the
L3 cache [Arm23a]. Since the DSU is a separate unit it might not be fully integrated with the
cache maintenance instructions offered by the CPU. Another possibility is that the data does
indeed reside in the L3 cache but the performance counters are incorrect. We note that the
DSU also offers its own set of performance counters. The Raspberry Pi 5 uses the DSU r4p1.

Cache α β Line size Time Index function Confidence

L1D 4 28 64 bytes 56s I(a) = (a[14:6]) 100%
L2 8 210 64 bytes 58s I(a) = (a[16:6]) 100%
L3 16 211 64 bytes

Table 6.5.: Cache configuration and index functions as identified on the BCM2712.

Intel Xeon E5-2680 v2

On the Intel system, we also find a textbook index function for the L1D and the L2 caches
as shown in table 6.7. This is also expected as prior work on Intel caches has implicitly
presupposed such index function (e.g., [Ber04; OST05; Per05; Yan+19; Abe20]) and the
CPUID instruction reports these caches as not using “Complex Cache Indexing” [Int24].

We cannot run CacheHound against the LLC since the number of cache sets is not a power
of two which is incompatible with our reverse-engineering approach based on the recovery of
the affine transformation.

Cache α β Line size Time Index function Confidence

L1D 8 26 64 bytes 97s I(a) = (a[12:6]) 99.7%
L2 8 29 64 bytes 260s I(a) = (a[15:6]) 99.8%

LLC 20 10× 211 64 bytes

Table 6.7.: Cache configuration and index functions as identified on the Intel Xeon E5-2680 v2.

AMD EPYC 7302

On the AMD system, we successfully reverse-engineer the placement policy of the L1 cache.
The results are shown in table 6.9. We also identify a textbook index function here. Similarly,
this is expected as prior work on AMD caches has implicitly assumed such index function (e.g.,
[Ber04; Abe20]).

Reverse-engineering of the L2 cache takes a significant amount of time compared to
measurements on the Intel system or the Raspberry Pi 5. The majority of the time is spent
on initializing the eviction strategy, i.e., finding an eviction set per cache set. After around
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25 minutes of runtime, CacheHound finds 1000 of the 1024 eviction sets. It takes another
90 minutes to find the remaining 24 eviction sets.

After finding 1024 eviction sets, CacheHound takes another 90 minutes to record 1000 map-
pings of addresses to cache sets, resulting in around 4.3 billion instrumented memory accesses.
The obtained placement policy is reported with a confidence of 2.8%, the lowest value we
measure for any of the systems (cf. section 6.2.2).

We assume that the issue is rooted in the initialization of the eviction strategy since we
find multiple eviction sets which map to the same cache set if one were to assume a textbook
index function while some cache sets lack an associated eviction set.

Cache α β Line size Time Index function Confidence

L1D 8 26 64 bytes 175s I(a) = (a[12:6]) 98.8%
L2 8 210 64 bytes

LLC 16 214 64 bytes

Table 6.9.: Cache configuration and index functions as identified on the AMD EPYC 7302.

Fujitsu A64FX (Cray CS500)

On the Fujitsu A64FX we fail to run CacheHound because we can not get the performance
counters to count cache misses in EL2, i.e., the ARM exception level that the agent process
is running at in kernel space. However, we observe that other events like LD_SPEC do count
in EL2. We investigate further and notice that cache misses are counted in EL0, i.e., user
space, when utilizing the same instructions. As the DC CISW instruction is not available in
EL0, running the agent process in EL0 is not a solution.

Cache α β Line size Time Index function Confidence

L1D 4 26 256 bytes
L2 16 210 256 bytes

Table 6.11.: Cache configuration as reported on the Fujitsu A64FX.

6.2.2. Custom parameterization
In this section, we run CacheHound with different parameterization to observe how it changes
the results. On the ARM system, the Raspberry Pi 5, we also test the Eviction Set Strategy.
We test all combinations of the following parameters ten times and record the minimum,
maximum and average values for the elapsed real time, the number of (plain) accesses,
instrumented accesses and channel flushes, as well as the confidence. Additionally, we note
down the number of times that the index function does not match the one we determined in
the previous section.

It should be noted that a system reboot is not performed after each execution of CacheHound.
Hence, previous runs may result in memory fragmentation, which could lead to a slight
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increase in overhead for subsequent runs.

Allocated Memory 1GiB
Isolation Level off, no preempt, disable irq
Eviction Strategy CISW (only on ARMv8), Eviction Sets
Cache Pollution Accesses 10000, 25000, 50000
Repetitions for is_eviction_set 1, 2, 5
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BCM2712 (Raspberry Pi 5)

Table 6.13 shows the results of running CacheHound using the CISW Eviction Strategy. It takes less than one minute on average for
the tool to find the placement policy of either the L1D or the L2 cache.

Cache Isolation Time Accesses Instr. accesses Flushes Confidence Mismatches
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

off 55s 55.4s 57s 9000 9001 9009 9000 9001 9009 298k 298k 298.3k 100% 100% 100% 0/10
L1D no preempt 54s 57.8s 80s 9000 9000 9000 9000 9000 9000 298k 298k 298k 100% 100% 100% 0/10

disable irq 53s 55s 56s 9000 9000 9000 9000 9000 9000 298k 298k 298k 100% 100% 100% 0/10

off 58s 58.8s 60s 0 0 0 22k 22k 22k 2.4m 2.4m 2.4m 99.9% 99.99% 100% 0/10
L2 no preempt 57s 59.7s 61s 0 0 0 22k 22k 22k 2.4m 2.4m 2.4m 99.9% 99.99% 100% 0/10

disable irq 58s 59.1s 61s 0 0 0 22k 22k 22k 2.4m 2.4m 2.4m 100% 100% 100% 0/10

Table 6.13.: Results of using different isolation levels when reverse-engineering the placement policy on the BCM2712 and utilizing the
CISW Eviction Strategy with isolcpus.

Since we do not observe a significant difference between the isolation levels, we boot the system without the isolcpus command-line
argument and run CacheHound again without any isolation. Using some degree of isolation (such as no-preempt) would risk locking a
process scheduled on the same core as the CacheHound agent. We run CacheHound using taskset -c to ensure that the director
process is bound to a different core than the agent kernel process. The results are shown in table 6.14

Cache Isolation Time Accesses Instr. accesses Flushes Confidence Mismatches
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

L1D off 47s 48.9s 50s 9000 9000 9000 9000 9000 9000 298k 298k 298k 99.9% 99.99% 100% 0/10

L2 off 52s 54.3s 66s 0 0 0 22k 22k 22k 2.4m 2.4m 2.4m 49.3% 94.92% 100% 1/10

Table 6.14.: Results of using different isolation levels when reverse-engineering the placement policy on the BCM2712 and utilizing the
CISW Eviction Strategy without isolcpus.

We note that the run producing the index function mismatch for the L2 cache also reported the only low confidence value of 49.3%.
CacheHound also prints a warning to the terminal hinting the user to re-run the tool:

[2024-08-10 14:03:26.930] [info] Placement policy confidence: 493/1000
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[2024-08-10 14:03:26.930] [warning] The confidence for this placement policy is low
[2024-08-10 14:03:26.930] [warning] Consider increasing the memory size and/or adjusting the indexing method

(virtual/physical)

We also run CacheHound using the Eviction Set Strategy. Since there are considerably more combinations of parameters to test and
each run takes longer than using the CISW Eviction Strategy, we start with the L1D cache to determine suitable parameters to be
used for the other CPU caches. The results are shown in table 6.15.

Cache Isolation Pollution Repetitions Time Accesses Instr. accesses Flushes Confidence Mismatches
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

1 71s 75.1s 79s 109.4m 127.9m 153.1m 3.5m 4.5m 5.7m 19.1m 22.8m 27.6m 13.2% 60.36% 99.7% 6/10
10000 2 77s 80.4s 84s 150m 166.1m 184.7m 4.7m 5.7m 6.9m 26.2m 29.4m 33.3m 99.7% 99.87% 100% 0/10

5 99s 103.1s 117s 305.7m 324.6m 429.6m 10.5m 10.8m 11.6m 54.3m 57.2m 73m 99.7% 99.91% 100% 0/10

1 90s 96.6s 103s 240.7m 295.3m 343.4m 2.8m 4m 5.1m 37.2m 46.2m 54.2m 24.3% 82.22% 99.8% 3/10
off 25000 2 106s 110.9s 120s 372.6m 401.6m 453.8m 4.7m 5.4m 6.7m 58m 62.8m 71.5m 99.7% 99.9% 100% 0/10

5 159s 162.7s 166s 765.3m 770.6m 774m 10.5m 10.6m 10.7m 119.8m 120.7m 121.2m 99.7% 99.92% 100% 0/10

1 125s 140.9s 156s 480.9m 600.2m 701.9m 2.8m 4.1m 5.3m 71.5m 89.8m 105.6m 49.1% 89.15% 99.4% 2/10
50000 2 160s 166.9s 182s 742.3m 785.1m 888m 4.7m 5.2m 6.5m 110.7m 117.4m 133.4m 53.5% 95.28% 100% 1/10

5 277s 282.9s 288s 1.5b 1.5b 1.6b 10.5m 10.6m 10.7m 229.1m 231.2m 232.9m 99.8% 99.91% 100% 0/10

1 72s 74.6s 79s 117.6m 124m 138.8m 3.9m 4.3m 5.2m 20.7m 22m 25m 15.1% 49.82% 98.9% 8/10
10000 2 77s 80.6s 84s 149.3m 169.2m 185.8m 4.7m 5.9m 6.9m 26.1m 30.1m 33.4m 99.6% 99.87% 100% 0/10

5 97s 100.7s 102s 306.1m 310.3m 313.5m 10.5m 10.6m 10.7m 54.2m 54.9m 55.5m 99.7% 99.85% 100% 0/10

1 93s 103.1s 111s 241.2m 305.1m 356.6m 2.8m 4.2m 5.4m 37.2m 47.8m 56.3m 14.3% 66.37% 99.5% 6/10
L1D no preempt 25000 2 111s 117.9s 127s 372.4m 406m 466.3m 4.7m 5.4m 6.9m 57.9m 63.4m 72.9m 99.7% 99.87% 100% 0/10

5 172s 178s 215s 767m 773m 778.4m 10.5m 10.6m 10.7m 120.1m 121.1m 121.9m 99.9% 99.96% 100% 0/10

1 140s 146.2s 179s 561.9m 606.1m 816m 3.7m 4.2m 6.8m 84m 90.8m 123.4m 50.9% 94.17% 99.5% 1/10
50000 2 163s 171s 192s 742.5m 781.6m 927.4m 4.7m 5.2m 7m 110.8m 116.8m 139.4m 99.7% 99.9% 100% 0/10

5 284s 297.8s 303s 1.5b 1.5b 1.6b 10.6m 10.6m 10.7m 228.6m 231.6m 233.8m 50.1% 94.89% 100% 1/10

1 73s 78.1s 82s 110.4m 131m 142.7m 3.6m 4.7m 5.4m 19.3m 23.4m 25.8m 26.2% 81.85% 99.3% 3/10
10000 2 79s 82.4s 87s 149.8m 159.5m 184m 4.7m 5.3m 6.8m 26.1m 28.1m 33.1m 51.9% 90.33% 100% 2/10

5 104s 107.4s 118s 307.4m 317.1m 384m 10.6m 11.1m 15.5m 54.4m 56.4m 70.3m 99.8% 99.87% 100% 0/10

1 96s 99.9s 105s 285.2m 297.5m 324.1m 3.8m 4m 4.7m 44.5m 46.5m 51m 47.9% 84.57% 99.4% 3/10
disable irq 25000 2 109s 112.9s 122s 371.5m 387.8m 448.5m 4.7m 5.1m 6.6m 57.8m 60.5m 70.6m 48.8% 94.85% 100% 1/10

5 166s 170.4s 173s 767.7m 773m 777.4m 10.5m 10.6m 10.7m 120.2m 121m 121.7m 48.7% 94.8% 100% 1/10

1 141s 149.2s 159s 575.8m 630.8m 696m 3.8m 4.5m 5.3m 86.1m 94.6m 104.7m 27% 67.61% 99% 6/10
50000 2 166s 174.8s 196s 746.5m 796m 920.1m 4.7m 5.3m 6.9m 111.4m 119m 138.3m 99.8% 99.94% 100% 0/10

5 285s 295.4s 303s 1.5b 1.5b 1.6b 10.6m 10.6m 10.7m 230.5m 231.5m 232.2m 99.9% 99.91% 100% 0/10

Table 6.15.: Results of using different isolation levels, numbers of pollution accesses and is_eviction_set repetitions when reverse-
engineering the placement policy on the L1D cache of the BCM2712 and utilizing the Eviction Set Strategy.

We note again that CacheHound correctly assigns a low confidence value to wrong results. The highest confidence reported for a
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mismatch is 53.5% while the lowest confidence reported for a match is 98%.
We observe that the number of is_eviction_set repetitions has the most significant influence on the correctness of the result.

Two repetitions are already sufficient to reduce the mismatch rate to an acceptable level. The number of accesses for cache pollution
increases the runtime with little effect on the mismatch rate. Therefore, we decide to run further measurements using 10000 cache
pollution accesses and two repetitions. Further more, we use an isolation level of no preempt as this does not seem to influence the
results.

We find that the Eviction Set Strategy fails on the L2 cache of the BCM2712. Our test run using the aforementioned parameters
takes only around 5 minutes to find 944 of the 1024 eviction sets. However, after one hour, the program is still stuck on 944 eviction
sets.

Intel Xeon E5-2680 v2

In contrast to the BCM2712, we can only apply the Eviction Set Strategy to the Intel Xeon E5-2680 v2. For increasing intensity of
cache pollution, we observe significantly more required runtime. Due to the total time required to perform these tests, we shorten the
measurements for a pollution of 25000 and 50000 and only select the highest isolation level. The results are shown in table 6.16.

Cache Isolation Pollution Repetitions Time Accesses Instr. accesses Flushes Confidence Mismatches
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

1 96s 97.1s 98s 72.5m 73.1m 73.8m 1.2m 1.2m 1.2m 11.5m 11.6m 11.7m 52.2% 90.03% 99.9% 2/10
10000 2 130s 133.8s 135s 111.2m 112.9m 114.7m 2m 2m 2.1m 17.9m 18.2m 18.4m 49.6% 74.18% 99.6% 5/10

5 244s 248s 257s 233.4m 235.3m 238.2m 4.6m 4.7m 4.7m 37.9m 38.2m 38.7m 49.1% 83.95% 99.8% 3/10

1 182s 182.5s 183s 178.7m 179.6m 180.5m 1.2m 1.2m 1.2m 26.7m 26.8m 27m 97.8% 98.62% 99.3% 0/4
L1D disable irq 25000 2 264s 654.6s 2996s 280.2m 514.6m 2.1b 2m 3.1m 9.6m 42.1m 76.6m 303.8m 7.5% 75.1% 100% 3/8

5 636s 1143s 2892s 608.4m 888.3m 2b 4.7m 6.3m 12.2m 91.6m 133.2m 295.7m 11.9% 71.45% 99.6% 2/6

1 404s 483s 580s 375.5m 392m 425.7m 1.2m 1.2m 1.3m 54.9m 57.2m 62.1m 98.7% 99.4% 99.8% 0/4
50000 2 644s 857.8s 1480s 598.3m 772.2m 1.3b 2.2m 2.7m 4.5m 87.6m 113m 194.1m 96.7% 98.72% 99.5% 0/5

5 1206s 2091.4s 4027s 1.2b 1.8b 3.8b 4.6m 6.2m 10.4m 178.2m 269.9m 556.6m 5.2% 61% 99.5% 3/5

Table 6.16.: Results of using different numbers of pollution accesses and is_eviction_set repetitions when reverse-engineering the
placement policy on the L1D cache of the Intel Xeon E5-2680 v2 and utilizing the Eviction Set Strategy.

We also test the parameters when reverse-engineering the placement policy of the L2 cache and obtain the measurements shown in
table 6.17.
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Cache Isolation Pollution Repetitions Time Accesses Instr. accesses Flushes Confidence Mismatches
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

1 251s 473.6s 1542s 207.5k 967.8k 3.4m 146.2m 294.9m 1b 146.4m 295m 1b 99.5% 99.84% 100% 0/10
10000 2 378s 419.3s 741s 320.9k 441k 664.1k 231.7m 257.4m 472.9m 231.8m 257.5m 473m 49.5% 94.76% 100% 1/10

5 771s 873.6s 1234s 587.5k 813.5k 1.1m 486.3m 555.3m 799.1m 486.4m 555.4m 799.3m 99.1% 99.54% 99.8% 0/5

1 525s 733.9s 2283s 433.8k 780k 2.7m 333.2m 470m 1.5b 333.3m 470.1m 1.5b 99.6% 99.82% 100% 0/9
L2 disable irq 25000 2 825s 846.6s 863s 658.1k 1m 1.7m 531.8m 538.9m 547.1m 532m 539m 547.3m 49.7% 92.57% 99.9% 1/7

5 1553s 1636.7s 1679s 1.4m 1.9m 2.9m 1b 1.1b 1.2b 1b 1.1b 1.2b 98.8% 99.13% 99.4% 0/3

1 958s 1070.3s 1283s 781k 1.1m 1.3m 655m 731.7m 879.5m 655.1m 731.9m 879.7m 99.5% 99.77% 100% 0/3
50000 2 1472s 1507s 1552s 1.2m 1.8m 2.4m 991.8m 1b 1.1b 992m 1b 1.1b 53.6% 84.17% 99.7% 1/3

5 3052s 3113.7s 3180s 2.7m 3.3m 4.2m 2.1b 2.1b 2.2b 2.1b 2.1b 2.2b 99.3% 99.43% 99.7% 0/3

Table 6.17.: Results of using different numbers of pollution accesses and is_eviction_set repetitions when reverse-engineering the
placement policy on the L2 cache of the Intel Xeon E5-2680 v2 and utilizing the Eviction Set Strategy.

AMD EPYC 7302

Similarly as in the case of the Intel processor, we can only use the Eviction Set Strategy on the AMD EPYC 7302. The results of
reverse-engineering the placement policy of the L1D cache are shown in table 6.18. As mentioned before, reverse-engineering the L2
cache takes a significant amount of time and produces bad results. Hence, we do not perform any measurements on the L2 cache.

Cache Isolation Pollution Repetitions Time Accesses Instr. accesses Flushes Confidence Mismatches
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

1 170s 193.8s 216s 73.5m 74.1m 74.7m 1.2m 1.2m 1.2m 11.7m 11.8m 11.9m 98.6% 99.39% 99.8% 0/10
10000 2 226s 241.2s 263s 115.4m 117.1m 123.4m 2.1m 2.1m 2.3m 18.5m 18.8m 20m 50.1% 94.73% 99.9% 1/10

5 388s 407.5s 425s 236.3m 241.5m 243.8m 4.7m 4.7m 4.8m 38.4m 39.2m 39.6m 48.6% 79.14% 99.7% 4/10

1 269s 292.6s 331s 144.6m 152m 188.6m 1.2m 1.3m 2.3m 21.8m 23.1m 29.2m 10.3% 90.69% 99.9% 1/10
L1D no preempt 25000 2 388s 408.8s 432s 226.7m 233.6m 252.8m 2.1m 2.2m 2.7m 34.4m 35.5m 38.8m 53.1% 95.06% 99.9% 1/10

5 691s 727.4s 822s 473.2m 495.4m 569.3m 4.7m 5.3m 7.3m 72.3m 76m 88.6m 7.6% 85.2% 99.7% 2/10

50000 1 2118s 4984.9s 7748s 1.6b 4b 6.2b 1.3m 1.4m 1.5m 236.1m 572.4m 889.5m 47.2% 86.88% 99.7% 2/8
2 6978s 7324.5s 7671s 5.6b 5.9b 6.1b 2.3m 2.3m 2.3m 803.2m 838.6m 873.9m 99.2% 99.55% 99.9% 0/2

Table 6.18.: Results of using different numbers of pollution accesses and is_eviction_set repetitions when reverse-engineering the
placement policy on the L1D cache of the AMD EPYC 7302 and utilizing the Eviction Set Strategy.
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6.3. Replacement Policy
We also run CacheHound on each system to reverse-engineer the replacement policies using
the elimination-based approach (cf. section 4.4). To attain confidence in the measurements,
we perform 100 executions per cache and system. The runtime is negligible, rarely exceeding
more than seven seconds on any system. Table 6.19 summarizes the results.

CPU Cache Replacement Policy Confidence

L1D PLRU 100/100
BCM2712 L2 Unknown 100/100

L3

L1D PLRU 100/100
Intel Xeon E5-2680 v2 L2 Unknown 100/100

LLC

L1D PLRU 72/100
AMD EPYC 7302 L2

LLC

Fujitsu A64FX L1D
L2

Table 6.19.: Replacement policies as identified per each of the examined systems.

We emphasize that an “unknown” replacement policy means that the elimination left no
policies in the candidate set. Hence, the L2 caches on the BCM2712 and the Intel Xeon
E5-2680 v2 utilize a replacement policy which is not yet implemented in CacheHound.

6.4. Interpretation
In this section, we interpret the results of reverse-engineering the placement and replacement
policies.

We observe that CacheHound is capable of identifying the placement and replacement
policies of the L1D cache on all examined systems, with the exception of the Fujitsu
A64FX, for which the performance counters are unable to count cache misses in EL2.
In all instances, a textbook index function was deduced, consistent with the anticipated
outcome (cf. section 6.2.1). In the case of the L2 cache of the Fujitsu A64FX, the index
function is expected to be complex, as documented in the manual (cf. [Fuj22]).

The Raspberry Pi 5 allows for a comparison of the two eviction strategies. The CISW
Eviction Strategy was found to be faster, with an average runtime of less than 60 seconds,
resulting in minimal mismatches. In order to achieve a similarly low mismatch rate, the
Eviction Set Strategy requires a repetition count for is_eviction_set of two. However, this
results in a runtime that is approximately 50% longer on the L1D cache.

The discrepancy widens as one progresses to higher-level caches. While the difference in
runtime required for reverse-engineering the placement policy on the L1D and L2 cache,
respectively, of the Raspberry Pi 5 is negligible, the average runtime for reverse-engineering
the L2 cache of the Intel system is approximately four to five times that of the L1 cache.
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This is to be expected, given that the bypass adapter based on eviction sets performs an
additional α+1 accesses when a hit is produced in the L1 cache. As the intensity of pollution
increases, the ration between the two runtimes decreases, as the majority of pollution results
in a cache miss, which does not produce any overhead in the bypass adapter.

CacheHound identifies a PLRU replacement policy on the L1D cache in all working systems.
In the case of the BCM2712, these findings are consistent with the technical reference manual
for the ARM Cortex-A76 [Arm23b]. An analysis by Abel and Reineke concluded that the
Intel Core i5-3470, which is another processor based on the Ivy Bridge microarchitecture,
utilizes the same replacement policy in the L1D cache [AR24]. Therefore, we argue that
our findings are accurate. We are not aware of any literature documenting the replacement
policies used by AMD.

The same ARM manual mentions that the L2 cache of the Cortex-A76 uses a “dynamic
biased replacement policy” which is not implemented in CacheHound and for which no further
explanations are provided in the document [Arm23c]. Abel and Reineke state that the L2
cache of the Intel Core i5-3470 utilizes a PLRU replacement policy as well [AR24]. However,
this cannot be confirmed for the Intel Xeon E5-2680 v2.
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In this chapter we discuss our methodology, including its limitations. We also outline possible
applications of the gained knowledge in the fields of HPC as well as security. Lastly, we
discuss future work and conclude this research.

7.1. Methodology
A framework for reverse-engineering CPU caches was constructed based on a mathematical
model of cached memory. The mathematical model is comprised of three distinct components:
a model of abstract memory, a model of replacement policies, and a model of caching behavior.

Furthermore, we presented a methodology for the reverse-engineering of placement policies
that employs the aforementioned mathematical model. The methodology is based on a
so-called eviction strategy, which is used to evict all cache lines from a given cache set. Two
such strategies were introduced: one based on the theory of eviction sets and the other based
on the DC CISW ARM instruction. We have shown that both eviction strategies produce
the same results with the one based on DC CISW requiring less runtime. Additionally, we
integrated an existing methodology for the inference of replacement policies into our model.

Our implementation, called CacheHound, employs a split architecture, comprising a director
and an agent process running on different cores, which minimizes interference. In this setup,
the director process can manage data arbitrarily without affecting the cache state on the
CPU running the agent process.

7.1.1. Limitations

Our approach was found to have two major shortcomings. In the case of non-ARM processors,
an eviction set is prepared for each L1 cache set, with the objective of performing accesses
on the L2 cache as if there was no L1 cache. This bypass strategy has the consequence of
markedly extending the runtime when reverse-engineering caches of a higher level than L1.
In the case of the AMD system, the overhead is as high as 70x of the time required for the
L1 cache. While measurements on the Intel L2 cache indicate that the increase in runtime is
tolerable, with the runtime for the L2 cache roughly being a product of the runtime for the
L1 cache and the L1 cache’s associativity, i.e., tL2 = (αL1 + 1)× tL1, we expect the runtime
for the L3 cache to be αL2 + 1 = 9 times that of the L2 cache, which amounts to more than
4000 seconds in the most favorable case.

Another limitation associated with eviction sets pertains to the mapping of eviction
sets to cache set hardware indices during the initialization of the Eviction Set Strategy.
This information is essential for the purpose of modeling the index function as an affine
transformation. A solution is required that identifies the actual hardware index to which
an eviction set maps. Alternatively, an approximation of the hardware indices would be
adequate, provided that the estimated indices differ from the actual indices by a fixed bit
vector. The current solution is predicated on the assumption of a textbook index function,
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which is conflicting with the objective of identifying the index function. It should be noted
that this limitation does not apply to the CISW Eviction Strategy, which allows for the
accurate identification of hardware indices.

7.1.2. Correctness

An inherent issue associated with a measurement-based reverse-engineering methodology is
the correctness of the obtained results. In the absence of an exhaustive exploration of the
entire address space, in the context of placement policies, and the entire state space, in the
context of replacement policies, any outcome is inevitably an approximation of the actual
cache policy. This is due to the possibility of a unique case that was not covered in any of
the measurements. For instance, there might be some special address for which the index
function returns a set index that is different from what it would return when adhering to the
deduction used for all other addresses. It is still necessary to account for measurement errors
even when exploring the entirety of the address or state space.

By default, our implementation records a greater number of measurements than are
necessary for inference to achieve a high level of confidence in the results. In order to recover
the affine transformation, it is sufficient to record only d+ 1 mappings of addresses to set
indices (e.g., 65 on 64-bit machines). However, our implementation records 1000 mappings
for the purpose of verifying the obtained function. Similarly, when eliminating replacement
policies from the set of candidate policies, further iterations are performed even if only one
policy remains, with the objective of confirming the results. It is important to note that, in
our evaluation, the tool was run several times, which contributed to the overall confidence in
the results.

7.2. Uses in HPC and Security

In this section we discuss various ways of how the knowledge of the cache policies could be
utilized in the fields of high-performance computing and security.

7.2.1. Cache side-channels

Even though modern operating systems segregate process memory, thereby preventing one
process from reading data from another (unless explicitly allowed to), the cache remains a
shared physical resource that is susceptible to side-channels [Per05; OST05].

Covert channel

Percival presented a technique for using the cache state to construct a covert channel between
two isolated processes running on the same physical core but on distinct SMT threads. The
sender process writes into the covert channel in chunks of β-bit words by reading a cache line
from those cache sets whose corresponding bit in the word is set. The receiver constantly
accesses a block of memory which fits exactly into the cache. When it encounters a miss for a
particular cache set (e.g. through latency measurements), it can infer that the corresponding
bit in the word sent by the sender is set [Per05].

The accompanying implementation assumes an index functions based on modular arithmetic.
The sender allocates β · 2boffset bytes of contiguous memory whereas the receiver allocates
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α · β · 2boffset contiguous bytes. Both are assumed to be aligned. This setup fails when a
non-standard index function is used. Knowledge of the index function would allow to fix such
setup.

It should be noted that explicitly allocating both chunks of memory at the same virtual
address is not a solution to not knowing the index function. While the first β · 2boffset bytes
may map exactly the same way into the cache, the remaining (α− 1) slices of the receiver
process may not.

Further, we propose an improvement to this technique. Through the knowledge of the
(deterministic) replacement policy, it is possible to determine in advance which way of a
particular cache set is chosen next as the victim. That way, instead of scanning all α ways,
the receiver process only needs to scan the victim way, resulting in a theoretical speedup of
α. Depending on the replacement policy, the policy state per cache set might be manageable
in CPU registers. Otherwise, some sets of the cache might need to be reserved.

This technique can also be employed at higher-level caches, enabling processes across cores
to communicate through their shared CPU cache [Per05; Liu+15].

Attacks

The principle of the covert channel can be adjusted to construct a side-channel attack. In
this attack, the victim process implicitly acts as the sender through memory accesses. The
attacker process (i.e. the receiver) continuously accesses its memory block and monitors for
cache hits/misses to determine which cache sets the victim process accessed. This attack is
known as Prime+Probe [OST05].

The primary target for this attack involves processes which use secret data as an array
index, such as AES relying on S-Boxes to achieve a high-speed implementation. As shown
by Bernstein, an AES key can be recovered from known-plaintext timings [Ber04]. Osvik,
Shamir, and Tromer have introduced the Prime+Probe attack and have demonstrated AES
key extraction using it.

The implications of knowing the placement and replacement policies are the same as in
the case of the covert channel. That is, an index function not based on modular arithmetic
breaks the attack but knowledge of the index function fixes it.

7.2.2. Rowhammer attack

The rowhammer attack exploits a side-effect of DRAM where interacting with a memory cell
changes the contents of a neighboring memory row due to leaking electrical charges [Kim+14].
This attack relies on a method to circumvent the cache in order to access the DRAM,
traditionally using CLFLUSH on x86. However, since cache flushing instructions are not
available on all platforms and/or environments, eviction sets have been considered as an
alternative. Knowledge of the index function allows efficient generation of such eviction sets.

7.2.3. Page coloring

Page coloring, or cache coloring, is a technique for cache partitioning. In this technique,
the cache sets are divided into several colored ranges. Memory pages are also assigned
colors depending on the range of cache sets it maps to as specified by the index function.
The primary motivation for the employment of this technique is to ensure that virtually
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contiguous pages map to a distinct range of cache sets, i.e., they do not collide, to maximize
cache utilization.

This technique is implemented in several operating systems, such as Windows [Bug+96],
but notably not in Linux due to code complexity and the advent of associative caches which
decrease the negative performance impact of colliding pages [Tor03].

We also suggest a secondary use case of page coloring that improves process isolation by
rendering cache-based side-channels impossible. Processes could also be (multi-)colored and
the operating system would ensure that the address space of such process consists only of
memory pages of the conforming coloring. This could be useful for hypervisors or systems
running processes of various classification levels on the same hardware. In Linux, this could
be implemented via the namespaces feature or cgroups. Note that also in this use case, the
operating system needs to know the index function of the cache(s).

7.2.4. Scratchpad memory

Scratchpad Memory is high-speed memory which is provided in some processors and can
be used to for temporary storage. In that way, it is comparable to CPU caches but with
explicit control. With knowledge of the cache replacement and placement policies it would
be possible for a program to calculate how some memory access changes the cache state.
Consequently, it would be possible to develop a library that allows for explicit caching of data.
In order to not interfere with transparent caching, the cache could be separated (colored)
into a transparently managed and a library-managed partition.

7.2.5. Cache-Policy-guided optimization

The results could further be employed for reducing the number of cache misses in performance-
critical executables. Linkers, which combine multiple object files into a single executable
binary, could be modified to ensure that frequently accessed variables do not map to the
same cache set. To this end, the placement policy must be known by the linker. Attributes
offered by the compiler could be utilized to mark all such variables. A similar procedure
could be used for the text segment, i.e., instructions.

When it comes to manually tuning program performance, modern profilers allow for
monitoring cache hits and misses in any section of the program. Examples include the
previously mentioned perf1 and Likwid2 under Linux. However, we are not aware of any
profiler that shows why some particular access causes a high rate of cache misses to total
accesses. A profiler that takes the placement and replacement policies into account could
simulate the caching behavior and provide statements such as “In 20% of the cases, variable
A is not in the cache due to a prior access to variable B.”

7.3. Future work

In this work, we have only covered a subset of cache policies and cache hardware. However,
the model of abstract memory facilitates further reverse-engineering which we touch briefly
on.

1https://perf.wiki.kernel.org/index.php/Main_Page
2https://hpc.fau.de/research/tools/likwid/

66

https://perf.wiki.kernel.org/index.php/Main_Page
https://hpc.fau.de/research/tools/likwid/


7.3. Future work

7.3.1. Instruction caches

At the time of writing, the implementation focuses only on data and unified caches but does
not provide a backend for L1 instruction caches. In contrast to data caches, instruction
caches are not involved during a memory load but in an instruction fetch. Consequently, a
corresponding backend would have to perform an instruction fetch on the address passed to
the accessor function. This could be implemented by filling the allocated range of memory
with machine code that jumps to a previously set-up handler. The accessor function would
then just have to perform a jump to the desired address. Performance counters could be
monitored before the jump and in the handler.

7.3.2. Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) is another kind of cache inside the CPU which is
responsible for caching virtual to physical address mappings. TLBs follow the same hardware
design as CPU caches with many architectures distinguishing instruction and data TLBs
as well as L1 and L2 TLBs. Hence, TLBs provide for interesting hardware, adjacent to
CacheHound’s primary use case.

Reverse-engineering of TLBs necessitates a backend that performs TLB lookups instead
of memory loads. In this setup, A is not a subset of the (virtual) address space but of
the available page numbers. During initialization, the backend has to allocate some pages,
and, on access, it performs a load on some address in the specified page monitoring the
TLB-specific performance counters. Processors kindly provide instructions for TLB flushing
which are required when page structures are modified (e.g., during a context switch). For
example, x86 provides INVLPG which is the TLB-equivalent to CLFLUSH.

7.3.3. Fallback methodologies

Prior research has studied the utilization of automata learning for reverse-engineering of
replacement policies [Rue13; Vil+20]. Furthermore, Gerlach et al. [Ger+24] presented an
automated approach for deriving a non-linear hash function from a given mapping. Both
methodologies have been shown to require a significant amount of runtime but could be
implemented on top of CacheHound as a fallback when the methodology presented in this
work fails.

7.3.4. Last-Level Cache slice mapping

In section 3.1 we explored prior work on the reverse-engineering of the Intel LLC slice function
which is related to our approach for learning the placement policy as described in section 4.3.
CacheHound could automatically reverse Intel LLCs if made aware of the LLC slice in
which a cache line is placed. To that end, a new eviction_strategy can be implemented
which operates on slices instead of cache sets. The mapped-to slice can be determined using
performance counters. In order to reach the last-level cache, bypass adapters must be used.

An exception are processors with a number of slices that are not a power of two (cf. [Yar+15]).
This prevents us from running CacheHound on the LLC of the Intel system (cf. section 6.2.1).
A fallback approach described in section 7.3.3 could work.
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7. Discussion and Conclusion

7.3.5. Systematic memory page mapping
The kernel module currently relies on the memremap() interface for mapping memory pages
into virtual address space. This interface uses the next available virtual address. Recovery
of the index function is optimal when the accessible address space is spread out as far as
possible to cover most/all of the address bits. In the current setup, we allocate a significant
amount of pages in an attempt to cover most of the bits. In a more systematic approach,
only a few pages would be needed to achieve this.

7.3.6. Further cache properties
Future work can extend our methodology to reverse-engineer further cache properties. For
example, an extension to the model of abstract memory that allows for writing (instead of
only reading) could be used to find details on the write policy, monitoring TLB performance
counters would enable distinguishing VIVT and VIPT caches, and algorithms using two
backends on two distinct cores could learn more about the coherency protocol.

7.4. Conclusion
We provide CacheHound, an open-source implementation of our methodology, comprised of
a command-line interface and a kernel module. It uses a split architecture encompassing a
director and an agent kernel process to minimize noise during any measurements and allow
the director process to be arbitrarily complex. The results demonstrate that the tool functions
reliably on the L1D caches and some of the L2 caches of several processor architectures based
on x86 and ARMv8. The runtime is satisfactory, as the tool is only required to be executed
once per processor model and requires less than a minute in the best case and less than an
hour in the worst case.

Furthermore, we have demonstrated how the knowledge of cache policies identified by the
tool can be utilized in the domains of high-performance computing and security. Use cases
include cache side-channels attacks and mitigations, as well as code optimizations. Future
work could extend the capabilities of CacheHound by incorporating support for additional
types of caches, such as instruction caches or TLBs. Moreover, the model lends itself to the
support of strategies for reverse-engineering LLC slice mappings and other cache properties.

The tool was unable to run on the Fujitsu A64FX due to the performance counters not
counting cache misses in EL2. This is unfortunate, as the documented non-textbook index
function of the A64FX motivated this research, and this CPU model would have been an
interesting candidate to prove that CacheHound can identify such complex placement policy.
We will investigate this case further and attempt to provide a solution.
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A. Additional source code

A.1. Recovering the affine transformation matrix
import numpy as np
import sys

np.set_printoptions(threshold=sys.maxsize, linewidth=np.inf)

inputs = [0xe94abdfcb21cb7, 0x0bc41b0a5d0b15, 0x176ba78278b3ee, 0x080d3417888231,
0x6311575eb5b269, 0xfcae88a30d4bbd, 0x2d464ebe2224bf, 0xecdcebf73d4f84,
0xde0f7df3b43b04, 0x94e300f2079ab8, 0xe53ee4bdbc1e6f, 0x74fda4cf4ed3c1,
0x870d7b1bcd7d7b, 0xbaa85348f858bb, 0x5b40e6b0e916ea, 0x037a11a978f713,
0xc0b5313c519e8c, 0x81120023ae6dbb, 0x96e08a4d2eb02e, 0x27c508f62afbf7,
0xd83351e639a29a, 0x3351ee1d6b68eb, 0x5addf718356f03, 0xe1d58796bca31d,
0xc1e54430676c09, 0x2c41ca2c9bcc02, 0xa3ed040eaf70c1, 0x9144de3d15200d,
0x3c0c2e597a728b, 0x4cdb1db9a304df, 0xcaaf4a8f14b60e, 0x013482e8cee5a9,
0x116a803825667b, 0x71bfea20bbd77b, 0x32860b2bc71312, 0x3d530b7cf39953,
0x48d17e44aba129, 0xd8b0f071b9398a, 0x04fa6085c6b006, 0x590c4f75e4527d,
0x3d50efeea5c21c]

input_bits = len(inputs) - 1

outputs = [0x5b7, 0x415, 0xee, 0x531, 0x569, 0x3bd, 0x2bf, 0x384, 0x704, 0x1b8,
0x46f, 0x6c1, 0x77b, 0xbb, 0x2ea, 0x13, 0x68c, 0x2bb, 0x42e, 0x5f7,
0x39a, 0x7eb, 0x103, 0x21d, 0x209, 0x202, 0xc1, 0xd, 0x48b, 0xdf,
0x60e, 0x2a9, 0x7b, 0x37b, 0x312, 0x753, 0x729, 0x38a, 0x606, 0x77d,
0x21c]

output_bits = 11

assert len(inputs) == len(outputs)

def to_bitvector(num: int, bits: int):
num = num & ((1 << bits) - 1)
return np.transpose(

np.matrix(
[int(bit) for bit in bin(num)[2:].zfill(bits)],
dtype='int'

)
)

# D' matrix
d_prime = np.vstack([
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A. Additional source code

np.hstack([
to_bitvector(inp, input_bits)
for inp in inputs

], dtype='int'),
np.ones(shape=(1, input_bits + 1), dtype='int')

])

def submatrix_det(i: int, j: int) -> int:
a = np.delete(d_prime, (i), axis=0)
b = np.delete(a, (j), axis=1)
return int(round(np.linalg.det(b))) % 2

M = np.zeros(shape=(output_bits,len(inputs)), dtype='int')

for i in range(output_bits):
for j in range(len(inputs)):

M[i, j] = sum(
to_bitvector(outputs[k], output_bits)[i, 0] and submatrix_det(j, k)
for k in range(len(outputs))

) % 2

print(M)

# Outputs the A64FX matrix (augmented):
#[[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]]

A.2. Using the cache simulation library

using namespace cachehound;

static constexpr uintptr_t base_address = 0x0;
static constexpr size_t size = 1 << 20

, ways = 4, index_bits = 6, offset_bits = 6;

sim::simulated_memory memory {
base_address, size, offset_bits,
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A.3. Disabling the Raspberry Pi 5 prefetcher

/* L1 */ sim::set_associative_cache {
sim::basic_set_associative_policy {

index_bits,
modular_placement_policy{offset_bits, 1 << index_bits},
lru_replacement_policy{ways}

}
},
/* L2 */ sim::set_associative_cache {

sim::basic_set_associative_policy {
1 + index_bits,
modular_placement_policy{offset_bits, 1 << (1 + index_bits)},
lru_replacement_policy{2 * ways}

}
}

};

A.3. Disabling the Raspberry Pi 5 prefetcher
Disabling the Raspberry Pi 5 prefetcher requires writing into the CPUECTLR_EL1 (also known
as s3_0_c15_c1_4) which is only possible in the bootloader. Hence, we fork the “Trusted
Firmware-A”1 bootloader project and adjust bootloader stage 3-1 (BL31) as follows.

We patch the bl31/bl31_main.c to disable the prefetcher on the primary core:

@@ -101,6 +101,9 @@ void bl31_setup(u_register_t arg0, u_register_t
arg1, u_register_t arg2,↪→

/* Perform early platform-specific setup */
bl31_early_platform_setup2(arg0, arg1, arg2, arg3);

+ /* Disable prefetcher */
+ asm volatile("MSR s3_0_c15_c1_4, %[val]" :: [val] "r"(0x96156B020) :

"memory");↪→

+
/* Perform late platform-specific setup */
bl31_plat_arch_setup();

We also patch the platform-specific secondary setup at plat/rpi/common/aarch64/plat_helpers.S
to disable the prefetcher on all other cores as well:

@@ -120,6 +120,10 @@ endfunc plat_wait_for_warm_boot
* -----------------------------------------------------
*/

func plat_secondary_cold_boot_setup
+ mov x1, #0xb020
+ movk x1, #0x6156, lsl #16
+ movk x1, #0x9, lsl #32
+ msr s3_0_c15_c1_4, x1

1https://www.trustedfirmware.org/projects/tf-a/
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A. Additional source code

b plat_wait_for_warm_boot
endfunc plat_secondary_cold_boot_setup

We compile the BL31 and copy the binary file as armstub8-2712.bin to the boot partition.
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B. Glossary of mathematical symbols

Symbol Description

boffset
Number of offset bits in the address where 2boffset is the cache line
size in bytes

bindex
Number of index bits in the address when assuming a textbook index
function where 2bindex is the number of cache sets β

btag
Number of tag bits in the address when assuming a textbook index
function

α Number of ways / associativity of a cache

β Number of sets of a cache

M Abstract memory which is defined as the quintuple 〈A, L, S, s0, δ〉

A
Set of addresses accessible on M (a subset of the address space) where
no two distinct addresses join a cache line

a, t Address from A where a is some arbitrary address and t a target
address

L, l Strictly totally ordered set L of symbols l representing each cache
level in M , including one for main memory

S, s Set S of possible states s of M , including all caches

δ : S ×A→ S × L
Accessor function that, given an address, transitions memory M into
the next state and yields the symbol representing the cache layer that
served the access

δinv
Optional invalidation function which removes a cache line for a given
address from the cache

Π
Replacement policy which is managed per cache set and defined as
the quintuple 〈W,R, r0, δH , δM 〉

W , w Set W of symbols where every symbol w represents a way in Π

R, r Set R of possible states r of the replacement policy Π
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B. Glossary of mathematical symbols

Symbol Description

δH : R×W → R
Hit function which is invoked whenever the cache line at w ∈ W
receives a hit

δM : R→ R×W
Miss function which is invoked whenever space for a new cache line
must be made in the cache set, with the victim cache line that should
be replaced given by w ∈W

δ n
M nth application of the miss function

Ẽ
Congruent eviction set which is a set of at least α addresses which
map to the same cache set

E
Eviction set which is a superset of Ẽ and might contain addresses
which map to a different cache set

E Space of eviction sets

I : A 7→ [0, β) Index function which maps an address to a cache set

T Set of cache line tags

τ : A 7→ T Tag function which maps addresses to cache line tags

Γ
β×α 0-indexed matrix representing the cache contents where elements
are either cache line tags or � (empty)

GF(2), B, Z/2Z Ring of integers modulo 2, i.e., 0 and 1, with addition being the
XORing and multiplication the ANDing of the two operands

ω
Sequence which is a l-tuple of integers 〈i0, i1, . . . , il−1〉 with 0 ≤
i0, i1, . . . , il−1 < b ≤ |Ẽ|, i ∈ N0
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