
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Performance Predictions for
Large-Scale Data Applications

Maximilian Höb

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Performance Predictions for
Large-Scale Data Applications

Maximilian Höb

Supervision: Prof. Dr. Dieter Kranzlmüller

Advisors: Dr. Andre Luckow
Dr. Nils gentschen Felde

Date: November 27th, 2017

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 27. November 2017

. .
(Unterschrift des Kandidaten)

Abstract

The cloud computing community is constantly developing new applications, job submitting
frameworks and data processing paradigms. In all areas, new approaches are recognized,
which should enable each user to profit from this fast development. To support users in
their decision, which of the huge amount of different cloud configurations is the optimal for
a current application, this thesis introduces a methodology to predict the runtime behavior
of any large-scale data application within a cloud. Therefore, significant features of these
configurations are varied during runtime measurements of the underlying application, which
resulting values will be mathematically investigated within a function analysis. The main
statistical method will be a Multiple Linear Regression, which will value the relation between
the selected features. Based on them, a runtime prediction and a configuration selection is
possible. The developed methodology will be instantiated on two use cases, the clustering
algorithm K-Means and Wordcount, using Apache Flink as a job processing framework.

vii

Contents

1 Introduction 1
1.1 Structure of the Thesis . 2

2 Related Work 5
2.1 Prediction Approaches . 5

2.1.1 Performance Prediction Framework . 5
2.1.2 Predicting the best Cloud Configuration 5
2.1.3 Kernel Based Predictions . 6
2.1.4 Predictive Scheduling . 6

2.2 Evaluation of the Related Work . 7

3 Methodology to predict Runtime Behavior 9
3.1 Problem Space and Data arrangement . 9
3.2 Function Analysis . 12

4 Methodology Instantiation 13
4.1 Execution environment . 13

4.1.1 Apache Flink . 13
4.1.2 LRZ Compute Cloud . 15

4.2 Problem Space and Measurements . 17
4.2.1 Use Case K-Means . 18
4.2.2 Measurements . 19
4.2.3 Dataset definition . 23
4.2.4 Adjusted R2 value . 24
4.2.5 Dimensions’ transformations . 24
4.2.6 Determining Statistical Significance of Dimensions 27
4.2.7 Problem Space Refinement . 31

4.3 Function Analysis . 32
4.3.1 Regression . 32

4.4 Multiple Linear Regression Model . 34
4.4.1 Outlier and Leverage point treatment 34
4.4.2 Linear Regression Coefficients . 36
4.4.3 Linear Regression Representation . 39

4.5 Validation of the Regression Model . 43
4.5.1 Normal Distribution of Measurements 44
4.5.2 Dimension’s Correlation and Independence 44
4.5.3 Confidence and Prediction Interval . 46
4.5.4 Evaluation of the Instantiation . 49

5 Runtime Prediction and Regression Model Evaluation 51
5.1 Prediction . 51

ix

Contents

5.2 Configuration Prediction . 52
5.3 Validation of a Regression Model . 53
5.4 Use case K-Means . 54

5.4.1 Application of the Methodology . 54
5.4.2 Runtime Predictions . 54

5.5 Use case Wordcount . 57
5.5.1 Application of the Methodology . 58
5.5.2 Runtime Predictions . 61

5.6 Accuracy of Measurements and Predictions 64

6 Evaluation and Conclusion 69
6.1 Methodology Evaluation . 69
6.2 Outlook and Future Work . 70

A appendix 71
A.1 Measured Runtime Values . 71

A.1.1 K-Means . 71
A.1.2 Wordcount . 77

A.2 Apache Flink Configuration . 82

List of Figures 83

Bibliography 85

x

1 Introduction

Recent trends in almost all areas of big data processing have to deal with an increasing
amount of data and applications. Many scientific areas like meteorology, sociology or physics
have their traditional models to compute their results, but newer applications, with new
programming and executing paradigms on constantly increasing data can be observed.

As the computation powers increased worldwide in the last years, the possibilities of more
computations but also of more complex computations grew with at last the same speed up.
Additionally, the more complex the models became, the more data had to be processed.
This data certainly also had to be stored somewhere. For this reason each computational
environment included a storage for big data.

However, besides classical computer centers with professional maintenance of hardware
and software, more commercial business centers found their way into cloud computations
and the scientific areas, offering computation as a service. Everybody worldwide can rent
their own super computer online, for a certain time, as long as their budget lasts. Today, this
computational philosophy is known as cloud computing and one very profitable sector. It
combines the need of computational power at a certain time with a cost shared maintenance
of the underlying hardware. Instead of buying and maintaining their own hardware servers,
nowadays scientists deploy and terminate virtual machines.

Frameworks like Apache Spark or Hadoop make it even simpler to start computations in
such distributed systems. They offer job submission and controlling utilities, where any user
needs only to submit his compiled code implementations and a corresponding configuration.
In contrast to classical parallel programming models like the Message Passing Interface, any
communication or synchronization within the application does not have to be implemented
explicitly.

Classical parallel computing, where each programmer had to decide when and how a task
is parallelized found no place in cloud environments. The new frameworks instantiated the
parallelism automatically and even optimize the execution.

Today’s scientific questions in this cloud computing sector more often belong not to
the fields of hardware optimization, but rather software optimization. Processing frame-
works have established their place in scientific research and a change in the data processing
paradigm might slowly come up on the horizon. Thus analysis of data often becomes more
important than the data itself.

The need to actually save any data at all is more often refused. Therefore, so-called
data-streaming is also becoming increasingly essential in these computations. If data is only
processed and not stored, it does not have to be sent to the cloud and made available there,
but could instead be easily caught from any stream, available online or artificially created.
It could even minimize the need for big data storages within the cloud environments and
hence be one concern less a user has to think of when planning his computation.

However, this challenge can be transferred to a more general problem, applicable to data-
streaming, but also to any other data based computing, namely the selection of an optimal
configuration for any computation. Such criteria can follow several objectives. For many

1

1 Introduction

users, the overall costs play an essential role. Some users may be concerned by the necessity of
any running resources and may like to optimize their computation to reduce these resources
in order to follow a green IT paradigm, but most users are concerned not if and how the
computation is completed, but when. Time is usually the major factor and not always only
for commercial users.

Time plays an essential role, for instance in an urgent computing situation. Knowing the
temporal behavior of the executed application can not only reduce the runtime by extending
the resources in the essential configurations, but also enables the optimization of the gra-
dation of any computation. For example, every year hurricanes can be observed in several
regions on the planet. All meteorological institutions contribute to predicting the direction
and strength of such a storm. If it comes close to inhabited areas, it is essential and probably
life-saving to have predictions as soon as possible, but also as accurate as possible, mostly
depending on the granularity of the input data.

To fulfill this objective, it is absolutely necessary the know everything about the prediction
model. For instance, on which configuration of how many virtual machines is the compu-
tation finished after one hour, and what is the maximum input to certainly achieve this
runtime. Knowing these answers can improve each prediction, because simply combining
more and more computational power will not at all necessarily accelerate any computation.
Applications react very different and therefore need to be analyzed.

Therefore this thesis will present a methodology to characterize any data-intensive appli-
cation within a cloud environment to describe and finally predict its runtime behavior. This
methodology will enable a runtime prediction dependent on specified configuration values.
Each configuration consists of values of significant parameters, for instance the number of
virtual machines or the applications’ input sizes. In addition, it will also be possible to iden-
tify an optimal configuration for a certain defined subset of the configuration, for example
for a specified target runtime.

Based on runtime value measurements taken for relevant combinations of the defined
problems pace, the main computation will rely on a Multiple Linear Regression. Together
with other statistical methods like different information criteria or a Outlier detection, this
function analysis will determine the statistically significant features whose relation builds
the regression model. Its estimated solution will be the basis for any runtime prediction.

Although data-streaming applications and frameworks are not new to the scientific re-
search, no known approaches exists which focuses a generic prediction model for data-
streaming applications and frameworks. The existing models are either not applicable on
other applications and especially on their input types, or on other job processing frameworks
than the used ones.

This methodology introduced in this thesis can be generalized to multiple algorithms and
applications, also including data-streaming. The instantiation of the methodology using K-
Means and Wordcount as two representative examples of common data analytic algorithms
will be demonstrated in this thesis.

1.1 Structure of the Thesis

Chapter 2 will present four other prediction approaches as the related work. It will be
shown, that all these other approaches have been limited to special set ups and not include
any possibility to adapt generic data-streaming.

2

1.1 Structure of the Thesis

The methodology will be outlined in chapter 3 providing an overview of all major steps
and the underlying problem space. The main part of the function analysis depends on a
statistical approach, namely a Multiple Linear Regression. The methodology will be instan-
tiated in chapter 4 on the application K-Means. Thereby, each part will be presented with
its statistical and mathematical explanations and exemplarily applied to the use case.

The basis of any runtime prediction with the estimated results of the regression model will
be introduced in Chapter 5 and applied to the use cases K-Means and Wordcount. Therewith
the gained instantiated regression models will be evaluated and it will be shown, that they
can be validated. Finally Chapter 6 evaluates the complete methodology and presents future
work related to this thesis.

3

2 Related Work

This chapter will evaluate published work on the same objective, namely to predict runtime
of data-intensive applications or an optimal cloud configuration. In section 2.1 four other
approaches will be presented and afterwards evaluated in section 2.2.

2.1 Prediction Approaches

2.1.1 Performance Prediction Framework

In [VYF+16] the authors around Venkataraman proposed a statical approach to predict the
runtime of long running machine learning applications. The main idea is to measure the
runtime of the applications with previously defined representative parts of the input files.
The prediction result is taken to decide how many virtual machines are needed to complete
a job run within a given objective. The prediction model can follow several user-defined cost
functions to evaluate the best configuration.

Within their paper the authors implemented their framework within the Amazon EC2
cloud using Apache Spark 1.2 as a job submission tool. In contrast to the framework used
in this thesis, Apache Spark supports at the moment of writing only batch data processing.
The user workloads and applications are mostly machine learning algorithms of Apache
Spark’s scalable machine learning library, but also queries from GenBase, a complex analytics
genomics benchmark, or a speech recognition pipeline. For all applications an input was
selected on which each job was started. After 5% to 10% of the complete input file was
processed, the runtime was measured and used as a data point for a non-negative least
squares solver to learn values of their prediction model.

The model was build on four non-linear features, namely a cost term representing the serial
computation runtime, the parallel computation time for algorithms scaling linearly with data,
a term to model communication patterns and lastly a linear term to capture overheads of
scaling by adding more machines to the execution system. The thereby developed model is
able to predict the runtime for these specific applications within an average prediction error
of under 20%. The authors define this as sufficient to choose an appropriate number or type
of instances for the job execution while limiting the time spent on gathering the training
data.

All predictions and executions were limited to predefined VM configurations within the
used cloud. The focus of the prediction is on the number of VMs with the same configuration.

2.1.2 Predicting the best Cloud Configuration

The presented approach from Alipourfard and others in [ALC+17] tries to determine the
best cloud configuration for a given, recurrent big data analytics job.

Their prediction model CherryPick uses Bayesian Optimization based on a few samples
to estimate a confidence interval of the costs and running time of each tested cloud con-

5

2 Related Work

figuration. The buildt prediction model does not have the aim of choosing an optimal
configuration, rather a near-optimal configuration to avoid much overhead.

Their approach is only applicable to repeating jobs, where the cost of searching a config-
uration can be amortized during several subsequent runs. It is evaluated on five big data
applications on overall 66 different cloud configurations. The authors state that CherryPick
can find a near-optimal configuration within 5% of the optimal at the median with 45-90%
chance. Compared to the previously presented work of Ernest, this approach shall reduce
the search time by 90%.

The five applications used are benchmarks based on Apache Spark and Hadoop. They
cover database queries, machine learning workloads and a clustering algorithm.

2.1.3 Kernel Based Predictions

Escobar and others present in their paper [EB16] an approach originally designed for High
Performance Computing (HPC) clusters, but in future possibly applicable to cloud environ-
ments. Their model predicts execution times of parallel scientific applications using empiri-
cal analyses of the application runtimes for small input sizes and the time spent on various
phases of the execution. The estimation of the execution time is based on benchmark kernels,
which are assigned to the different phases of the execution. A regression approach is used
to predict the overall execution time. Following the paper this approach requires only a few
short executions of the application ,each less than a minute, to produce accurate execution
time predictions. The model included only three applications with a more complex scientific
background, like a solver for linear systems or a model of a neutral particle transport.

The authors state that their prediction error ranges from 1% to 15%. However, as the
presented approaches before, this also requires a set of representative small input sizes,
proving a good characterization of the general job executions.

2.1.4 Predictive Scheduling

The paper [LTX16] presents an approach to predict runtime performances of data-streaming
applications based on the framework Apache Storm. Additionally the authors Li and others
introduce a scheduling algorithm to assign the application’s tasks under the guidance of their
prediction results.

The developed prediction model predicts the average tuple processing time of an applica-
tion. Such a data-stream processing system, according to the authors, handles unbounded
streams of data tuples, which last for a long time. Therefore, the time between when a
tuple is collected from a data source and when its processing is completed is used as the
performance metric, the so-called tuple processing time. For its prediction the model also
requires the selected scheduling solution (assignment of threads to workers and their physical
or virtual machines), according to the topology of the application graph.

The presented model is evaluated on three representative applications, Wordcount, LogStream
(read data from log files) and continuous query on a database, all examples of the Apache
Storm framework. The experimental results show the topology-aware prediction method
offering an average accuracy of 84% and the predictive scheduling framework reducing the
average processing time by 35% compared to Apache Storm’s default scheduler.

6

2.2 Evaluation of the Related Work

2.2 Evaluation of the Related Work

Ernest and CherryPick designed performance models for a limited number of applications
with distinct preconditions.

Although Ernest covers several different applications, it requires a specific representative
input file for each of them. This would be especially difficult including data-streaming input,
which can vary in an arbitrary way. However, also for many batch processing applications,
as stated in [ALC+17], it would be very hard to extend Ernest, because for instance the
presented database query benchmark includes almost 100 queries depending on completely
different sets of database tables, and each query is not comparable to the others. Thus, it
would be difficult to determine which query is representable.

In this case, Ernest would build several models to pick the best configuration, but could
take 11 times the search time of CherryPick.

CherryPick, presented in [ALC+17], on the other hand, was executed on specific bench-
marks included in the used Apache Spark framework. This is different from real world
applications which usually have no optimal resource usage. CherryPick relies on representa-
tive workloads of the used applications to suggest a cloud configuration, for instance parsing
daily log files. Therefore, it may be applicable on such a specified use case, but cannot be
simply transferred to other applications.

The presented approach in [EB16] of selecting the optimal kernels for different phases
of an application execution might also be transferred to a cloud environment as stated by
the authors. However, the problem of the main idea of changing an actual kernel might be
limited with the compatibility of any cloud job processing framework. If there are significant
differences between such frameworks running on different kernels needs to evaluated in the
future. This could eventually also be a contribution to the performance model of the thesis
by adding different kernels to the feature set.

For data-streaming applications not much work was published at the time of writing. The
introduced paper [LTX16] is one that faces data-streaming. It is strongly based on Apache
Storm, because it alters the specific sequence of the application parts with its scheduler.
Reducing the runtime compared to Apache Storm’s normal scheduler allows the authors
afterwards to predict the runtime of an execution. This approach is not extendable to any
other framework then Apache Storm, because it relies completely on its architecture. In
contrast to the model developed in this thesis, a generic future version is not intended.

It can be stated that in the moment of writing no other approach was published to develop
a general model focusing on data-streaming applications and frameworks. In addition, all
other prediction models make restrictions on their ability to be applicable to other applica-
tions and frameworks as the ones used in their work.

7

3 Methodology to predict Runtime Behavior

This chapter will present a methodology to characterize an application executed on a dis-
tributed cloud infrastructure regarding the runtime behavior. This methodology outlined in
figure 3.1 will be divided into two main phases.

The first is an iterative process with the aim of determining the underlying problem
space by gathering runtime measurements. Several different configurations of the underlying
infrastructure and the application itself need to be taken into consideration. Therefore,
section 3.1 defines the high dimensional problem space, which covers the possible set screws
of these configurations. From this space configurable features will be selected to build the
basis of the measurements. The obtained measurement data will be used to determine the
statistically significant dimensions and the resulting problem space iteratively.

On this resulting problem space a function analysis will be applied as described in sec-
tion 3.2. It will be mainly affected by a Multiple Linear Regression, which estimates the
linear relationship between the dimensions and hence enables a runtime prediction.

3.1 Problem Space and Data arrangement

Before any mathematical analysis can be applied, the basis for this purpose must be clearly
defined. This problem space includes arbitrary dimensions, generally everything that influ-
ences a cloud job execution. An excerpt of it is shown in figure 3.2. The most important
dimension is the runtime itself, whose behavior this methodology is supposed to predict.
These response and measurement dimensions need to be included in every problem space
this methodology should be applied on.

The underlying cloud infrastructure is the most influencing and hence limiting respectively
enhancing factor. Its dimensions include, for example, the overall cloud computing platform,
the spatial allocation of the nodes and their interconnect, which is a huge influence for all
network-bound applications. Other applications might be CPU-, memory- or I/O-bound and
would therefore profit from the capability of these cloud nodes, especially their computing
power or the attached hard drive disks.

These infrastructure dimensions are very important, but are usually not alterable by any
user, except by the cloud administration. Therefore they are not included in the determina-
tion. Adjustable are all configurations of the virtual machines, which include the operation
system, the amount of CPUs, RAM and disk space, as well as the overall number of virtual
machines. Also the processing framework, which starts and controls the job execution within
the cloud on the deployed virtual machines, sets boundaries to the overall runtime.

Regarding the job itself, the specification of the application with its configuration is also
a major factor. Especially the size of the processed input data influences the runtime. This
impact differs from one application to another. Hence this methodology cannot be applied
to more than one application at a time.

This itemization of dimensions does not claim any totality and could be extended. However

9

3 Methodology to predict Runtime Behavior

Figure 3.1: Graph of the methodology to gain the prediction parameter

these user configurable eight dimensions, dashed in figure 3.2, are supposed to build the
superset of the problem space underlying this methodology.

Under the assumption that disk space is always large enough, the problem space focused
on the configuration of the virtual machines and the application could be defined as shown
in table 3.1.

runtime measured / predicted

virtual machine quantity
allocated CPUs
allocated RAM
operation system
processing framework

application configuration
input size

Table 3.1: Subset of the problem space focused on applications and virtual machines

This problem space is assumed to enhance a generic oriented methodology, because the
deployment configuration of the virtual machines and the application itself is user defined
in every cloud environment.

From these dimensions also only a subset can be chosen to limit the required measurements.
These measurements need to be taken from all desired combinations of the them. Their
number is also affected by the gradation of each dimension. While the operation system
and the processing framework are usually limited and need to be combinable, the hardware

10

3.1 Problem Space and Data arrangement

Figure 3.2: High-dimensional problem space for runtime analysis

configuration can be increased to the maximum capacity of the cloud. This methodology
recommends to increase these dimension values by the power of 2 or 10. From a statistical
point of view, linear increasing values are also possible and sufficient, only limited by the
planned time spent on the measurements. The runtime of all these measurements needs to
be collected together with the configuration of all other dimensions to build the data set.

Dimension’s significance

In preparation of the function analysis, which will apply a Multiple Linear Regression on
the response dimension runtime, all other included dimensions need to be investigated, if
they are statistically significant. Therefore a simple Linear Regression is applied with the
runtime being the response variable and the other dimensions each the prediction variable,
following the regression model

runtime ∼ f(dimension)

to specify the closest transformation f(dimension) of the runtime values dependent on
each dimension. From a predefined selection, these transformations will be determined by
an algorithm.

With the Akaike’s Information Criterion, detailed in the same section, the significance
will be exposed. If one dimension shows no significant influence on the runtime, it should
be disregarded to minimize the further measurements.

This iteration starts again with the reduced problem space, which can also be extended
with a new dimension. This proceeding should be continued until the significance of all

11

3 Methodology to predict Runtime Behavior

dimensions is proved.

3.2 Function Analysis

For the function analysis an appropriate Multiple Linear Regression is chosen. Such a
regression is a statistical approach to estimate the linear relationships between variables.
In this case these variables are the defined dimensions of the problem space. The resulting
regression function to be estimated can be describes as

Y ∼ X ·β =
[
1 X1 X2 · · · Xp

]
·

β0
β1
...
βp

 (3.1)

where Y is the response variable (runtime), X contains the independent variables (the
other dimensions) and β their regression coefficients. The selected regression will estimate
these coefficients on the basis of the measured data, after a necessary review of Outlier and
Leverage points.

Finally, these estimators of β will be used to predict new runtime values within a certain
interval. Therefore new dimension values need to be applied to vector X in equation (3.1)
returning a prediction runtime.

This methodology uses several mathematical definitions, which will all be deduced in the
next chapter 4. In this chapter also the complete methodology will be instantiated on the
use case K-Means. Correspondent predictions of this application and of a second use case
Wordcount, as well as the evaluation of the methodology, will be presented in chapter 5.

12

4 Methodology Instantiation

This chapter will instantiate the defined methodology to predict runtime behavior on the
example use case application K-Means, which is an iterative clustering algorithm, assigning
given data points to optimized centroids.

The problem space for this thesis is defined in section 4.2, owing to the execution en-
vironment only including a subset of the introduced dimensions. It will be presented in
section 4.1 introducing the used LRZ Compute Cloud, a shared infrastructure, and the used
job processing framework Apache Flink.

To gather data for the function analysis runtimes of all combinations of the selected di-
mensions have to be measured within the described environment. To these results a function
analysis needs to be applied to estimate the relationship between them. The mathematical
idea is presented in section 4.3. As a result of this preliminary work, a Linear Regression is
chosen to be the evaluation method, detailed in section 4.4.

This regression analysis consists of several analytic steps. The problem space dimensions
and the gathered runtimes are combined with the basic dataset in section 4.2.3. Before a
linear regression can be performed, the regression transformation needs to be determined for
each dimension (section 4.2.5) and, if there is any statistical significance and contribution
to the response value, the runtime (section 4.2.6). If not, the data set must be refined as
described in section 4.2.7

Afterwards possible Outlier or Leverage points of the regression are identified in sec-
tion 4.4.1, and it is assessed if they can be removed. Finally, the regression formula is verified
and its coefficients can be calculated in section 4.4.2. The regression model is validated in
section 4.5 at the end of this chapter.

4.1 Execution environment

For any runtime measurement, the basic cloud infrastructure is an important factor as stated.
All computations and measurements in this thesis were executed on the LRZ Compute Cloud.
It is detailed in section 4.1.2 with its hardware and operating system specifications. The
still young processing framework Apache Flink was chosen to execute the applications. It
will be introduced in section 4.1.1.

4.1.1 Apache Flink

Apache Flink is a young open-source system for processing streaming and batch data. It is
a top-level project of the Apache Software Foundation since January 2015 and is a further
development of the German Stratosphere project at TU Berlin1.

This processing framework is built on the main idea that data processing applications like
real-time analytics, batch data processing (static data) as well as machine learning algorithms

1https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces69

13

https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces69

4 Methodology Instantiation

can be defined and executed as pipelined fault-tolerant dataflows. The following summary
bases upon the findings of [CKE+15].

Data-stream processing and static batch data processing are traditionally considered as
very different types of applications. The execution and implementation were done in separate
systems. Apache Storm or IBM Infosphere Streams are two examples for dedicated streaming
frameworks, while batch processing is used in execution engines for Hadoop like Apache Spark
or Apache Drill.

The traditional batch data analysis was the leading data processing mentality, which was
and is of course mainly used in most use cases. However, it is becoming more and more
apparent, that nowadays a rising number of large-scale data processing use cases handle
continuously produced data. These streams of data originated in web or application log files,
technical sensor data, or in transaction log records of databases like any Twitter Stream.

Nevertheless, today’s setups often ignore the continuous nature of data production and
instead batch these records into static data sets, for example hourly or daily summaries,
which are then processed in a time-ignoring fashion. Architectural patterns like the lambda
architecture combine batch and stream processing systems, but suffer from high latency and
complexity, as well as very variable inaccuracy, as time is not explicitly handled by the
application code.

Apache Flink follows a new paradigm which integrates data-stream processing as the
unifying model for continuous streams and batch processing, both in the programming model
and in the execution engine. In addition to durable message queues, which allow quasi-
arbitrary replay of data streams (for example in Apache Kafka or Amazon Kinesis), the
Flink stream processing programs do not differentiate between processing the latest real-
time events or terabytes of historically observed data. Instead, these different kinds of
computations start at different points in the enduring stream, and maintain different states
during their computations.

Yet Flink also acknowledges that there is, and will always be, a need for dedicated batch
processing. Hence batch programs are treated as special cases of streaming programs, where
the stream is finite, and the record’s order and time is not relevant, within a specialized API
for processing such static data sets.

As a result of the findings of [CKE+15], Flink presents itself as an adequate and effi-
cient batch processor on top of a streaming runtime, including graph analysis and machine
learning.

Apache Flink’s architecture

As shown in figure 4.1 based on the results of [CKE+15], any Flink cluster consists of three
types of processes: the controlling client, the job manager as the master node, and at least
one task manager as a worker node. The client transforms the Java or Scala (the only two
languages supported by Flink) program code to an optimized dataflow graph and submits it
to the job manager, which coordinates and tracks the distributed execution of the dataflow.
The actual data processing is done by the task managers, which execute the operators to
produce streams and reports on their status as well as findings to the job manager. Flink
has also integrated a checkpoint system to recover such a dataflow execution.

14

4.1 Execution environment

DataSet API
Batch	Processing

DataStream	 API
Stream	Processing

Runtime
Distributed	Streaming	Dataflow

Local
Single	 JVM,	
Embedded

Cluster
Standalone,	YARN

Cloud
Google	Comp.	Engine,

EC2

Fl
in
k
M
L

M
ac
hi
ne
	L
ea
rn
in
g

G
el
ly

G
ra
ph

	A
PI
/L
ib
ra
ry

Ta
bl
e	
AP

I
Ba

tc
h

CE
P

Co
m
pl
ex
	E
ve
nt
	

Pr
oc
es
si
ng

De
pl
oy

Co
re

AP
Is	
&
	Li
br
ar
ie
s

Ta
bl
e	
AP

I
St
re
am

in
g

Figure 1: The Flink software stack.

Flink Client

Job	Manager

Task	Manager	#1
Task	
Slot

Ac
to
r	S
ys
te
m

Memory/IO	Manager

Network	Manager

Task	
Slot

Task	
Slot

Scheduler

Checkpoint	Coordinator

Data
Streams

f i n a l E xe cu ti on En vi ro nm en t en v = Ex ec ut io nE nv ir on me nt .g et Ex ec ut io nE nv ir on me nt () ;

/ / C r e a te i ni ti al I te ra ti ve Da ta Se t
I t e r a t i ve Da ta Se t< In te ge r> i ni ti al = e nv .f ro mE le me nt s(0) .i te ra te (1 00 00);

D a t a S e t <I nt eg er > it er at io n = in it ia l. ma p(ne w Ma pF un ct io n< In te ge r, I nt eg er >() {
@ O v er ri de
p u b li c In te ge r ma p(In te ge r i) t hr ow s Ex ce pt io n {

d ou bl e x = Ma th .r an do m();

d ou bl e y = Ma th .r an do m();

r et ur n i + ((x * x + y * y < 1) ? 1 : 0);
}

}) ; Flink Program

Dataflow	Graph

Task	Manager	#2
Task	
Slot

Ac
to
r	S
ys
te
m

Memory/IO	Manager

Network	Manager

Task	
Slot

Task	
Slot

Graph	 Builder	&	Optimizer

Ac
to
r	S
ys
te
m

D
at
af
lo
w
	G
ra
ph Ac

to
r	S
ys
te
m

Ta
sk
	S
ta
tu
s

H
ea
rt
be
at
s

St
at
is
ti
cs

Tr
ig
ge
r	
Ch
ec
kp
oi
nt
s,
	…

…

Figure 2: The Flink process model.

APIs, Flink bundles domain-specific libraries and APIs that generate DataSet and DataStream API programs,
currently, FlinkML for machine learning, Gelly for graph processing and Table for SQL-like operations.

As depicted in Figure 2, a Flink cluster comprises three types of processes: the client, the Job Manager, and
at least one Task Manager. The client takes the program code, transforms it to a dataflow graph, and submits
that to the JobManager. This transformation phase also examines the data types (schema) of the data exchanged
between operators and creates serializers and other type/schema specific code. DataSet programs additionally
go through a cost-based query optimization phase, similar to the physical optimizations performed by relational
query optimizers (for more details see Section 4.1).

The JobManager coordinates the distributed execution of the dataflow. It tracks the state and progress of each
operator and stream, schedules new operators, and coordinates checkpoints and recovery. In a high-availability
setup, the JobManager persists a minimal set of metadata at each checkpoint to a fault-tolerant storage, such that
a standby JobManager can reconstruct the checkpoint and recover the dataflow execution from there. The actual
data processing takes place in the TaskManagers. A TaskManager executes one or more operators that produce
streams, and reports on their status to the JobManager. The TaskManagers maintain the buffer pools to buffer or
materialize the streams, and the network connections to exchange the data streams between operators.

3 The Common Fabric: Streaming Dataflows
Although users can write Flink programs using a multitude of APIs, all Flink programs eventually compile down
to a common representation: the dataflow graph. The dataflow graph is executed by Flink’s runtime engine, the
common layer underneath both the batch processing (DataSet) and stream processing (DataStream) APIs.

3.1 Dataflow Graphs
The dataflow graph as depicted in Figure 3 is a directed acyclic graph (DAG) that consists of: (i) stateful
operators and (ii) data streams that represent data produced by an operator and are available for consumption
by operators. Since dataflow graphs are executed in a data-parallel fashion, operators are parallelized into
one or more parallel instances called subtasks and streams are split into one or more stream partitions (one
partition per producing subtask). The stateful operators, which may be stateless as a special case implement
all of the processing logic (e.g., filters, hash joins and stream window functions). Many of these operators
are implementations of textbook versions of well known algorithms. In Section 4, we provide details on the
implementation of windowing operators. Streams distribute data between producing and consuming operators
in various patterns, such as point-to-point, broadcast, re-partition, fan-out, and merge.

30

Figure 4.1: The Flink process model from [CKE+15]

4.1.2 LRZ Compute Cloud

The physical infrastructure that was used is the LRZ Compute Cloud2. The computation
power3 is defined by 95 nodes with several different configurations. The built-in CPUs
(central processing units) are Intel Xeon E5540, X5650 or E5-2660v2 from which 1 to 8 are
available on one node. The available RAM (random access memory) is 1 to 32 gigabytes on
each computational node. The cloud usage is not exclusive, but is frequent shared, which
will especially be important when evaluating the standard deviation of the measurements.

The cloud implementation is an OpenNebula 5.2.0 system. It offers the possibility to
expose some functionalities by means of a RESTful interface, compatible with the Amazon
Elastic Compute Cloud (EC2) API. With this interface the creation and termination of
virtual machines, as well as information exportation from them like IP addresses or running
status, are easily possible and can be also used in the framework explained in the next
subsection.

All virtual machines are set up with Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-85-generic
x86 64). For each configuration unique templates were created, which differ in the amount of
CPUs per VM and RAM per VM and which can be instantiated with the RESTful interface.
The number of virtual CPUs of a VM is always identical to the real number of CPUs per
VM. Also for each application a unique image was created, which includes the appropriate
input data sets, to minimize the traffic within the cloud and the startup time.

2https://www.lrz.de/services/compute/cloud_en/
3https://www.lrz.de/services/compute/overview/

15

https://www.lrz.de/services/compute/cloud_en/
https://www.lrz.de/services/compute/overview/

4 Methodology Instantiation

Figure 4.2: Experiment cloud setup infrastructure

Apache Flink was implemented on all images in version 1.3.2, the up-to-date build from
August 2017. A shared file-system like Apache Hadoop was not used, instead all input files
were local inputs on each worker and master of the Flink computation, which reduced the
time delay of the execution to a minimum regarding the transfer of input files.

Automation framework

To run all needed measurements, control the virtual machines, gather the runtime results
and save them into a database, and also to manage the datasets, a Python based framework
was created, which was compatible to the RESTful interface of the OpenNebula cloud. It
was so possible to run several measurements in parallel.

In figure 4.2 the complete setup can be seen. The cloud resources were only accessible
within the Munich Scientific Network (MWN). Inside the cloud the controller, also a virtual
machine, automatically sets up the Flink job and task manager virtual machines and starts
the job execution. Afterwards the result is saved into a relational MySQL database.

For the huge amount of measurements several job executions with different configurations
or applications were done simultaneously.

16

4.2 Problem Space and Measurements

VMs CPUs per VM RAM per VM input size

1 1 1 1 GB

2 2 2 10 GB

4 4 4 100 GB

8 8 8

16 16

Table 4.1: Problem space dimension values

4.2 Problem Space and Measurements

The introduced execution environment already specified some non-alterable problem space
dimensions. As the processing framework Apache Flink was chosen, running on the operating
system Ubuntu 14.04.5 LTS. With these two definitions both dimension are not alterable and
hence removed from the problem space. Additionally, for this instantiation the application
and its main configuration were fixed and are therefore also no longer included in the problem
space. During the measurements only the input size was altered.

With the specifications of the LRZ Compute Cloud, also hardware boundaries were defined,
because the cloud could not be physically changed. The virtual machines, for example,
are deployed to nodes regarding the overall load and not concerning any spatial objectives
between them. As stated, the cloud was also not exclusively used and so the hardware
resources were limited to avoid blocking the whole cloud.

Therefore the remaining hardware dimensions could only affect the virtual machines (VMs)
which were used as Flink Client, job manager and task manager (compare Figure 4.2). The
three dimensions added to the problem space in this case were the quantity of VMs, the
amount of CPUs per VM and the amount of RAM per VM.

The resulting, alterable four dimensions are listed in table 4.1, together with the values
used in this instantiation that are expected to be significant. As can be seen all hardware
dimensions are increased by powers of 2: 20, 21, and so on, and the input size of the
application is increased by the powers of ten: 100, 101, and so on.

With the resulting runtime the five measurable dimensions are set. Yet for the later
following Linear Regression, correlations of the prediction dimensions also need to be con-
sidered. One possibility would be to add all cross combinations dimr × dimr, which would
lead to a lot of unnecessary overhead in the mathematical analysis. However, with some
logical examination, only such dimensions can correlate, which are affected by each other.
In this case the input size is unaffected by all others, but the other dimensions could correlate
due to the fact that they build one virtual machine together. For the Linear Regression, the
problem space (PSLR) consists of seven dimensions:

PSLR = {runtime, vms, cpus, ram, input, cpus · vms, ram · vms, cpus · ram}

This has no influence on the measurements, because the additional dimensions are only
combinations of already stated measurements.

17

4 Methodology Instantiation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

start

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration 1

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration 7

x

y

Figure 4.3: Example of K-Means iterations to find centroids

4.2.1 Use Case K-Means

Before the measurements are presented the use case application will be introduced. K-Means
is an iterative clustering algorithm. It is defined in the description of the application in the
Apache project documentation4.

K-Means is given a two-dimensional set of data points with double values and a set of
centroids, which define the first mean of the clusters. The aim is to find convergent cluster
centroids and assign each data point to one of the clusters. In figure 4.3 the clustering
is shown on an artificial data set. The first figure shows the initial centroids and the not
clustered data points.

In each iteration, the algorithm computes the distance of each data point to each centroid.
Hence each data point is assigned to the cluster which has the shortest distance from the
centroid. After each iteration, the cluster centroids are shifted to the mean position of all
data points which are assigned to it after the iteration.

With these new centroids, the next iteration is started. The algorithm terminates after a
fixed number of iterations (default 10 if not initially specified) or if the cluster means do not
significantly move in an iteration. Then the centroid converge to their final position.

The Flink implementation works on double values of data points and centroids, provided
as plain text files, where each row contains two space separated double values. Additionally,
the centroids file contains a leading index. The application computes an assignment of data
points to centroids, where each data point is annotated with the index ID of the cluster it
belongs to.

For the K-Means measurements in this use case the input sizes were defined as listed in
table 4.2, according to the requirements of the methodology.

The file size of the points’ text file is equivalent to the number of points used. To get
a more tangible value, the number of data points was used instead of the file size, which
is statistically allowed, like a scalar transformation. All points and centroids were random
variables in the range from 0.000 to 100.000 each with three positions after the decimal
point.

4https://ci.apache.org/projects/flink/flink-docs-release-1.3/api/java/org/apache/flink/

examples/java/clustering/KMeans.html

18

https://ci.apache.org/projects/flink/flink-docs-release-1.3/api/java/org/apache/flink/examples/java/clustering/KMeans.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/api/java/org/apache/flink/examples/java/clustering/KMeans.html

4.2 Problem Space and Measurements

amount of
points centroids5 iterations5 file size measurements

5e+07 100 10 0.590 GB 184
20e+07 100 10 2.360 GB 52
50e+07 100 10 5.900 GB 151

200e+07 100 10 23.602 GB 40
500e+07 100 10 59.005 GB 23

Table 4.2: K-Means input sizes for measurements

4.2.2 Measurements

All measurements are performed in the described execution environment, which may not be
changed during all measurements. It is also mandatory that the configuration of the Flink
framework is not refined. The configuration used in this use case is listed in the appendix A.2.

If the complete problem space as described in table 4.1 and 4.2 would be covered, 500
measurements should be taken. Due to time constrains, not all combinations could be
measured. Finally, 85 different configurations in 450 single measurements were taken, which
are listed in the appendix A.1. To execute this still huge number of Flink runs, an automation
like the framework described in section 4.1.2 is recommended, although it is of course not
necessary. If this methodology is applied within a shared infrastructure, all measurements
should to be taken several times to determine the deviation of the results. The smaller the
deviation, the better the prediction possibility of the regression model.

Flink returns the overall runtime to the standard output of the client, which submitted
the job to the job manager. It is embedded in a single line: Job Runtime: 8764299ms,
where the runtime is given in milliseconds. It is also possible to fetch the runtime from
the Flink RESTful API, which returns to completed detailed job information at the web
client of the job manager with job-manager:8081/joboverview/completed referred to the API
documentation6.

In Figure 4.4 the complete series of measurements of the use case K-Means is shown.
The pairwise dimension’s plot was created with R7. At a first sight, the dimensional-wise
plots show certain diffrent characteristics, which are elementary for the following Linear
Regression. In the upper left plot for example, the number of VMs is plotted against the
runtime. The shape of the theoretically placed curve might suggest a decreasing logarithmic
behavior of the runtime values, while the input curve on the right bottom could suggest a
linear increasing runtime value. These transformations will be determined in detail and used
for evaluating the dimension’s statistical significance later.

These four plots include all taken measurements, which makes it difficult to identify the
runtime behavior directly. To give a better insight Figure 4.5 shows a Box-Whisker-Plot of
the measured runtimes for only one input value. Here the number of VMs is plotted against
the runtime and the input is fixed with 500 million points. The plot shows the mean runtime
with their quartiles, indicting the variation of the measured values. The reduction of the
runtime can be seen more precisely, but the plot also indicates a higher deviation of the

5fixed configuration values for all measurements
6https://ci.apache.org/projects/flink/flink-docs-release-1.3/monitoring/rest_api.html
7https://www.r-project.org

19

https://ci.apache.org/projects/flink/flink-docs-release-1.3/monitoring/rest_api.html
https://www.r-project.org

4 Methodology Instantiation

0
5

10
15

20
25

30

0 500 1000 1500

vm
s

runtime in min

0
2

4
6

8

0 500 1000 1500

cpus / vm

runtime in min

0
5

10
15

0 500 1000 1500

ram
 in G

B
 / vm

runtime in min

0
1000

2000
3000

4000
5000

0 500 1000 1500

input in m
illion points

runtime in min

F
ig

u
re

4.4:
R

-p
lot

of
th

e
m

ea
su

rem
en

ts
in

each
d

im
en

sion
again

st
ru

n
tim

e
in

m
in

u
tes

for
th

e
u

se
case

K
-M

ean
s

20

4.2 Problem Space and Measurements

1 2 4 8 16

10
0

20
0

30
0

40
0

vms

ru
nt

im
e

in
 m

in

Figure 4.5: Box-Whisker-Plot with the number of VMs plotted against the measured runtime
in minutes for the use case K-Means with an input size of 500 million points

measured values, which will be investigated in the next section.

Standard deviation of measurements

To describe different measurements within one function, a Linear Regression will be used.
A basic requirement is a normal distribution of the underlying values. Therefore, in a
first step the normal distribution of the measured runtimes is assumed. This means that
all measurements of the same configuration, the same value of the introduced dimensions
number of VMs, CPUs per VM, RAM per VM and input size, are normally distributed.
Hence, each of these series of measurements has an error, which will be determined and
valued with the standard deviation of these single measurements.

The estimation of this standard deviation, also called the mean squared error of individual
measurements, is defined, as all other definitions in this section from [BHL+12], with the
formula

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2

where N describes the number of measurements, xi the measured value and x̄ the mean
measured value.

It is calculated for each single series of measurement. Afterwards, these deviations are
assumed to be normally distributed again, thereby the standard deviation of all series of
measurements and so of the application’s measurements can be obtained. Therefore, the
arithmetic mean v̄ and the standard deviation of all single standard deviations are calculated.

21

4 Methodology Instantiation

0 20 40 60 80

0
5

10
15

20
25

number of observation

st
an

da
rd

 d
ev

ia
tio

n
(σ

m
ea

s.
) 2σ

σ

σ

σmeas.

Figure 4.6: Standard deviation and mean of all measurements, use case K-Means

Following [BHL+12] also the error of the arithmetic mean of any series of measurement also
needs to be considered. The resulting estimator of the standard deviation and mean are
defined by:

σseries =

√√√√ 1

N − 1

N∑
i=1

(σmeasure,i − ¯σmeasure)2 (4.1)

v̄ = ¯σmeasure ±
σseries√

N

To be certain that all values fall into a specified interval with a confidence of 0.95, the
arithmetic mean needs to be extended by twice the standard deviation. This leads to the
final formula:

σmin = v̄ − 2 · σseries σmax = v̄ + 2 · σseries
The σmin is not interesting in this case, because the aim is to estimate the maximum

deviation. So σmax will be used to estimate the quality of the series of measurements.
In the end, the Linear Regression will calculate a function that will enable prediction of

non-measured runtimes. These predictions, of course, will be described within a prediction
interval, which will be larger the more error-loaded the original data is. To qualify the error
of the regression the error of all series of measurements has to be taken into account.

In Figure 4.6 the standard deviations of all single measurements of the application K-
Means are plotted. Additionally, the standard deviation of all single standard deviations is

22

4.2 Problem Space and Measurements

plotted: the arithmetic mean of standard deviations as a red line and twice the standard
deviation in both directions within the grayed block.

For the pictured example K-Means the normalized and so percentage values are

v̄ = 0.0825± 0.0063 σseries = 0.0557 σmax = v̄ + 2 · σseries = 0.2002.

This leads to a maximum deviation of 20.02 %, which will be especially taken into account
when validating the regression model in section 4.5.

The deviation of these measurements is very high, which has two reasons. On the one side,
as could be already seen during the implementations of the measurements, the runtime values
of the same configuration are wide spread. This is caused by the execution environment, the
LRZ Compute Cloud. Its configuration of the nodes is very different and the load on the
cloud is also very variable and therefore influencing.

Such a discrepancy was even observed in short runs under one hour. However, when
extended to large measurements of over 24 hours, it had even more impact on the result.
Thus, the worst absolute example had a lowest runtime of 21:09 hours, but a maximum
runtime of 24:24 hours, a difference of 3:15 hours. Of course, this is better than the worst
short run with a minimum of 0:14 hours and a maximum of 0:24 hours, regarding the relative
deviation.

On the other side, the deviation depends on the number of measurements (compare equa-
tion (4.1)). This number is low, because the overall setup of this thesis was delayed due to
a long debugging phase at the beginning when implementing the Flink environment and the
measurement automating. Hence the measurements could not be done in the desired range
due to these time constraints.

So this use case has to deal with such a high deviation, which will also influence the
prediction out of the Linear Regression, but of course not the methodology itself. It will be
suitably independent of the exemplary taken measurements.

4.2.3 Dataset definition

The values gained by the measurements are not passed completely to the function analysis.
For each identical configuration setup the processed runtime is defined by the arithmetic
mean of all measured runtimes. All these averaged runtimes are the basis for the calculation
of the standard deviation of the complete series of measurements shown in section 4.2.2.

The resulting dataset is not normalized and consists besides the double runtime-means
only of integer values. An excerpt of values of the application K-Means is shown in table 4.3.

runtime vms cpus ram input

175323.625 8 8 4 5e+07

2740305.500 4 1 8 20e+07

43684560.000 8 1 8 500e+07

Table 4.3: Dataset excerpt K-Means as passed into the MLR.

For the application K-Means 450 single measurements were added to the initial data
set. Two third of these runtimes were measured at the input sizes 5e+07 and 500e+06 as
detailed in table 4.2. For the biggest input only 23 measurements could be taken due to

23

4 Methodology Instantiation

time constraints at the end of the thesis. They were averaged for the same configurations to
69 observations, which build the final basis for the regression model.

The runtime value is given in milliseconds. For the purpose of legibility this dimension
is reduced to minutes by division of 1000 · 60 = 3600 for all plots. This mathematical
transformation has no influence on the statistical validity and can hence be applied.

4.2.4 Adjusted R2 value

The so-called R-squared (R2) value is a statistical measure of how close the observed data
corresponds to the fitted regression line. It is also known as the coefficient of determination.
For a multiple regression the responding value is the multiple R2. Its value will be used to
evaluate a regression model with a corresponding regression formula. The better it fits to
the given observations, the closer the value is to 1.

The difference between the predicted value and the actual value of the original data is
called the residual. The Residual Sum of Squares (RSS) for a single prediction variable, the
Mean Sum of Squares (MSS) and the resulting multiple R2 are given by

MSS =
n∑
i=1

(yi − ȳ)2 R2 = 1− RSS

MSS

where yi is the dependent variable observation, ŷi its prediction from the regression model
and ȳ the mean of the observations.

In order to define a comparable value over different linear regression models it is neces-
sary to involve the number of degrees of freedom (prediction variables) and the quantity of
measured data points. Therefore, the adjusted R2 refines the multiple R2 and is defined as

R2
adj. = 1− (1−R2)

n− 1

n− p− 1

where p is the number of prediction variables without the intercept and n is the amount
of data points, the so-called observations. The thereby gained quality value is comparable to
other Linear Regressions, although the dimensionality is different. n−1

n−p−1 in the upper equa-
tion penalizes a higher number of independent variables in comparison to the observations
and lowers the multiple R2 value.

4.2.5 Dimensions’ transformations

To perform a MLR on the complete dataset it is necessary to define the transformation of
the independent dimensions number of VMs, CPUs per VM, CPUs · VMs, RAM per VM
and input size in relation to the dependent dimension runtimes. These transformations will
be described by a mathematical figure fi : xi 7→ yi for i = 1,..,7, which will be inserted in
equation (4.6) as the functions f1, . . . , f7. The better it fits, meaning the higher the R2

adj.

value is, the better the data points are mapped. Hence the aim is to find the best fitting
transformation for each dimension.

When plotting such a two-dimensional (2D) correlation it might be possible to define
the function simply on closer inspection, but it is recommended to determine this with an
algorithm comparing different R2

adj. values and take the highest as the resulting function.

24

4.2 Problem Space and Measurements

0

50

100

0 5 10 15

vms

ru
nt

im
e

in
 m

in regression line

fitted

overfitted

underfitted

Figure 4.7: Regression line plot with overfitting and underfitting

Therefore, the dataset will be separated into five 2D-datasets with the dimension runtime
and in each case one of the dependent dimensions. The resulting datasets are shown in
table 4.4.

(a)
runtime

vms
(b)

runtime

cpus
(c)

runtime

ram
(d)

runtime

input

(e)
runtime

cpus · vms (f)
runtime

cpus · ram (g)
runtime

vms · ram

Table 4.4: 2D-datasets to determine the dimensions’ transformations

On these datasets a simple Linear Regression will be applied. The possible resulting
figures are limited by the objective to derive a possibly high generic regression function.
Any overfitting shall be excluded as well as possible.

Overfitting occurs when the regression model is too complex, for example by having too
many independent parameters for the amount of information in the datasets [HJ15]. In
that case, the R2

adj. value would be exaggerated because the fitting is too accurate to the
observed data. Hence all new prediction would be extremely defective. Figure 4.7 shows
three different regression lines, while the red one is the accurately fitted, the green one is
overfitted and the blue one is underfitted.

For the plotted graphs, the R2
adj. values and the corresponding regression function are

listed in table 4.5.

To avoid this effect, the parameter of each dimension is limited to one transformation
instead of a linear combination of several. Also the range of transformations is limited,
especially any polynomial term is not considered as generalizable and therefore discharged.

25

4 Methodology Instantiation

regression function R2
adj. fitting

runtime ∼ vms+ vms2 + vms3 + vms4 1.000 overfitted

runtime ∼ exp(1
vms) 0.929 fitted

runtime ∼ vms 0.375 underfitted

Table 4.5: Regression function with overfitting.

The selected seven possible transformations are as follows:

y ∼ x y ∼ exp(x) y ∼ exp

(
1

x

)
y ∼ 1

x
y ∼ exp(−x) y ∼ ln(x)

y ∼
√
x

With all these functions a simple Linear Regression is done with all dimensions of the
problem space. For each try the R2

adj. value is computed. The function with the highest

value will be the chosen one for this dimension. If the R2
adj. values are equal, the F−statistic

is used to determine the transformation.

Algorithm 1 Selection of dimensions’ transformations

1: procedure DimensionsFunction(runtimes, dim)
2: F ← {dim,

√
dim, 1

dim , ln dim, exp dim, exp−dim, exp 1
dim}

3: R2
adj. ← −∞

4: Fstat. ← −∞
5: for all f ∈ F do
6: model←MLR(runtimes ∼ f)
7: if R2

adj.(model) > R2
adj. then

8: result← f
9: R2

adj. ← R2
adj.(f)

10: Fstat. ← Fstat.(f)
11: else if R2

adj.(model) = R2
adj. then

12: if Fstat.(model) > Fstat. then
13: result← f
14: R2

adj. ← R2
adj.(f)

15: Fstat. ← Fstat.(f)
16: end if
17: end if
18: end for
19: return result
20: end procedure

The f-statistic is a measurement for the existence of any linear association between Y and
any of the X variables, following [She09], and therefore if at least one of the coefficients is

26

4.2 Problem Space and Measurements

nonzero. It is defined by

Fstat. =
MSS −RSS

p
· n− p− 1

RSS

where p is the number of prediction variables without the intercept and n is the amount
of data points.

The complete selecting process is shown in algorithm 1.
To illustrate this process the resulting plots of the resulting Linear Regression curves for

all dimensions are shown in figure 4.8. In each plot all measurements are plotted, each
independent dimension against the runtime in minutes. The red curves correspond to the
selected, best fitting transformations from the described analysis. The other curves are
plotted in contrast with their transformations in the legend, limited to two lines to not
reduce the visibility. The analysis bases on the complete K-Means dataset described before.
Due to the fact that the dataset consists of many distributed measurement values, which
correspond to different values of the other dimensions, the regression lines do not always
clearly look like the most significant. Hnec this is a good example, why the function cannot
be defined only on closer inspection. It is absolutely necessary to look at the R2

adj. values.
Decided by algorithm 1 the best transformations for the independent dimensions in the

use case are

fvms : y 7→ 1

x

fcpus : y 7→ exp
1

x

fram : y 7→ exp
1

x

finput : y 7→
√
x

fcpus·vms : y 7→ exp
1

x

fram·vms : y 7→ exp−x

fcpus·ram : y 7→ exp−x

If two or more transformations would have the same maximum R2
adj. value, the optimal

transformation is determined by the highest f-statistic value. It is a good indicator of whether
there is a relationship between the predictor and the response variables. The further the
f-statistic is beyond 1 the better it is.

All these transformations describe the best fitting estimation for all observations in each
dimension. In the following sections they will be used to determine on the one hand the
statistical significance of each dimension and on the other hand, if added to the Linear
Regression due to significance, the estimators of the resulting regression coefficients of each
dimension with which the runtime will be predicted.

4.2.6 Determining Statistical Significance of Dimensions

In the previous sections, the problem space and its dimensions were defined, as well as the
appropriate transformations. Before the calculation of the Multiple Linear Regression can be

27

4 Methodology Instantiation

0 5 10 15 20 25 30

0
50

0
10

00
15

00

vms

ru
nt

im
e

in
 m

in

selected: 1/vms
rejected: vms
rejected: ln(vms)

0 2 4 6 8

0
50

0
10

00
15

00

cpus / vm

ru
nt

im
e

in
 m

in

selected: exp(1/cpus)
rejected: ln(cpus)
rejected: 1/cpus
measurements

0 5 10 15

0
50

0
10

00
15

00

ram in GB / vm

ru
nt

im
e

in
 m

in

selected: exp(1/ram)
rejected: ram
rejected: ln(ram)
measurements

0 100 200 300 400 500
0

50
0

10
00

15
00

input

ru
nt

im
e

in
 m

in

selected: sqrt(input)
rejected: input
rejected: ln(input)
measurements

0 10 20 30 40 50 60

0
50

0
10

00
15

00

cpus * vms

ru
nt

im
e

in
 m

in

selected: exp(1/(cpu*vms))
rejected: exp(cpu*vms)
rejected: cpu*vms
measurements

0 50 100 150 200 250

0
50

0
10

00
15

00

ram * vms

ru
nt

im
e

in
 m

in

selected: exp(−ram*vms)
rejected: log(ram*vms)
rejected: ram*vms
measurements

10 20 30 40 50 60

0
50

0
10

00
15

00

cpus * ram

ru
nt

im
e

in
 m

in

selected: exp(−cpu*ram))
rejected: exp(cpu*ram)
rejected: 1/cpu*ram
measurements

Figure 4.8: Dimension-wise regression functions and transformations

28

4.2 Problem Space and Measurements

initialized, the dimensions need to be tested for significance. This means that it is necessary
to determine if any transformed parameter improves the quality of the regression and the
fitting itself or if it is statistically insignificant and has no additional benefit. This section
will identify the best predicting model.

The already explained R2
adj. value is one measurement that can be used. Thus, all possible

combinations are iterated in ascending order. First the simple regression function t ∼ 1 is
tested and afterwards all other dimensions and their combinations. To do so 2n tests are
necessary, where n is the number of independent dimensions. In the use case K-Means, it
would be required to test seven dimensions in 27 = 128 tests. From all of them the R2

adj.

value would be compared and the combination with the highest value would be the optimal
formula.

Besides this naive approach more complex statistical methods exist, which reduce the
executed amount of tests. Hence, the methodology will introduce the Akaike’s Information
Criterion (AIC) and the Bayesian Information Criterion (BIC).

An important instrument in both criteria is the likelihood function defined in [Rei11]. It
is proportional to the density function for a random variable to be observed in a statistical
model. Within the given parametric model, the likelihood function

L(θ) = L(θ; y)

measures the relative plausibility of various values of θ for a given observed data point y.
The values of the likelihood function are sometimes standardized by the maximum value of
it, the maximum likelihood estimators. For calculations purpose, instead of the likelihood
function its natural logarithm, the log-likelihood function, is used:

l(θ) = ln (L(θ; y)).

The AIC, as well as the BIC, are based on this log-likelihood function. Both definitions are
derived from [She09]. AIC tries to balance the degree of accuracy of the fit with a penalty
for the complexity of the model. As defined, the smaller the value of AIC the better the
model tested.

The formula used to describe the calculation of the AIC in this thesis is derived from the
statistical program R, which is uses

AIC = −2 · l(θ) + 2 · (p+ 2)

where p is the number of prediction variables, adding two for the intercept and the error.
In literature other definitions can be found, but since the exemplary calculation is done in
R, also its definition is taken. 2 · (p+ 2) is called the penalty term which increases the AIC
the more independent variables are in the model. It is generalized as k · (p+ 2), where k is
the penalty factor. On the one hand, interpreted from [Aka11], models which are too simple
to adequately fit the data will be characterized by a large fit accuracy term due to small
penalty terms. On the other hand, models that correspond well with the data, but do this
with unnecessary parameters, will be characterized by small fit accuracy terms due to large
penalty terms. Models which provide an eligible balance between correctness to the data
and parsimony of parameters correspond to small AIC values due to the sum of the two
components.

29

4 Methodology Instantiation

The bayesian approach BIC is in [She09] also defined as the smaller the value the better
the model. It is derived from the general AIC definition with a penalty factor of k = ln(n)
instead of k = 2 in the AIC:

BIC = AIClogn = −2 · l(θ) + ln (n) · (p+ 2) (4.2)

where n is the amount of data points. For n > 8 (log n > 2) the penalty term in BIC is
greater than in AIC. Hence BIC penalizes complex models more heavily and prefers simpler
models in comparison to AIC.

As stated in [She09] there is no clear choice between AIC and BIC, but regarding the
sample size, a trend is describable. Because BIC is asymptotically consistent as a selection
criterion, the probability that BIC will identify the correct model in a family of models
(including the best predicting model) approaches one, as the sample size increases with
N →∞. AIC tends to choose too complex models for N →∞. However, for finite samples,
BIC often chooses too simple models, because of the strong penalty on complexity. The best
way is to consider both, weight the benefits against each other, and especially review the
observation size.

Besides these possibilities, more exist like for example a weighted likelihood method, but
this thesis is confined to AIC and BIC. An efficient approach to analyze the regression
function for the best predicting model can be done with R. Therefore it is only necessary
to define a maximum and minimum formula and execute the AIC or BIC method. The
Linear Regression Model is instantiated with the R-command lm(formula). The following
example contains all eight transformed dimensions, the measured runtime dependent on the
four configurable dimensions and the three combined ones:

Listing 4.1: BIC for the best predicting model in R

formula_min <- formula("runtime ~ 1")

formula_max <- formula(runtime ~ I(1/vms)+sqrt(cpus)+

exp(1/ram)+sqrt(input)+exp(1/I(cpus * vms))+

exp(-I(ram * vms))+exp(-I(cpus * ram)))

bestmodel <- step(lm(formula_min , ...),

scope = list(lower = formula_min , upper = formula_max),

direction = "both", criterion = "BIC", k=log(n))

getCall(bestmodel)

Here a BIC with a k = log(n) weighted penalty term is determined in both directions,
which means that R starts with the minimal formula and ends with the complete stated
regression formula and the other way around. In each step the BIC value is calculated and
the parameter with the lowest BIC under the previous BIC is permanently added. Because
the BIC is a modulation of the AIC (compare equation (4.2)), it is still stated as AIC in the
output of R:

30

4.2 Problem Space and Measurements

Listing 4.2: BIC step to determine next added dimension

Step: AIC =2779

runtime ~ sqrt(input) + exp(1/I(cpus * vms))

Df Sum of Sq RSS AIC

+ I(1/vms) 1 1.03e+15 1.15e+16 2774

+ exp(-I(cpus * ram)) 1 4.94e+14 1.20e+16 2777

+ exp(-I(ram * vms)) 1 3.42e+14 1.22e+16 2779

+ sqrt(cpus) 1 3.30e+14 1.22e+16 2779

<none > 1.25e+16 2779

+ exp(1/ram) 1 1.30e+13 1.25e+16 2781

- exp(1/I(cpus * vms)) 1 6.95e+15 1.94e+16 2814

- sqrt(input) 1 2.37e+16 3.62e+16 2867

In a previous step sqrt(input) + exp(1/I(cpus * vms)) were already added to the best
predicting model marked with ”-”. In this step, exp(1/ram) will also be added, because
it has the lowest AIC value over the ”<none>” value. Continued to the end, this algorithm
exposes its best model as:

runtimeBIC ∼
1

vms
+
√
input+ exp (−ram · vms)

As mentioned before, the BIC method tends to choose a simple model, because of the
heavy penalty on complexity compared to the sample size. Running the same configuration
with the AIC method, the best predicting model is:

runtimeAIC ∼
1

vms
+
√
input+ exp (−ram · vms) + exp

(
1

cpus · vms

)
(4.3)

Because the sample size in the use case is finite, the AIC is chosen and the best predicting
model would be in equation (4.3). In this case, the BIC would completely remove the
dimension cpus, which would be an undesired effect, because the number of CPUs had an
obvious effect on the runtime, although not significant enough for the BIC with this amount
of the sample size.

In the AIC result, both cpus and ram are also not included in their own dimension, only in
a combined one. That these dimensions did not primarily influence the runtime was already
seen during the measurements and was expected. That for example the dimension cpus in
combination with vms is significant for the AIC is caused by the fact that the contributing
Flink task managers are defined by the sum of all CPUs per VM and it is therefore an
important value.

However, if one dimension would be completely removed from the regression model, for
example by applying the stricter BIC on the problem space, thereby also the data set would
change, which will be explained in the next section.

4.2.7 Problem Space Refinement

With the determinations in the last section, the significant dimensions are exposed. With
these the main parameters of the Multiple Linear Regression are obtained.

If a dimension would be completely rejected, in the transformation of their single dimension
and in all combined ones, it would be necessary to alter the problem space and with it the

31

4 Methodology Instantiation

runtime vms CPUs ram input

6696720.9 4 4 8 5e+08

6838352.2 4 2 8 5e+08

16354774.5 8 2 8 2e+09

15204575.0 8 1 16 2e+09

→

runtime vms ram input

6767536.5 4 8 5e+08

16354774.5 8 8 2e+09

15204575.0 8 16 2e+09

Table 4.6: Dataset dimensions’ reduction.

data base. Therefore it would be necessary to recalculate the arithmetic mean of the runtime
dimension. As defined in section 4.2.3 the measurements are not passed as single observations
into the regression, but as the arithmetic mean runtime of the same configuration.

For this reason, if a dimension is dropped, for the same values of the remaining dimensions
the mean of the single runtime values needs to be recalculated. Regarding the use case, by
using the BIC the dimension cpus would be removed as shown in table 4.6.

Afterwards the methodology described so far would have to be applied again regarding
all resulting values: the standard deviation of measurements (section 4.2.2), the statistical
significance of the dimensions (section 4.2.6) and the determination with the AIC.

4.3 Function Analysis

With the defined and discussed problem space dimensions as well as the gathered runtime
values of the measurements, the main calculation can be started. This section will present
the methodology from processing the dimensions and values through a Linear Regression to
obtain a high dimensional function. This shall be as generic as possible, but still predict
runtimes as accurately as possible. These two objectives need to be weighed up against each
other to find a balance: generic enough to be comparable to other applications, but of course
accurate enough to predict the runtime within an acceptable error tolerance.

With the resulting function it will be possible to predict any runtime value of any cloud
configuration covered from the problem space. In this thesis, a multivariable Linear Re-
gression will be used. As stated in [HJ15], such models are used extensively in almost all
scientific areas, like medicine, ecology, biostatistics and many others, and are highly reliable
under the discussed circumstances.

4.3.1 Regression

Regression analysis is a statistical approach with a set of statistical processes for estimating
the relationships between variables. The regression model is stated in terms of a weighted
sum of a set of independent variables to predict a response (dependent) variable. The
overview in this section based on the findings of [HJ15].

The Simple Linear Regression models the relationship between two variables Y and X.
Then, a specific value of X will predict the value of Y. Mathematically described, the regres-
sion of a random variable Y on a random variable X is

E(Y |X = x)

where E is the expected value of Y with the specific value x of X. Such a predictive
regression model can be notated with all factors as:

32

4.3 Function Analysis

Y = E(Y |X = x) + ε = β0X0 + β1X1 + ...+ βpXp + ε

where Y is the response variable, X1, ..., Xp are the predictor variables, β0 is an optional
intercept parameter, X0 = 1 is considered and β1, · · · , βp are the weights or regression coef-
ficients corresponding to X1, · · · , Xp. The random error term ε is necessary, because there
will be some variation in Y due strictly to random phenomenon that cannot be predicted
or explained, as defined by [She09]. ε has a mean of zero and a variance of σ2. So all
unexplained variations are called the random error, but ε does not depend on X, nor does
it carry any information about Y.

The same equation can be written in matrix notation, which will be used in the remaining
thesis:

Y = X ·β =
[
1 X1 · · · Xp

]
·

β0
β1
...
βp

+ ε (4.4)

The shown example is a Multiple Linear Regression (MLR) model, which means that
the response is a linear combination of more than one parameter, the regression coefficients
β0, · · · , βp and the predictor variables X1, · · · , Xp. A simple Linear Regression would only
imply one single scalar predictor variable and one single scalar response variable. It is
assumed that the variables are normally distributed:

VAR(Y |X = x) = σ2.

where the variance can be written as the squared standard deviation detailed in sec-
tion 4.2.2.

For both variables it is important that only the coefficients have to be linear. The variables
themselves are processed as real numbers and can also be mathematically transformed to any
arbitrary type of function. This can be for example an exponential (e.g. expx), logarithmic
(e.g. log x) or polynomial (e.g. x+x2 +x3) transformation. Therefore the Linear Regression
is very powerful while covering all possible linear combinations of mathematical terms. The
main aim is to determine the coefficients above, which is called fitting the data by the model.
One approach is the ordinary least squares (OLS) method.

In OLS the objective is to minimize the sum of the squared differences between the ob-
served responses (initial values in the given dataset) and the predicted values from the linear
regression function: the residual sum of squares (RSS) shown in equation (4.5). The smaller
the difference is, the better the model fits the data.

RSS =
n∑
i=1

(yi − ŷi)2 (4.5)

Another approach is to use weighted least squares, where the initial datasets can be
weighted if they are not equally reliable. Other, more general models also exist, but as a
normal distribution for the observations is assumed they were not considered.

Therefore, the Linear Regression will be used to estimate the function of prediction. Its
definition and derivation will be presented in the next sections, resulting in the prediction
formula in section 4.4.2.

33

4 Methodology Instantiation

0e+00 2e+07 4e+07 6e+07 8e+07

−
2e

+
07

0e
+

00
2e

+
07

4e
+

07

Fitted values

R
es

id
ua

ls

lm(formula)

Residuals vs Fitted

80

70

17

0.00 0.05 0.10 0.15 0.20

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula)

Residuals vs Leverage

17

70

80

Figure 4.9: Outlier and Leverage points

4.4 Multiple Linear Regression Model

The selected regression model is used to estimate the coefficients β0, · · · , βp of the regression
formula. The response variable Y is the runtime t and the prediction variables are the
configuration dimensions determined in section 4.2.6: vms, input, ram ·vms and cpus ·vms.
Applying them to the equation (4.4) the initial formula for the analysis is:

runtime ∼
[
1 1

vms

√
input exp

(
1

cpus·vms

)
exp (−ram · vms)

]
·

β0
β1
β2
β3
β4

+ ε (4.6)

To determine the quality of a regression the adjusted R-square value will be used.

4.4.1 Outlier and Leverage point treatment

Each data point included into the regression analysis has an influence on the result. The
influence differs from point to point, but all should to be within a certain range. To identify
potentially misleading values, for example due to a huge measurement error, it is convenient
and necessary, as for example described in [She09], to identify Leverage points and Outliers.

Hence, a Leverage point is an observation of the regression model which independent
values have an unusually large effect on the estimated regression model. Outliers are points
that do not follow the pattern set by the bulk of the data.

Outliers can be easily identified by plotting the residuals or listing them in a table. Fig-
ure 4.9 shows the residuals of the use case K-Means, in which the points 70 and 80 are
marked as Outliers, and the points 17, 70 and 80 as Leverage points.

In the left figure the fitted values of the model are plotted against the residuals. The red
line shows the average of the residuals at each value of the fitted points. In an optimally
balanced fitting Linear Regression between the observations that red line would be horizontal.
The right plot shows the leverage to the standardized residuals, which is the residual divided
by its standard deviation, and again the average as a red line. This red line is close to an
optimal balance of the observations, although the model is driven by some spikes.

34

4.4 Multiple Linear Regression Model

0.00 0.05 0.10 0.15 0.20

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula)

Cook's distance
0.5

0.08

0.08

0.5

Residuals vs Leverage

17

70

80

Figure 4.10: Cook’s distance plot for observations in the use case K-Means

The more the points are displayed at the right end of the horizontal scale, the more
influence these points have on the model. Additionally, the more the points are at the top or
bottom of the vertical scale, the further is their distance from the regression function. Very
important to consider are the points in the upper right or bottom right corner.

However, because these values are hard to interpret on their own, a combined value is
generally accepted nowadays: Cook’s distance. Detailed in [Coo11], it is a means to value
the influence of single observations on the linear regression model. Cook’s distance is based
on the idea of contrasting the results of a regression with and without an observation, a data
point.

Cook’s distance is not a rigorous criterion for automatically accepting or rejecting cases.
It only indicates an anomalous behavior not according to the rest of the model, or it can
indicate the most important case in the analysis that may not be represented by the other
data points.

Important is that the Cook’s distance does not distinguish these possibilities, so all cases
with relatively huge values need to be considered manually whether they can be excluded
from the data set or whether even the model needs to be refined. Cook recommends to
test all identified points whose distance is relatively high or over the value of 0.5. Cook’s
distance Di of observation i (for i = 1, . . . , n) is defined for R8 as the sum over differences in
the regression model if observation i is removed from the model by

8http://r-statistics.co/Outlier-Treatment-With-R.html

35

http://r-statistics.co/Outlier-Treatment-With-R.html

4 Methodology Instantiation

Di =

∑n
j=1

(
ŷj − ŷj(i)

)2
(p+ 1) · RSSn

where ŷj is the value of j-th fitted response when all the observations are included, ŷj(i)
the value, where the fit does not include observation i, RSS is the residual sum of squares
defined before and n the sample size, p is again the number of prediction variables, here
adding one for the intercept.

With this definition, Cook’s distance can be included into the outlier detection. The
distance values can be gained manually in a table again, or with R, which is used here. In
figure 4.10 the Leverage is plotted against the Standardized residual, and the Cook’s distance
is drawn as a dashed red line. One line for the value 0.5 suggested by Cook in [Coo11] and
one with the in this literature named value of four times the mean of all distances, 4·D̄ = 0.08
for the mentioned use case.

If there are one or more points over the value of 0.5 or relatively far away from all others,
then these points need to be investigated, starting with the most divergent. If the value of
such a point is considered relevant and the measured runtime is plausible, it may not be
removed from the dataset. The Outlier and Leverage point detection cannot be misused as
cherry picking to fit the model better to the data. Usually all measurements are a part of
the model and none should be removed. Nonetheless if measurements show an enormous
deviation in their single values this observation is influenced by abnormal loads or network
traffic in the cloud. Then, and only then, may such a point be removed.

For all other detected points which are not removed, the model could not be completely
sufficient in the regression. Any questioning if this regression model is insufficient is declined
for this methodology, because it is considered strong and generic enough to deal with these
possible outliers which are a part of a desired effect. Therefore, it can be stated again, that
the quality of the regression model turns on the quality of the measurements.

However, if the outlier is considered defective with the underlying single measurements,
the data point should be removed from the data set. Afterwards the model would not have
to be processed from scratch again, because here the already determined model is optimized
and not challenged.

In the use case all observations are under the 0.5 value of Cook’s distance. Although they
are marked as an Outlier respectively as a Leverage Point in the plot due to a relative high
distance to the average, they may not be removed. All these corresponding runtimes belong
to measurements of a smaller input size at only one VM. These runtimes might be not totally
according to the rest of the observation, but the measured runtimes are reasonable and may
never be removed.

This would affect the regression model. To prevent this, no observation is removed and
all are finally passed to the estimation of the regression coefficients.

4.4.2 Linear Regression Coefficients

After the outlier treatment all preliminary work is done to calculate the coefficients of the
Multiple Linear Regression. With the determination of the AIC the final regression formula
was found for the use case K-Means:

36

4.4 Multiple Linear Regression Model

runtime ∼
[
1 1

vms

√
input exp 1

cpus·vms exp−ram · vms
]
·

β0
β1
β2
β3
β4

+ ε (4.7)

As stated by Brian Caffo in [Caf15], linear regressions and especially for multivariate
regression models are never fitted manually in practice, but with software like R. However,
the general idea can be described. The ordinary least squares solutions needs to estimate the
values of the coefficients β0, · · · , βp. These estimates are the values of b0, · · · , bp for which
the residual sum of squares defined in [She09]

RSS =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − b0 − b1x1i − b2x2i − · · · − bpxpi)2 (4.8)

is minimized. This results in a system of p+ 1 equations and p+ 1 unknowns and should
not be solved without a computer program. With the support of R the regression model is
set and the linear regression is applied as shown in Listing 4.3.

Listing 4.3: Multiple Linear Regression command in R

model = lm("runtime ~ sqrt(input) + exp(1/I(cpus * vms))

+ I(1/vms) + exp(-I(ram * vms))", data)

There the formula is describe with the dimensions stated in equation (4.7). The lm function
defines an OLS Linear Regression with the dataset data and is addressable with the variable
model. This function calculates the estimators of the regression: the coefficients. Beside
them other important values are provided. The complete output is shown in listing 4.4.

Residuals

Residuals are described with their mean and extreme values. In an optimal case, the median
should lay at zero, here it is shifted to negative values. Due to the definition the value is
calculated with yi − ŷi, which means, negative residuals are fitted with a too high value.
In the use case negative residuals result in too long runtimes compared to the observations.
Following the model output, the majority is fitted with too long runtimes, while the max-
imum residual belongs to a fitted value of a much too short runtime. This data point 64
belongs to the longest measurement and was marked as an outlier, but considering that the
leverage was not large, it was not removed from the dataset in the section before.

37

4 Methodology Instantiation

Listing 4.4: Multiple Linear Regression output from R

> summary(model)

Call:

lm(formula = "runtime ~ sqrt(input) + exp(1/I(cpus * vms))

+ I(1/vms) + exp(-I(ram * vms))", data = measures)

Residuals:

Min 1Q Median 3Q Max

-28833089 -6191417 -320140 5413416 39556687

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.79e+07 3.91e+06 -7.12 4.1e-10 ***

I(1/vms) 3.38e+07 6.36e+06 5.31 9.4e-07 ***

sqrt(input) 7.86e+02 5.67e+01 13.87 < 2e-16 ***

exp(1/I(cpus * vms)) 7.15e+06 3.54e+06 2.02 0.047 *

exp(-I(ram * vms)) -1.25e+09 2.65e+08 -4.70 1.1e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10600000 on 80 degrees of freedom

Multiple R-squared: 0.788 , Adjusted R-squared: 0.777

F-statistic: 74.1 on 4 and 80 DF , p-value: <2e-16

Regression Coefficients

The coefficients are the estimates of the β0, ..., βp variables, where β0 is named the intercept.
The others describe the factors of the corresponding dimensions and together define the slope
of the regression function. Their values can be found in the column Estimate and based on
equation (4.7) the prediction function of this use case is defined by:

Y = truntime =
[
1 1

vms

√
input exp

(
1

cpus·vms

)
exp (−ram · vms)

]
·

−2.79e7
3.38e7
7.86e2
7.15e6
−1.25e9

+ ε

(4.9)

The influence of each dimension cannot be read from the values of the coefficients, because
they deal with the absolute values of the data set and their transformation. For example
the dimension vms is only [11 = 1.000; 1

32 = 0.031], but the range of the input size is

[
√

5e7 = 7, 071;
√

5e9 = 70, 711].

The Std. Error is an estimate of the standard deviation of each coefficient, the discrep-
ancy between the fitted value of the response variable and the actually observed value.

The last two columns define the statistical significance of each dimension. The major
idea following [Caf15] is to reject the null hypothesis, which states that each independent
dimension has no effect on the dependent response. Therefore the Pr(>|t|)-value is a
measurement whether any (linear) relationship exists or not.

38

4.4 Multiple Linear Regression Model

According to [Pri17] the t value is the estimate divided by the standard error and is
compared to the values in the Student’s t-distribution, which describes the expected behavior
of the mean of a certain number of observations. If 95% of this t-distribution are closer to
the mean than the t-value of the estimated coefficient, the Pr(>|t|)-value is 0.05 (5%),
which is meant to be the significance level. A Level of 0.05 or less is generally accepted to
reject the null hypothesis.

As it can be seen in the model summary all dimensions influence the response variable
and the null hypothesis can be rejected with a 99% confidence for the dimension cpus · vms
and with a confidence of 99.9% for all others.

The Residual Standard Error

The standard deviation of the residuals is described as the Residual standard error and
is a measure of the quality of the complete regression model. Because the regression formula
defined before included an error term, it is not possible to predict the runtime perfectly.
This given error is the average the response deviates from the observed perfect regression
line.

The degree of freedom in statistics is the number of variables in the final calculation
which are free to vary. It can also be described as the dimension of the subspace of predictive
dimensions. In the case of a Linear Regression they are defined as the amount of observations,
subtracted by the number of independent dimensions and one for the intercept:

df = n− p− 1.

In this use case the degrees of freedom are 85− 4− 1 = 80.

Qualitative Regression Measurements

The Multiple and Adjusted R-squared values were already explained in section 4.2.4.
The R2

adj. has the final value 0.777. Its prediction capability will be evaluated in the next
chapter 5.

The F-statistics described in section 4.2.6 is an indicator if any relationship between
the prediction and the response variables exists or not. With a value of 74.1 as shown in
listing 4.4 a relationship is assumed. The final p-value is equivalent to the defined Pr(>|t|)-
valued, but for the entire regression model. The value indicates a very high significance, so
the model and the obtained results can be stated significant for the given data set.

4.4.3 Linear Regression Representation

The specified coefficients are estimated by the regression model and the estimated runtime
is given in equation (4.9).

Results of a five-dimensional space are very difficult to plot clearly arranged. To solve
this problem, the sample space is split and only a subset is displayed. In each plot in
figure 4.11 and 4.12 one independent dimension is plotted against the dependent runtime.
The observations are inserted with their error range derived from the standard deviation of
all measurements. The second dimension splits these observations at two distinct values, the
lower one in the left part, the higher one in the right part.

The third dimension colors all observations according to their values. The last variable is
fixed. In most cases, this is the value for ram · vms. In addition, the resulting regression

39

4 Methodology Instantiation

curves are indicated with two supplementary fixed values of the third, coloring dimension.
An overview is given in table 4.7.

dimension identification

runtime y-values
1st x-values

2nd split (left, right)
3rd color
4th fixed value

Table 4.7: Dimensions’ features of regression plots in figure 4.11 and 4.12.

The runtime and input values for all plots and the underlying regression model were trans-
formed to be readable. The runtime is given in minutes and the input size in 107 (1e7) points.
To all regression curves an uncertainty should be added, which was not possible within these
plots. A plot with prediction and confidence intervals will be given in section 4.5.3.

Plot 4.11 (a) shows the input size drawn against the runtime. The excerpt covers the
runtime for 1 and 8 virtual machines. The data points are colored depending on the amount
of cpus · vms, which varies from 1 to 64. The used coloring used is also shown in the legend
on the right. ram ·vms is fixed to 64. All points are also displayed with a standard deviation
of ±2 · 20.02% of their value, which is derived from the deviation of all measurements.

Additionally, two regression curves are plotted, colored according to the amount of cpus ·
vms, in this case the red one shows the fitting for cpus · vms = 1 and the orange one for
cpus · vms = 16. All lines have the same slope in common, but differ in the intercept.

If all variables would be valued in equation (4.9) without the independent in this plot,
the resulting regression function according to the left red curve can be written by inserting
vms = 1, cpus · vms = 16 and ram · vms = 64 as:

Y = truntime =
[
1 1

1

√
input exp

(
1
16

)
exp−64

]
·

−2.79e7
3.38e7
7.86e2
7.15e6
−1.25e9

+ 0

= 1.35e7 + 7.86e2 ·
√
input

As can be seen, the runtime increases with a gradient input size, given through the trans-
formation with the square root

√
input. The slope is hence defined by the input-coefficient

of the regression model and the intercept by the sum of the other dimensions. The nega-
tive runtimes, which are logically not possible, occur at a very low input size with a higher
product of virtual machines and CPUs per VM. These prediction values are misfits due to
a generally more accurate fit on the majority of the dataset, which has an up to a hun-
dred times larger input size. In general, the prediction behavior is still conform with the
expectations and the results of the observations.

In plot (b) of figure 4.11 the decreasing runtimes of the observations are plotted dependent
on the values of vms. Similar to 4.11 (a), representing regression parameters are defined by
cpus · vms = 1 for the red and cpus · vms = 16 for the orange curve, which differ again only
in the intercept, not in the slope and shape.

40

4.4 Multiple Linear Regression Model

K−Means: vms = 1 K−Means: vms = 8

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0

500

1000

1500

input in 1e+06 points

ru
nt

im
e

in
 m

in

ram*vms

64

cpus*vms

1

2

4

8

16

32

64

(a) runtime ∼ input, cpus · vms coloured, vms splitted, ram · vms = 64, fitted
runtimes for cpus · vms = 1 in red and cpus · vms = 16 in orange regression curves

K−Means: input = 500e+06 points K−Means: input = 2,000e+06 points

0 5 10 15 0 5 10 15

0

500

1000

1500

vms

ru
nt

im
e

in
 m

in

ram*vms

64

cpus*vms

1

2

4

8

16

32

64

(b) runtime ∼ vms, cpus · vms coloured, input splitted, ram · vms = 64, fitted
runtimes for cpus · vms = 1 in red and cpus · vms = 16 in orange regression curves

Figure 4.11: Regression function plots in R against input and vms

41

4 Methodology Instantiation

K−Means: input = 500e+06 points K−Means: input = 5,000e+06 points

0 10 20 30 0 10 20 30

0

500

1000

1500

cpus*vms

ru
nt

im
e

in
 m

in

ram*vms

64

vms

1

2

4

8

16

32

(a) runtime ∼ cpus · vms, vms coloured, input splitted, ram · vms = 64,
fitted runtimes for vms = 1 in red and vms = 16 in orange regression curves

K−Means: input = 2,000e+06 points K−Means: input = 5,000e+06 points

0 50 100 0 50 100

0

500

1000

1500

ram*vms

ru
nt

im
e

in
 m

in

cpus*vms

64

vms

1

2

4

8

16

(b) runtime ∼ ram · vms, vms coloured, input splitted, cpus · vms = 64,
fitted runtimes for vms = 1 in red and vms = 16 in orange regression curves

Figure 4.12: Regression function plots in R against cpus · vms and ram · vms

42

4.5 Validation of the Regression Model

With this view the exponential runtime behavior can be seen, defined by the transfor-

mation exp
(

1
cpus·vms

)
. For this excerpt the input size is set to 50e+07 and 200e+07. The

inking indicates that the values of cpus · vms and rams · vms = 64 stay the same.

The third dimension cpus · vms is plotted in figure 4.12 (a), with the input size dividing
the plots at the values 50e+07 and 500e+07. The observations are colored with the number
of vms. The regression functions are defined by vms = 1 for the red and vms = 16 for the
orange one and rams · vms = 64 stays still fixed.

The shape of these regression functions is similar to the one in 4.11 (b), but not equal.
This is caused by the coefficients of the current dimension, which affect the slope of the
exponential curve. The inserted values only shift the curve up and down on the runtimes by
changing the intercept.

For plot (b) in figure 4.12 ram · vms is plotted against the runtime, again with the input
dividing the data at the values 50e+07 and 500e+07. The observations are colored with
the number of vms and the regression functions are again settled for vms = 1 for the red
and vms = 16 for the orange one. This time cpus · vms = 64 is the fixed value of the last
dimension.

The curves increase rapidly on the smallest values. Unfortunately the small combination
of ram · vms was only measured with 50e+07 points. Therefore only in the left plot the sig-
nificant gradient is visible. The rest of the function converges to 0, due to the transformation
exp (−ram · vms).

This behavior corresponds to the measurements and the expectations, because a very
low amount of gigabytes RAM per VM slows down the job computation or even makes it
impossible, but from a distinct level it has no influence on the execution.

All plotted regression lines have the distinct estimation of the runtime as a value, but as
shown before, this model needs to consider an error, which was disregarded so far. However,
it will be investigated in the next section introducing the prediction and confidence intervals.

4.5 Validation of the Regression Model

To instantiate the developed methodology in this chapter mainly two preconditions were
assumed. On the on hand the normal distribution of the measurements was postulated.
It is statistically not possible to classically prove any underlying distribution entirely, but
with the Shaprio-Wilk test statistic a null hypothesis, which could rather deny a normal
distribution, will be presented on an excerpt of the measurements in subsection 4.5.1.

On the other hand, to initially apply a Linear Regression, the linear independence of
the contribution dimensions was assumed. To substantiate this assumption any statistical
correlation can be calculated, which allows a statistical interference if the used dimensions
do not correlate completely. This correlation is shown in subsection 4.5.2.

Furthermore, the so far plotted regression curves did not include any error tolerance. The
Linear Regression values this uncertainty by adding the prediction and confidence intervals,
which will be introduced in subsection 4.5.3.

An evaluation of the model will be given at the end of this section.

43

4 Methodology Instantiation

4.5.1 Normal Distribution of Measurements

Testing for assumptions of distributions, especially for normality, has been an important area
of statistical research. Shapiro and Wilk presented a statistical procedure for the hypothesis
of a normal distribution of the data set in their paper [SW65].

The problem thereby is, that a classical proof, as used in other problems, is usually not
possible, because the underlying data never follows the normal distribution entirely. So it is
always an estimation if the presumption of the distribution can be made or not. In general,
it is easier to reject a distribution than to prove it. However, as stated in the paper, the
use of statistical techniques, like the here used Linear Regression, is in many cases more
robust than the underlying assumption and hence can also be applied on data sets where
the normal distribution is not completely assured.

The null-hypothesis presented in [SW65] defines the observations as normally distributed.
The presented test statistic is given by

W =

(∑n
i=1 aix(i)

)2∑n
i=1(xi − x̄)2

where x are the observation values, n the sample size and a defines expected values from a
standard normal distribution. The null hypothesis is rejected if the derived p-value (compare
section 4.4.2) is less or equal 0.1. In R the value can be computed and the result is given in
listing 4.5.

Listing 4.5: Shapiro-Wilk normality test in R

> shapiro.test(measurements)

Shapiro -Wilk normality test

data: measurements

W = 0.96367 , p-value = 0.7827

The used example of the measurements consists of 14 measurements with the configuration
vms = 4, cpus = 1, ram = 4 and input = 5e+07. The Shapiro-Wilk normality test computes
a p-value of 0.7827, which is greater than 0.1. Hence the null hypothesis is not rejected
and therewith a normal distribution can be assumed.

4.5.2 Dimension’s Correlation and Independence

For the Linear Regression all measurements were also assumed to be independently dis-
tributed. It is an initial condition, to apply such a regression model. For any other case, if
they were not normally distributed, another likelihood function and probably also another
regression type would have been necessary.

To investigate this, the dimension’s correlation is analyzed. It is a statistical measurement
how strongly two variables have a linear relationship with each other. The measure of this
correlation is called the coefficient of correlation and can be calculated in different ways.
The most usual measure is the Pearson coefficient, which is described in [HJ15]. Therefore,
the empirical covariance COV between a pair of data (xi, yi) is needed, which is

44

4.5 Validation of the Regression Model

1 −0.17

1

−0.26

0.52

1

−0.04

0.91

0.39

1

0.71

0.28

0.03

0.41

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ru
nt

im
e

vm
s

cp
us

vm
s

ra
m

vm
s

in
pu

t

runtime

vms

cpusvms

ramvms

input

Figure 4.13: Correlation plot of regression dimension from R

COV(x, y) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

where n is the size of the observations. With this definition, the correlation COR is given
by

COR(x, y) =
COV(x, y)

σxσy

where σi is the correspondent estimate of the standard deviation for the observations.
The correlation has to be between −1 to 1 and for the case equal to −1 or 1 exists a direct
linear relationship and thus the regression would not be valid. The closer the correlation
is to these two values, the stronger is the dependence. 0 would indicate no correlation. In
R it is possible to gain these values with the function cor(data). The values are shown in
table 4.8, and in a plot in figure 4.13, where the transparency of the printed values indicates
no correlation, but the full blue and red colors a direct one.

As it can be seen, the three independent dimensions vms, cpu · vms and input have no or
rather only less correlation. The combined dimension ram · vms do not correlate completely
with the underlying dimensions but more than the others. However, because no correlation
is 1 or -1, the regression is valid and no direct dependence could be investigated. The
dependent variable runtime is also shown, which mostly depends on the input size, which
already could be seen in the result interpretation before.

45

4 Methodology Instantiation

runtime vms cpus · vms ram · vms input

runtime 1.000 -0.169 -0.259 -0.042 0.712

vms -0.169 1.000 0.524 0.909 0.277

cpus · vms -0.259 0.5240 1.000 0.389 0.034

ram · vms -0.042 0.909 0.389 1.000 0.406

input 0.712 0.277 0.034 0.406 1.000

Table 4.8: Correlation values of regression dimensions.

4.5.3 Confidence and Prediction Interval

The estimated value for any prediction at a given point X is derived from the calculation in
the regression model. The definition in equation (4.9) needs to be extended by a standard
error to create a prediction interval, as stated in [HJ15]. This is very important, because
a prediction by itself does not disclose how precise the prediction may be expected. To
calculate such an error term, some preliminary definitions are necessary.

The variance of the estimators is calculated with the covariance matrix of the model.
The covariance COV of two random variables is a measure of dependences as stated in
section 4.5.2. In this usage, it is defined for the estimates of the regression as:

COV(βi, βj) = E
[
(βi − β̂i)(βj − β̂j)

]
The covariance between the same random variables, here the regression coefficients, is

also called the variance VAR(β) = COV(β, β) = σβ
2, which is also the same as the squared

standard deviation.

With that definition the Variance-Covariance Matrix, the matrix of the estimated co-
variances between the parameter estimates in the linear regression model, can be defined
as:

V =

COV(β1, β1) · · · COV(β1, βn)
...

. . .
...

COV(βn, β1) · · · COV(βn, βn)

.
The variance of the complete prediction is defined as the product of the prediction vector

times the Variance-Covariance Matrix times the transposed prediction vector:

σ2pred = Xpred ·V ·XT
pred

Confidence Interval

On account of these previous definitions the confidence interval can be calculated. Therefore,
with a confidence level of 95%, the true value of the estimated coefficient is located within
this interval, as defined in [HJ15]. This two-sided interval takes the form of an estimate plus
and minus a t-quantile (usually 1− 0.95) times the standard error:

Iconf = tpred±(Tn−p,1−0.95 ·
√
σpred)

46

4.5 Validation of the Regression Model

where Tn−p,1−0.95 is the is the looked quantile of the t-distribution with given n degrees of
freedom (the amount of observations) and p independent variables. Its value can be found
in the respective literature9.

Prediction Interval

To specify the interval in which the true value of the prediction is located with a distinct
confidence (usually also 95%), the prediction interval needs to be calculated. It is wider
than the confidence interval, because it also includes an uncertainty of noise of σpred, which
is estimated with the Pearson correlation coefficient described in [HJ15] as

σ′pred =
RSS

d

where d are the degrees of freedom of the model. Therefore, if the regression model
has a huge residual standard error (compare equation (4.8)) and only a finite number of
observations, the possible range of the true prediction value gets noticeably wider. The
resulting prediction interval is hence given by

Ipred = tpred±(Tn−p,1−0.95 ·
√
σpred +σ′pred).

As shown, the confidence and prediction intervals are very meaningful instruments when
evaluating the gained regression model. To give a subsequent example, the use case K-Means
will be investigated. R also gives the possibility to determine the independent variables first.
The R output of the command confint(model, level=0.95) returns their confidence level,
shown in table 4.9.

2.5% estimation 97.5%

(Intercept) -3.56e+07 -2.79e+07 -2.01e+07
√
input 6.73e+02 7.86e+02 8.99e+02

exp
(

1
cpus·vms

)
1.09e+05 7.15e+06 1.42e+07

1
vms 2.11e+07 3.38e+07 4.64e+07

exp (−ram · vms) -1.77e+09 -1.25e+09 -7.19e-08

Table 4.9: 95% confidence interval of the estimated coefficients.

Thus, for one unit increase of one variable (transformed dimension), the mean of the
dependent dimension (runtime) will increase by between the 2.5%- and the 97.5%-confident
value units of the dimension with a 95% confidence.

Hence, for one unit increase in
√
input, for example if the input increases from 25 to 36:√

25 →
√

36 : 5 → 6, with a confidence of 95% the mean runtime will increase by between
6.73e+02 and 8.99e+02 units (milliseconds in the use case). The same is valid for the other
dimensions with the given intervals.

9https://stat.ethz.ch/R-manual/R-devel/library/stats/html/TDist.html

47

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/TDist.html

4 Methodology Instantiation

0
50

0
10

00
15

00

vms

ru
nt

im
e

in
 m

in

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

prediction interval

confidence interval

predicted runtime

Figure 4.14: Plot of the Confidence and Prediction Intervals depending on the number of
vms, with set values for cpus = 1, ram = 8 and input = 5e+09 points

These intervals can only be specified in combination with a configuration of the indepen-
dent variables to predict. Table 4.10 shows exemplary confidence and prediction intervals
for the response value runtime on given configurations.

prediction interval

confidence interval

predicted

vms cpus ram input runtime

2 4 8 1e+09 9.37 302.93 366.65 430.37 723.92

1 1 8 5e+09 961.41 1,195.85 1,342.21 1,488.56 1,723.00

21 1 8 5e+09 249.50 517.43 614.10 710.77 978.69

Table 4.10: Exemplary configurations and predictions from the regression model in minutes

In figure 4.14 the regression function with an x-value of vms is plotted against the fitted
runtime values. The light gray shaded area covers the 95% prediction interval, wherein the
blue shaded area defines the confidence interval. In other words, the expected real runtime
of the prediction is included into the light gray area with a confidence of 95%, as calculated
from the regression model in R.

48

4.5 Validation of the Regression Model

4.5.4 Evaluation of the Instantiation

The underlying use case caused a very large prediction interval as shown in the last section.
From these values, the predicted true runtime value with a confidence of 95% can be expected
within in a runtime defined by

9.37min ≤ truntime ≤ 723.92min.

That is an estimation of about 714.55 minutes, respectively 11.91 hours. This very unspe-
cific estimation is caused by the uncertainty of the observations and the hence not optimal
regression model. The standard deviation of all measurements was at 20.02% in the use case
K-Means.

Hence, although the prediction interval is that wide, it is not a reference that all real
runtimes are that widely spread. It only states, that every measured runtime of a given
configuration that lays in this prediction interval around the predicted runtime needs to be
accepted due to the fact of the huge deviation.

Applying this methodology to any applications with measurements taken in an unshared,
exclusive cloud environment, should essentially scale down the uncertainty of the prediction
and improve the R2

adj. value of the regression model. Within this thesis such measurements
could not be achieved, but will be suggested as a future work project in chapter 6.

This instantiation presented the complete process of gathering measurements, determin-
ing the relevant dimensions, arranging their transformations within the regression formula
and calculating the estimators of the coefficients of the Multiple Linear Regression, and
additionally providing all mathematical equations for the calculation.

The resulting regression model in this chapter is only suitable for the defined configurations
of the cloud environment and the virtual machines, especially the processing framework Flink
and the distributed LRZ compute cloud. It is therefore not a general solution for K-Means
in a cloud environment and also no generalization of any Flink implementation. It is the
product of this instantiation within the defined scope.

The underlying methodology generally described before can be in contrast applied to
any cloud infrastructure, with any processing framework on any possible configuration of
a virtual machine. The next chapter will continue the evaluation of the methodology and
provide the basic principles of concrete predictions within the use case K-Means, but also a
second application, Wordcount.

49

5 Runtime Prediction and Regression Model
Evaluation

This chapter presents the validation of the determined regression models by predicting run-
time values for different configurations and comparing them to actually measured ones.
Arranged according to the instantiation of the methodology in chapter 4, section 5.1 will
provide the mathematical definition of any prediction.

Beyond the initial scope of this thesis an additional prediction of an optimal execution
configuration based on values of a subset of the problem space is presented in section 5.2.
Hence it is possible, for example, to select the resource optimized configuration for a specified
runtime and input size.

These prediction values will be used to validate any regression model gained from the
presented methodology. The validation process will be explained in section 5.3.

Afterwards runtime predictions of the clustering algorithm K-Means will be calculated in
section 5.4. A brief summary of the obtained regression model will be given in section 5.4.1
before predictions and actual measurements are compared in section 5.4.2. The evaluation
will conclude with the validation of the regression model.

With Wordcount another well-known application will be investigated in section 5.5 . The
complete methodology for predicting the runtime behavior is applied to this application
and the findings are presented in section 5.5.1. The predictions based on these results are
challenged with corresponding measured runtime values in section 5.5.2, and used to evaluate
and validate the regression model afterwards.

This chapter will close with an analysis of the investigated standard deviation of the initial
measurements and the differences between the prediction and actual measured runtime values
in section 5.6.

5.1 Prediction

The regression model obtained from the methodology, for example instantiated in chapter 4,
will be used to predict runtime values of an analyzed application by altering the values of
the independent variables. With the calculated estimators of the regression coefficients β*

the response value Y is represented by

Y = Xpred ·β* +ε

where Xpred is the transposed vector including the variable values on which the runtime
should be predicted. ε provides the additional term of any uncertainty described within the
confidence and prediction intervals. The vector with which the runtime should be predicted
needs to have values inserted for each dimension and 1 for the intercept:

Xpred =
[
1 X1 · · · Xp

]
.

51

5 Runtime Prediction and Regression Model Evaluation

The values are inserted by applying the dimension’s transformations. With the given use
case in chapter 4 the transposed prediction vector would have the shape

Xpred =
[
1 1

vmspred

√
inputpred exp

(
1

cpuspred·vmspred

)
exp (−rampred · vmspred)

]
.

for which in each dimension’s transformation any value could be inserted. The prediction
scope should usually be limited to a certain range of values that are technically achievable
in all dimensions.

Runtime Prediction

The estimated runtime prediction tpred is hence calculated from the product of the prediction
and the coefficient vectors:

Y = tpred = Xpred ·β* =
[
1 X1 · · · Xp

]
·

β0
β1
...
βp

+ ε (5.1)

With the given equation the methodology offers the possibility to predict the runtime of
a given configuration within a certain prediction interval. These runtime predictions enable
a validation of any regression model. This will be presented in section 5.3.

5.2 Configuration Prediction

Besides this runtime prediction, the estimators of the regression model can also be used to
predict a suitable configuration of a subset of the problem space. Therefore the remaining
subset should be specified including the response value.

A naive approach calculates the response value for each possible combination of the config-
uration subset and compares it to the provided values. The configuration with the smallest
difference in the response dimension is the most suitable.

As an example of the use case K-Means, a target runtime of 7 hours and an input size of
20e+07 points are defined. The challenge is to determine the optimal configuration of the
remaining dimensions. For all these dimensions the runtime values of all cross combinations
are calculated with the defined constant input size. The resulting predictions from the
regression model are compared to the target runtime and, for example, listed in a table.
The optimal configuration can be found where the difference between the predicted and the
specified runtime value is the smallest. For the unset dimension also limitations can also be
specified, which corresponds to real scenarios where the maximum amount of each dimension
value is usually limited.

The solution of the given use case is indicated in table 5.1, while the dimension values
were limited with vms ≤ 64 , cpus ≤ 8 and ram ≤ 32.

An enhanced algorithm could also define weights for specific dimensions, focus cost or
resource optimization, and will be an aspect of the later presented continuing work after this
thesis.

52

5.3 Validation of a Regression Model

vms cpus ram input ∆t in s

. . .
35 7 1 20e+07 2.490
35 8 2 20e+07 1.171
35 8 3 20e+07 1.171
. . .

→
vms cpus ram

35 8 2

Table 5.1: Select optimal configuration within given runtime and input size

Figure 5.1: Validation process of instantiated Methodology by runtime comparison

5.3 Validation of a Regression Model

The methodology presented in chapter 3 is extended to enable a validation possibility for
the determined regression model. Therefore, as shown in figure 5.1, the same application
but with another configuration of its input and the virtual machines will be applied on the
regression model to predict a runtime value. The same configuration will be used to measure
the runtime value in the execution environment.

Both results are compared afterwards, and if the actual measured runtime value is included
within the prediction interval of the predicted runtime, the regression model can be validated.
The number of single predictions and corresponding measurements should be distributed on
the complete range of the underlying problem space. An extrapolation of these values is
possible and can also validate the model, but needs to be limited within the general scope
of the regression model.

53

5 Runtime Prediction and Regression Model Evaluation

points centroids iterations file size

8e+07 100 10 0.944 GB

40e+07 100 10 4.720 GB

100e+07 100 10 11.801 GB

300e+07 100 10 35.801 GB

800e+07 100 10 94.408 GB

Table 5.2: K-Means application configurations for validation measurements

5.4 Use case K-Means

The application K-Means was introduced in section 4.2.1 as an iterative clustering algorithm.
Within the instantiation of the methodology the dimension values and the outcome of the
regression were calculated. Section 5.4.1 will give a compact summary of these findings
before the prediction is applied on the application in section 5.4.2.

5.4.1 Application of the Methodology

The measured data set initially contained 450 single measurements in the altered dimen-
sions vms, cpus, ram and input size, having a standard deviation of 20.02%. From them,
together with the added pair-wise combined dimensions, each corresponding transformation
was determined. The statistically significant dimensions were identified by the AIC.

On them, brought together to the regression formula, a Multiple Linear Regression was
applied. No Outlier and no Leverage point was removed. The calculated estimators of the
regression coefficients as well as the significant dimensions with their transformation are
given in the following equation:

Y = truntime =
[
1 1

vms

√
input exp

(
1

cpus·vms

)
exp (−ram · vms)

]
×

−2.79e7
3.38e7
7.86e2
7.15e6
−1.25e9

+ ε

With this solution, the runtime can be predicted for new values of the transposed vector
Xpred as shown in equation (5.1).

5.4.2 Runtime Predictions

For several new configurations (values of Xpred), the runtime prediction as well as the confi-
dence and prediction intervals are calculated with R. Besides not used hardware combinations
also new input files were created, following the same form as the measured ones in the use
case before and listed in table 5.2

According to figure 5.1 the validation process was executed on ten different configurations.
Table 5.3 shows the selected configurations and their predicted values.

As stated before, the negative values derive from the large prediction interval expanding in
positive and negative values. It can also be seen, that the prediction intervals, which should
include the true runtime with a confidence of 95%, are very large. The average interval range

54

5.4 Use case K-Means

prediction interval

confidence interval

predicted measured

vms cpus ram input runtime runtime

2 1 4 8e+7 -233.58 58.95 123.92 32.55 188.89 481.42

2 8 8 8e+7 -298.76 -16.51 61.29 10.34 139.10 421.35

1 1 8 4e+8 302.80 547.46 677.70 248.93 807.95 1,052.60

2 2 8 4e+8 -123.71 176.02 232.31 117.97 288.61 588.34

4 8 8 4e+8 -293.53 11.85 61.51 46.76 111.17 416.55

2 4 8 1e+9 9.37 302.92 366.65 193.30 430.37 723.92

15 2 8 1e+9 -245.57 52.09 110.85 57.92 169.61 467.27

11 4 16 3e+9 67.77 354.86 426.55 150.14 498.23 785.33

14 2 4 8e+9 498.55 747.01 871.49 421.70 995.97 1,244.42

21 4 8 8e+9 481.84 729.50 855.19 289.30 980.85 1,228.51

Table 5.3: Predicted and measured runtime as well as confidence and prediction interval
values given in minutes for the use case K-Means

has a size of 718 minutes, which are about 12 hours. This means every runtime prediction
with a 95%-confidence follows the equation

t95% ∼ tpred ± 6h.

Statistically, all measured runtimes within this interval would be sufficient to validate the
regression model. For any user such a large prediction interval is in many cases insufficient,
because more accurate predictions are desired. Nevertheless, by adding the standard devi-
ation of measurements to all actually measured runtimes, all but one of the configurations
measured can validate the regression model.

To visualize these values, all measurements are additionally plotted in figure 5.2 against
the runtime in minutes. The configurations are labeled in the values of the x-axis (v: vms,
c: cpus, r: ram, i: input,) with an additional consecutive number. For each the prediction
interval is plotted in gray and the confidence interval in blue. In the center of each interval
the predicted runtime value is marked in red. The mandatory added standard deviation of
each measurement is illustrated with the error bars up and down the measurement.

The actually measured runtime with its deviation bars, ±20, 02% · runtime, are plotted
in black. All explanations can also be seen in the legend on the upper left.

As stated and graphically proved, all actual runtimes but the last could be measured within
the prediction interval. The estimations tend to predict too long runtime values. It seems
that the calculated regression coefficients cannot represent the scaling behavior correctly.

The measurements (3) to (5) with an input size of 40e+07 points have an increasing
number of CPUs and hence Flink task managers from 1→ 4→ 32, which should reduce the
runtime significantly. This behavior can be seen in both, in the predictions as well as in the
actual measurements. At measurement (5) both values are close together and can be stated

55

5 Runtime Prediction and Regression Model Evaluation

0
50

0
10

00
15

00

ru
nt

im
e

in
 m

in

2v
 1

c 4
r 8

e+
07

i (
1)

2v
 8

c 8
r 8

e+
07

i (
2)

1v
 1

c 8
r 4

0e
+0

7i
 (3

)

2v
 2

c 8
r 4

0e
+0

7i
 (4

)

4v
 8

c 8
r 4

0e
+0

7i
 (5

)

2v
 4

c 8
r 1

00
e+

07
i (

6)

15
v 2

c 8
r 1

00
e+

07
i (

7)

11
v 4

c 1
6r

 3
00

e+
07

i (
8)

14
v 2

c 4
r 8

00
e+

07
i (

9)

21
v 4

c 8
r 8

00
e+

07
i (

10
)

configuration of measurement

confidence interval

prediction interval

predicted runtime

measured runtime

Figure 5.2: Plot of predicted and measured runtimes as well as confidence and prediction
intervals for the use case K-Means

56

5.5 Use case Wordcount

overlapping, taking the standard deviation into account. However, for smaller computational
power, with less CPUs per VM, the runtime drifts apart.

The reason for this behavior, smaller difference of predicted and measured runtimes with
more involved virtual machines, might be found by investigation of the application and
the initially measured runtime values. If the number of virtual machines increases, the
load on each VM is reduced, as well as the execution time. K-Means has an intensive
computational phase while calculating the distance from each point to each centroid. Because
this computation time is reduced, the complete job execution gets more influenced by peaks
in the load on the underlying hardware nodes. Therefore, it might be reasonable that the
predicted runtimes do not cover the actually measured ones, because the initial observations
influenced the regression model with misleading and high deviated runtime values.

However, this behavior cannot be finally analyzed, because no more measurements within
this thesis were possible. This was influenced by time constraints caused by the Flink
environment, which let all but two measurements with large input files fail due to untraceable
errors. So only two measurements (9) and (10) for the highest input size at 8e+09 points
(˜100GB) were successful.

These observations indicate a similar behavior as the three observations mentioned before.
The actual runtimes are much lower than the predicted ones. The contributing 28 respec-
tively 84 task managers should not be out of the scope of the regression model in general,
which was initiated with a maximum of 32 VMs. Yet as stated before, only one such high
observation could be done before instantiating the methodology. It is expected, if more
measurements at a higher input size and higher amount of combined task managers would
be initially added to the regression, they would improve the outcome and thereby would also
improve the estimation of any new configurations.

A repetition of these missing measurements at a higher input size and other optimiza-
tions regarding the measurements in a general view are also summarized in the future work
suggestions of this thesis in chapter 6.

Nevertheless, these comparisons of the presented predicted and measured runtime values
endorse the conclusion that the determined regression model for the application K-Means
according to the disposed methodology can be validated.

5.5 Use case Wordcount

The second application is a kind of ”hello world” program of big data frameworks. Its details
can also be found in the Apache project documentation1.

Wordcount computes the amount of appearances of a word in a plain text. Therefore, the
algorithm is divided into two steps. In the first step the input text is split into individual
words. Afterwards, these words are grouped by the same word and counted. The Flink Java
implementation computes a simple word appearance histogram over the text files, which are
again only plain text with lines separated by newline characters.

Figure 5.3 shows an example how Wordcount counts words and reduces them to a grouped
output.

The basis used to create the input files was downloaded from the Gutenberg project2. The

1https://ci.apache.org/projects/flink/flink-docs-release-1.3/api/java/org/apache/flink/

examples/java/wordcount/
2http://www.gutenberg.org/

57

https://ci.apache.org/projects/flink/flink-docs-release-1.3/api/java/org/apache/flink/examples/java/wordcount/
https://ci.apache.org/projects/flink/flink-docs-release-1.3/api/java/org/apache/flink/examples/java/wordcount/
http://www.gutenberg.org/

5 Runtime Prediction and Regression Model Evaluation

”To be,
or not to be,

that is the Question”3
→

(2, to) (2, be) (1, or)
(1, not) (1, that) (1, is)

(1, the) (1, question)

Figure 5.3: Wordcount example of counting words

entire collection of over 54,000 single books were arranged in new text files. Therefore no
artificial letter combinations were created, but real world text files. The concretely used file
and text sizes, as there is only one input file to the application, are listed in table 5.4.

amount of
words file size measurements

177e+06 1,057 GB 78

702e+06 4,188 GB 163

1,645e+06 10,810 GB 154

14,935e+06 100,926 GB 5

Table 5.4: Wordcount input sizes for measurements

In this use case, the input amounts of words and file size are not equivalent. This is
caused by the underlying single texts, respectively books, being different, with different
words of different sizes. Although the file size is more impartial, it has no information on the
processing amount, as the input is processed by the amount of words and not the file size.
The absolute number of words counted in the file is used as a value for the methodology in
this thesis.

5.5.1 Application of the Methodology

Data Set

For this use case, the methodology is executed completely again with the data set of the
Wordcount measurements. It contains 400 single measurements. Unfortunately, similarly
to the use case K-Means presented before, the measurements with the highest input size
are underrepresented. From the complete 400 observations, only 5 could be gained with
the input size of 100 GB and almost 15 billion words. The other amounts can be found in
table 5.4.

All these single measurements were also executed in the LRZ Compute Cloud. For the
analysis, the average runtimes of the same configurations were computed. Therefore, the
final observations had an amount of 84 averaged measurements and a standard deviation of
19.18%, similar to K-Means at a very high level. As in the K-Means case, any Wordcount
prediction will also face widespread confidence intervals.

Dimensions’ Transformations

According to algorithm 1 on each dimension a simple Linear Regression was computed with
the response value runtime. Each resulting transformation was derived from the highest

3Shakespeare, William: Hamlet. Ed. by Harold Jenkins. London, New York: Methuen, 1982.

58

5.5 Use case Wordcount

R2
adj. value. For the five dimensions these are

fvms : x 7→ 1

x

fcpus : x 7→ lnx

fram : x 7→ expx

finput : x 7→
√
x

fcpus·vms : x 7→
√
x

fram·vms : x 7→ exp
1

x

fcpus·ram : x 7→ expx

Statistical Significance

If a dimension has an impact on the response variable or not is determined with the AIC
and BIC method detailed in section 4.2.6, the resulting statistically significant dimensions
are

runtimeAIC = runtimeBIC ∼
[
1 1

vms ln cpus
√
input

√
cpus · vms

]
·

β0
β1
β2
β3
β4

The dimension ram is not statistically significant for this application with the underlying

measurements and therefore removed from the dimension set. The runtime averages need to
be computed again grouped from scratch without this dimension.

Afterwards the transformations of the dimensions with the new arithmetic mean runtimes
need to be determined again. On this new arrangement the AIC and BIC also need to
be applied again. This time, with the altered dimensions, the AIC and BIC differ. Their
significant dimensions found with the new transformations are:

runtimeAIC ∼
[
1 exp

(
1

vms

)
exp

(
1

cpus

) √
input

√
cpus · vms

]
·

β0
β1
β2
β3
β4

runtimeBIC ∼

[
1 exp

(
1

vms

) √
input

]
·

β0β1
β2

Applying the BIC would once more lead to a refinement of the problem space and the data

set. However, the methodology follows the AIC and the remaining amount of dimensions
stays the same. However, vms and cpus had to change their transformation to x 7→ exp

(
1
x

)
.

All four dimensions are processed into the following function analysis.

59

5 Runtime Prediction and Regression Model Evaluation

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
4

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula)

Cook's distance

0.5
0.3

0.3
0.5

Residuals vs Leverage

47

49

48

Figure 5.4: Cook’s Distance plot for application Wordcount

Function Analysis

The Multiple Linear Regression is applied with the retrieved formula on the averaged data
set. Following the methodology all Outlier and Leverage points need to be investigated if
any defective measurements should be removed from the data set. The Cook’s Distance plot
in figure 5.4 shows three obvious Leverage points, respectively Outliers. Their distance value
is far above Cook’s 0.5 distance.

All of them belong to the observations of the huge 100GB input file. They show no sign
of any defective measurement and therefore may not be removed. However, this analysis
substantiates the assumption that the number of observations, especially for the highest
amount of input words, is much too low.

The red average line is close to an optimal zero horizontal, although the points with a
higher distance exist. As stated, this should be a sign for a more or less balanced regression
model.

Regression Coefficients

To determine the estimators of the regression coefficients, the MLR is executed, again with
the support of R. The resulting output from the computation is shown in listing 5.1.

60

5.5 Use case Wordcount

Listing 5.1: Multiple Linear Regression output from R

> summary(model)

Call:

lm(formula = formula , data = data)

Residuals:

Min 1Q Median 3Q Max

-21839259 -3233351 -680517 1891723 26080851

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.27e+06 9.49e+06 0.34 0.732

exp(I(1/vms)) 4.51e+06 2.34e+06 1.93 0.060 .

exp(I(1/cpus)) -5.34e+06 2.12e+06 -2.52 0.015 *

sqrt(input) 4.62e+02 4.08e+01 11.31 1.3e-14 ***

sqrt(I(cpus * vms)) -2.14e+06 9.99e+05 -2.14 0.038 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 6670000 on 44 degrees of freedom

Multiple R-squared: 0.762, Adjusted R-squared: 0.741

F-statistic: 35.3 on 4 and 44 DF , p-value: 3.31e-13

The Linear Regression has an R2
adj. value of 0.741. The relative low amount of observa-

tions is penalized. Although the p-value indicates that the regression model explains the
observations, the f-statistics is significantly lower than in the K-Means use case (74.1 on
4 and 80 DF). Also, all the single dimensions except for input show no strong statistical
significance, but enough to improve the model. As Cook’s distance plot these regression
values also indicate a suboptimal small data set.

5.5.2 Runtime Predictions

Akin to the application K-Means, predicted runtimes are one again compared to actually
measured ones, aiming to validate the evolved regression model according to figure 5.1. Also
for Wordcount new input files with real world texts were created. The specifications can be
found in the following table 5.5:

words file size

1.352e+09 8,163 GB
5.181e+09 34,880 GB

18.634e+09 124,086 GB

Table 5.5: Wordcount input sizes for validation measurements

The investigated ten configurations are listed in table 5.6, also showing the predicted and
actual runtime values as well as the prediction and confidence intervals computed from the
regression model in R.

Again, the configurations of the 10 measurements are labeled in the values along the x-axis
(v: vms, c: cpus, r: ram, i: input,) with an additional consecutive number. For each the

61

5 Runtime Prediction and Regression Model Evaluation

0
50

0
10

00
15

00

ru
nt

im
e

in
 m

in

1v
 4

c 8
r 1

.3
5e

+0
9i

 (1
)

2v
 8

c 8
r 1

.3
5e

+0
9i

 (2
)

6v
 1

c 8
r 1

.3
5e

+0
9i

 (3
)

8v
 2

c 4
r 1

.3
5e

+0
9i

 (4
)

14
v 1

c 8
r 1

.3
5e

+0
9i

 (5
)

4v
 2

c 8
r 5

.1
8e

+0
9i

 (6
)

13
v 4

c 8
r 5

.1
8e

+0
9i

 (7
)

7v
 1

c 8
r 1

8.
63

e+
09

i (
8)

9v
 4

c 8
r 1

8.
63

e+
09

i (
9)

33
v 2

c 4
r 1

8.
63

e+
09

i (
10

)

configuration of measurement

confidence interval

prediction interval

predicted runtime

measured runtime

Figure 5.5: Plot of predicted and measured runtimes as well as confidence and prediction
intervals for the use case Wordcount

62

5.5 Use case Wordcount

prediction interval

confidence interval

predicted measured

vms cpus input runtime runtime

1 4 1.35e+09 121.48 285.46 356.68 489.39 427.90 591.90

2 8 1.35e+09 -11.12 168.85 218.45 349.57 268.00 448.00

6 1 1.35e+09 -133.98 39.66 97.53 56.39 155.40 329.00

8 2 1.35e+09 -94.76 89.06 133.82 70.28 178.60 362.40

14 1 1.35e+09 -190.55 -23.74 43.46 33.91 110.70 277.50

4 2 5.18e+09 219.94 378.18 457.83 490.08 537.50 695.70

13 4 5.18e+09 71.97 215.31 318.91 198.73 422.50 565.80

7 1 1.86e+10 593.13 718.63 856.06 896.64 993.50 1,119.00

9 4 1.86e+10 589.98 708.28 861.50 1,123.73 1,014.70 1,133.00

33 2 1.86e+10 460.05 567.89 746.93 430.15 926.00 1033.8

Table 5.6: Predicted and measured runtime as well as confidence and prediction interval
values given in minutes for the use case Wordcount

prediction interval is plotted in gray and the confidence interval in blue and the predicted
runtime value is marked with a red line in the middle of the intervals. The mandatory
added standard deviation of the measurement is shown with the error bars up and down the
measurement.

In contrast to the results of K-Means, all validation measurements can be included in
each corresponding prediction interval and actually also in each corresponding confidence
interval.

Measurements (1) to (5) refer to an input size of 1.35e+09 words. The expected scaling
behavior with a decreasing runtime by increasing the computational power can be observed.
Remarkable regarding measurement (4) is the higher predicted and higher measured runtime
value. Although its computational power includes more Flink task managers (8 · 2 = 16)
than measurement (5) (14 ·1 = 14) its runtime is higher. This depends on their composition.
While in the first configuration each VM is assigned two CPUs and therefore two task
managers, measurement (5) includes only VMs with one task manager on each. As the
initial measurements showed, the scaling with more CPUs has less influence on the runtime
than scaling up the number of VMs.

For the highest input size of 18.63e+09 words, measurements (8) to (10) show a similar
behavior as K-Means. The involved Flink task managers increase from 7 → 36 → 66.
Normally a gradient decreasing runtime would be expected, but the regression predicts a
higher runtime for the 36 task managers than for the 7. The reason is identical to the
measurements (4) and (5), where the absolute parallelism doesn’t influence the runtime
most. It is more dependent on the combination.

The allocated 4 CPUs on each of the 9 VMs at measurement (9) have such an increasing
influence on the runtime, that the overall runtime is higher than with only 7 VMs. This
behavior could be proved by the measurement and results from the approach of increasing

63

5 Runtime Prediction and Regression Model Evaluation

Forward

Forward

Broadcast

Forward,
Sort on [0:ASC]

Forward

Hash Partition on [0]

Forward

Broadcast

Bulk Partial Solution
PartialSolution (Partial Solut

ion)
Parallelism: 16

Operation: (none)

Data Source
DataSource (at getCentroidData
Set(KMeans.java:135) (org.apac

he.flink.api.java.io.PojoCsvIn
putFormat))
Parallelism: 16

Operation: (none)

Map
Map (Map at main(KMeans.java:1

00))
Parallelism: 16

Operation: Map

Data Source
DataSource (at getPointDataSet
(KMeans.java:150) (org.apache.
flink.api.java.io.PojoCsvInput

Format))
Parallelism: 16

Operation: (none)

Reduce -> Map
Reduce (Reduce at main(KMeans.

java:103))
-> Map (Map

at main(KMeans.java:105))
Parallelism: 16

Operation: Sorted Reduce
-> Map

Map
Map (Map at main(KMeans.java:1

02))
Parallelism: 16

Operation: Map

Data Sink
DataSink (CsvOutputFormat (pat

h: /root/flink_log/output, del
imiter:))

Parallelism: 16

Operation: (none)

Map
Map (Map at main(KMeans.java:1

12))
Parallelism: 16

Operation: Map

Sync(Bulk Iteration)
Parallelism: 1

Figure 5.6: Excerpt of a Flink dataflow graph for a K-Means execution

the computational power per vm by adding more task managers and in the same amount also
CPUs to the VMs. However because all job executions with more than one CPU per VM
are so influenceable by any external load on the hardware node, the initial measurements
as well as this validating measurement show an increasing instead of a decreasing runtime
behavior.

Although such a behavior is not intended by any user, the taken measurements and their
compared predicted values also allow validation of the regression model of Wordcount pre-
sented here. The thus twice instantiated methodology could hence be validated for both
applications.

5.6 Accuracy of Measurements and Predictions

As presented before, the predicted runtime values for K-Means and Wordcount are within
the scope of the statistical uncertainty of the regression models. Their behavior is similar
and could represent the scaling runtime values.

However, both models show differences in the accuracy of the prediction. While K-Means’
model predictions have an averaged difference between predicted and measured runtime
value (runtime delta) of 174%, Wordcount’s regression model can predict the runtime value
with an averaged delta from the actual runtime value of only 38%. The difference between
these two applications might refer to their actual computation phases.

Generally, such phases are divided in different dependencies on hardware or other con-
figurations of the virtual machines. Such phases of applications can be CPU-bound (high
CPU-usage), memory-bound (high RAM-usage), disk-bound (high disk-usage) or network-
bound (high network traffic).

Figure 5.6 shows the dataflow graph of the Flink job execution of K-Means. This graph
is the execution path for the Flink cluster and is computed on the basis of the source code
during the job submission by the Flink Client. The single implementation phases, illustrated
within the blue boxes, have an explicit operation and a dedicated parallelism, depending on

64

5.6 Accuracy of Measurements and Predictions

many task managers are involved. For example the processing of the Data Source in the
upper left box, which is done by 16 task managers, located on one or more VMs, is disk or
network-bound, depending on the locality of the data.

Each relevant operation can be assigned to one of two phases, a map or reduce phase,
which refers the big data processing model mapreduce adapted for Flink and described in
[DG08]. The map phase describes any, also very complex computation on the data. It can
be imagined as a mapping from one initial value to a transformed one or a result derived
from it. Therefore, it tends to be CPU- and probably disk-bound, instead of the reduce
phase being I/O-bound, e.g. network-bound for the case the task managers are not on the
same node. In the reduce phase a counting or summary operation is executed, for example
building the sum of all counted words in the Wordcount application. Hence these phases
of the application might show other performance behaviors while increasing different vm
resources.

The upper row of figure 5.6 defines one iteration, where the input file is split and processed
by the task managers. The single steps are divided into map phases, in which the implemen-
tation parts within the computation are done. Here, the worker node needs to compute the
distance to each centroid for each assigned point. The last step of any iteration is a reduce
phase, where the results are sorted, grouped and distributed.

The initial measurements for K-Means showed an overall standard deviation of 20.02%.
Remarkable is the fact that the deviation decreases with an increasing input size, at K-Means
but also at Wordcount. Table 5.7 lists the standard deviation of the initial measurements
of K-Means (a) and Wordcount (b) depending on the input size. As it can be seen, the
standard deviation in both cases has its highest values with the smallest input size and
averaged runtime.

input av.runtime stand.
in points in min deviation

5e+07 11.97 26.55%
20e+07 50.070 18.28%
50e+07 130.56 15.64%

200e+07 510.27 18.07%
500e+07 794.86 17.90%

(a) K-Means

input av.runtime stand.
in words in min deviation

18e+07 20.62 22.60%
70e+07 91.81 21.62%

165e+07 256.56 17.15%
1,493e+07 625.09 10.33%

(b) Wordcount

Table 5.7: Standard deviation of initial measurements dependent on input size

This behavior, whereby the measurements are less deviated, the longer the duration of
a job execution is, should be investigated intensely. From this point of view, one likely
reason might be that the performance of the allocated cloud resources gets balanced over
the time, still with a huge influence on the overall performance, but with continuing less
peak performances in positive or negative direction.

What can be surely stated is, that the long-term job executions are more reliable than
the short runs. This can also be observed in the comparison of the predicted and measured
runtime values of the sections before. Figure 5.7 shows the difference between the runtime
deltas of both applications in percentages of the actually measured runtime values.

K-Means has a very high averaged delta runtime of 174%, but it becomes reduced the
higher the input size grows. The same plot for Wordcount shows a similar behavior, but in a

65

5 Runtime Prediction and Regression Model Evaluation

10
0

20
0

30
0

40
0

KMeans

runtime in % of maximum value

ru
nt

im
e

de
lta

 in
 %

0 20 40 60 80 100

20
40

60
80

Wordcount

runtime in % of maximum value

ru
nt

im
e

de
lta

 in
 %

0 20 40 60 80 100

Figure 5.7: Runtime delta between prediction and measurement depending on input size

HASHREBALANCE

Keyed Aggregation -> Sink:
Unnamed
Parallelism: 4

Split Reader: Custom File Sour
ce -> Flat Map

Parallelism: 4

Source: Custom File Source
Parallelism: 1

Figure 5.8: Flink dataflow graph of a Wordcount execution

lower range. Its 38% percent averaged delta runtime is also different among the input sizes
and corresponding runtime values. They show no constant distribution, but also a reduction
with an increasing runtime.

Instead of K-Means, Wordcount has a much simpler dataflow graph of the Flink execution
as shown in figure 5.8, including only one map and one reduce phase, counting the words
and combining the results. Although the complexity of these two applications is different
they show a similar behavior in the deviation of the predictions and actual measurements.

The final conclusion to analyze this behavior is not possible within the scope of this thesis,
but will be an important aspect of any future work. In which way the execution environment
influences or even produces this behavior might be investigated by comparing these results
to measurements in an exclusively used environment and also with CPU, network and disk
load measurements on the virtual machines.

Environmental influence on job executions

The actual influence of the execution environment can not only be assumed in the overall
deviation of the measurements, but also precisely analyzed in the series of measurements
of the same configuration. One example of the measured differences is shown in figure 5.9,
where three temporally consecutive measurement results of the application Wordcount, with
4 VMs each with 4 CPUs, are shown.

The overall runtime of the job execution on the master VM is displayed with the red bar.
It is strongly dependent on the highest runtime of any of the 16 task managers, colored
by the hosting VM. Because the input file was split into 16 parts, in each run two task

66

5.6 Accuracy of Measurements and Predictions

Flink run 1 Flink run 2 Flink run 3

m
as

te
r

vm
−

11
4−

a
vm

−
11

4−
b

vm
−

11
4−

c
vm

−
11

4−
d

vm
−

23
2−

a
vm

−
23

2−
b

vm
−

23
2−

c
vm

−
23

2−
d

vm
−

76
−

a
vm

−
76

−
b

vm
−

76
−

c
vm

−
76

−
d

vm
−

89
−

a
vm

−
89

−
b

vm
−

89
−

c
vm

−
89

−
d

m
as

te
r

vm
−

11
4−

a
vm

−
11

4−
b

vm
−

11
4−

c
vm

−
11

4−
d

vm
−

23
2−

a
vm

−
23

2−
b

vm
−

23
2−

c
vm

−
23

2−
d

vm
−

76
−

a
vm

−
76

−
b

vm
−

76
−

c
vm

−
76

−
d

vm
−

89
−

a
vm

−
89

−
b

vm
−

89
−

c
vm

−
89

−
d

m
as

te
r

vm
−

11
4−

a
vm

−
11

4−
b

vm
−

11
4−

c
vm

−
11

4−
d

vm
−

23
2−

a
vm

−
23

2−
b

vm
−

23
2−

c
vm

−
23

2−
d

vm
−

76
−

a
vm

−
76

−
b

vm
−

76
−

c
vm

−
76

−
d

vm
−

89
−

a
vm

−
89

−
b

vm
−

89
−

c
vm

−
89

−
d

0

50

100

150

200

Task Manager on node

ru
nt

im
e

in
 m

in

node

master

vm−114

vm−232

vm−76

vm−89

Figure 5.9: Wordcount runtime of task managers involved with huge offset

managers had a reduced input amount and hence a reduced runtime. All other tasks on the
same vm had approximately the same runtime within one execution. However, as it can be
seen, for example the blue vm-114 has a difference in runtime between execution 1 and 2 of
over 100 minutes and also over 100%. This VM might be influenced by external load on the
underlying hardware node and therefore differs that much in the measured runtime value.

The assumption that such load on the environment influences all taken measurements
might be an explanation for the high calculated standard deviation and uncertainty of the
prediction presented in the previous chapter. Additional measurements of the hardware
nodes could clarify this proposition and are recommended as a task of the future work to
enhance any regression model based on the developed methodology.

This chapter presented runtime predictions of the instantiated applications and compared
them to actual measured ones. Based on this comparison, both determined regression models
could be validated. These positive findings will be used in the next chapter to evaluate the
methodology.

67

6 Evaluation and Conclusion

This chapter will sum up the findings of this thesis, evaluate them and provide an outlook
especially including future work proposals.

6.1 Methodology Evaluation

This thesis introduced a methodology to predict the runtime behavior of large scale data
applications. It was exemplarily instantiated in a shared cloud environment with the appli-
cations K-Means and Wordcount, showing all details of the methodology. Beside the major
tasks, all necessary statistical and mathematical principles of the function analysis and the
used Multiple Linear Regression were explained and defined in corresponding equations.
Besides the actual focused runtime prediction, this thesis could additionally introduce the
prediction of an optimal configuration on a subset of the problem space.

Although both resulting regression models were obtained on high deviated measurements,
they could be validated. The thereby predicted and measured runtime values could be
located in an allowed distance defined by the model. These detected runtime differences
between both values were valid to the statistical tolerance, but not satisfying for any user.
This is not the fault of the used regression or even the methodology, it is only caused by the
deviated measurements.

How good any prediction is at the end will always depend on the reliability of the under-
lying data. Furthermore, due to different hardware configurations of the used cloud nodes,
an influencing load on each single node during the measurements and also a fluctuating net-
work bandwidth, the initial measurements were error loaded. This could also be observed
in the validation measurements and the seen prediction deviation from the actual measured
runtime.

During the thesis all effort was invested to compensate these deviations. Measurements
were taken recurrently, on other weekdays and at other hours. With the granularity of the
defined problem space dimensions, the amount of required measurements was finally raised
to a value where not all measurements could be taken with the needed repetitions or even
not at all. This lead to several unmeasured configurations especially with the largest input
files, which were last added to the configuration, whereas most other measurements with a
lower size could to be covered at least once.

The fact that this could possibly lead to a weak spot was identified the first time when
instantiating the methodology. Almost all tries to measure the missing runtime values failed,
because the Flink job execution failed due to several lost task managers. What this error
message meant in each single case could not be investigated, only that the communication
between the master and the worker node was interrupted and therefore the complete job
execution.

Nevertheless, the twice instantiated methodology resulted in regression models, which
could be validated under consideration of the statistical circumstances. For this reason,

69

6 Evaluation and Conclusion

the developed methodology can also be successfully evaluated on the basis of these two
applications. There exists no doubt that the methodology will also be reliable on other
instantiations with even more complex implementations.

All described specifications are selected as generic as possible, to be suitable and applicable
to all kinds of applications. The defined problem space covers all relevant alterable features
for any implementation in a cloud infrastructure as shown.

Data streaming could not be included into the instantiations of the methodology so far.
The possible shape of data streams will extend the presented configuration features. Data
blocks might arrive equally distributed over time, in repetitive peaks or completely inconsis-
tent. However, the developed methodology will be also applicable on these new characteris-
tics, because the problem space is defined to be extendable with every cloud or application
feature. Therefore, the thesis can be concluded with a very high confidence regarding fol-
lowing instantiations of the developed methodology.

6.2 Outlook and Future Work

The indented aim of the thesis was fulfilled with the developed and validated methodology.
To improve the resulting predictions and tighten the confidence and prediction interval,

measurements taken in an unshared cloud environment should essentially scale down the
uncertainty of the prediction. It is expected to improve the R2

adj. value of each regression
model and minimize the delta runtime values.

Any extension on more applications should continually validate the methodology. An
increasing complexity and hence more different map and reduce phases could also enhance the
exploration of the general runtime behavior of any generic application in such environments.
Also, the study of any communication patterns inside the executions as well as the different
limitations of the phases will contribute to this aim. Measurements on the virtual machines
regarding CPU, memory, disk or network load will open new aspects to probably find a
general model.

The prediction and selection of an optimal cloud configuration can for example be en-
hanced by introducing weights on each dimension. This way the configuration can be se-
lected with a prior view on specific dimensions as for example the amount of VMs. Also,
a parameter could be added to predict the arising costs of the resources, especially for a
commercial cloud environment.

With the decision to use Apache Flink within this thesis, the long-term aim was to include
data-streaming applications. Both presented applications K-Means and Wordcount can also
be executed with a streaming input. This might extend and refine the problem space with
new dimensions representing this continual input and again increase the granularity of the
methodology.

70

A appendix

A.1 Measured Runtime Values

The measured runtime values in milliseconds of each configuration are listed in the following
tables, dependent on the input size.

A.1.1 K-Means

The K-Means input sizes were 50, 200, 500, 2,000 and 5,000 million points:

50 million points

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 4 1681516 1 4 4 1141947
1 1 4 1753094 1 4 4 975575
1 1 4 1737465 1 4 4 912992
1 1 4 1768235 1 4 4 902234
1 1 4 1674560 2 4 4 753595
1 1 4 1724480 2 4 4 621329
1 1 4 1730614 2 4 4 761454
1 1 4 2115085 2 4 4 542652
1 1 4 2121326 2 4 4 569292
1 1 4 2107748 2 4 4 623525
1 1 4 2122405 2 4 4 758765
1 1 4 2015098 2 4 4 648569
1 1 4 2033798 4 4 4 299741
1 1 4 2015587 4 4 4 337362
1 1 4 1994495 4 4 4 352141
2 1 4 1371401 4 4 4 388228
2 1 4 1452957 4 4 4 377016
2 1 4 1483307 4 4 4 389027
2 1 4 1320937 4 4 4 443424
2 1 4 1410581 4 4 4 319768
2 1 4 1379877 8 4 4 142387
2 1 4 1442312 8 4 4 153852
2 1 4 1427158 8 4 4 185458
2 1 4 1507325 8 4 4 144694
2 1 4 1443638 8 4 4 170406
2 1 4 1211462 8 4 4 154696
2 1 4 1249521 8 4 4 209130
4 1 4 704550 8 4 4 219645

71

A appendix

VMs CPUs RAM runtime VMs CPUs RAM runtime

4 1 4 732826 8 4 4 178328
4 1 4 694825 8 4 4 192420
4 1 4 740818 8 4 4 164532
4 1 4 770720 8 4 4 269116
4 1 4 792199 8 4 4 210109
4 1 4 820441 8 4 4 293631
4 1 4 783067 8 4 4 177842
4 1 4 745098 8 4 4 224254
4 1 4 817727 8 4 4 265361
4 1 4 668097 1 8 4 775460
4 1 4 659056 1 8 4 801222
4 1 4 724274 1 8 4 749034
4 1 4 731764 1 8 4 885082
8 1 4 392394 1 8 4 744484
8 1 4 375044 1 8 4 710062
8 1 4 376146 1 8 4 835738
8 1 4 363483 1 8 4 788816
8 1 4 357912 2 8 4 323316
8 1 4 384745 2 8 4 389198
8 1 4 349719 2 8 4 413808
8 1 4 379601 2 8 4 331354
8 1 4 407727 2 8 4 381053
8 1 4 349487 2 8 4 414484
8 1 4 439126 2 8 4 434228
8 1 4 349682 2 8 4 497274
8 1 4 370750 4 8 4 250608
8 1 4 344025 4 8 4 242974
8 1 4 348550 4 8 4 218957
1 2 4 1547373 4 8 4 247240
1 2 4 1419273 4 8 4 274556
1 2 4 1228719 4 8 4 275529
1 2 4 1125511 4 8 4 496344
1 2 4 1401887 4 8 4 304518
1 2 4 1328357 4 8 4 332001
1 2 4 1244015 4 8 4 346775
1 2 4 1137889 4 8 4 331788
2 2 4 704487 8 8 4 215282
2 2 4 689405 8 8 4 166558
2 2 4 697761 8 8 4 188318
2 2 4 761839 8 8 4 131179
2 2 4 767569 8 8 4 174840
2 2 4 742950 8 8 4 208057
2 2 4 707660 8 8 4 139591
2 2 4 739536 8 8 4 139552
4 2 4 470466 8 8 4 254494
4 2 4 506881 1 1 8 1731003

72

A.1 Measured Runtime Values

VMs CPUs RAM runtime VMs CPUs RAM runtime

4 2 4 491510 1 1 8 1603449
4 2 4 619464 1 1 8 1657378
4 2 4 493179 1 2 8 1336683
4 2 4 451458 1 2 8 1214948
4 2 4 394970 1 2 8 1162573
4 2 4 773293 2 2 8 574782
8 2 4 352668 2 2 8 588399
8 2 4 222650 2 2 8 596639
8 2 4 328161 2 4 8 381184
8 2 4 271391 2 4 8 397981
8 2 4 314855 2 4 8 461587
8 2 4 294233 2 4 8 467110
8 2 4 268771 4 8 8 151931
8 2 4 283103 4 8 8 146101
1 4 4 906978 4 8 8 146067
1 4 4 801552 4 8 8 170636
1 4 4 933983 4 8 8 135953

Table A.1: measured runtime values in milliseconds of the use-case K-Means for an input
size of 50 million points

200 million points

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 4 8967766 2 4 4 2322468
1 1 4 8933189 2 4 4 2040928
1 1 4 9461307 4 4 4 1631879
1 1 4 9196143 4 4 4 1708403
2 1 4 4990454 4 4 4 1793096
2 1 4 4406734 4 4 4 2013413
2 1 4 4811394 8 4 4 856067
2 1 4 4530012 8 4 4 1115133
4 1 4 3020876 8 4 4 1199191
4 1 4 2998829 8 4 4 1476587
4 1 4 2914393 8 4 4 962781
4 1 4 2847225 4 1 8 3030248
8 1 4 1681406 4 1 8 2622053
8 1 4 1646454 4 1 8 2858558
8 1 4 1867536 8 1 8 1739992
8 1 4 1754292 8 1 8 1687213
1 2 4 4641036 8 1 8 1664925
1 2 4 4506856 16 1 8 956268
1 2 4 4385864 16 1 8 1147737
1 2 4 4559397 16 1 8 1168452
1 4 4 4334644 4 2 8 1462419
1 4 4 4319130 4 2 8 1430367

73

A appendix

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 4 4 4766410 4 2 8 1493186
1 4 4 4677943 8 2 8 849824
2 4 4 2574265 8 2 8 862638
2 4 4 2469414 8 2 8 888761

Table A.2: measured runtime values in milliseconds of the use-case K-Means for an input
size of 200 million points

500 million points

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 4 22292650 2 4 4 5912260
1 1 4 21795971 2 4 4 6144979
1 1 4 21729832 2 4 4 7368523
1 1 4 21427771 2 4 4 7351840
1 1 4 19646850 2 4 4 5969472
1 1 4 22906253 2 4 4 7284816
1 1 4 21313680 2 4 4 5805154
1 1 4 21045502 4 4 4 4226358
2 1 4 13270681 4 4 4 3873059
2 1 4 13057327 4 4 4 3581347
2 1 4 11531655 4 4 4 3287163
2 1 4 13678751 4 4 4 3411184
2 1 4 11485286 4 4 4 3129130
2 1 4 12602346 4 4 4 3212769
2 1 4 11817405 8 4 4 2266003
2 1 4 11905793 8 4 4 2086800
4 1 4 7384081 8 4 4 2077102
4 1 4 7284891 8 4 4 2375380
4 1 4 7103078 8 4 4 2334141
4 1 4 6456781 8 4 4 2752013
4 1 4 6449561 8 4 4 2314284
4 1 4 6468292 1 8 4 9331698
4 1 4 6342517 1 8 4 9477089
4 1 4 6771926 1 8 4 9615628
8 1 4 3860829 1 8 4 9287161
8 1 4 3666761 1 8 4 9343793
8 1 4 3654587 1 8 4 10780125
8 1 4 3701354 1 8 4 11050710
8 1 4 4130525 1 8 4 10039399
8 1 4 3901856 2 8 4 4964663
8 1 4 3874996 2 8 4 4510911
8 1 4 3740767 2 8 4 4718002
16 1 4 2759629 2 8 4 4620842
16 1 4 2539313 2 8 4 4954238
16 1 4 2616921 2 8 4 5272468

74

A.1 Measured Runtime Values

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 2 4 14445197 2 8 4 6927583
1 2 4 14802033 2 8 4 5726300
1 2 4 13920646 4 8 4 3387056
1 2 4 14233633 4 8 4 3369487
1 2 4 14042151 4 8 4 3129871
1 2 4 14260088 4 8 4 3392412
1 2 4 14400820 4 8 4 3520574
1 2 4 14490294 4 8 4 4254310
2 2 4 8306870 4 8 4 3931163
2 2 4 8421878 8 8 4 2207551
2 2 4 8501599 8 8 4 2978653
2 2 4 8329325 8 8 4 2424826
2 2 4 9218429 8 8 4 2206641
2 2 4 7770299 8 8 4 2208634
2 2 4 7307607 8 8 4 2195253
2 2 4 7831820 8 8 4 2738368
4 2 4 5244562 8 8 4 2387646
4 2 4 4665760 8 8 4 2154244
4 2 4 4696269 1 1 8 20183408
4 2 4 4593162 1 1 8 24706580
4 2 4 4521025 1 1 8 22500917
4 2 4 4611485 1 1 8 25063869
4 2 4 4684256 2 1 8 12160791
4 2 4 4119967 2 1 8 11995009
8 2 4 2808439 2 1 8 12496007
8 2 4 2615311 2 1 8 12902593
8 2 4 2586110 2 1 8 9960043
8 2 4 2823704 2 1 8 10166042
8 2 4 2394742 2 1 8 9999795
8 2 4 3099013 4 1 8 7262198
8 2 4 2616683 4 1 8 7353341
8 2 4 2751637 4 1 8 6694321
1 4 4 9791927 4 1 8 6057379
1 4 4 9442999 4 1 8 7128640
1 4 4 9082389 4 1 8 6864639
1 4 4 9762517 4 1 8 6931793
1 4 4 12459720 8 1 8 3974457
1 4 4 12091157 8 1 8 4401595
1 4 4 10201490 8 1 8 4559721
1 4 4 9247666 8 1 8 4013323
2 4 4 6265576

Table A.3: measured runtime values in milliseconds of the use-case K-Means for an input
size of 500 million points

75

A appendix

2,000 million points

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 8 88538035 8 2 8 10551399
1 1 8 79616355 8 2 8 11592442
2 1 8 52645154 1 4 8 47088865
2 1 8 46500016 1 4 8 48745152
2 1 8 52436541 1 4 8 43768286
4 1 8 30258392 2 4 8 33791022
4 1 8 30932978 2 4 8 30728890
8 1 8 14646341 2 4 8 27324173
8 1 8 16126120 4 4 8 16579567
8 1 8 16583429 4 4 8 15510054
16 1 8 10381263 4 4 8 14281609
16 1 8 10327493 8 4 8 11700689
16 1 8 11376681 16 4 8 6438838
1 2 8 55805878 1 1 16 90223995
1 2 8 64194252 2 1 16 40696911
1 2 8 66805381 8 1 16 15204575
4 2 8 15854887 4 2 16 17333536
4 2 8 15954049 4 2 16 16663838
4 2 8 16933199 8 2 16 11463327
8 2 8 10540952 8 2 16 8521653

Table A.4: measured runtime values in milliseconds of the use-case K-Means for an input
size of 2,000 million points

5,000 million points

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 8 87829379 4 2 8 41658976
1 1 8 76158936 4 2 8 41237702
1 1 8 76648592 4 2 8 42123152
4 1 8 76344133 8 2 8 26868044
4 1 8 69028363 8 2 8 26774349
8 1 8 43684560 2 4 8 61814150
8 1 8 40885663 4 4 8 31747600
16 1 8 23592087 4 4 8 29308169
32 1 8 16471995 4 4 8 30310338
32 1 8 16644173 8 4 8 22330338
2 2 8 95033249 8 4 8 28715049
2 2 8 91698439

Table A.5: measured runtime values in milliseconds of the use-case K-Means for an input
size of 5,000 million points

76

A.1 Measured Runtime Values

A.1.2 Wordcount

The Wordcount input sizes were 176,935,868, 702,062,928, 1,645,401,881 and 14,934,742,463
words:

176,935,868 words

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 4 1726594 8 1 4 313112
1 1 4 1720914 8 1 4 298720
1 1 4 1742032 8 1 4 324981
1 1 4 1853828 8 1 4 274394
1 1 4 1824995 8 1 4 286878
1 1 4 1859408 8 1 4 341828
1 1 4 1845990 8 1 4 299292
1 1 4 1499119 8 1 4 290028
1 1 4 1581152 8 1 4 322460
1 1 4 1493300 1 1 8 1987504
1 1 4 1548692 1 1 8 1943962
1 1 4 1592227 1 1 8 1842878
2 1 4 1105764 2 1 8 1232587
2 1 4 1055523 2 1 8 1179705
2 1 4 1305348 2 1 8 1173190
2 1 4 1019021 1 2 8 3547973
2 1 4 798604 1 2 8 3462086
2 1 4 948286 1 2 8 3713849
2 1 4 949184 2 2 8 2321808
2 1 4 790670 2 2 8 2162374
2 1 4 1093650 2 2 8 1446863
2 1 4 1041921 4 2 8 987591
2 1 4 1068975 4 2 8 1157996
2 1 4 1060901 4 2 8 933583
4 1 4 628041 8 2 8 506567
4 1 4 662344 8 2 8 545896
4 1 4 625643 8 2 8 581105
4 1 4 554986 1 4 8 3795971
4 1 4 587893 1 4 8 3688272
4 1 4 500088 1 4 8 3781671
4 1 4 516815 2 4 8 1664605
4 1 4 479284 2 4 8 2229609
4 1 4 585625 2 4 8 2221643
4 1 4 577527 4 4 8 985550
4 1 4 539285 4 4 8 1240986
4 1 4 536080 4 4 8 1206946
8 1 4 334746 8 4 8 669695
8 1 4 338524 8 4 8 631978
8 1 4 347002 8 4 8 594273

77

A appendix

VMs CPUs RAM runtime VMs CPUs RAM runtime

Table A.6: measured runtime values in milliseconds of the use-case Wordcount for an input
size of 176.9 million words

702,062,928 words

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 4 7088587 2 4 4 6432158
1 1 4 6766641 2 4 4 6478609
1 1 4 6892678 4 4 4 3486007
1 1 4 6871840 4 4 4 3569978
1 1 4 7395073 4 4 4 3947242
1 1 4 8211067 4 4 4 3347369
1 1 4 7183433 4 4 4 3514623
1 1 4 7059997 4 4 4 3858004
1 1 4 9271923 4 4 4 3349311
1 1 4 9928123 4 4 4 3312588
1 1 4 9379208 8 4 4 2211276
1 1 4 9642022 8 4 4 1713351
2 1 4 5402298 8 4 4 2125466
2 1 4 5485679 8 4 4 2074091
2 1 4 5481212 8 4 4 1784546
2 1 4 5876778 8 4 4 2351731
2 1 4 4460001 8 4 4 2381838
2 1 4 4723873 8 4 4 2305332
2 1 4 4482744 1 8 4 10568641
2 1 4 4911585 1 8 4 10112561
2 1 4 6253151 1 8 4 10652971
2 1 4 5210911 1 8 4 10425353
2 1 4 4698827 1 8 4 10103618
2 1 4 5318465 1 8 4 9709991
4 1 4 2491740 1 8 4 9645803
4 1 4 1897747 1 8 4 9510782
4 1 4 1790605 2 8 4 7353761
4 1 4 2010079 2 8 4 6967728
4 1 4 1889823 2 8 4 7594911
4 1 4 2559561 2 8 4 7248379
4 1 4 2166788 2 8 4 11278595
4 1 4 2170494 2 8 4 10292139
4 1 4 2968413 2 8 4 6865429
4 1 4 3018438 2 8 4 10984683
4 1 4 3113592 4 8 4 4938212
4 1 4 3055397 4 8 4 4663836
8 1 4 1399086 4 8 4 4840918
8 1 4 1340872 4 8 4 4574144
8 1 4 1283666 8 8 4 2568257

78

A.1 Measured Runtime Values

VMs CPUs RAM runtime VMs CPUs RAM runtime

8 1 4 1320253 8 8 4 2557358
8 1 4 1271388 8 8 4 2393656
8 1 4 1166334 8 8 4 2472665
8 1 4 1312549 1 1 8 7547746
8 1 4 1383625 1 1 8 7544396
8 1 4 1866938 1 1 8 7782428
8 1 4 1372109 2 1 8 3738052
8 1 4 1386642 2 1 8 4131073
8 1 4 1693577 2 1 8 4001456
1 2 4 9996888 4 1 8 2545967
1 2 4 9870873 4 1 8 2306846
1 2 4 9539139 4 1 8 2120197
1 2 4 9518508 8 1 8 1057952
1 2 4 9137195 8 1 8 1433681
2 2 4 7701069 8 1 8 1274946
2 2 4 8305344 16 1 8 839723
2 2 4 8276044 16 1 8 1011150
2 2 4 7756900 16 1 8 992974
2 2 4 8097366 1 2 8 14183827
4 2 4 4262043 1 2 8 14600039
4 2 4 3777737 1 2 8 14558280
4 2 4 4382906 2 2 8 7449460
4 2 4 3884397 2 2 8 8793469
4 2 4 4275897 2 2 8 8600011
8 2 4 2424530 4 2 8 3687276
8 2 4 2355152 4 2 8 4420221
8 2 4 1975266 4 2 8 3568918
8 2 4 2364841 8 2 8 2247092
8 2 4 2059067 8 2 8 2272262
1 4 4 10184717 8 2 8 2253011
1 4 4 10368603 1 4 8 10440174
1 4 4 10225448 1 4 8 10222158
1 4 4 10370618 1 4 8 11087240
1 4 4 10276693 2 4 8 7213311
1 4 4 10372465 2 4 8 7093156
1 4 4 10896263 2 4 8 6995238
1 4 4 10616436 4 4 8 3847207
2 4 4 6316640 4 4 8 3591164
2 4 4 9148584 4 4 8 3281850
2 4 4 9499184 8 4 8 2400205
2 4 4 9787950 8 4 8 2527035
2 4 4 7056917 8 4 8 2278209
2 4 4 6420135

Table A.7: measured runtime values in milliseconds of the use-case Wordcount for an input
size of 702.1 million words

79

A appendix

1,645,401,881 words

VMs CPUs RAM runtime VMs CPUs RAM runtime

1 1 4 19140864 1 8 4 31331474
1 1 4 24268050 1 8 4 32897949
1 1 4 29549423 1 8 4 34835497
1 1 4 30551081 1 8 4 27501271
1 1 4 30101080 1 8 4 29010982
2 1 4 10885893 1 8 4 28693795
2 1 4 8695405 2 8 4 15521210
2 1 4 10833792 2 8 4 15880025
2 1 4 11865219 2 8 4 17163280
4 1 4 4532972 2 8 4 16713511
4 1 4 4555591 2 8 4 15998807
4 1 4 5791886 2 8 4 16319362
4 1 4 4729545 4 8 4 9387889
4 1 4 5612827 4 8 4 9089707
4 1 4 5530383 4 8 4 8296232
4 1 4 5757109 4 8 4 9193193
4 1 4 5770854 8 8 4 4290978
4 1 4 5707687 8 8 4 4719162
4 1 4 5538386 1 1 8 25154219
8 1 4 2565926 1 1 8 27489892
8 1 4 3021004 2 1 8 9349976
8 1 4 2455320 2 1 8 9450135
8 1 4 2915445 2 1 8 8768576
8 1 4 2732770 4 1 8 5071914
1 2 4 30532049 4 1 8 6513567
1 2 4 29051124 4 1 8 5237400
1 2 4 28045068 8 1 8 2490527
1 2 4 26883331 8 1 8 3241765
1 2 4 31376353 8 1 8 3592825
1 2 4 31296248 16 1 8 2230709
1 2 4 30156760 16 1 8 2208940
1 2 4 29954979 16 1 8 2456948
2 2 4 15916959 1 2 8 28817384
2 2 4 15471292 1 2 8 27117116
2 2 4 16117029 1 2 8 25140912
2 2 4 17098876 2 2 8 20221982
2 2 4 16550248 2 2 8 19318618
2 2 4 13787438 2 2 8 19981643
2 2 4 15325751 4 2 8 10222685
4 2 4 10643287 4 2 8 10272197
4 2 4 10214526 4 2 8 10436518
4 2 4 8003877 8 2 8 5398027
4 2 4 7877858 8 2 8 5688508
4 2 4 10397761 8 2 8 6066849

80

A.1 Measured Runtime Values

VMs CPUs RAM runtime VMs CPUs RAM runtime

4 2 4 10466871 1 4 8 34348601
4 2 4 8041104 1 4 8 32519274
4 2 4 8114421 1 4 8 32475541
8 2 4 5055531 2 4 8 22280032
8 2 4 5016514 2 4 8 22911573
8 2 4 5278660 2 4 8 21858951
8 2 4 4967724 4 4 8 10636023
1 4 4 38669832 4 4 8 8432499
1 4 4 37768473 4 4 8 9467273
1 4 4 34895548 8 4 8 5803859
1 4 4 34379995 8 4 8 5747991
1 4 4 38599095 8 4 8 5861857
1 4 4 37963591 2 8 8 17565232
1 4 4 34346791 2 8 8 18827077
1 4 4 34173278 1 1 16 19526983
2 4 4 17899436 1 1 16 19285696
2 4 4 21802659 1 1 16 19907200
2 4 4 17992754 2 1 16 11094739
2 4 4 22672958 2 1 16 11435078
2 4 4 21277637 2 1 16 11410225
2 4 4 21397227 4 1 16 7010659
2 4 4 15342131 4 1 16 7217511
2 4 4 16448913 4 1 16 6808463
4 4 4 10695956 8 1 16 3689614
4 4 4 9816589 8 1 16 3847965
4 4 4 9724612 8 1 16 3201060
4 4 4 8404958 1 2 16 30687567
4 4 4 9897743 1 2 16 29331359
4 4 4 10536655 2 2 16 19272479
4 4 4 12425390 2 2 16 18570261
8 4 4 6301674 4 2 16 10435105
8 4 4 5461690 4 2 16 11332642
8 4 4 6128920 1 4 16 29293590

Table A.8: measured runtime values in milliseconds of the use-case Wordcount for an input
size of 1,645.4 million words

14,934,742,463 words

VMs CPUs RAM runtime VMs CPUs RAM runtime

4 1 8 72808449 16 1 8 20619916
8 1 8 36421062 16 1 8 18632285
8 1 8 39046755

Table A.9: measured runtime values in milliseconds of the use-case Wordcount for an input
size of 14,934.7 million words

81

A appendix

A.2 Apache Flink Configuration

For all deployed Flink job and task managers, the following configuration was used. The
values RAM, CPUs and the job manager’s IP address were inserted by the used controlling
framework depending on the actual measurement setup.

configuration value

jobmanager.rpc.address: from OpenNebula
jobmanager.rpc.port: 6123
jobmanager.heap.mb: 1024 * RAM * 0.8
jobmanager.web.port: 8081

blob.server.port: 7101-7150
taskmanager.rpc.port: 7161

taskmanager.data.port: 7162
taskmanager.heap.mb: 1024 * RAM * 0.8

taskmanager.numberOfTaskSlots: CPUs
taskmanager.memory.preallocate: false

akka.framesize: 300000000b
parallelism.default: 1

82

List of Figures

3.1 Graph of the methodology to gain the prediction parameter 10
3.2 High-dimensional problem space for runtime analysis 11

4.1 The Flink process model from [CKE+15] . 15
4.2 Experiment cloud setup infrastructure . 16
4.3 Example of K-Means iterations to find centroids 18
4.4 R-plot of the measurements in each dimension against runtime in minutes for

the use case K-Means . 20
4.5 Box-Whisker-Plot with the number of VMs plotted against the measured run-

time in minutes for the use case K-Means with an input size of 500 million
points . 21

4.6 Standard deviation and mean of all measurements, use case K-Means 22
4.7 Regression line plot with overfitting and underfitting 25
4.8 Dimension-wise regression functions and transformations 28
4.9 Outlier and Leverage points . 34
4.10 Cook’s distance plot for observations in the use case K-Means 35
4.11 Regression function plots in R against input and vms 41
4.12 Regression function plots in R against cpus · vms and ram · vms 42
4.13 Correlation plot of regression dimension from R 45
4.14 Plot of the Confidence and Prediction Intervals depending on the number of

vms, with set values for cpus = 1, ram = 8 and input = 5e+09 points 48

5.1 Validation process of instantiated Methodology by runtime comparison 53
5.2 Plot of predicted and measured runtimes as well as confidence and prediction

intervals for the use case K-Means . 56
5.3 Wordcount example of counting words . 58
5.4 Cook’s Distance plot for application Wordcount 60
5.5 Plot of predicted and measured runtimes as well as confidence and prediction

intervals for the use case Wordcount . 62
5.6 Excerpt of a Flink dataflow graph for a K-Means execution 64
5.7 Runtime delta between prediction and measurement depending on input size 66
5.8 Flink dataflow graph of a Wordcount execution 66
5.9 Wordcount runtime of task managers involved with huge offset 67

83

Bibliography

[Aka11] Akaike, Hirotugu: Akaike’s information criterion. In: International Encyclope-
dia of Statistical Science. Springer, 2011, S. 25–25

[ALC+17] Alipourfard, Omid ; Liu, Hongqiang H. ; Chen, Jianshu ; Venkataraman,
Shivaram ; Yu, Minlan ; Zhang, Ming: CherryPick: Adaptively Unearthing the
Best Cloud Configurations for Big Data Analytics. In: 14th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2017, Boston, MA,
USA, March 27-29, 2017, 2017, 469–482

[BHL+12] Bronstein, Ilja N. ; Hromkovic, Juraj ; Luderer, Bernd ; Schwarz, Hans-
Rudolf ; Blath, Jochen ; Schied, Alexander ; Dempe, Stephan ; Wanka, Gert
; Gottwald, Siegfried: Taschenbuch der mathematik. Bd. 1. Springer-Verlag,
2012

[Caf15] Caffo, Brian: Regression Models for data science in R. In: Leanpub, British
Columbia, Canada (2015)

[CKE+15] Carbone, Paris ; Katsifodimos, Asterios ; Ewen, Stephan ; Markl, Volker ;
Haridi, Seif ; Tzoumas, Kostas: Apache flink: Stream and batch processing in
a single engine. In: Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering 36 (2015), Nr. 4

[Coo11] Cook, R. D.: Cook’s Distance. In: International Encyclopedia of Statistical
Science. Springer, 2011, S. 301–302

[DG08] Dean, Jeffrey ; Ghemawat, Sanjay: MapReduce: simplified data processing on
large clusters. In: Communications of the ACM 51 (2008), Nr. 1, S. 107–113

[EB16] Escobar, R. ; Boppana, R. V.: Performance Prediction of Parallel Applications
Based on Small-Scale Executions. In: 2016 IEEE 23rd International Conference
on High Performance Computing (HiPC), 2016, S. 362–371

[HJ15] Harrell Jr, Frank E.: Regression modeling strategies: with applications to
linear models, logistic and ordinal regression, and survival analysis. Springer,
2015

[LTX16] Li, T. ; Tang, J. ; Xu, J.: Performance Modeling and Predictive Scheduling
for Distributed Stream Data Processing. In: IEEE Transactions on Big Data
2 (2016), Dec, Nr. 4, S. 353–364. http://dx.doi.org/10.1109/TBDATA.2016.

2616148. – DOI 10.1109/TBDATA.2016.2616148

[Pri17] Princeton University Library (Hrsg.): Interpreting Regression Output.
Princeton University Library, 2017. http://dss.princeton.edu/online_help/
analysis/interpreting_regression.htm

85

http://dx.doi.org/10.1109/TBDATA.2016.2616148
http://dx.doi.org/10.1109/TBDATA.2016.2616148
http://dss.princeton.edu/online_help/analysis/interpreting_regression.htm
http://dss.princeton.edu/online_help/analysis/interpreting_regression.htm

Bibliography

[Rei11] Reid, Nancy: Likelihood. In: International Encyclopedia of Statistical Science.
Springer, 2011, S. 739–741

[She09] Sheather, Simon: A modern Approach to Regression with R. Springer Science
& Business Media, 2009

[SW65] Shapiro, Samuel S. ; Wilk, Martin B.: An analysis of variance test for normality
(complete samples). In: Biometrika 52 (1965), Nr. 3/4, S. 591–611

[VYF+16] Venkataraman, Shivaram ; Yang, Zongheng ; Franklin, Michael ; Recht,
Benjamin ; Stoica, Ion: Ernest: efficient performance prediction for large-scale
advanced analytics. Santa Clara, CA, 2016

86

	Introduction
	Structure of the Thesis

	Related Work
	Prediction Approaches
	Performance Prediction Framework
	Predicting the best Cloud Configuration
	Kernel Based Predictions
	Predictive Scheduling

	Evaluation of the Related Work

	Methodology to predict Runtime Behavior
	Problem Space and Data arrangement
	Function Analysis

	Methodology Instantiation
	Execution environment
	Apache Flink
	LRZ Compute Cloud

	Problem Space and Measurements
	Use Case K-Means
	Measurements
	Dataset definition
	Adjusted R2 value
	Dimensions' transformations
	Determining Statistical Significance of Dimensions
	Problem Space Refinement

	Function Analysis
	Regression

	Multiple Linear Regression Model
	Outlier and Leverage point treatment
	Linear Regression Coefficients
	Linear Regression Representation

	Validation of the Regression Model
	Normal Distribution of Measurements
	Dimension's Correlation and Independence
	Confidence and Prediction Interval
	Evaluation of the Instantiation

	Runtime Prediction and Regression Model Evaluation
	Prediction
	Configuration Prediction
	Validation of a Regression Model
	Use case K-Means
	Application of the Methodology
	Runtime Predictions

	Use case Wordcount
	Application of the Methodology
	Runtime Predictions

	Accuracy of Measurements and Predictions

	Evaluation and Conclusion
	Methodology Evaluation
	Outlook and Future Work

	appendix
	Measured Runtime Values
	K-Means
	Wordcount

	Apache Flink Configuration

	List of Figures
	Bibliography

