
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterarbeit

Towards Quantum-Resistant
MACSec using EAP-TLS

Robin Lösch

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterarbeit

Towards Quantum-Resistant
MACSec using EAP-TLS

Robin Lösch

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Sophia Grundner-Culemann
Dr. Tobias Guggemos
Dr. Joo Cho, ADVA Optical Networking

Abgabetermin: 19. Januar 2021

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 19. Januar 2021

. .
(Unterschrift des Kandidaten)

Abstract

In the last 40 years, quantum computing developed from an exclusively theoretical descrip-
tion of a quantum Turing machine to real-world implementations with various technologies
and capabilities. Linking this development to digital computer’s rapid development in the
20th century, a quantum computer with practical implications on industry and everyone’s
daily life seems within reachable bounds. There are many reasons to seek such a practical
implementation. From algorithmic improvements to completely new technical possibilities
like quantum teleportation, a quantum computer promises to solve certain tasks faster than
possible with a classical digital computer.

Besides the benefits such a computer could provide, it would also have a significant impact
on cryptography. Modern cryptography protocols in general and especially the field of
public-key cryptography relies on mathematical problems that are believed to be intractable.
Famous examples of such algorithms are the RSA and the Diffie-Hellman (DH) key exchange
protocol and its variant, Elliptic Curve Diffie-Hellman (ECDH). Today, nearly all encrypted
messages in the modern Web are bootstrapped by either one of these protocols. A serious
flaw in these cryptosystems would have a massive impact on the confidentiality of user data.
This is where quantum computing comes into play. In 1999 Peter Shor published his famous
algorithm, which uses a quantum computer to break both the RSA and the DH problem.
Since Shor was able to show that both algorithms run in polynomial time, the foundation
of modern cryptography is questioned.

Luckily, even more than 20 years later, there is no implementation of a quantum computer
available that could be used to break cryptographic keys of reasonable size. While this
may not be true in the more distant future, an ever-growing effort was introduced to find
alternative, quantum-safe cryptosystems for which no such attack exists.

This work focuses on the adaptation and evaluation of such algorithms for IEEE 802.1X
and IEEE 802.1AE. IEEE 802.1X focuses on the mutual authentication of clients in IEEE
802.1 Ethernet networks. For this purpose, asynchronous digital signature schemes are used
that are directly affected by Shor’s algorithm. Furthermore, 802.1X uses public-key cryptog-
raphy and key exchanges to agree on a symmetric key between the clients and the connected
network equipment. This work provides a design for a quantum-safe implementation of
EAP-TLS, which can be used in IEEE 802.1X to mitigate attacks that involve a quantum
computer. An extensive evaluation of the performance of different signature and key ex-
change algorithms is provided, and as a proof-of-concept, a real-world implementation is
benchmarked with selected post-quantum and classical algorithms.

vii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Methodology . 4

2 Background 7
2.1 IEEE 802.1X . 7

2.1.1 Notations . 7

2.1.2 Authentication . 8

2.1.3 EAP and EAPOL . 8

2.2 IEEE 802.1AE . 9

2.2.1 MACSec Key Hierarchy . 10

2.3 Classical Cryptography . 11

2.3.1 Asymmetric Cryptography . 11

2.3.2 Symmetric Cryptography . 14

2.4 Post Quantum Cryptography . 14

2.4.1 Shor’s Algorithm . 14

2.4.2 Grover’s Algorithm . 15

2.5 Post-Quantum Cryptography Standardization 15

2.5.1 Public-key Encryption and Key-establishment Algorithms 17

2.5.2 Digital Signature Algorithms . 22

2.6 Related Work . 30

3 Requirements 33
3.1 Scenario . 33

3.2 Threat Model . 34

3.3 PQC Requirements . 34

3.3.1 Asynchronous Key Exchange . 34

3.3.2 Comparison of NIST PQ-KEX Algorithms 35

3.3.3 Asynchronous Signature Schemes . 39

3.3.4 Comparison of NIST PQ Signature Algorithms 39

3.3.5 Synchronous Schemes . 42

3.4 IEEE 802.1X Requirements . 43

3.5 Summary . 44

4 Design 47
4.1 Regarding the Extensible Authentication Protocol (EAP) Method 47

4.2 Regarding Key Exchange . 50

4.3 Regarding Signatures . 52

ix

Contents

5 Implementation 57
5.1 IEEE 802.1X Implementation . 57

5.1.1 liboqs . 57
5.1.2 hostapd . 58
5.1.3 FreeRADIUS . 59

5.2 Forward Secrecy . 59
5.3 Measurements . 59

6 Evaluation 61
6.1 Framework . 61
6.2 Key encapsulation methods . 61

6.2.1 Performance Evaluation . 62
6.2.2 Traffic Evaluation . 65
6.2.3 Forward Secrecy . 70

6.3 Signature Algorithms . 71
6.3.1 Performance Evaluation . 72
6.3.2 Traffic Evaluation . 74

6.4 Summary . 77
6.5 Practical Evaluation . 80

7 Conclusion 83

List of Figures 87

Bibliography 91

x

1 Introduction

Quantum Computing is a promising field of research for computer scientists. In this context,
the term “quantum” refers to the mathematical description of the physical phenomena of
quantum mechanics as described in the 20th century by researchers like Werner Heisenberg,
Erwin Schrödinger, Paul Dirac and John von Neumann. Quantum mechanics provide a
mathematical framework that tries to cope with problems in the so-called classical physics
theory, which turns out to have problems explaining phenomena on atomical scales. One of
the first researchers who recognized the implications of the quantum mechanical approach
on computer science was physicist Paul Benioff. In his paper, he described a “microscopic
quantum mechanical model of computers as represented by Turing machines”[Ben80]. Since
the first description of such a computer, multiple approaches for quantum-aware computing
machines were proposed. Two major contributions to this field are the so-called Adiabatic
Quantum Computing and the Quantum Gate Model (QGM). This thesis focuses on the
implications of Shor’s and Grover’s algorithm on modern cryptography. Both algorithms are
derived from the QGM and weaken or even break important guarantees of commonly used
cryptographic protocols. In the remainder of this thesis, these implications for the MACSec
protocol suite are highlighted, and alternatives for a quantum-resistant variant are discussed
and evaluated.

1.1 Motivation

The QGM provides a mathematical description of a theoretical approach to build a quantum
computer. This model uses qubits and logical “quantum gates” in analogy to bits and
logical gates as used in classical computing theory. A single qubit is a two-dimensional
vector that represents the state of this qubit. It is possible to transform a qubit’s state by
applying logical gates, represented by unitary matrices. Applying a logical gate is equivalent
to ordinary matrix-vector multiplication of the qubit vector with the corresponding gate
matrices. An algorithm in the QGM consists of several qubits and a set of unitary matrices
applied in a particular order. One of the first algorithms with a so-called quantum advantage
over a classical algorithm was described by David Deutsch and Richard Josza and hence is
often called the Deutsch-Josza algorithm. This algorithm computes whether a function
f : {0, 1}n → {0, 1} is balanced or constant in a single iteration on a theoretical quantum
computer[DJ92]. While this algorithm has mostly theoretical relevance to the field, different
algorithms with a more practical approach were proposed in the last years. The Deutsch-
Josza algorithm shows an essential property of practical quantum computers: Problems that
are regarded as computationally too hard to solve on a classical computer may be solved
efficiently by a quantum computer. One example of such a problem is the factorization of the
product of two large prime numbers, which belongs to the complexity class NP and for which
no polynomial-time solving algorithm is known. This specific problem was used to construct
the RSA cryptosystem, developed by Rivest, Shamir and Adleman in 1978[RSA78]. RSA is
one of the most important and widely used cryptographic primitives in modern cryptographic

1

1 Introduction

protocols, and its secureness critically relies on the complexity of this problem. In 1999,
Peter Shor proposed an algorithm for a quantum computer, built on the foundations of
the quantum gate model, that factorizes large numbers in polynomial time on a quantum
computer, using an implementation of the fast Fourier transformation. Shor even speculated
that the quantum Fourier transformation could be used to speed up multiplication itself,
resulting in lower asymptotical bounds for the time needed to break RSA on a quantum
computer than performing the encryption on a classical computer.

Furthermore, Shor shows in his work how to apply the proposed quantum Fourier transfor-
mation to calculate the discrete logarithm x of a number m = gx mod p in polynomial time.
This variant can be used to break the security of the widely used discrete Diffie-Hellman (DH)
public-key exchange and its variant Elliptic Curve Diffie-Hellman (ECDH)[Sho99]. DH-based
protocols have gained significant importance in the last years and even superseded RSA-
based key exchanges in many cases. An example is the widely used TLS protocol, which in
its recent 1.3 version completely dropped support for RSA-based key exchanges in favor of
DH and ECDH-based approaches.

24 28 216 232 264 2128 2256 2512 21024 22048 24096 28192 216384232768

Problem Space

101

102

103

104

105

Qu
bi

ts

Google Bristlecone (72)
Prime Factoring (RSA)
DLP (DH)

Figure 1.1: Estimates of the number of qubits needed to break an RSA/ECC problem of a
certain size. The y-axis is logarithmic to a base of two. The estimated number for
breaking an RSA key of 2n is 2n+2, according to [HRS17]. For an ECC Discrete
Logarithm Problem (DLP) of size 2n the number is 9n + 2 ln(n), according to
[RNSL17]. The dotted, red line shows the amount of currently available physical
qubits supported by Google’s Bristlecone architecture (72).

2

1.1 Motivation

Lov Grover proposed another important algorithm in 1996[Gro96]. Grover described a
quantum mechanical algorithm for searching a key in an unsorted database with n elements.
The proposed algorithm has a runtime of O(

√
n) as opposed to a classical algorithm that

needs to take O(n) steps, given the number of elements. This algorithm is also of particular
interest to the cryptographic community since the best-known approach for many symmet-
rical cryptosystems is a brute force attack, which can be reduced on a random search in the
keyspace of the symmetrical cipher. For symmetrical keys with size 2n, the search space is
therefore effectively halved by Grover’s algorithm.

Both algorithms were already implemented in real-world experimental setups. In 2001
Vandersypen et al. factored the number 15 by implementing Shor’s algorithm on a quantum
computer[VSB+01]. Due to limitations in the practical realization of sufficient large quan-
tum computers, as of today, there is no realistic scenario where Shor’s algorithm can be used
to break state-of-the-art encryption in the next decade. Figure 1.1 shows an overview of how
many qubits are needed to break a cryptosystem of a specific size alongside the number of
available qubits on Google’s Bristlecone Architecture, one of the largest quantum computer
implementations available today. The number of needed and available qubits are specified
as “physical” qubits, meaning that the number of available qubits on a single quantum com-
puter may be smaller, while the number of needed “logical” qubits to break a particular
key may be magnitudes of order higher. The main reason is the need for error correction.
Even in the optimistic scenario with no need for error correction, as of today, no available
quantum computer is close to breaking any encryption scheme with a reasonable key size.
However, in the last years, an ever-growing effort was put into building a more capable quan-
tum computer. While it is difficult to compare such systems directly, a standard measure is
the number of coherent qubits realized. In cooperation with Oak Ridge National Laboratory
and Google, the National Aeronautics and Space Administration (NASA) was recently able
to show so-called “quantum supremacy” or “quantum advantage” on a quantum computer
design that uses 54 qubits[AAB+19]. While this number and other properties like coherence
time on these machines may be magnitudes of orders too small for a practical application,
an exponential development of these parameters, similar to Moore’s law, must be assumed.
The issue gets even more pressing when considering that governmental agencies may already
be storing large amounts of encrypted data in specially tailored data centers for later decryp-
tion.1 This renders currently used cryptographic systems unusable for future applications
and raises the need for two important tasks: Finding new algorithms that rely on different
problems and provide better resistance against attackers with access to a sufficiently large
quantum computer and second, identify currently used protocols and system which rely on
cryptographic protocols that are known to be vulnerable against such attackers and securing
them against quantum-adversary.

One class of protocols heavily used to encrypt and authenticate data streams are so-called
Virtual Private Network (VPN) protocols. VPNs are commonly used to span a virtual,
encrypted network link between two, often geographically separated networks. These con-
nections are virtual in the sense that for the computing equipment in such networks, it looks
like they reside in the same Local Area Network (LAN) while the network traffic is trans-
mitted over different public network links. Encryption schemes are used in such protocols to
keep the transmitted data confidential, even during transmission over untrusted lines. Solu-

1https://www.wired.com/2012/03/ff-nsadatacenter/

3

https://www.wired.com/2012/03/ff-nsadatacenter/

1 Introduction

tions like IPSEC[SK05], OpenVPN2 and Wireguard3 are commonly used to connect IP-Layer
network links, while protocols like MACSec as defined by IEEE 802.1AE[IEE18] are used to
connect two nodes in the same LAN directly. MACSec is often used in places like carrier-
grade interconnects where control over the physical link itself may not be possible. Due to
the amount of data usually transmitted over such links and the broad number of subscribers,
a single carrier can be the bottleneck for data and, as such, can be of particular interest to an
attacker. This may be even further relevant in the context of Post-Quantum (PQ) security
when taking into account that the first sufficient large quantum computers are probably
going to be owned by large organizations, which are likely also have the resources to access
such network interconnects directly.

1.2 Problem Statement

This thesis is part of the QuaSiModO project4 and focuses on the 802.1X and 802.1AE
protocol suites provided by the Institute of Electrical and Electronics Engineers (IEEE).
Cryptographic schemes are an essential part of this wieldy employed protocol suite, used for
authentication and encryption in wired, as well as in wireless networks. This thesis aims to
identify used cryptographic protocols and an evaluation of their vulnerability to attackers
with a (theoretical) sufficient large quantum computer. Currently, a broad range of post-
quantum algorithms is available. It is crucial to not only select an arbitrary alternative but
to evaluate their performance regarding the protocol’s design goals and select a candidate,
which allows for a future proof design that can be used as a drop-in replacement. Optimally,
a replacement should ensure security against quantum adversaries and additionally keep into
account that computing resources may be constrained.

1.3 Methodology

In Chapter 2, an overview of the details of the used technologies and protocols is provided. It
covers the IEEE 802.1X and 802.1AE protocol suites and provides an overview of quantum
computing with a particular focus on Post-Quantum Cryptography (PQC). Furthermore, an
overview of work related to this field is provided. Chapter 3 defines requirements for a PQ
implementation of the 802.1X protocol suite, depending on used cryptographic algorithms
in 802.1X and limitations from the used Ethernet layer. The fourth chapter focuses on a
design proposal of a quantum-resistant implementation of the 802.1X protocol. Available
alternatives to the used cryptographic schemes shall be evaluated, and a proposal to harden
the protocol suite shall be provided. This thesis does explicitly not aim to employ new
quantum-resistant cryptographic schemes but rather evaluates existing schemes and selects
them to fit the requirements that arise from the characteristics of the concerned protocols.
The selection of the cryptographic protocols is tightly coupled to an ongoing project, hosted
by the National Institute of Standards and Technology (NIST), that aims to “solicit, evalu-
ate, and standardize one or more quantum-resistant public-key cryptographic algorithms”5.

2https://openvpn.net/
3https://www.wireguard.com/
4https://www.pq-vpn.de/index.html
5https://csrc.nist.gov/projects/post-quantum-cryptography

4

https://openvpn.net/
https://www.wireguard.com/
https://www.pq-vpn.de/index.html
https://csrc.nist.gov/projects/post-quantum-cryptography

1.3 Methodology

Vulnerable components of the protocol are outlined, and appropriate countermeasures are
provided. The fifth chapter focuses on an experimental evaluation of the proposed design.

5

2 Background

This chapter provides an overview of the used technologies. The first section describes the
IEEE 802.1X protocol suite in version 802.1X-2010 and the IEEE 802.1AE protocol suite
in the version 802.1AE-2018. The second section focuses on the field of PQC. It provides
an overview of the ongoing NIST standardization project, emphasizing the mathematical
background of the used key exchange and signature algorithms. Further, common limitations
and trade-offs specific to these algorithms are discussed. In the last part of this chapter,
an overview of related research concerning applications for post-quantum cryptosystems in
general and 802.1X and 802.1AE, in particular, is provided.

2.1 IEEE 802.1X

The primary purpose of the 802.1X protocol suite is the mutual authentication of clients and
network equipment in wired and wireless LAN networks, as well as the establishment of so-
called Security Associations (SA) used by the IEEE 802.1AE MAC Security standard[IEE02].
Mutual authentication in 802.1X is used to access-protect a network from untrusted clients
and to ensure that trusted clients do not send confidential data over untrusted environments.

2.1.1 Notations

IEEE 802.1X provides different roles and definitions, referred to in the remainder of this
thesis. Therefore, a brief description of important keywords is given as defined by the
standard[IEE02].

• Authenticator “An entity that facilitates authentication of other entities attached to
the same LAN.”
Usually, this describes certain network equipment that provides MAC layer services
such as switches and routers. The Authenticator functions as a proxy for mutual
authentication of a peer entity and a central Authentication Server.

• Supplicant “An entity at one end of a point-to-point LAN segment that seeks to be
authenticated by an Authenticator attached to the far side of that link.”
The Supplicant is often also referred to as “Peer” or “Client” and usually is an electronic
computer that needs to be granted MAC layer access to a LAN segment.

• Authentication Server “An entity that provides an authentication service to an Au-
thenticator. This service determines, from the credentials provided by the Supplicant,
whether the Supplicant is authorized to access the services provided by the system in
which the Authenticator resides.”
In practice, authentication is often handled by an authentication protocol such as RA-
DIUS, where this role is fulfilled by a RADIUS server or any other AAA service. This
role can also be fulfilled by the Authenticator directly.

7

2 Background

• Port Access Entity (PAE) “The protocol entity associated with a Port. It can
support the protocol functionality associated with the Authenticator, the Supplicant,
or both.” The PAE describes the state machine used for the authentication process on
the Authenticator or the Supplicant side.

• Secure Connectivity Association (CA) “A security relationship, established and
maintained by key agreement protocols, that comprises a fully connected subset of the
service access points in stations attached to a single LAN that are to be supported by
MACSec.”
A CA contains two or more PAEs connected through a LAN segment. All entities
in a CA share a cipher suite and a Secure Association Key (SAK) for transferring
cryptographically-secured MACSec Protocol Data Units (PDUs) between each partic-
ipant.

2.1.2 Authentication

MAC
Service

Access Controlled
System

Peer System

MAC Service
Client(s)

()

MAC Service
Client(s)

()
Controlled

Port (a)

Access
control (h)

Secure communication (g)

Authentication Exchange (e)Authentication
Credential (d)

Key Agreement (f)

AAA Server

Authorization
Data

Connectivity association (c)

LAN (b)

(e1)
(e2) (e3, i)

Figure 2.1: Schematic overview of an 802.1X controlled Port with MACSec and an external
AAA Server[IEE02].

Figure 2.1 shows a high-level overview of an 802.1X enabled port with an external Au-
thentication Server. The exchange of authentication credentials is done between the Peer
and an Authenticator using the EAP over LAN (EAPOL) protocol and forwarded to an
Authentication, Authorization and Accounting (AAA) server. In the corresponding figure,
RADIUS is chosen as the AAA protocol for practical reasons. The EAPOL protocol is a
Layer 2 protocol for the encapsulation of the EAP authentication protocol. According to
802.1X, EAP is not mandatory for mutual authentication, and Pre-shared Keyss (PSKs)
may be used instead. Both methods result in a Connectivity Association Key (CAK) used
as a root key for the MACSec key agreement protocol. In practice, EAP is quite relevant
in larger network installations since the flexibility of the protocol allows for a more scalable
approach like X509 certificate-based authentication and authentication mechanism that use
some kind of centralized directory.

2.1.3 EAP and EAPOL

The Extensible Authentication Protocol, as defined in RFC 3748[VCB+04], is a framework
for network-based authentication protocols. As a framework, EAP merely defines specific

8

2.2 IEEE 802.1AE

methods for authentication other than an MD5 challenge-response-based, an One-Time
Pads (OTP)-based and a Generic Token Card (GTC)-based method. It is meant to be
highly extensible regarding the authentication method, and a large number of methods were
proposed since its initial release. While the EAP standard itself defines no transport proto-
col, the 802.1X standard defines the EAPOL transport protocol, which encapsulates EAP
messages in Ethernet frames with the corresponding Ethertype 0x888E. EAPOL defines four
important EAPOL PDUs:

1. EAPOL-Start
An EAPOL-Start message is sent either by the Supplicant or the Authenticator when
the network link becomes available and can be periodically retransmitted until an
answer from the other PAE is received. This PDU is used to initiate the mutual
authentication between the two PAEs.

2. EAPOL-EAP
The EAPOL-EAP PDU is used to encapsulate EAP messages as defined by RFC 3748.

3. EAPOL-Logoff
The EAPOL-Logoff message is used when a PAE wants to terminate the session. When
MKA takes place, this type is ignored by the PAEs to mitigate DOS type attacks.

4. EAPOL-MKA
The EAPOL-MKA PDU is used to transfer MKPDUs as defined by IEEE 802.1X.
MKPDUs are used by the MACSec Key Agreement (MKA) protocol to select a Key
Server and derive cryptographic keys used by MACSec.

EAP, and therefore EAPOL, works in a strict request-response fashion, where each EAP
message needs to be acknowledged by the peer system before the next message is sent. This
is done by two types of EAP messages: First, the Authenticator sends an EAP-Request mes-
sages of type Identity to the Peer. The Peer responses with a message of type EAP-Response
that includes an identification string. The Authenticator sends the next message. It includes
the requested EAP method, which is either acknowledged by the Peer or responded to with
a failure indicator if the requested method is not supported. After the Peer sends a success-
ful response, a sequence of method-specific EAP messages is sent back and forth until the
method results in a successful authentication or an unrecoverable error. As the last message,
the Authenticator sends a status message with the Peer’s authentication result.

2.2 IEEE 802.1AE

The IEEE 802.1AE protocol suite focuses on “connectionless user data confidentiality, frame
data integrity, and data origin authenticity between security associations established by IEEE
802.1X”[IEE18]. It describes the MACSec PDU format and its encryption and integrity
protection using the keys established by the MACSec key agreement protocol as described
by IEEE 802.1X. MACSec defines a PDU format, similar to Ethernet, to transmit frames in
a local network that are integrity-protected and protected against eavesdropping through the
use of symmetric cryptosystems. IEEE 802.1AE does not have any mandatory dependencies
on IEEE 802.1X but is often used in conjunction. In such systems, IEEE 802.1X is used for
mutual authentication and the initial key exchange of a single Master Session Key (MSK).
The MSK is shared between the Authenticator and the Peer entity. By using the MKA, both

9

2 Background

SecTAG Secure Data ICV

Destination
Address

Source
Address

Destination
Address

Source
Address

User
Parameters

User Data

MSDUMAC Addresses

MPDUMAC Addresses

Calculated by the Cipher Suite
Integrity protected by the Cipher Suite

Protocol
Parameters

T
ra

n
sm

it

R
e

ceive

MACsec
EtherType

Confidentiality
(optional)

Figure 2.2: The MACSec MPDU format[IEE02]

entities are now able to perform the MKA protocol as an additional symmetric key-exchange
protocol to exchange a LAN-wide CAK, which is then used by MACSec to send encrypted
and integrity-protect MACSec Protocol Data Units (MPDUs). Figure 2.2 provides a high-
level overview of the MPDU format. The MAC addresses are not a part of the MPDU itself,
but visualize how the format integrates into Ethernet frame-based networks. Instead of the
usual Ethernet Ethertype, the Ethertype 0x885E is transmitted as a part of the SecTAG
format and signals that the following frame is an MPDU. The SecTAG further includes
different protocol meta parameters, such as a MACSec internal version number, and whether
confidentiality is used or only the integrity feature is used. The SECTag also includes an
identifier of the CA provided by 802.1X. The secure data field includes user data, which may
be protected by symmetric encryption when confidentiality is used. The ICV field includes
a cryptographically secured checksum to validate the integrity of the frame. It includes all
fields of the MPDU as well as the source and destination MAC addresses to protect against
spoofing attempts.

2.2.1 MACSec Key Hierarchy

distributed SAK

KEK

Key
W

ra
p

CM
AC

M
KA

Integrity

CAK

ICK

+

Key Server RNG

SAK

CM
AC

+ Key Server RNG
+ Public MKA Data
(from ot her RNGs)

OR
CMAC

Figure 2.3: Schematic overview of the MACSec Key Hierarchy[IEE02]

10

2.3 Classical Cryptography

A shared symmetric key is needed on the Peer systems to provide confidentiality and
integrity protection. This key is either a pre-shared secret or results from the authentication.
Usually, MACSec requires an EAP method that supports the secure exchange of a 32-byte
MSK to the client. Figure 2.3 shows an overview of the MACSec key hierarchy. The CAK
serves as a root key, which is not directly used for cryptographic purposes and is either
derived from the EAP negotiated MSK or from a static pre-shared key. Two further keys,
the ICV Key (ICK) and the Key Encrypting Key (KEK), are both derived from the CAK
using a Key Derivation Function (KDF). The ICK is used to prove possession of the CAK
and for integrity protection of PDUs.

The SAK is transferred to all members in a CA and used for the actual encryption of
PDUs by MACSec. The SAK is generated and assigned to members of a CA by a Key
Server, which is elected by the members of the CA using MKA. In the case of a pairwise
CAK directly derived through EAP, the role of the Key Server is always fulfilled by the
Authenticator. For keys derive through any other method, the Key Server is selected by
sending a “Key Server Priority” in each MKPDU. Participants select the Key Server with
the highest priority value. In case of a tie, the Key Server with the highest SCI value is
chosen. The SCI value is a combination of the Key Servers MAC address and a numeric port
identifier. Multiple Key Servers can generate a group CAK to secure the system against the
breach of a single CAK. To generate the SAK, either a strong random number generator on
the Key Server or a KDF can be used. In the case of distributed CAKs, each Key Server
needs to generate the distributed CAK by using a strong random number generator. To
preserve the confidentiality of previously transmitted MKA frames, each distributed CAK
should be independent of any previous generated CAK when a new participant joins the
CA[IEE02].

2.3 Classical Cryptography

In the following chapters a bi-directional communication between two participants Alice (A)
and Bob (B) is assumed. Participants use a cryptographic function fe to transfer a cleartext
message m to a ciphertext message c using a key ke and another cryptographic function fd
to transfer the ciphertext c back into the cleartext m using a decryption key kd. Therefore,
fd(fe(m, ke), kd) = m. In the case of a symmetric cryptosystems, kd = ke holds.

2.3.1 Asymmetric Cryptography

In asymmetric cryptography, the cryptographic key of a participant consists of a private and
a public part. The private part of the key is kept secret while the public part is published. To
encrypt a message, Alice can use Bob’s public key Bkpub to generate a ciphertext. Decrypt-
ing the ciphertext is only possible in possession of Bob’s private key Bkpriv . Some digital
signature schemes also use asymmetric primitives to provide authentication and integrity
protection of the data. To provide a signature of the data, usually, a scheme involving cryp-
tographic hash functions is used. For these schemes, Bob uses his private key to encrypt a
hash value of the data. Alice can now use Bob’s public key to decrypt the hash sent by Bob
and compare it with a hash of the received data. If both hashes are equal, Alice knows with
high probability that the hash was generated by the owner of the corresponding private key
(e. g., Bob) and the data were not tempered.

11

2 Background

Table 2.1: Overview of asymmetric key exchange and encryption schemes

Scheme Related Problem

Rivest-Shamir-Adleman (RSA) Integer Factorization
Rabin Integer Factorization
DH Discrete Logarithm
Elgamal Discrete Logarithm
ECDH Discrete Logarithm
Elliptic Curve Digital Signature Algorithm (ECDSA) Discrete Logarithm
Digital Signature Algorithm (DSA) Discrete Logarithm

Modern asymmetric (or public-key) crypto schemes rely on the computational complexity
to invert certain mathematical functions. Inverting a function is referred to as the compu-
tational problem of the underlying cryptosystem, and strong crypto schemes are based on
problems that are believed to be intractable. In this context, intractable means that no
algorithm exists which can perform this inversion in at least polynomial time. Table 2.1
shows an overview of modern asymmetric cryptosystems and their underlying problem. It
is easy to see that all listed cryptosystems relying on two important primitives. First, the
problem of integer factorization, which depends on the complexity of calculating the integer
prime factors of a large product N . In RSA, N and an encryption exponent e are parts of
the public key and therefore available to an attacker. By calculating c = me mod N , Alice
can now transform any message into ciphertext. The ciphertext can be converted back into
the message with the decryption exponent d, by calculating m = cd mod N . To calculate
the private key d, an attacker needs to know at least one of the two prime numbers. The
second prime can easily be computed by x = N/p. Since the only way to obtain the primes
is to factorize the public available parameter N , the cryptosystem’s strength depends on the
hardness of performing the algorithmic calculation of the (prime-)factorization in a cyclic
field.

Another rather important primitive is called the discrete logarithm problem. This problem
consists of finding the discrete logarithm x in a cyclic group p for bx = a mod p where a, b
and p denote large constants and p is prime. Instead of a encryption scheme, DLP-based
schemes like DH-based variants, provide the notion of a key exchange protocol, rather than
a encryption protocol. Instead of using a static public key for encryption, Alice and Bob
are able to calculate a shared secret on-the-fly, using the public available generator g and
a large prime p. For this purpose Alice and Bob can locally compute ga = A and gb = B
for large random numbers a and b. Now both can exchange A and B and calculate Ab = C
and Ba = C. This holds, because Ab = (ga)b = (gb)a = Ba. The prime number p is used
to perform all calculation in the cyclic group modp. An adversary only knows the prime p,
the generator g and both A and B. To calculate the shared secret C, an adversary need to
know either a or b, which can be found by calculating the discrete logarithm of either A or
B

Alternatively to the definition of the discrete logarithm problem in finite fields like cyclic
groups, a variant defined over elliptic curves is commonly used. An elliptic curve is defined
over every point in a finite (Galois) field Fq by the function E : y2 = x3 +ax+b with a, b ∈ k
and 4a3 + 27b2 6= 0 together with the point of infinity O = (0, 1, 0). The addition of two
points and scalar multiplication on that curve is defined, which means that the results of the

12

2.3 Classical Cryptography

operations are also located on that curve, with O as the neutral element. It is known that the
exact definition of these operations, together with the elliptic curve, forms an abelian group.
It is now possible to build a key exchange protocol on top of this structure analogous to the
original DH key exchange protocol by replacing the operations of modular exponentiation in a
cyclic group with scalar multiplications and additions on the curve. A benefit of using elliptic
curves over classical Diffie-Hellman is that the computational complexity of calculating the
discrete logarithm problem on an elliptic curve grows linear instead of logarithmic growth
in the classical variant. This allows the same security guarantees by using much smaller
key sizes. Further, this allows the implementation of ephemeral DH protocols that use a
short-lived key, valid only for a single session, and therefore provides the cryptographically
desirable notion of forward-secrecy.

As for today, all known algorithms that can solve these problems need at least subexpo-
nential time for a valid solution and breaking these schemes, therefore, is impractical, given
sufficiently large problem space.

KEM and KEX

Two important terms that need further definition are Key Exchange Protocol (KEX) and
Key Encapsulation Method (KEM). Both are sometimes ambiguously used in literature.
A KEX is a protocol that allows Alice and Bob to agree on a shared cryptographic key
by exchanging public, non-encrypted messages. An attacker is not able to retrieve the
shared secret by intercepting these messages, while Alice and Bob can compute a shared
key depending on some secret information in combination with the exchanged messages. An
example of a KEX is the DH key exchange. A KEM is a cryptographic protocol that uses
an asymmetric scheme to confidentiality transfer a randomly generated secret from Alice to
Bob or vice-versa. The public key of one party is used to encrypt the key, which then can
be sent over a public channel to be decrypted by the party that possesses the corresponding
private key. Both notions are tightly coupled and result in the mutual agreement on a single
shared key, which can be used for further symmetric encryption.

Perfect Forward Secrecy (PFS)

In classical key exchanges like RSA, a single long-term key pair is used for a large number of
sessions. This results in a security risk. When the long-term key is compromised, it allows
an attacker to decrypt already recorded key-exchanges subsequently. To avoid this problem,
the notion of forward-secrecy or perfect forward-secrecy is employed. In a cryptosystem
that supports forward-secrecy, an ephemeral key is used, which is only generated for a single
session and not stored on any of the participants. A long-term key may still be required
to sign the ephemeral key and avoid man-in-the-middle attacks, but this key needs to be
independent of the exchanged keying material. Historically, ephemeral keys were no option
since cryptosystems like RSA requires too much overhead on key generation to use a distinct
RSA key pair for each session. With the development of more lightweight key exchange
protocols like DH and Elgamal, ephemeral key exchanges became more practical and are the
de-facto standard and many modern cryptosystems like TLS.

13

2 Background

2.3.2 Symmetric Cryptography

Unlike in asymmetric schemes, symmetric cryptosystems require Alice and Bob to use the
same key for de- and encrypting a message. Applying the key to any plaintext yields the cor-
responding ciphertext. Applying the same key on the ciphertext again transfers the message
back into the original plaintext. Two common distinctions for symmetric crypto schemes
are whether the scheme is a so-called block or stream cipher. Stream ciphers are applied on
a constant stream of bits, where block ciphers only encrypt blocks of a certain length and
therefore may rely on some sort of padding of the small messages to match the block size. A
common benefit of symmetric schemes is the performance that can be magnitudes of orders
faster as with asymmetric schemes. Therefore cryptosystems like TLS often rely on asym-
metric schemes solely to bootstrap a symmetric key between the participants, which is then
used to encrypt the actual messages. A typical example of a secure and straightforward im-
plementation of a symmetric cipher is One-Time Pads. A simple OTP implementation uses
the XOR function and a pseudo-random number generator, seeded by the symmetric key, to
provide a constant stream of keying material. The best-known attacks on such schemes are
brute force type of attacks, where the attacker tries to guess the correct key. The security
of such schemes, therefore, directly depends on the size of the keyspace.

2.4 Post Quantum Cryptography

With the rise of new quantum computing algorithms like Shor’s and Grover’s algorithm and
the constant improvements of practical quantum computers, the field of PQC gained a lot
more relevance in recent years. This section will give an introduction to both algorithms
and their application. Further, the ongoing NIST standardization project for a suitable PQ
algorithm is discussed.

2.4.1 Shor’s Algorithm

Instead of providing an algorithm that can be used to factorize arbitrary integers directly,
Shor provides an algorithm that constructs an Fast Fourier Transform (FFT) on a quantum
computer in polynomial time. Shor uses this FFT to calculate the order r of an element x in a
multiplicative group G with the generator n. This can be used by choosing a random element
of this group and calculate the corresponding order. Afterwards, the greatest common
divisor gcd(xr/2, n) can be calculated which happens to be non trivial divisor of n if r is
even and xr/2 6≡ −1 (mod n) holds. Due to the randomization, this yields a factor of n
with a probability of 1

2 assuming two distinct prime factors for n. Calculating the other
prime factor is now a trivial division. For calculating the greatest common divisor, the
Euclidean algorithm can be used, which can be implemented in polynomial time. The
algorithm that builds the FFT quantum gate also uses only polynomial time, resulting in an
overall polynomial runtime for the factorization[Sho99].

Shor further shows in his work that the same algorithm for the quantum FFT can be
applied to solve the discrete logarithm problem as used in Diffie-Hellman based protocols.
Since instances of ECDH can be reduced to ordinary instances of the discrete logarithm
problem in cyclic groups, this efficiently results in a polynomial-time algorithm for both the
discrete logarithm problem for cyclic groups and elliptic curves.

14

2.5 Post-Quantum Cryptography Standardization

2.4.2 Grover’s Algorithm

In 1996 Grover published his work on a quantum algorithm that solves the problem of
searching an element in an unsorted database with n elements in O(

√
n) steps. For any

known classical algorithm, the time to find such an element would require O(n) steps. It
is commonly believed that no classical algorithm exists to solve this problem in less time.
Bennett et al. proved in their work that the lower bound on any quantum computer is
O(2n/2)[BBBV97], which makes Grover’s algorithm within a constant time factor of an
optimal solution. Grover uses a unitary matrix that implements a quantum oracle function
f : {0, 1}∗ → {0, 1} on a superposition over all possible inputs. This oracle function is used
to map the set of possible inputs to 1 if the input value would result in the required output.
An example of such an oracle function would be a function that implements a hash function
like SHA1 and would output 1 if the hash function’s input is equal to the searched value.
Grover proves in his work that the algorithm yields the desired element with a probability
of O(1)[Gro96]. This has some implications for symmetric cryptosystems as described above
since a brute force attack on the key can be interpreted as such a search, where the database
is the complete keyspace of size 2n and the searched element is the symmetric key. Grover’s
algorithm, therefore, effectively weakens the security of the used cryptosystem by a quadratic
factor.

2.5 Post-Quantum Cryptography Standardization

With respect to Shor’s algorithm and the possibility of practical applications in the fore-
seeable future, the NIST started a standardization project in December 2016 to decide on
“one or more additional public-key cryptographic algorithms to augment Federal Informa-
tion Processing Standards (FIPS) 186-4, Digital Signature Standard (DSS), as well as special
publications SP 800-56A Revision 2”12. The goal of this project is to provide a quantum-
resistant, asymmetric crypto and signature scheme that can be used additionally or as an
alternative to the currently specified algorithms that are affected by the work of Shor and
the ongoing improvements of practical quantum computers. The initial call for submissions
ended on November 30, 2017. The evaluation process is grouped into multiple rounds, where
comments from the public and an ongoing discussion on the proposed algorithms are used
to refine the selection of several acceptable cryptosystems for standardization. As for today,
the project is currently in the third, and therefore final round of evaluation.

Table 2.2: Overview of the defined security level

Level Primitive Reference

1 128-bit Block Cipher Key Search AES128
2 256-bit Hash Function Collision SHA256, SHA3-256
3 192-bit Block Cipher Key Search AES92
4 384-bit Hash Function Collision SHA384, SHA3-384
5 256-bit Block Cipher Key Search AES256

The call for submissions defines multiple so-called security levels. Each level is defined by

1https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
2https://csrc.nist.gov/publications/detail/fips/186/4/final

15

https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/publications/detail/fips/186/4/final

2 Background

a reference primitive and each submission is compared to one or more of these security levels.
Submissions often define different parameter selection to match different security levels. The
reference algorithms, as shown in Table 2.2, are well-studied crypto algorithms that can be
used for ease of comparison with the submitted algorithms. Further, the following properties
are defined as desirable:

1. Perfect forward-secrecy

2. Resistance to side-channel attacks

3. Resistance to multi-key attacks

4. Resistance to misuse

All algorithms provide IND-CCA guarantees, while some algorithms also provide an IND-
CPA compliant instance. The IND notation stands for ciphertext indistinguishability and
is defined as an experiment where an attacker sends two chosen-plaintext messages of equal
length to a challenger party with access to an encryption function E and a decryption
function D seeded by an encryption key Ke and a decryption key Kd. The challenger
party decides to encrypt one of the two messages randomly, and the attacker tries to guess
which of the chosen plaintext messages resulted in the returned ciphertext. The experiment
further includes an encryption and decryption oracle, available to the attacker to encrypt
and decrypt arbitrary messages under certain conditions.

• Indistinguishability under chosen plaintext attack (IND-CPA)
In this setting, the attacker is allowed a single iteration, i. e., send two plaintext mes-
sages to the challenger and then have to decide which message results in the returned
ciphertext. The attacker is further allowed to issue additional computations in poly-
nomial time, including calls to the encryption oracle, before sending the plaintext and
after receiving the ciphertext. These guarantees are needed to limit the attacker to
computations in polynomial time.

• Indistinguishability under chosen ciphertext attack (IND-CCA) In this set-
ting, the attacker is further allowed to make arbitrary calls to a decryption oracle before
sending the message to the challenger while keeping the restriction on a polynomial
number of steps. This allows the attacker multiple iterations of calls to the encryption
oracle and implies that multiple iterations do not weaken the cryptographic protocol.

• Indistinguishability under adaptive chosen ciphertext attack (IND-CCA2)
In this setting, the attacker is now additionally allowed to call the decryption oracle
after he received to ciphertext from the challenger, with the only exception that the
attacker is not allowed to send the received ciphertext itself to the oracle. This setting
implies that an attacker has no additional advantage by using the decryption oracle
after knowing the ciphertext that corresponds to one of the messages.

Round 3 of the NIST PQ project evaluates submissions under the guarantees provided by
IND-CCA with up to 264 queries to the oracle. This is useful for algorithms that depend
on key re-usage and therefore require long-term security of the used keys. It is further
allowed to submit additional cipher specifications that only provide IND-CPA guarantees,
with restrictions on the re-usage of a single key. This may be beneficial for schemes that
have significant performance advantages under IND-CPA.

16

2.5 Post-Quantum Cryptography Standardization

2.5.1 Public-key Encryption and Key-establishment Algorithms

Table 2.3: NIST Round 3 Candidates for asymmetric KEM and KEX algorithms. Can-
didates are either finalists or alternate candidates. Finalists are the preferred
candidates by the NIST and only minor changes are expected, while alternate
candidates may be subject to more significant changes.

Background Scheme Finalist

Code-Based
BIKE —
Classic McEliece 4

HQC —

Lattice-Based

SABER 4

CRYSTALS-KYBER 4

NTRU 4

NTRU Prime —
FrodoKEM —

Isogeny-Based SIKE —

One part of the NIST project is selecting one or more public key encryption or key en-
capsulation methods. Table 2.3 shows the currently discussed candidates, grouped by their
mathematical foundation. In the remainder of this section, an introduction to the mathe-
matical problems and their application for asymmetric cryptography is given.

Lattice-based Key Exchange

Lattice-based cryptosystems are based on the mathematical foundation of so-called lattices.
A lattice is an n-dimensional geometric space with a periodical structure, described by a set
of n linearly independent basis vectors b1, . . . , bn ∈ Rn, known as the basis B of a Lattice L.
The lattice consists of points that are described by any linear combination of these vectors.
The security of lattice-based systems depends on the hardness of multiple problems in these
lattices[MR09].

1. Shortest Vector Problem (SVP) Find the shortest non-zero vector for a given basis B

2. Closest Vector Problem (CVP) For a given basis B and a vector t, find the lattice
point closest to t

3. Shortest Independent Vector Problem (SIVP) For a given basis B find a set set S of
linearly independent vectors in L(B) that minimize the quantity ‖S‖ = maxi(‖si‖)

Most lattice-based cryptosystems are not based on an exact solution to these problems
but instead, use a variant where the solution needs to be within an approximation factor
γ. The best-known algorithms to solve these problems are running within polynomial time
and give an approximation within an exponential factor. For an exact solution or a solution
with an approximation factor within a polynomial factor, the best-known algorithms require
exponential running time and space, making them impractical for a certain size for n[MR09].
It is believed that there may be no algorithms that solve the SVP in polynomial running time
within a polynomial approximation factor. This hardness can be used to build cryptographic
systems on top of these problems. Ajtai was the first that recognized the implication of lattice

17

2 Background

106 107 108

Key Exchange Runtime in CPU Cycles

103

104

P
u

b
lic

K
ey

B
yt

es

Lattice-Based Key Exchanges

KYBER

FRODOKEM

NTRU

NTRU Prime

Saber

Figure 2.4: Overview of the current lattice-based Round 3 candidates of the NIST PQ stan-
dardization project. Only parameter selections with ING-CCA guarantees are
shown. The x-axis shows the average latency for key generation, encapsulation
and decapsulation of a shared secret in CPU cycles on a logarithmic scale. The
y-axis shows the public key size in bytes on a logarithmic scale. Benchmark
results are part of eBACS[Be]

for cryptographic purposes by designing a one-way, collision-resistant hash function that can
be reduced to the worst-case hardness of the SVP[Ajt96]. In this context, worst-case hardness
means that breaking these cryptosystems is at least as hard as breaking any SVP instance
within polynomial bounds, in polynomial time. Later, other cryptosystems were proposed
on the foundation of Ajtai’s work, including multiple public-key cryptosystems. As for now,
lattice-based public-key cryptosystems seems to be a trade-off between practicability and
proven security. Multiple proposed systems provide a desirable property of provable security
by the cost of rather large key sizes. For example, a cryptosystem proposed by Ajtai and
Dwork [AD97] with a worst-case hardness guarantee implies key sizes of serval gigabytes
for lattices with a dimensional size up to “serval hundreds”[MR09]. Again, in this case,
worst-case hardness means that breaking the system implies an efficient algorithm for any
instance of the underlying lattice problem.

One instance of lattice-based public-key cryptosystems for which no such proof exists but
which can be implemented efficiently and with practical key sizes is called NTRU. NTRU is a

18

2.5 Post-Quantum Cryptography Standardization

probabilistic cryptosystem, which means that it introduces some randomness into the encryp-
tion process and therefore results in many possible ciphertexts for a given plaintext[HPS98].
The original description of NTRU is based on classical ring-based polynomial algebra but
can also be given in the context of lattices. Another interesting class of lattice-based cryp-
tosystems is based on the Learning With Errors (LWE) problem. The learning with error
problem is a search problem which consists of finding a secret n-dimensional vector s ∈ Zn

q ,
given a polynomial number of vectors xi ∈ Zn

q , where each vector is generated by sampling a
random vector ai ∈ Zn

q and calculating the inner product bi = 〈ai, s〉 and finally adding some
noise by calculating xi = bi + ri where ri ∈ Zq is sampled from a probability distribution.
There is also an equivalent decision problem with the task to distinguish whether the set
of noisy vectors is either completely randomly sampled from a uniform distribution or the
result of the inner product combination, as shown above. It is shown that the search LWE
problem can be reduced to a lattice-based approximate-SVP and approximate-SIVP by using
a reduction algorithm that involves a quantum computer. That implies that an algorithm
that solves these kinds of problems in polynomial time would provide a polynomial-time
quantum algorithm that solves the approximate-SVP.

On the other hand, this proof does not imply that the same hardness guarantees also
holds for all classical algorithms. While cryptosystems based on the LWE problem provide
better hardness guarantees that classical lattice-based cryptosystems like NTRU, the needed
space to store the public key is still rather big compared to classical cryptosystems but
still considered practical[MR09]. A parameter selection of all Round 3 candidates with
their latency and public key sizes is shown in Figure 2.4. Except for FrodoKEM, all shown
algorithms use public key sizes of a few KB. The main difference in Figure 2.4 are the CPU
cycles needed to generate a key pair and to encapsulate and decapsulate a shared secret.
Depending on the algorithm, the differences are between a few orders of magnitude.

Code-based Key Exchange

Code-based cryptography is another promising candidate for PQC. Cryptosystems in this
category utilize the hardness of certain problems that arise from coding theory, which focuses
on the design and algorithmic implementation of error detection and correction codes. The
first proposal for a coding theory based public-key cryptosystem was designed by MCEliece
in 1976. MCEliece uses a class of Error Correction Code (ECC) called general binary Goppa
codes. The design relies on the fact that binary Goppa codes can be decoded efficiently,
while no algorithm for general linear codes exists. McEliece uses this property to hide a
Goppa code in a general linear code by randomly generating two matrices to transfer the
matrix for the Goppa code into a matrix for a general linear code with the same distance
and error rate as the original Goppa code. This matrix can be used as the public key, while
the randomly generated matrices are used as the private key. A message can be encrypted
by encoding the message into a code word in the general linear code and applying random
errors to the resulting code word. To decrypt the message, an attacker needs to decode the
general linear code and correct the random error, which is known to be NP-complete and
for which no polynomial-time algorithm is believed to exists[BMVT78]. Alternatively, an
attacker could restore the structure of the original generator matrix and decode the code
word efficiently. While there are ECC for which such an attack is possible, there is no
such attack currently known for Goppa codes. With the knowledge of the two permutation
matrices, it is computationally easy to transfer the message back into a binary Goppa code.

19

2 Background

107 108 109

Key Exchange Runtime in CPU Cycles

104

105

106
P

u
b

lic
K

ey
B

yt
es

Code-Based KEX

BIKE

MCEliece

HQC

Figure 2.5: Overview of the current code-based Round 3 candidates of the NIST PQ stan-
dardization project. Only parameter selections with ING-CCA guarantees and
NIST security level 3 are shown. The axes are displayed on a logarithmic scale.
The x-axis shows the average latency for key generation, encapsulation and de-
capsulation of a shared secret in CPU cycles on a logarithmic scale. The y-axis
shows the public key size in bytes on a logarithmic scale. Benchmark results are
part of eBACS[Be]

By applying Peterson’s algorithm, it is now possible to correct the random error and decode
the code word back into the original message in polynomial time[McE78]. Besides being
released over 40 years ago, the original description by McEliece remains nearly unbroken in
terms of that it provides nearly the same security level of 264 binary operations to break an
instance of the cryptosystems with the parameters from the original paper. An attack first
described by Canteaut and Sendrier[CS98] and later refined by Bernstein et al.[BLP08] was
able to reduce this value only to 260.55 while still using the parameters originally proposed
by MCEliece. On the downside, the McEliece cryptosystem needs rather large public keys,
ranging from multiple KB to a few MB. Multiple variants of Code-based cryptosystems were
proposed in the past, using different types of codes or depending on different primitives to
provide improvements in terms of the public key sizes. A parameter selection of all Round 3
candidates with their latency and public key sizes is shown in Figure 2.5. Bike and the HQC
scheme, which both rely on quasi-cyclic ECCs, are both able to provide better performance

20

2.5 Post-Quantum Cryptography Standardization

and key sizes than classic MCEliece.

Isogeny-based Key Exchange

0.2 0.4 0.6 0.8 1.0 1.2

Key Exchange Runtime in CPU Cycles ×109

350

400

450

500

550

P
u

b
lic

K
ey

B
yt

es

Isogeny-Based Key Exchanges

SIKEp434

SIKEp503

SIKEp610

SIKEp751

Figure 2.6: Overview of the current implementations of the SIKE Round 3 candidates of the
NIST PQ standardization project. All parameter selections that correspond to
different security levels are shown. The x-axis shows the average latency for key
generation, encapsulation and decapsulation of a shared secret in CPU cycles.
The y-axis shows the public key size in bytes. Benchmark results are part of
eBACS[Be]

Instead of residing in completely new mathematical foundations for asymmetric cryp-
tography, isogeny-based cryptographic protocols are located in the well-established field of
ECC. As for all problems which depend on the computational hardness of the discrete
logarithm problem both, the cyclic group based DH and Elliptic Curve (EC)-based pro-
tocols are affected by Shor’s algorithm and therefore are broken by a universal quantum
computer. Isogeny-based EC cryptography aims to solve this problem while still relying on
elliptic curves, providing small public key sizes and allowing for ephemeral key exchanges.
An isogeny φ is a surjective mapping between two elliptic curves, such that that φ is a group
homomorphism. Another class of mappings between elliptic curves that is also a group homo-
morphism is called an isomorphism. An isomorphism is a bijective map between two elliptic
curves. Two elliptic curves are isomorphic if and only if they have the same j-invariant. The

21

2 Background

j-invariant of an elliptic curve E is defined as j(E) = 1728 4a3

4a3+27b2
. Two j-invariant are isoge-

nous if there exists an isogeny between the corresponding elliptic curves. It is now possible to
view these isogenies as a graph. The vertices are a set of elliptic curves, described by their j-
invariant and the edges represent the isogenies that map these j-invariants. These graphs are
undirected since for every isogeny that maps E → E′; there is a corresponding isogeny that
maps E′ → E. Assuming an elliptic curve E defined over a finite field k with characteristics
p. For any prime l 6= p there exists l + 1 distinct isogenies of degree l. This results in l + 1
edges for every vertex in the graph. These graphs are so-called expander graphs. Random
walks on such expander graphs of a length close to the graph’s diameter results in any vertex
of the graph with a probability close to uniform. This random property can be used to build
a cryptosystem on top of such graphs. In such a cryptosystem, both Alice and Bob generate
two distinct isogeny graphs of degree l, called lA and lB for a public curve E. Now, both
parties take a random walk in their respective graph of a certain length, depending on some
large exponent e. This results in two cyclic subgroups A,B ⊂ E with bases 〈PA, QA〉 and
〈PB, QB〉. Afterwards, both party publish A/〈E〉 and B/〈E〉, generated by their secret iso-
genies α : E → E/〈A〉 and β : E → E/〈B〉. For an attacker, it is a hard problem to calculate
α and β given E/〈A〉 and E/〈B〉, while there are efficient algorithms available to calculate
the isogeny, given both curves. Additionally, Bob publish the values β(PA) and β(QA).
This allows Alice to generate β(A)E → (E/〈A〉)/〈B〉 and vice-versa allows Bob to calculate
α(B)E → (E/〈B〉)/A. Since, (E/〈B〉)/〈A〉 and (E/〈A〉)/〈B〉 are isomorphic, they share the
same invariant which therefore can be used as a shared secret[Feo17]. Figure 2.7 shows a
simplified overview of the link between the key agreement in classical DH based protocols
and the isogeny based variants. Both systems use an elliptic curve as a common base and
communicate some public parameters. A combination of the private information, combined
with the public parameters, results in a shared secret gab and E/〈A,B〉, respectively.

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

E A

B gab

ga

gb

Ba

Ab

Figure 2.7: High level overview of classical DH on the right and isogeny based DH on the
left[Jea16].

Due to their analogous behavior to related DH type protocols, this class of algorithms
is called Supersingular Isogeny Diffie–Hellman (SIDH). The only instance of such key ex-
changes currently enlisted in the NIST PQ project is called SIKE. Figure 2.6 shows the
currently proposed ciphers with different parameter selections to match certain security lev-
els.

2.5.2 Digital Signature Algorithms

In addition to the mentioned public-key encryption and key-establishment algorithms, the
NIST PQ project also focuses on a replacement for the currently used digital signature

22

2.5 Post-Quantum Cryptography Standardization

Table 2.4: NIST Round 3 Candidates for Digital Signature Standard (DSS) algorithms

Background Scheme Finalist

Lattice-Based
CRYSTALS-DILITHIUM 4

FALCON 4

Multivariate
GeMSS 7

Rainbow 4

Zero-Knowledge Proof Picnic 7

Hash-Based SPHINCS+ 7

schemes. In practice, most of these schemes also rely on cryptographic protocols like RSA,
DH or ECDH and therefore are weakened by Shor’s algorithm. Table 2.4 shows an overview
of the currently discussed Round 3 candidates, grouped by their underlying mathematical
primitives.

Lattice-based Signatures

Lattice-based schemes work on the foundation of lattice-based cryptography, as described
in the last section. For Dilithium, a Fiat-Shamir construction is used to generate a non-
interactive signature scheme from an interactive zero-knowledge proof. In general, such
schemes work in a request-response fashion, where a challenger request proof from another
party whether this party is the owner of a secret key, given the corresponding public key,
without leaking information about the secret key. In an interactive setup, communication
between both parties is required. However, there is a technique called Fiat–Shamir heuristics
that allows implementing a non-interactive digital signature scheme by replacing the inter-
active request from the challenger with a cryptographic hash function over the message that
needs to be signed. Initially, these schemes were designed for the RSA cryptosystem[FS86].
Dilithium is founded on a variation of this technique called Fiat-Shamir with aborts, which
works for lattice-based systems. Since naive Fiat-Shamir-based implementations would leak
information about the private key, assuming the signature is in a certain numerical range,
this scheme allows the challenged party to abort a verification process if the resulting com-
putation results in such a leak. The challenging party must restart the verification process
until a valid signature is generated. The number of iterations depends on the probability of
receiving a malicious random challenge that would result in a leak. In the original work by
Lyubashevsky, the probability for a failure is a small constant of about 2/3. Therefore, only
a small number of iterations is required until a successful signature is created. For one-time
signatures, the same transformation can be applied. The signing party only needs to create
valid signatures until a signature in the desired range is generated and then can continue to
publish this signature, without the need of publishing the failed attempts[Lyu09].

In the case of FALCON, the signature scheme is based on one-way trapdoor permutation
in lattices as described by Gentry, Peikert and Vaikuntanathan[GPV07]. This construction
uses a hash and sign scheme, where a message is hashed and encrypted by a lattice-based
encryption function using the private key. The encryption function results in a vector in
the lattice close to the hash value of the message. The distance between the pre-image of
the message and the resulting vector can be used as a signature. To verify this signature, a
challenger only needs to prove that the signature value is short (i. e., close to the pre-image)

23

2 Background

1000 1500 2000 2500 3000 3500

Signature Size for 23 Bytes Data

1.5

2.0

2.5

3.0

3.5

R
u

n
ti

m
e

to
si

g
n

5
9

B
yt

es
in

C
P

U
C

yc
le

s

×106 Lattice-Based Signature Schemes

Level

1

2

3

5

Public Key Size

897

1184

1472

1760

1793

Algorithm

Dilithium

Falcon

Figure 2.8: Overview of the current implementations of lattice-based signature schemes in
Round 3 of the NIST PQ standardization project. The y-axis shows the latency
to sign a 59 Byte message in CPU cycles. The x-axis shows the size of a signature
for a 23 Byte message. The size of the markers reflects the relative size of the
public keys. The color encodes the stated security level. Benchmark results are
part of eBACS[Be]

and that the decrypted value is equal to the hashed value of the message.
The benefits of lattice-based schemes are the fast signature latencies and acceptable sig-

nature sizes. However, both come with the cost of rather large public keys. Figure 2.8 shows
an overview of the different algorithms. FALCON places special focus on the combined sizes
of the signatures and the public keys since both are usually needed to be transmitted in a
certificate-based authentication setting. The plot shows that it achieves both goals compared
to Dilithium and even outperforms all Dilithium designs in terms of signature size, even
at the highest available security level.

Multivariate-based Signatures

Multivariate signature schemes are based on the notion of multivariate cryptography. Multi-
variate crypto schemes are candidates for a PQ key-exchange mechanism, and a few examples
of such cryptosystems were part of the first round of the NIST PQ project. Since the NIST
had concerns regarding the full security of such systems, no multivariate key exchange ad-

24

2.5 Post-Quantum Cryptography Standardization

1024× 101 6× 101

Signature Size for 23 Bytes Data

106

107

108

109

1010

R
u

n
ti

m
e

to
si

g
n

5
9

B
yt

es
in

C
P

U
C

yc
le

s

Multivariate Signature Schemes

Level

1

3

5

Public Key Size

0.5

1.0

1.5

2.0

2.5

3.0

Algorithm

GeMSS

Rainbow

Figure 2.9: Overview of the current implementation of multivariate signature schemes in
Round 3 of the NIST PQ standardization project. The y-axis shows the latency
to sign a 59 Byte message in CPU cycles on a logarithmic axis. The x-axis shows
the size of a signature for a 23 Byte message. The size of the markers reflects
the relative size of the public keys in KB. The color encodes the stated security
level. Benchmark results are part of eBACS[Be]

vanced to the second round. However, they are still used as parts of multiple signature
schemes. In general, multivariate cryptosystems are asymmetric cryptosystems that depend
on the hardness of solving multivariate polynomials over a finite field, which is proven to be
NP-complete. In a simplified design, based on a system called Hidden Field Eqaution (HFE),
the cryptosystem uses a finite field Fq of cardinality q and prime characteristics p. Usually

p = 2 is used. A polynomial f(x) =
∑

i,j βijx
qθij+qϕij +

∑
k akx

qεk + µ ∈ Fqn [x] for some
random integers ϕij, θij, εk ≥ 0, together with two affine transformation s, t : (Fq)

n → (Fq)
n

is chosen as the private key. A message x can be transformed to ciphertext by applying
t(f(s(x))) = p1(x1, . . . , xn), . . . , pn(x1, . . . , xn), where pi are quadratic polynomials. Given
f, t, s the polynomials pi can be computed efficiently. The polynomials act as the public key
and computing f, t, s given the public key corresponds to a hard problem[Pat96]. Alterna-
tives to this scheme are the “balanced oil and vinegar” and the “unbalanced oil and vinegar”
schemes. In balanced oil and vinegar systems, the secret key consists of a set of n equations
that satisfy a certain structure. Each equation consists of secret coefficients, a number of

25

2 Background

n oil variables and a number of v vinegar variables. It is important that the equation does
not compute a product of oil and vinegar variables, i. e., the variables are not “mixed”. For
computing a valid signature, the vinegar variables are chosen randomly, and the oil variables
are computed by a gaussian reduction. Both can be done efficiently in practice. The result-
ing signature can be verified using the public key, a matrix consisting of n equations that
are generated by an affine transformation of the private key. In HFE and oil and vinegar
schemes, the signatures are valid if all equations in the public key are satisfied by the signa-
ture. For balanced systems n = v holds. However, there is a known attack when the number
of oil variables is equal or within a small difference to the number of vinegar variables that
allow an attacker to forge arbitrary signatures. [KS98][KPG99] This type of attack can be
mitigated by unbalanced systems where v >> n. The authors of [KPG99] showed that the

attack is not applicable for v > 2n and propose a system with v ' n2

2 . Furthermore, they de-
scribed an algorithm that can efficiently break unbalanced schemes with v ≥ n2. Rainbow is
a signature scheme that uses an unbalanced oil and vinegar construction. A benefit of using
such schemes is that they can be implemented very efficiently in practice and provide small
signature sizes. Figure 2.9 shows a comparison of different signature schemes build on top of
multivariate cryptosystems with respect to signature sizes and latencies. In a system based
on the QUARTZ signature scheme, called GeMSS, a combination of the HFE cryptosystem
and so-called minus and vinegar modifiers are used to build a digital signature scheme. The
minus modifier reduces the number of polynomials from the HFE system that are published,
and the vinegar modifier adds additional vinegar variables to the HFE function f . Both
steps aim to add additional security to the classical HFE notion[PCG01].

Hash-based Signatures

Instead of relying on a combination of asymmetric cryptography and cryptographic hash
functions, hash-based signatures rely on the security of cryptographic hash functions only.
The first construction that uses a hash-based approach was introduced by Lamport in
1979[Lam79]. In his work, Lamport uses a one-way hash function F : {0, 1}∗ → {0, 1}n,
for a fixed value n = 2m. The security of the system depends on the size of n and is
typically in the range of [128, 512]. First, Alice needs to compute n key pairs, where
each element is a n bit long randomly generated number. The resulting set of numbers
sk = ({0, 1}n)0,0, ({0, 0}n)0,1, ({0, 1}n)1,0, ({0, 0}n)1,1, . . . , ({0, 1}n)n,0, ({0, 0}n)n,1 is used as
the secret key. The public key consists of the n bit long hash value for each element
pk = {F (ski)|∀i ≤ n}. To sign a single message m = {0, 1}n, Alice signs each bit mi

individually by publishing the corresponding pair of the secret key xi,mi . Bob can now ver-
ify the signature by calculating the hash value of each signature bit and compare it to the
corresponding hash in Alice’s public key. Since this method leaks parts of the secret key, it is
obvious that using a single key pair for multiple signatures would allow an attacker to forge
arbitrary signatures. Therefore Lamport’s original scheme is a one-time signature scheme,
meaning that every key pair can only be used to sign a single message. A further down-
side of this scheme is the rather large key sizes of 2n2. As an alternative to this one-time
scheme, multiple many-time schemes were proposed, allowing a single public key for more
than a single application up to a fixed number of iterations. These schemes often use binary
Merkle hash-trees as a compact data structure with a trade-off in terms of computational
complexity. A Merkle tree is built in a bottom-up approach with a fixed number of leaves
N = 2n. In a Lamport like signature scheme, each leaf corresponds to a public-private-key

26

2.5 Post-Quantum Cryptography Standardization

10000 20000 30000 40000 50000

Signature Size for 23 Bytes Data

109

1010

R
u

n
ti

m
e

to
si

g
n

5
9

B
yt

es
in

C
P

U
C

yc
le

s

Hash-Based Signature Schemes

Level

1

3

5

Public Key Size

32

48

64

type

s(ize)-variant

f(ast)-variant

Figure 2.10: Overview of the current implementation of hash-based signature schemes in
Round 3 of the NIST PQ standardization project. All security level 3 imple-
mentations are shown. The y-axis shows the latency to sign a 59 Byte message
in CPU cycles on a logarithmic axis. The x-axis shows the size of a signature
for a 23 Byte message. Benchmark results are part of eBACS[Be]

pair (ski, pki) as described above. The root of the hash tree is the newly published public key
pk. To sign a single message Alice now needs to publish a valid signature as a result of one
(ski, pki) key pair together with the corresponding one-time public key pki and the values
for all n adjacent nodes that are included in the path from the root to the leaf. Bob can now
validate the signature by reconstructing the path in the Merkle tree, using the underlying
hash function and the signature, and comparing the result to the public key (i. e. the root
of the tree). The one-time signature leaves are usually used in a specific order from the
leftmost to the rightmost leaf, which results in a total of N possible signatures. The size of
the public key is decreased to a single hash value, while the size of the signatures is increased
by a constant factor. A downside of this method is the fact that the whole tree needs to be
computed upon key generation due to the bottom-up approach. this makes key generation
and signature time exponential with respect to the height of the tree (and, therefore, the
number of messages that can be signed). Further, this scheme reintroduces some kind of
state into the signature process by requiring the signer to use an incrementing key-pair every
time a message was signed. A stateless alternative to the data structure was proposed by

27

2 Background

Goldreich. Instead of a bottom-up tree approach, a top-down certificate tree is used. In
this construction, the nodes of the binary tree use hash-based one-time signatures to sign
both child nodes. The leaves of the tree correspond to one-time hash-based signatures to
sign the actual messages. The secret key acts as a seed to a pseudo-random function to
generate the tree ad-hoc. To ensure a single key pair is used only a single time, Goldreich
proposed two methods. First, a n bit hash of the message is used as the index for a tree
with height n. This method ensures that a key pair is only used once as long as there is
no collision in the used hash function. A downside of this scheme is the need for rather
large signatures since the size of a single signature is cubic with respect to the size of the
tree. An alternative approach is to select the index of the used leaf randomly. This allowed
smaller tree sizes with a certain, negligible probability for key re-usage[BHH+15]. Currently,
only a single instance of hash-based signature is a candidate for Round 3 of the NIST PQ
project. SPHINCS+ is based on SPHINCS and uses a Goldreich construction with a so-
called, few-times signature scheme and a hypertree construction to reduce the sizes of the
signatures drastically by increasing the time to sign a single message. Contrary to one-time
hash-based signatures, few-time hash-based signatures allow reusing a single public-private
key-pair a limited amount of time. In the original design of SPHINCS, the usage of few-time
signatures allowed to decrease the height of the tree from 256 to 60 while maintaining the
same post-quantum security guarantees[BHH+15]. The usage of a hypertree model for the
Goldreich tree allowed a further reduction of the signatures sized by increasing signature
time exponentially with respect to the number of layers used in the hypertree. Figure 2.10
shows an overview of the different SPHINCS+ implementations. All algorithms are imple-
mented as an s-variant (size) and an f-variant (fast), optimized either for signature sizes or
signature time.

Zero-Knowledge-Proofs on Arbitrary Circuits

As in hash-based signature schemes, ZK-proofs on arbitrary circuits based schemes use
symmetric, polynomial-time computable primitives such as the SHA or AES function families
to prove to a challenging party V that the proving party P knows some secret x without
revealing information about the secret itself. In a system called ZKBoo, this works by
interpreting the symmetric primitive as a binary relation R ⊂ {0, 1}∗ × {0, 1}∗, where the
result of the computation is a relation of the inputs to the output of the symmetric primitive
e. g. R = {(x, y)|y = SHA(x)}. The language L is the set of x variables for a given y
that results in a “yes” answer (e. g. R(x, y) = 1)[GMO16]. When looking at SHA1 as
an example, the language L is the set of all tuples (x, y) that result in some hash value
y for all possible inputs x. In this protocol, the proofer P wants to convince a verifier V
that he knows an instance l ∈ L, without revealing the associated x. In other words, the
proofer wants to convince the verifier that he knows an input to the symmetric primitive
that results in the publicly available result of the computation. ZKBoo uses a so-called
Multi-Party Computation (MPC) protocol. In this protocol, a set of n participants know
the used symmetric primitive and have access to a secret value xi. The goal of each player is
to compute f(x) = y with x = (x1, . . . , xn) without revealing xi. Players can communicate
over secure point-to-point channels. Each player computes a view that consists of the secret
value concatenated with random data and its history of past communication. After multiple
rounds, the output y can be computed from any view without gaining any information about
the private value from some other player. The protocol is said to be robust if it is possible

28

2.5 Post-Quantum Cryptography Standardization

15000 20000 25000 30000 35000 40000 45000 50000

Signature Size for 23 Bytes Data

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
u

n
ti

m
e

to
si

g
n

5
9

B
yt

es
in

C
P

U
C

yc
le

s

×108 ZK-Based Signature Schemes

Cipher

picnic3l1

picnic3l3

picnic3l5

Public Key Size

35

49

65

Figure 2.11: Overview of the current implementation of ZK-based signature schemes in
Round 3 of the NIST PQ standardization project. All security level 3 imple-
mentations are shown. The y-axis shows the latency to sign a 59 Byte message
in CPU cycles on a logarithmic axis. The x-axis shows the size of a signature
for a 23 Byte message. Benchmark results are part of eBACS[Be]

to produce the correct value y for any view, even if another player tries to intentionally
manipulate the calculation. The ZKBoo protocol uses a virtualized version of the MPC
protocol where each player is simulated by the prover. After the view of each player is
computed, a so-called Σ protocol is used as a three-way interactive prove. In this Σ protocol,
two out of the three views and all results of the MPC protocol are sent to the verifying party,
depending on an index randomly chosen by the verifier. The verifying party can now check if
the computed outputs match the public value y and if the revealed views are consistent. In
this context, consistency of the views means that the verifier can detect whether the proofer
tries to prove a false statement. By only revealing a subset of the views, P can ensure that
V is not able to calculate the secret value from the available data. This effectively creates a
zero-knowledge prove of x, based on a composition of a symmetric primitive f(x) = y used
in the MPC protocol. The used function divides the computation of the primitive into three
branches. Each branch uses a share of its own input and the share of the neighboring input,
effectively limiting the MPC protocol to three parties[GMO16]. A primitive used in the
NIST PQ project called Picnic extends the ZKBoo protocol to a protocol called ZKB++.

29

2 Background

Different optimizations used in the ZKB++ protocol allows for less than half of the size for a
proof by keeping the computational costs the same[CDG+17]. Since the ZKB++ protocol is
still interactive, the Picnic authors provide two ways to construct a non-interactive scheme
based on the interactive variant. The first scheme, called Fish, uses a Fiat-Shamir transform,
as explained in the last sections. The actual variant used for Picnic is based on an Unruh
transformation. In [Unr12], Unruh provides a transformation for Σ zero-knowledge proof
protocols in a quantum random oracle model and proves that it is secure in the presence of
a quantum adversary, assuming the property of “strict and special soundness”.

2.6 Related Work

Quantum-resistant cryptosystems have been researched since it became known that the
security of currently used cryptosystems is degraded by quantum computers. The NIST
standardization project explicitly does not aim to select a single PQ key exchange suitable
for all applications but rather tries to select a few interesting primitives with different trade-
offs between the key size or the performance of the algorithms. Therefore, additional work
needs to be done to evaluate one or more suitable algorithms for certain use-cases. As a part
of the QuaSiModO research project, such effort was already put into the design of a quan-
tum resistance key exchange for the IKEv2 key exchange protocol[Hei19]. Another notable
project, called Open Quantum Safe focuses on “prototyping quantum-resistant cryptography,
which includes liboqs, a C library of quantum-resistant algorithms, and [the] integrations
of liboqs into popular open-source applications and protocols, including the widely used
OpenSSL library.”[SM16] A case-study that uses liboqs to implement post-quantum aware
key exchange and authentication protocols in TLS and SSH is available[CPS19].

Multiple Internet Engineering Task Force (IETF) Internet-Drafts propose a so-called hy-
brid key exchange method. In such hybrid key exchanges, classical algorithms are combined
with quantum-resistant algorithms to provide the quantum resistance property of these newer
algorithms while maintaining the guarantees of well researched classical algorithms.

An Internet-Draft for TLS 1.2[SWZ16] focuses on a hybrid mode handshake using NTRU
for a quantum-safe cipher. The draft defines a new cipher suite called TLS QSH. Further,
two extensions to the TLS protocol are defined to allow a custom state machine suited for
the needs of a hybrid key exchange. Both extensions allow an additional quantum-safe key
exchange in the TLS handshake before a classical key exchange takes place. A combination
of both keys is used to generate a session key that is safe against classical attacks as well
as a quantum adversary. The authentication and authenticity of the data in this scheme
are only derived from a classical cipher suite, which allows a quantum adversary to break
these guarantees. Internet-Draft [SS17] is a proposal that makes use of a TLS 1.3 feature,
called “key share”, which allows combining a session key from multiple shared secrets. By
its original design, this feature is used to combine a key derived from a pre-shared secret
with an ephemeral DH key to achieve forward-secrecy for PSK based key exchanges or to
allow a handshake to include multiple DH parameters. The document defines extensions
to a set of TLS handshake messages that allows to include an additional non-DH based
key exchange in the key share extension. This additional secret may be generated by any
quantum-safe key exchange mechanism and can be used as an input for a key derivation
function to generate a quantum-safe session secret. IETF draft [KK18] also makes use of
the key share extension to additionally include an isogeny-based key exchange in the TLS

30

2.6 Related Work

handshake. Instead of defining a new extension, the draft makes use of the existing extension
to transfer the additional SIDH based key as an additional key share entry. [WZFGM17]
works by defining new hybrid modes as possible TLS ciphers instead of interpreting the
hybrid key exchange as two distinct ciphers. This way, the current TLS implementation can
be used without major modification to the protocol. When a hybrid cipher is selected (e.
g., secp256r1+sikep503), the key share entry variable-length field consists of a custom
data structure that includes both key exchange parameters. If only a classical cipher is used
(e. g., secp256r1), the key share entry is used as already defined by the TLS standard.
This way, existing TLS implementation could be used in a backward-compatible manner.
Since the new cipher type is unknown to non-quantum aware implementations, the cipher
would not be selected in the negotiation process. The same approach is used in another
internet-draft[SFG20], which opposed to the other mentioned drafts, is still being actively
maintained. The TLS implementation used in the liboqs OpenSSL integration is based on
an earlier version of [SFG20].

The security division of Google LLC also worked with hybrid modes in two experiments. In
2016, an implementation of the NewHope algorithm was used in addition to a regular elliptic
curve key exchange for a small fraction of TLS 1.2 connections between a nightly build of
the Chrome web browser and some Google domains[Bra]. A second experiment, which uses
the NTRU algorithm on top of an elliptic curve key exchange for TLS 1.3 connections, was
launched in 2018[Lan].

A blog post by Cisco Systems, Inc., proposes using pre-shared keys in combination with
symmetric cryptography to achieve quantum-resistant encryption for the MACSec protocol
but does not further look into using EAP for mutual authentication and defers the problem
until TLS implements a PQ key exchange method[Kam]. A technical report by the European
Telecommunications Standards Institute (ETSI) on quantum-safe VPNs partially focuses on
a quantum-resistant MACSec implementation. In this report, the ETSI also advises on
using pre-shared keys and the use of symmetric cryptography. For quantum-resistant TLS-
based authentication, the document refers to hybrid modes but does not make any further
recommendations regarding cryptographic protocols or MACSec-specific parameters.

31

3 Requirements

In this chapter, the requirements for a quantum-resistant variant of the MACSec protocol
are discussed. For this reason, a scenario is described to define limitations that are derived
from a real-world use-case. Both IEEE 802.1X and 802.1AE are designed for IEEE 802.3
Ethernet networks, which are available in various shapes. A limitation to common instances
of such networks allows for a practically oriented design. For the same reason, a threat model
that incorporates a realistic, albeit a futuristic example of a quantum computer that breaks
common modern crypto schemes is required. To not weaken the design goals provided by the
current design of MACSec, insight into the protocol suite is given to select currently used
cryptographic guarantees and transfer them to the new design. Furthermore, it is important
to identify currently used cryptographic primitives that are vulnerable to the definition of a
general-purpose quantum computer and define requirements to solve these issues.

3.1 Scenario

IEEE 802.3 networks are usually deployed in the shape of either Local Area Networks (LANs)
or Metropolitan Area Networks (MANs). LANs usually include a full building or office space,
with a few hundred to thousands of subscribers. Theoretically, the amount of devices in a
single LAN segment is not limited besides the possible address space of the used MAC
addresses. However, in practice, a good approximation for a practical upper bound would
be the size of a large office building with 1, 000 to 10, 000 devices. MANs can be viewed
as a special case of large LAN installations, commonly used by large providers to provide
internet access for small to medium-sized cities or districts in larger cities. While the number
of subscribers can theoretically be even higher than in large office LAN segments, the number
of subscribers is expected to be in between a few orders of magnitudes. One example of a
large MAN installation is the Munich Scientific Network (MWN), a large-scale network
installation that connects research institutes, universities and student housing in Munich’s
metropolitan area. The MWN uses about 2, 000 switches to provide network connectivity
to over 100, 000 endpoints (Wireless and Wired)[MWN]. For practical reasons, networks of
this size are used as an upper bound in this work.

On the contrary, IEEE Ethernet networks can be relatively small. One example of net-
works with few subscribers and small amounts of computational capacities is Internet of
Things (IoT) networks, with nodes that are very limited in terms of memory and CPU fre-
quency when compared to a modern desktop computer. For example, the FIT IoT-LAB
is a large-scale IoT testbed used to run scientific experiments on real-world IoT hardware.
The hardware used in this testbed consists mostly of ARM Cortex M0-M4 Micro Controller
Units (MCUs), with processing frequencies ranging from multiple kilohertz to few megahertz
and limited networking capabilities like IEEE 802.15.4 and LoRa[ABF+15]. The selection of
requirements on a PQ MACSec design should take both extremes into account and support
networks with very few and limited nodes, as well as big networks with rather strong clients.

33

3 Requirements

3.2 Threat Model

In the threat model used in this thesis, an attacker can perform attacks according to IND-
CCA2. Furthermore, it is assumed that an attacker has access to a quantum computer
that can break currently used state of the art asynchronous key exchanges, such as integer
factorization-based methods, and methods based on the discrete logarithm problem in poly-
nomial time. The used quantum computer should be able to perform Grover’s algorithm to
attack synchronous crypto schemes of arbitrary key sizes. It is further assumed that the at-
tacker has access to a “sufficiently large” classical computer to perform brute force attacks on
the used crypto scheme as well. In this context, it is safe to assume that “sufficiently large”
means that an attacker has access to computing resources that match the size of so-called
exascale systems, which can perform 1018 Floating Point Operations per Second (FLOPS).

3.3 PQC Requirements

In 802.1X and 802.1AE, both synchronous and asynchronous cryptographic schemes are
used. For the initial key exchange, either a symmetric pre-shared key or an asymmetric key
exchange is used. In both cases, symmetric schemes are used to derive further keys and
ensure confidentiality. For both types of cryptosystems, requirements need to be defined to
secure them against an attacker in possession of a quantum computer as described in the
threat model.

3.3.1 Asynchronous Key Exchange

To mitigate attacks that involve a quantum computer running Shor’s algorithm, a quantum-
resistant asynchronous crypto scheme needs to rely on alternative methods for asynchronous
key exchanges than currently used. It is assumed that the ongoing NIST standardization
project candidates as described in Chapter 2 are secure against attacks that involve a quan-
tum computer until proven otherwise. A design concerning the defined threat model also
needs to consider that the discussed schemes may be vulnerable to not yet discovered attacks
on classical computers. While the same argument holds for classical key exchange methods,
the maturity of those systems provides confidence in the security of those cryptosystems.

For this reason, a quantum-resistant KEX mechanism should include a so-called hybrid
scheme, which uses both a classical and a quantum-resistant scheme to provide resistance
against an attack involving a quantum computer while providing a notion of forward-secrecy,
even if the used post-quantum algorithm turns out to be weakened by an attack using either
a classical or a quantum computer. While not supported directly in any NIST standard, the
NIST provides recommendations on implementing such hybrid modes without losing com-
pliance to FIPS 140, a NIST standard that defines security requirements on cryptographic
systems. NIST special publication 800-56C defines two methods for a key derivation function
that can be used for this purpose[BCD18]:

1. One-Step Key Derivation
For one-step KDFs, a hash, HMAC or KMAC one-way function is used to derive keying
material. As an additional input to the one-way function, SP 800-56C allows for a
FixedInfo field as defined in SP 800-56A. The FixedInfo field includes a SuppPrivInfo
parameter with additional arbitrary and mutually known private information that can

34

3.3 PQC Requirements

be included in the key derivation. Alternatively, the key exchanged via a PQ method
can be included in the salt field.

2. Two-Step Key Derivation
In the two-step method, the PQ key can be included in the KDF as a salt value for
the HMAC or AES-CMAC expansion.

For future versions of SP 800-56C, the NIST plans to include the possibility for hybrid
constructions in the standard directly. This can be done by allowing the input for both
KDFs to be a concatenated value from two or more key exchange methods.1

3.3.2 Comparison of NIST PQ-KEX Algorithms

The algorithms in the current Round 3 of the NIST PQ project rely upon different mathemat-
ical foundations and depend on different cryptographic primitives. Therefore, all algorithms
perform differently in terms of performance and provided security guarantees. Since a re-
placement for currently used cryptographic primitives in IEEE 802.1X and IEEE 802.1AE
needs to take these differences into account, a short overview of the requirements is provided
in this section. Further, a brief comparison of all Round 3 algorithms is shown. Common
restrictions on asynchronous cryptographic key exchange protocols are the amount of ad-
ditional traffic due to key and ciphertext sizes and the computational overhead to de- and
encrypt a single key. When taking forward-secrecy into account, the key generation time is
an additional important factor. For cryptographic protocols that do not provide a built-in
forward-secrecy notion, this can only be achieved by generating a new key pair for each
connection. The only protocol in the NIST project that claims to provide the notion of
forward-secrecy by design is SIKE.

Perfect Forward Secrecy (PFS)

When EAP is used for MACSec key agreement, a session key is generated via the appropriate
EAP method. A session key is used as seeding material for a pairwise CAK between the
Authenticator and the Supplicant. A group CAK seeded by the pairwise CAKs can be
further generated by the Authenticator for distribution to the clients. The group CAK is
used to agree on a shared key in a MACSec CA and is distributed cryptographically secured
by the pairwise CAKs. For this reason, the secret of the distributed CAK relies on the
secret of all pairwise CAKs. Using a cryptographic method for key exchange that allows
for forward-secrecy would ensure that a subsequent group CAK could not be derived from
recorded key exchanges if the long-term key of the Authenticator is breached in any way and
thus would be preferable for the key exchange method. For PQ key exchange methods, SIKE
is a natural candidate for a protocol that supports forward-secrecy. Alternatively, any KEX
method with a fresh key pair for each session can be used to achieve forward-secrecy. When
taking into account that a key exchange in SIKE is relatively costly compared to alternative
PQ key exchange methods, it may be even faster to use this construction to achieve PFS as
opposed to using SIKE. Figure 3.1 shows the cost of an ephemeral key exchange for all NIST
PQ ciphers with a security level of 3. In the case of SIKE, only the time for encapsulation
and decapsulation of a single key is shown. To get a comparable notion of forward-secrecy,

1https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/faqs

35

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/faqs

3 Requirements

106 107 108 109

CPU Cycles

curve25519

saber2-KEM

Kyber768

nistp256

Kyber768-90s

dh2048

ntrulpr761

BIKE-3-3

BIKE-1-3

hqc-192-1

hqc-192-2

sntrup761

BIKE-2-3

FrodoKEM-976-SHAKE

ntruhps2048677

ntruhrss701

FrodoKEM-976

FrodoKEM-976-AES

rsa2048

SIKEp610

mceliece460896

C
ip

h
er

Hue

Classical

PQ

Isogeny-Based

Figure 3.1: CPU cycles for a single ephemeral key exchange on a logarithmic axis. In the case
of SIKE and EC(DH)-based schemes, the time for the computation of a shared
secret is shown. The remainder of the ciphers shows the combined time for the
generation of a fresh key pair in addition to the time to compute a shared secret.
Benchmark results are part of eBACS[Be]. Only implementations concerning
security level 3 are shown.

the other candidates additionally show the time to generate a fresh key pair. As a baseline,
the times for RSA using a 2048 bit key, for DH with 2048 bit and two ECDH schemes,
using curve25519 and nistp256 are shown. The plot shows that using any other algorithm
except mceliece460896 with a fresh key pair for each session is more efficient in terms of
computational costs than using SIKE with a single key while providing the same guarantees
regarding forward-secrecy.

Computational Overhead

Another important metric for a key exchange protocol is the amount of computational over-
head for a single key exchange. The amount of computing time spent on a single key
exchange is the sum of the time for key encapsulation on one side and the time for key
decapsulation on the other side. Additionally, the key generation time needs to be taken
into account. The computational overhead is especially significant in scenarios like IEEE
802.1X, where the Authenticator can be some sort of special-purpose network equipment
with rather slow general-purpose computing units, or in scenarios involving IoT endpoints.
For PQ key exchange methods, the computational overhead strongly depends on the used

36

3.3 PQC Requirements

cu
rv

e2
55

19

ni
st

p2
56

dh
20

48

rs
a2

04
8

0.000

0.001

0.002

0.003

0.004

0.005

C
P

U
C

yc
le

s
Type = Classical

m
ce

lie
ce

46
08

96

B
IK

E
-2

-3

B
IK

E
-1

-3

B
IK

E
-3

-3

hq
c-

19
2-

1

hq
c-

19
2-

2

0.000

0.005

0.010

0.015

0.020

Type = Code

S
IK

E
p6

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Type = Isogeny

sa
b

er
2-

K
E

M

K
yb

er
76

8

K
yb

er
76

8-
90

s

sn
tr

up
76

1

nt
ru

lp
r7

61

nt
ru

hp
s2

04
86

77

nt
ru

hr
ss

70
1

F
ro

do
K

E
M

-9
76

-S
H

A
K

E

F
ro

do
K

E
M

-9
76

F
ro

do
K

E
M

-9
76

-A
E

S

0.00

0.02

0.04

0.06

0.08

0.10

Type = Lattice

Decryption Time

Encryption Time

Figure 3.2: The time needed to exchange a single shared secret in 109 Central Processing Unit
(CPU) cycles. Benchmark results are part of eBACS[Be]. Only implementations
concerning security level 3 are shown.

type of algorithms. Figure 3.2 shows an overview of time spent on a single encapsulation and
decapsulation in 109 CPU cycles. It shows that code-based schemes perform well, with some
lattice-based schemes as close competitors. SIKE performs worst due to a large amount of
finite field arithmetic performed in each key exchange. More optimized implementations are
available for some algorithms to reduce the cycle count by a large factor. For example, using
an optimized assembly implementation for SIKEp751 reduces the cycle count for a single key
exchange operation by a factor 10. Even better results can be achieved by using an FPGA-
based implementation tailored to a certain algorithm implementation. The plot shows the
fastest available implementation in eBACS. When no such implementation is available, the
fastest available implementation provided by the authors is shown.

Communication Overhead

Another concern regarding the used PQ key exchange method is the amount of generated
traffic for a single key exchange. Assuming the public key is not cached or pre-transferred
to the client, the traffic pattern of a full key exchange usually includes the public key and a
shared secret of a certain size. The size of the public key may be decreased by a compression
algorithm. The size of the ciphertext often is increased by some factor depending on the
used cryptosystem. Code-based schemes, for example, need to transfer the cleartext into a
codeword of a certain size by adding some redundant information. The exact blow-up factor
is depending on the used primitives and the security level of the cipher. Reducing traffic is
important for multiple reasons. First, a smaller communication footprint saves time when
the throughput of the connection is a limiting factor.

Further, in cases where many key exchanges occur simultaneously, a smaller traffic pattern

37

3 Requirements

cu
rv

e2
55

19

ni
st

p2
56

dh
20

48

rs
a2

04
8

0

100

200

300

400

500

B
yt

es

Classical

B
IK

E
-2

-3

B
IK

E
-1

-3

B
IK

E
-3

-3

hq
c-

19
2-

1

hq
c-

19
2-

2

m
ce

lie
ce

46
08

96

0

100000

200000

300000

400000

500000

Code

S
IK

E
p6

10

0

200

400

600

800

Isogeny

nt
ru

hp
s2

04
86

77

sa
b

er
2-

K
E

M

sn
tr

up
76

1

K
yb

er
76

8

K
yb

er
76

8-
90

s

nt
ru

lp
r7

61

nt
ru

hr
ss

70
1

F
ro

do
K

E
M

-9
76

-A
E

S

F
ro

do
K

E
M

-9
76

-S
H

A
K

E

F
ro

do
K

E
M

-9
76

0

5000

10000

15000

20000

25000

30000

Lattice

Public Key Size

Ciphertext Size

Figure 3.3: Network communication in Bytes for a single key exchange. Benchmark results
are part of eBACS[Be]. Only implementations concerning security level 3 are
shown.

may decrease costs in the backbone since network links to Authentication Servers can be
provisioned more conservatively. Another reason to decrease the communication size is the
need to fit the key exchange in a few or even a single package for configurations where the
size of a single packet is limited. For example, a single Ethernet frame is usually limited
to a size of 1500 Bytes. For public keys or ciphertext messages that exceed this size, some
sort of fragmentation is needed to ensure the frames can be fully transmitted. In the case
of IEEE 802.1X, network traffic is not that much of a concern. Usually, the authentication
takes place in LANs, where either Ethernet or IEEE 802.11 wireless networks are used, which
support bandwidths ranging from 100 MB/s to a few GB/s. Figure 3.3 shows the required
communication cost in Bytes to transmit a single public key without compression and for a
ciphertext that contains a shared secret of 32 Bytes. While the variance in the required size
for a single key exchange is rather high, most of the displayed algorithms require less than
a single KB of data. Even in the extreme case, the data size is below a single MB.

Additionally, 802.1X-secured channels are relatively long-lived. A client only needs to
authenticate once it plans to join the network. While re-authentication is part of 802.1X,
the proposed default value for the re-authentication time is set to once every 3200 sec-
onds[Section 8.6][IEE02]. Even if rather large networks with 10.000 subscribers are assumed,
only a few megabyte traffic would be generated, assuming a rather large data size of 1 MB
per authentication attempt. The traffic pattern can be further optimized by using multiple
Authentication Servers and, therefore, keep the traffic in a local environment. Additionally,
the authentication can be directly performed on the Authenticator without the need for an
external Authentication Server. Regarding packet fragmentation, IEEE802.1X states that
the used EAP method should have built-in fragmentation support if it is needed by the
method[Section 8.11.1][IEE02].

38

3.3 PQC Requirements

Summary

For the design of the cryptosystem, it is important to add additional security and not lose
already available guarantees. Therefore, PFS support should be available by the used key
exchange method as the main concern. This can be either achieved by using an imple-
mentation that already supports this notion, like SIKE. Or using a fresh key pair for each
session with any other key exchange algorithm. For the use case of constrained environ-
ments like network equipment or mobile and IoT endpoints, the computational overhead of
the implementation is the next important factor to consider. While the actual work can be
performed by an external Authentication Server in the case of 802.1X, this is not necessarily
true for all implementation and saving resources on these constrained devices may benefit
the overall performance of the network. The last factor to consider is the amount of traffic
a cryptosystem adds to the network. While the amount of additional traffic for the NIST
Round 3 candidates may look significant when compared to light-weight DH-based proto-
cols, it is often negligible in modern LAN infrastructures. This is due to a large amount
of bandwidth usually available and the low frequency of authentication operations in IEEE
802.1X when compared to high-frequency applications like web or email servers. Therefore
the requirements on the used algorithm should be considered in the following order:

1. Perfect Forward Secrecy

2. Cycles for a single key exchange (Computation Overhead)

3. Traffic for a single key exchange (Communication Overhead)

3.3.3 Asynchronous Signature Schemes

Analogous to asynchronous key exchange methods, currently used signature schemes used
for authentication are vulnerable to attacks under the given threat model. To solve this
problem, a notion similar to hybrid modes called dual-signatures is commonly used. In such
scenarios, a message is signed multiple times, either by a composition of two signatures or by
sending two distinct signatures. Unlike for hybrid key exchange methods, the NIST does not
make any recommendations on how to accommodate dual signatures into existing standards
and leaves this task up to the implementation. The NIST states that the FIPS compliance
of the signature validation is given as long as one of the signature schemes is a properly
implemented NIST scheme according to FIPS 140.

3.3.4 Comparison of NIST PQ Signature Algorithms

Unlike for PQ key exchange mechanisms, leaking the long term key used for signature cre-
ation and validation has no retrospective security implication since the authenticity of a
message is only relevant once a message is received. For this reason, the notion of PFS does
not apply. The two main considerations regarding PQ signature schemes are the amount
of additional traffic generated for a signature and the amount of computational overhead
created on both sides for the creation and validation of the signature.

Computation Overhead

An authentication procedure involving digital signatures consists of the creation and valida-
tion of the signature. For most participants in the NIST PQ project, as shown in Figure 3.4,

39

3 Requirements

ed
25

51
9

ec
do

na
ld

p2
56

do
na

ld
20

48

ec
do

na
ld

k2
83

ec
do

na
ld

b2
83

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

C
P

U
C

yc
le

s

Classical

sp
hi

nc
sf

19
2s

ha
25

6s
im

pl
e

sp
hi

nc
sf

19
2s

ha
ke

25
6s

im
pl

e
sp

hi
nc

sf
19

2h
ar

ak
as

im
pl

e
sp

hi
nc

sf
19

2s
ha

25
6r

ob
us

t
sp

hi
nc

sf
19

2s
ha

ke
25

6r
ob

us
t

sp
hi

nc
sf

19
2h

ar
ak

ar
ob

us
t

sp
hi

nc
ss

19
2s

ha
25

6s
im

pl
e

sp
hi

nc
ss

19
2s

ha
ke

25
6s

im
pl

e
sp

hi
nc

ss
19

2s
ha

25
6r

ob
us

t
sp

hi
nc

ss
19

2h
ar

ak
as

im
pl

e
sp

hi
nc

ss
19

2s
ha

ke
25

6r
ob

us
t

sp
hi

nc
ss

19
2h

ar
ak

ar
ob

us
t

0

5

10

15

20

25

30

Hash

fa
lc

on
10

24
tr

ee

D
ili

th
iu

m
-1

53
6x

12
80

fa
lc

on
10

24
dy

n

D
ili

th
iu

m
-1

53
6x

12
80

-A
E

S

0.000

0.001

0.002

0.003

0.004

0.005

Lattice

ra
in

b
ow

3c

re
dg

em
ss

19
2v

2

bl
ue

ge
m

ss
19

2v
2

0

2

4

6

8

10
Multivariate

pi
cn

ic
3l

3

0.00

0.05

0.10

0.15

0.20

ZK-Proof

Creation

Validation

Figure 3.4: Computational effort for the creation and validation of a single signature in 109

CPU cycles. Benchmark results are part of eBACS[Be]. Only implementations
concerning security level 3 are shown.

the overhead for the signature creation is rather big compared to the overhead for validation
and sometimes even dominates the workload entirely. In the case of IEEE 802.1X, both the
Authenticator and the Peer need to create a valid signature for mutual authentication in
every session. For this reason, the imbalance of the two tasks is not as important as the sum
of the overall overhead for validation and creation of a single signature. Speaking in total
numbers, lattice-based signatures perform rather fast in comparison to classical digital sig-
nature schemes, with Picnic as a close competitor. Multivariate signature schemes, with the
exception of redgemss, also provide a reasonable value in comparison with other schemes.
When using SPHINCS+ as a hash-based signature, the computational overhead strongly de-
pends on whether an “f” or an “s” implementation is used, with a significant performance
advantage for the “f”-variants.

Communication Overhead

In terms of communication overhead, there is a large gap between PQ algorithms and classical
algorithms, which can be as large as a factor of 104 for multivariate signature schemes.
Figure 3.5 shows the amount of data in bytes that need to be transferred to perform a single
signature, ranging from a few KB to a few MB. When only taking algorithms with security
level 3 into account, the smallest available PQ cipher already needs to transfer twenty to fifty
times as much data as RSA- or DH-based signature schemes. When considering the mutual
authentication setting in 802.1X, the gap between classical approaches and PQ algorithms
gets even more relevant since public keys and signatures need to be transferred by each peer.
Compared to classical signature schemes, lattice-based PQ signatures show the smallest
traffic overhead, with values ranging within a few KB of each other. In this case, the size

40

3.3 PQC Requirements

ed
25

51
9

ec
do

na
ld

p2
56

ec
do

na
ld

b2
83

ec
do

na
ld

k2
83

do
na

ld
20

48

0

50

100

150

200

250

300

B
yt

es
Classical

sp
hi

nc
ss

19
2h

ar
ak

ar
ob

us
t

sp
hi

nc
ss

19
2h

ar
ak

as
im

pl
e

sp
hi

nc
ss

19
2s

ha
25

6r
ob

us
t

sp
hi

nc
ss

19
2s

ha
25

6s
im

pl
e

sp
hi

nc
ss

19
2s

ha
ke

25
6r

ob
us

t
sp

hi
nc

ss
19

2s
ha

ke
25

6s
im

pl
e

sp
hi

nc
sf

19
2h

ar
ak

ar
ob

us
t

sp
hi

nc
sf

19
2h

ar
ak

as
im

pl
e

sp
hi

nc
sf

19
2s

ha
25

6r
ob

us
t

sp
hi

nc
sf

19
2s

ha
25

6s
im

pl
e

sp
hi

nc
sf

19
2s

ha
ke

25
6r

ob
us

t
sp

hi
nc

sf
19

2s
ha

ke
25

6s
im

pl
e

0

5000

10000

15000

20000

25000

30000

35000

Hash

fa
lc

on
10

24
tr

ee

fa
lc

on
10

24
dy

n

D
ili

th
iu

m
-1

53
6x

12
80

D
ili

th
iu

m
-1

53
6x

12
80

-A
E

S

0

1000

2000

3000

4000

5000

Lattice

ra
in

b
ow

3c

bl
ue

ge
m

ss
19

2v
2

re
dg

em
ss

19
2v

2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

×106 Multivariate

pi
cn

ic
3l

3

0

5000

10000

15000

20000

25000

ZK-Proof

PK Size

Signature Size

Figure 3.5: Network communication in Bytes for one signature. Benchmark results are part
of eBACS[Be]. Only implementations concerning security level 3 are shown.

of the signature and the size of the public keys contribute about the same amount to the
overall traffic. Other interesting alternatives with a rather little traffic pattern are hash-
based signatures, with signature sizes of 15 to 40 KB. Contrary to lattice-based signatures,
the ratios of signature to public-key sizes in hash-based variants are rather extreme since the
sizes of the public keys usually only are the size of a single hash-value with a few bytes. In
the case of Picnic, the results are similar to hash-based variants. The overall traffic needed
for a single authentication is almost entirely dominated by the signature sizes and needs
about 30 KB for picnic with security level 3. The multivariate signatures shown in the
plot are rather extreme when com+pared to the rest of the algorithms. While the signatures
themselves only require a few bytes of traffic, the public keys have a size of around 1 MB. It is
important to notice that public keys of certificate-chains can be cached by both participants
while the signatures need to be created and transferred in every session. This emphasizes
the value of using small signatures over using an algorithm with small public keys. It is
important to keep in mind that at least the client-certificates need to be transferred for
every authentication, and therefore a compromise needs to be found between signature and
public key sizes.

Summary

When taking into account that some PQ signature algorithms can compete with classical
algorithms in terms of computational overhead but may introduce a large amount of data
transfer on every authentication, the amount of transferred data becomes more of a concern
than in the case for key exchange algorithms. Figure 3.6 shows the values for both the
number of CPU cycles and the amount of data traffic for a single signature creation in
comparison to other algorithms. While all PQ algorithms introduce significant overhead

41

3 Requirements

106 107 108 109 1010

CPU Cycles

102

103

104

105

106

B
yt

es
Algorithm

EdDSA

DSA

ECDSA

Falcon

Rainbow

Dilithium

GeMSS

Picnic

SPHINCS+

Figure 3.6: CPU cycles and bytes traffic for one single signature creation and validation.
Both axes are displayed on a logarithmic scale. Benchmark results are part of
eBACS[Be].

in both variables, some ciphers can compete with their classical counterparts. Especially,
Dilithium and Falcon (two lattice-based variants) show values close within one to two orders
of magnitude with respect to the traffic size. When looking at the computational overhead,
both algorithms even perform as good as or even better than some classical schemes.

3.3.5 Synchronous Schemes

Synchronous schemes are not as drastically weakened by quantum computers as their asyn-
chronous counterparts. Grover’s algorithm provides a quadratic advantage over brute force
searches on symmetric keys. This effectively halves the keyspace, resulting in an effective
key space of 2n/2 for a key of size 2n. Therefore, a quantum-resistant synchronous scheme
needs to double the used key size to mitigate an attack. Table 3.1 shows the time a classical
computer running a brute force attack and a quantum computer running Grover’s algorithm
would need on average to break a key of a certain size. A number of 1018 guesses per second
was assumed for the brute force search. It is easy to see that keys with a size of at least
2256 (a key size commonly used in many cryptographic protocols) provide sufficient security
against both types of attacks. For this reason, the only requirement for a symmetric scheme
is an appropriate key size and parts of the cryptographic protocol that allow for key sizes

42

3.4 IEEE 802.1X Requirements

Table 3.1: Average time to find a key of size 2n using brute force attacks on a classical
computer, with 1018 guesses per second. The time for an attack with a quantum
computer is approximated by a quadratic factor.

Key Size AVG TTC Classical AVG TTC Quantum

264 9.223s 2.147× 10−9s

2128 1.701× 1020s 9.223s

2256 5.79× 1058s 1.701× 1020s

2512 6.704× 10135s 5.79× 1058s

lower than 256-bit need to be updated. 802.1X follows RFC 3748, which requires a minimum
size for the MSK, transferred at the end of the EAP authentication process to be 512 bit
in size[VCB+04]. This allows to bootstrap all further keys with a size of 512 bit as well.
However, 802.1X only uses the first 128 or 256 bit of the MSK for further key derivation. In
a PQ setting, this could be considered insecure, and key sizes should be updated accordingly.
In a few cases, it may be more relevant to use smaller key sizes to preserve computing power
than achieving long term PQ confidentiality against quantum adversaries. For this reason,
a design for a post-quantum implementation may still want to allow for 128-bit keys, even
if long term security may be sacrificed.

3.4 IEEE 802.1X Requirements

When no static keys are used, IEEE 802.1X uses EAP as a flexible protocol for mutual
authentication and for the exchange of the MSK. IEEE-802.1X defines multiple requirements
on the used EAP method[Section 8.11][IEE02]:

• Support key derivation with at least 128 bits of strength

• Generation of an MSK with at least 512 bits of strength2

• Generation of a Session-Id as defined by RFC 52473

Further, MKA recommends using a variant that supports at least the following character-
istics:

• Integrity Protection
This property secures the message against modifications by an attacker, usually by
making modifications on the transmitted messages detectable by the receiving partic-
ipant.

• Replay Protection
This secures the system against attack types where attackers store or delay messages
to resend the stored messages at a later stage, usually to impersonate the original
participant. Replay protection is often mitigated by including some kind of timestamp
or a sequence number in the exchange to make a replay of the messages detectable.

2https://tools.ietf.org/html/rfc3748#section-7.10
3https://tools.ietf.org/html/rfc5247#section-1.4

43

https://tools.ietf.org/html/rfc3748#section-7.10
https://tools.ietf.org/html/rfc5247#section-1.4

3 Requirements

• Dictionary Attack Protection
This requirement is mostly relevant for methods that use synchronous, password-based
authentication methods where a user can provide a weak password that can be guessed
by an attacker. Dictionary attacks are a variant of brute force attacks, where the
attacker tries to brute force the user’s password by trying different combinations of
commonly used words.

• Cryptographic Binding
In the context of EAP, this is defined as “The demonstration of the EAP Peer to the
EAP server that a single entity has acted as the EAP Peer for all methods executed
within a tunnel method.”[VCB+04]

• Session Independence
An EAP method that supports session independence guarantees that a successful at-
tack on a single session has no impact on session keys negotiated in prior or subsequent
sessions.

• Fragmentation
Fragmentation support is required for EAP methods that need to transfer messages
that exceed the minimum MTU of 1020 octets[VCB+04].

• Ciphersuite Negotiation
EAP methods should support the negotiation of one cipher suite between both partic-
ipants out of an intersection of supported ciphers by both participants.

As optional requirements on the used EAP method, 802.1X further defines the following
characteristics:

• Confidentiality
“This refers to encryption of EAP messages, including EAP Requests and Responses,
and success and failure results. A method that makes this claim MUST support identity
protection.”[VCB+04]

• Fast Reconnect
“The ability, in the case where a security association has been previously established,
to create a new or refreshed security association more efficiently or in a smaller number
of round-trips.”[VCB+04]

• Channel Binding
An EAP method that supports this claim may support the exchange of identity infor-
mation in a protected environment and thus, allowing an EAP Peer to detect discrepan-
cies in the exchanged EAP messages to the exchanged RADIUS messages. This allows
the Peer to detect a malicious pass-through Authenticator that tries to impersonate
another Authenticator.

3.5 Summary

Table 3.2 shows an overview of the defined requirements. They are separated by requirements
on symmetric schemes and on asymmetric schemes. The only requirement that arises on
symmetric schemes is support for KDFs that can use the full 64 bytes from the MSK to
mitigate the applicability of Grover’s algorithm. For asymmetric schemes, the requirements

44

3.5 Summary

Table 3.2: Overview of the defined requirements

Scheme Component Requirement Level

Symmetric MKA 512 bit KDF MUST

Asymmetric

EAP Integrity Protection MUST
EAP Replay Protection MUST
EAP Dictionary Attack Protection MUST
EAP Cryptographic Binding MUST
EAP Session Independence MUST
EAP Fragmentation Support SHOULD
EAP Ciphersuite Negotiation MUST
EAP Confidentiality MAY
EAP Fast Reconnect MAY
EAP Channel Binding MAY
EAP Key Derivation MUST
EAP Generation of a MSK MUST
EAP Generation of a Session-Id MUST
EAP/KEX Hybrid PQ/Classical Key Exchange SHOULD
EAP/KEX PFS SHOULD
EAP/KEX Computation Overhead —
EAP/KEX Communication Overhead —
DSA Computation Overhead —
DSA Communication Overhead —

differ from requirements that are defined by IEEE 802.1X and RFC 3748 on the used EAP
method. A PQ design of the protocol suite should add additional security but not weaken the
security the system already provides. For this reason, a quantum secure protocol design needs
to support a hybrid key exchange with an appropriate method. The PQ method should focus
on providing a notion of PFS while keeping a special focus on the computational overhead of
the method. As the last parameter, the amount of additional network communication for a
single key exchange should be taken into account. For the used signature algorithm, the only
relevant metrics are the introduced computational and traffic overhead. Both variables reach
extreme values for some algorithms, and a balance must be found to preserve resources. The
level column describes the relevance of the requirement by using terminology as defined in
RFC 2119[Bra97]. Requirements level as “MUST” are mandatory requirements, while the
level “MAY” refers to requirements that a highly recommended but may be omitted if there
are circumstances that render the requirement pointless. Requirements labeled as “MAY”
are regarded as optional features that add value to the protocol but are not mandatory for
a fully functional implementation. These types of requirements can be sacrificed if their
implementation does not gain any value by implementing them.

45

4 Design

To address the requirements defined in Chapter 3, a secure MACSec design proposal in a PQ
setting needs to focus on two major parts. First, the selected EAP method should reflect the
requirements defined by IEEE 802.1X and allows flexible support for PQ algorithms. Also,
one or more PQ algorithms need to be selected to tackle different use-cases, based on the
real-world scenarios defined in the requirements. Since different requirements are relevant
for key-exchange and DSA algorithms, they need to be considered separately.

4.1 Regarding the EAP Method

Since EAP is a framework for arbitrary authentication protocols, the number of available
EAP methods is not bounded. As a more or less complete list of available implementations,
the EAP registry provided by the Internet Assigned Numbers Authority (IANA) can be
used. The IANA is a non-profit organization for the assignment of numbers and names in
the context of internet protocols, such as DNS names and IP addresses. While this list does
not include any available EAP method, it provides at least a complete list of EAP methods
with a certain maturity and practical relevance, such as EAP methods defined in an Request
for Comments (RFC). Table 4.1 shows an overview of all relevant EAP methods defined by
the EAP registry and the security claims made by their official documentation. Since the
requirements on the EAP method are tightly coupled to the security claims defined by EAP,
Table 4.1 gives an overview of possible candidates for a PQ implementation.

EAP Methods

An appropriate EAP method is any method that suits all requirements on the EAP methods
from Chapter 3 that are declared as “MUST”. From the set of possible methods, two families
of EAP methods can be used for the implementation. The first are tunneled methods that
use a cryptographically secured tunnel between the Peer and the Authentication Server, in
which arbitrary EAP methods can be used. Alternatively, direct EAP methods use some
sort of cryptographic primitives to perform the authentication directly. Methods that do
not fulfill all requirements labeled as “MUST” are ignored in the remainder of this work.

Tunneled EAP Methods

Tunneled EAP methods use cryptographic protocols to construct a secure tunnel between two
devices. With this tunnel, it is possible to use any (non-secure) EAP method to authenticate
the devices while inheriting some of the tunnel’s security properties.

• PEAP
PEAP uses the Transport Layer Security (TLS) protocol to establish a secure con-
nection between the peer and the server. The PEAP protocol is divided into two

47

4 Design

Table 4.1: List of EAP methods and relevant security claims. Only methods that are non-
proprietary and with available documentation are displayed. A dash (—) indicates
that no information regarding this claim could be found or that the claim is
irrelevant for the specific EAP method. They are ordered by their number of
supported security claims.

ID Name MA IP RP DAP CrB SI FS CN C FR ChB KD
55 TEAP 4 4 4 4 4 4 4 4 4 4 4 4
25 PEAP 4 4 4 4 4 4 4 4 4 4 — 4
13 EAP-TLS 4 4 4 4 — 4 4 4 4 4 7 4
21 EAP-TTLS 4 4 4 4 4 4 4 4 4 4 7 4
43 EAP-FAST 4 4 4 4 4 4 4 4 4 4 7 4
49 EAP-IKEv2 4 4 4 4 7 4 4 4 4 4 7 4
18 EAP-SIM 4 4 4 — — 4 7 7 4 4 7 4
23 EAP-AKA 4 4 4 — — 4 7 7 4 4 7 4
48 EAP-SAKE 4 4 4 4 4 7 7 4 4 7 7 4
50 EAP-AKA’ 4 4 4 — — 4 7 7 4 4 7 4
47 EAP-PSK 4 4 4 4 7 4 7 7 7 7 7 4
51 EAP-GPSK 4 4 4 7 — 4 7 4 7 7 7 4
53 EAP-EKE 4 - 4 4 7 4 7 - 7 7 7 4
52 EAP-pwd 4 7 4 4 7 4 4 7 7 4 7 4
5 EAP-OTP 7 7 4 7 — — 7 7 7 7 7 7
4 EAP-MD5 7 7 7 7 — — 7 7 7 7 7 7
6 EAP-GTC 7 7 7 7 — — 7 7 7 7 7 7

54 PT-EAP 7 7 7 — — — 7 7 7 7 7 7

Legend: Mutual Authentication (MA), Integrity Protection (IP), Replay Protection (RP), Dictionary Attack Pro-
tection(DAP), Cryptographic Binding (CrB), Session Independence (SI), Fragmentation Support(FS), Ciphersuite
Negotiation (CN), Confidentiality (C), Fast Reconnect(FR), Channel Binding(ChB), Key Derivation(KD)

phases. In the first phase, a TLS handshake takes place to establish a secure tunnel.
In the second phase, the secure tunnel is used to carry out one or more additional EAP
methods. The current version PEAPv2 is declared as an informational Internet-Draft.
That means that the document is a preliminary draft for a research and design process,
which may be eventually published as an official RFC.

• EAP-FAST
As for PEAP, EAP-FAST uses the TLS protocol to set-up a mutual authenticated
secure tunnel between a Peer device and an EAP-FAST server. EAP-FAST does not
make assumptions on the used TLS version and uses Type-Length-Value fields to carry
arbitrary parameters between the peer and the server entity. In addition to PEAP,
EAP-FAST allows establishing a so-called Protected Access Credential (PAC) between
the Authentication Server and the client. This token can be used later as proof of past
authentication to resume the TLS session. EAP-FAST is described in the informational
RFC 4851[SZCWM07].

• EAP-TTLS
Similar to EAP-FAST and PEAP, EAP-TTLS uses a TLS handshake to establish a
secure, authenticated tunnel between a Peer and an EAP-TTLS server. After such a
tunnel is set-up, it can be used to issue further messages, to exchange Type-Length-

48

4.1 Regarding the EAP Method

Value pairs or to be used for another password-based authentication of the client. As
for EAP-FAST, the current state of the document is declared as informational.

• TEAP
Since all described tunnel EAP methods are either informational or vendor-specific,
RFC 7170[ZCWSH14] tries to bundle the competing standards by establishing a tun-
neled EAP method as an Internet-Standard under the name TEAP. Since EAP-FAST
is already adopted in a variety of vendor products, TEAP is mostly based on EAP-
FAST with a few minor changes:

1. The required TLS version in TEAP is fixed to 1.2, while EAP-FAST requires at
least a version of 1.0 or higher.

2. TEAP uses the so-called TLS “keying exporters” as defined by RFC 5705 to gen-
erate additional keying material. In contrast, EAP-FAST uses a pseudo-random
function as defined by RFC 4346 to generate keying material.

3. TEAP allows using the TLS ticket extension as defined by RFC 5077

4. TEAP implements a wider variety of Type-Length-Value fields in both the TLS
tunnel and the inner methods. This allows for implementing a notion of channel
binding. Also, basic password authentication is implemented in the TLV fields in
addition to arbitrary EAP methods.

Regular EAP Methods

As opposed to tunneled methods, regular EAP methods do not include additional inner EAP
methods but instead uses a cryptographic protocol directly to authenticate a Peer through
EAP.

• EAP-TLS
EAP-TLS uses the TLS protocol for certificate-based mutual authentication between
the EAP Peer and a TLS server. It is recommended by IEEE 802.1X and supports all
important requirements except for channel binding.

• IKEv2 EAP-IKEv2 uses the Internet Key Exchange protocol as defined by RFC 4306.
IKE is usually used as a key exchange protocol for the IPSEC protocol to set-up cryp-
tographically secured tunnels between two or more nodes. IKEv2 is tightly coupled to
the Diffie-Hellman key exchange protocol to cryptographically secure data and usually
uses pre-shared keys or X509 certificates to authenticate both sides.

Hybrid Key Exchange

One of the most important requirements of the used EAP method is the possibility to use
hybrid key exchanges. For all the mentioned methods, such options already exist. For
TLS, multiple Internet-Drafts exist that enhance TLS with a hybrid key exchange. One
example uses the flexible handshake design of TLS 1.3 to encode two different key exchange
methods in a single TLS NamedGroup by using one half of the two-byte identifier to encode
the classical and the other half to encode the PQ algorithm. The public keys and TLS
keyshare entries are concatenated, and a length field is added[SFG20]. For IKEv2, design
and implementation for a hybrid and post-quantum variant are available as a part of the
QuaSiModO project[Hei19].

49

4 Design

Summary

The selected EAP method needs to fit the security requirements of IEEE 802.1X and support
hybrid key exchanges. All presented EAP methods provide both. For TLS-based methods,
only TEAP has the notion of cryptographic binding. Therefore, it has an advantage over
the other methods if the decision is solely based on the security claims. Other than that,
cryptographic binding is optional, and IEEE 802.1X explicitly names EAP-TLS as the pre-
ferred method. In addition, one of the Internet-Drafts that provides a design for hybrid key
exchange in TLS is already prototyped as an OpenSSL fork[CPS19]. The fork integrates
liboqs, a project that implements a broad range of quantum secure key exchange protocols
with a unified API. Since this implementation could be used as a drop-in replacement in
existing IEEE 802.1X implementations, a TLS based method should be used in the actual
implementation. If possible, TEAP should be used as a tunneling protocol. For the sake of
simplicity and its wide adoption, EAP-TLS could be used as an alternative by sacrificing
the notion of cryptographic binding.

4.2 Regarding Key Exchange

On July the 22nd, 2020, the NIST announced the third round of the PQ project. In the
announcement, the NIST divided the candidates for KEM and signature algorithms into
finalists and alternate candidates. The finalist candidates are a selection of algorithms
that are considered “most promising” for standardization and will be further reviewed. The
alternate candidates are still considered of special interest, while not likely to be standardized
at the end of the third round. The NIST plans to add a fourth round, where these algorithms
will be further evaluated. As a result of the announcement, the maintainers of liboqs decided
to deprecate algorithms which are not present in the third round. All Round 3 candidates
are currently supported by liboqs, except for “Classical McEliece” due to constraints on the
maximum size of a single TLS fragment.

By using liboqs, it is possible to make the implementation rather generic. This means
that no selection of a specific algorithm is necessary and all Round 3 candidates can be
evaluated. However, a selection of a specific algorithm is performed in this section to make a
recommendation regarding the requirements as defined in the previous chapter. An extensive
evaluation of all algorithms is provided in Chapter 6 and the selection may be refined after
results on the performance in an 802.1X setting are available.

Optimized Latency

Three types of workloads contribute to the overall latency of a key exchange algorithm:
The amount of time for a key generation, the amount of time for encapsulation of a single
secret and the amount of time for decapsulation. For IEEE 802.1X implementations, rather
long-lived keys are used. The IEEE makes no recommendation on key rollover times, but
certificates with a lifetime of multiple months to a few years are usually used. Keys are often
generated on the initial deployment of a system and only refreshed sparsely. For this reason,
the main contributing factors to the workload are the key encapsulation and decapsulation
operations. Table 4.2 shows an overview of all Round 3 candidates, sorted by the number
of CPU cycles needed for a single key exchange. As a baseline, some classical algorithms
are also shown and marked with a bold font. The table shows the time for encapsulation

50

4.2 Regarding Key Exchange

and decapsulation of one key. In the last column, the sum of both values is shown. Since
DH based approaches do not follow the same API, only the total time to compute a shared
secret is shown. Multiple algorithms perform well compared to classical crypto schemes, with
Saber even performing better than the selected classical algorithms. That makes Saber the
obvious choice for the optimized latency algorithm. Alternatively, KYBER can be used and
provides almost the same performance as Saber in a PKE setting. However, since Saber also
provides the fastest key generation and public-key size compared to KYBER, it is further
considered for optimized latency.

Table 4.2: List of Round 3 algorithms, with the number of computing CPU cycles needed to
encapsulate and decapsulate one key. Benchmark results are part of eBACS[Be]

Algorithm Cipher Encapsulation Decapsulation Sum
Saber saber2-KEM 122086 120464 242550
ECDH curve25519 — — 297369
KYBER Kyber768 395253 450126 845379
ECDH nistp256 — — 1173600
Saber saber2-PKE 519912 732132 1252044
KYBER Kyber768-90s 662580 714825 1377405
DH dh2048 — — 2193597
MCEliece mceliece460896 660429 2816766 3477195
NTRU Prime sntrup761 1556613 3266190 4822803
RSA rsa2048 29169 5125509 5154678
NTRU Prime ntrulpr761 3113784 4590927 7704711
BIKE BIKE-2-3 710970 7114241 7825211
BIKE BIKE-3-3 1460866 7732167 9193033
NTRU ntruhps2048677 2404944 7072695 9477639
BIKE BIKE-1-3 1850425 7666855 9517280
NTRU ntruhrss701 2571210 7602183 10173393
BIKE BIKE-2-3 1314762 13840081 15154843
BIKE BIKE-1-3 2620332 16252967 18873299
BIKE BIKE-3-3 2885347 16931150 19816497
HQC hqc-192-1 8308629 12729150 21037779
HQC hqc-192-2 8795331 13384035 22179366
FRODOKEM FrodoKEM-976-SHAKE 34000083 34069428 68069511
FRODOKEM FrodoKEM-976 49459923 49812678 99272601
FRODOKEM FrodoKEM-976-AES 49881942 49972536 99854478
SIKE SIKEp610 294628000 296577000 591205000

Optimized Communication

As stated in the last chapter, the cost for communication is dominated by the size of the
public keys that need to be transferred for a single key exchange. The size of the ciphertext
that encapsulates the shared secret also contributes to the overall traffic. Table 4.3 shows
a list of all Round 3 candidates and the amount of data needed for a single key exchange.
Most algorithms are within a range of few kB data, with NTRU, NTRU Prime, Kyber and
Saber performing best, with only about two kB of data usage each. As for the latency, Saber
seems to be an interesting pick. Since NTRU and SIKE provide a better performance, but

51

4 Design

within a negligible margin of Saber, both should also be considered as a candidate for the
final design. Due to the rather small amount of traffic needed for most of the algorithms
present in Round 3, a further evaluation is needed to observe the effects of key sizes on the
overall protocol and to get a better understanding of the fraction of additional traffic on the
overall amount of traffic.

Table 4.3: List of round 3 algorithms, with the amount of communication needed to exchange
a single key in Byte. Benchmark results are part of eBACS[Be]

Algorithm Cipher Public Key Size Ciphertext Size Sum
SIKE SIKEp610 462 486 948
NTRU ntruhps2048677 930 930 1860
Saber saber2-PKE 992 1088 2080
Saber saber2-KEM 992 1088 2080
NTRU Prime sntrup761 1158 1039 2197
NTRU Prime ntrulpr761 1039 1167 2206
KYBER Kyber768 1184 1088 2272
KYBER Kyber768-90s 1184 1088 2272
NTRU ntruhrss701 1138 1138 2276
BIKE BIKE-2-3 2481 2481 4962
BIKE BIKE-2-3 3102 3102 6204
BIKE BIKE-1-3 4963 4963 9926
BIKE BIKE-3-3 5420 5420 10840
BIKE BIKE-1-3 6205 6205 12410
BIKE BIKE-3-3 6760 6760 13520
HQC hqc-192-1 5499 10981 16480
HQC hqc-192-2 5884 11749 17633
FRODOKEM FrodoKEM-976-SHAKE 15632 15744 31376
FRODOKEM FrodoKEM-976-AES 15632 15744 31376
FRODOKEM FrodoKEM-976 15632 15768 31400
MCEliece mceliece460896 524160 188 524348

4.3 Regarding Signatures

As for the key-exchange algorithms, the third-round candidates for DSA algorithms are
separated into finalist candidates and alternate candidates. All Round 3 candidates are
currently supported by liboqs, except for GeMMS, which is currently blocked due to a
missing license file. Further, Rainbow and Kyber are awaiting an update to their Round
3 parameter sets. The evaluation will focus on the latest available implementations and
may be re-evaluated as soon as updates are available. In the remainder of this section, an
overview of benchmarking results regarding all Round 3 candidates is provided to select one
or more suitable candidates for the final evaluation. However, as for the KEX algorithms,
the final evaluation should cover all available algorithms.

52

4.3 Regarding Signatures

Optimized Latency

In the case of DSAs, the workload to create a single signature consists of the time needed
to create a valid signature and the time needed to verify the said signature. Since keys
are usually created once and reused for many signatures, the time to create a single key
pair can be ignored almost entirely. Table 4.4 shows the number of CPU cycles needed
for each Round 3 algorithm with security Level 3 to create and verify a signature for 59
Byte of data. Dilithium and Falcon in both available variants show a clear advantage in
terms of computational cost when compared to other algorithms. While rainbow3c is a close
competitor, the rest of the algorithms performs a few orders of magnitude worse. It could be
argued that the latency foremost needs to be optimized on the signers’ side since, for 802.1X,
a client-server setting is used in which a single Authentication Server needs to create a large
number of signatures, while the clients usually only need to create and verify one signature
at a time. It turns out that for all variants, the total amount of time is dominated by the
time it takes to create the signature and therefore, picking the algorithm with an optimized
sign latency would also result in the fastest overall algorithm. For this reason, the Dilithium
and Falcon families are the pick for the optimized latency algorithm.

Table 4.4: List of Round 3/Level 3 algorithms, with the number of CPU cycles needed to
generate and verify a signature for 59 Byte data. Benchmark results are part of
eBACS[Be]

Algorithm Cipher sign 59B verify 59B Sum
Falcon falcon1024tree 2307555 293022 2600577
Dilithium Dilithium-1536x1280 2363346 857214 3220560
Falcon falcon1024dyn 3829833 385227 4215060
Dilithium Dilithium-1536x1280-AES 3597966 1747368 5345334
Rainbow rainbow3c 10042803 8647956 18690759
Picnic picnic3l3 118965141 99127917 218093058
GeMSS redgemss192v2 295837992 1556703 297394695
SPHINCS+ sphincsf192sha256simple 324775692 16618203 341393895
SPHINCS+ sphincsf192shake256simple 495589581 25404138 520993719
SPHINCS+ sphincsf192harakasimple 539677080 28178523 567855603
SPHINCS+ sphincsf192sha256robust 625334202 34017615 659351817
SPHINCS+ sphincsf192shake256robust 928225692 49545441 977771133
SPHINCS+ sphincsf192harakarobust 973516635 53502192 1027018827
SPHINCS+ sphincss192sha256simple 8997183459 6655761 9003839220
GeMSS bluegemss192v2 9674124921 1451079 9675576000
SPHINCS+ sphincss192shake256simple 12328554978 9727785 12338282763
SPHINCS+ sphincss192sha256robust 16068052314 13010256 16081062570
SPHINCS+ sphincss192harakasimple 16662156084 11676312 16673832396
SPHINCS+ sphincss192shake256robust 21541143618 19001304 21560144922
SPHINCS+ sphincss192harakarobust 29696943852 22002777 29718946629

Optimized Communication

As stated in the last chapter, all PQ DSAs need a large amount of traffic to transfer signatures
and public keys to the client when compared to classical algorithms and special care must be

53

4 Design

Table 4.5: List of Round 3/Level 3 algorithms, with the amount of traffic in Byte needed to
generate and verify a single signature for 23 Byte data. Benchmark results are
part of eBACS[Be]

Cipher PK Bytes Signature Sum Sum (Cached PK)
falcon1024tree 1793 1274 6134 4341
falcon1024dyn 1793 1275 6136 4343
Dilithium-1536x1280 1760 3366 10252 8492
Dilithium-1536x1280-AES 1760 3366 10252 8492
sphincss192shake256robust 48 17064 34224 34176
sphincss192shake256simple 48 17064 34224 34176
sphincss192harakasimple 48 17064 34224 34176
sphincss192sha256robust 48 17064 34224 34176
sphincss192harakarobust 48 17064 34224 34176
sphincss192sha256simple 48 17064 34224 34176
picnic3l3 49 27516 55130 55081
sphincsf192harakarobust 48 35664 71424 71376
sphincsf192harakasimple 48 35664 71424 71376
sphincsf192shake256simple 48 35664 71424 71376
sphincsf192shake256robust 48 35664 71424 71376
sphincsf192sha256simple 48 35664 71424 71376
sphincsf192sha256robust 48 35664 71424 71376
rainbow3c 720793 156 1441898 721105
bluegemss192v2 1264117 53 2528340 1264223
redgemss192v2 1290543 55 2581196 1290653

taken to reduce this amount to a minimum. Table 4.5 shows the total amount of data needed
to transfer a single public key and a signature for 23 Byte of data. When looking at the
overall amount of data for a single signature, again Falcon and Dilithium turn out to be the
clear winners, with more than three to six times fewer data needed compared to its successor
SPHINCS+. However, usually public keys for digital signatures are rather long lived and
can be cached on the client for a long time, while fresh signatures need to be created for each
authentication round. For this reason, it makes sense to pick an algorithm with optimized
signature sizes. When only looking at the signature sizes, it turns out that the algorithms
with the largest public key sizes provide the smallest signatures. The GeMSS family, for
example, only needs about 50 Byte for a single signature while using over 1 MB of data for
the public keys. It is tempting to pick GeMSS since it would be possible to transfer over 60
GeMMS signature for the cost of a single Dilithium signature, but it needs to be considered
that 802.1X usually provides mutual authentication and therefore usually at least a single
public key needs to be transmitted by the client since it is impractical to cache all client
keys on the Authentication Server. For this reason, Table 4.5 further shows the amount of
traffic needed for a scenario where server certificates are cached on the client-side.

It turns out that in this case, both algorithms provide even better performance when
compared to the other algorithms and still need a few orders of magnitude less data for a
single signature than GeMMS. This is due to the low amount of signatures needed for a single
TLS handshake. Usually, only a single signature over the whole handshake is sufficient for
authorization and symmetric alternatives can be used afterward. If both public keys need

54

4.3 Regarding Signatures

to be transferred, it would take over 700 23 Byte signatures for bluegemss192v2 to have an
advantage over Dilithium in terms of data size.

55

5 Implementation

5.1 IEEE 802.1X Implementation

For the implementation, the hostapd project was selected as a free implementation of the
IEEE 802.1X protocol. It provides an implementation for a Supplicant, as well as an imple-
mentation for a Peer system. hostapd uses the OpenSSL library as a TLS implementation
and uses a combination of EAPOL and EAP-TLS as the authentication framework. Further,
hostapd allows using EAP-TEAP as an experimental implementation for a tunneled TLS
protocol. For the Authenticator, the IEEE 802.1X notion of a pass-through Authenticator
is used, and a RADIUS implementation, provided by the FreeRADIUS project, is used to
perform the TLS handshake.

5.1.1 liboqs

liboqs[SM16] provides implementations of quantum-safe algorithms, with a focus on can-
didates of the NIST PQ project. Since liboqs has no built-in TLS support, a fork of the
OpenSSL project provided by the “Open Quantum Safe” project is used, which implements
the quantum-safe algorithms provided by liboqs into OpenSSL. Two versions of the fork are
available. First, a fork of OpenSSL version 1.0.2t, which provides TLS 1.2 support. Sec-
ondly, a fork of OpenSSL version 1.1.1g, which provides TLS 1.3 support. Since the TLS 1.2
implementation is already deprecated and the TLS 1.3 branch is the only version that sup-
ports quantum-safe authentication, the 1.1.1g version is used for the implementation. In
the TLS 1.3 design, PQ algorithms use the TLS 1.3 supported groups extension. The
way cryptographic primitives are negotiated in TLS 1.3 is different from past TLS versions
since signature algorithms, symmetric ciphers and key exchanges are not negotiated as part
of a fixed cipher suite but instead are negotiated independently. The supported groups

extension is thereby used to provide a list of so-called NamedGroup values, which reflect
different ECDH curves or finite fields for classical DH key exchanges. All quantum-safe al-
gorithms provided by liboqs are defined as a new ”curve” in the context of a NamedGroup.
Additionally, a combination of every quantum-safe algorithms with a classical algorithm is
provided as distinct NamedGroup values to support the notion of hybrid key exchanges. This
is done by combining every PQ key exchange with an ECDH algorithm with an equivalent
security level. Details on the integration are provided as a whitepaper by Open Quantum
Safe[CPS19].

Integration of liboqs

The build process on OpenSSL with liboqs is done as described by the Open Quantum Safe
project’s documentation1. For the integration with FreeRADIUS and hostapd, the OpenSSL

1https://github.com/open-quantum-safe/openssl

57

https://github.com/open-quantum-safe/openssl

5 Implementation

library is built as a shared library, and rpaths are used to avoid conflicts with the operating
systems OpenSSL installation

. / Conf igure shared l inux−x86 64 \
−lm −Wl,− rpath=/path/ to / l i boqs −openss l −f o rk
make −j

To support a larger number of possible groups, a patch for OpenSSL was needed since the
number of curves was limited to the number of classical algorithms. The source code changes
are documented in a GitHub “pull request”2 and were integrated into the liboqs/OpenSSL
codebase. Further, an additional pull-request was needed to avoid undefined behavior in the
OpenSSL C code that resulted in an unrecoverable false-positive error when parsing a list of
supported algorithms3.

5.1.2 hostapd

The hostapd project provides a free implementation of IEEE 802 protocols such as WiFi
protocols like WPA, WPS, WPA-Enterprise. It also implements an EAP Authenticator and
Peer state-machine, an EAPOL implementation and a RADIUS client. A test client provided
as part of wpa supplicant, called eapol test, can be used for a simple EAP/RADIUS in-
tegration. The implementation combines the EAP Authenticator and Peer state-machine to
provide an EAP-based authentication against a RADIUS server implementation. For cryp-
tographic purposes, multiple libraries can be used, such as WolfSSL, GnuTLS and OpenSSL.
For this implementation, the OpenSSL version is used. To allow hostapd to use the liboqs
OpenSSL fork, different patches are necessary:

1. supported groups extension
Since the TLS 1.3 support in hostapd is in an early stage, no configuration parame-
ter for the supported groups extension was available and needed to be added. The
necessary changes are documented in a source code patch on GitHub4.

2. Number of maximum EAP roundtrips
To avoid DoS type of attacks, hostapd stops an EAP authentication if more than 50
request-response roundtrips are performed. EAP itself does not restrict the number of
maximum roundtrips for a single EAP authentication process. Since the large number
of data that needs to be transmitted for some key exchanges, this number was increased
to 5000 roundtrips.5

3. Maximum TLS record size
hostapd limits the message for a single TLS record to 216 bytes. Since some ciphers
from liboqs easily exceed this record size, the parameter was increased by a factor of
102.6

A fork of the hostapd project with the necessary changes to support PQ TLS 1.3 is
available on GitHub7.
2https://github.com/open-quantum-safe/openssl/pull/239
3https://github.com/open-quantum-safe/openssl/pull/256
4https://github.com/crest42/hostapd/commit/e28a358d97d9667c98aef216b91b08966c50bc40
5https://github.com/crest42/hostapd/commit/ee05c5fd8fa68c3b0b54b4c638a575cfbedd9ff2
6https://github.com/crest42/hostapd/commit/ee05c5fd8fa68c3b0b54b4c638a575cfbedd9ff2
7https://github.com/crest42/hostapd

58

https://github.com/open-quantum-safe/openssl/pull/239
https://github.com/open-quantum-safe/openssl/pull/256
https://github.com/crest42/hostapd/commit/e28a358d97d9667c98aef216b91b08966c50bc40
https://github.com/crest42/hostapd/commit/ee05c5fd8fa68c3b0b54b4c638a575cfbedd9ff2
https://github.com/crest42/hostapd/commit/ee05c5fd8fa68c3b0b54b4c638a575cfbedd9ff2
https://github.com/crest42/hostapd

5.2 Forward Secrecy

5.1.3 FreeRADIUS

The FreeRADIUS project provides a free and open-source server implementation of the
RADIUS protocol. Additionally, EAP and EAP-TLS are supported by FreeRADIUS. Im-
plementing the liboqs fork into FreeRADIUS is straightforward. However, for hostapd some
changes where necessary:

1. supported groups extension
For hostapd, a configuration option to support the named-groups parameters in OpenSSL
was added.8

2. Increasing boundary’s
As for hostapd, the number of allowed EAP roundtrips was limited to 50, and the
maximum size for a single TLS record was limited to 216 bytes. Both values were
increased to allow rather large handshakes and to match the counterpart parameters
for hostapd.9

A fork of the FreeRADIUS project with the necessary changes to support PQ TLS 1.3 is
available on GitHub10.

5.2 Forward Secrecy

liboqs, as implemented by the OpenSSL fork, uses an API consisting of three calls. First,
the client calls a key generation function that yields a public/private key-pair, where the
public key is sent to the server in the client hello message. Secondly, the server calls a key
encapsulation function to encapsulate a shared secret into ciphertext by using the public key
of the client. As the last step on the client-side, a key decapsulation method that uses the
private key to decapsulate the shared secret is called. This three-way API is called on every
TLS connection and therefore generates a unique key for every session, which implicitly
already implements the notion of forward-secrecy.

To build a non-ephemeral alternative, an approach for using long-lived keys needs to be
implemented in OpenSSL. Usually, this would be done in the form of an X509 certificate
chain. For TLS 1.3, certificate-based keys are only used in the context of signature algo-
rithms, and only ephemeral DH-based approaches are used for the key exchange. For the
sake of simplicity, the non-ephemeral variants in the evaluation are implemented by using
a set of pre-generated keys as static byte arrays in the source code. This is equivalent to
storing a base64-encoded key in an X509 certificate and parse it into a byte array at the start
of the handshake. While there are a few CPU cycles saved by omitting the parsing of a file,
the overall latency should be almost identical since the evaluation ignores any boilerplate at
the start of the program and starts measurements at the beginning of the TLS handshake.

5.3 Measurements

To perform a meaningful evaluation, the code was instrumented in multiple places to allow
exact measurements of different parameters. The following measurements are used in the

8https://github.com/crest42/freeradius-server/commit/a8413f27af
9https://github.com/crest42/hostapd/commit/ee05c5fd8fa68c3b0b54b4c638a575cfbedd9ff2

10https://github.com/crest42/freeradius-server

59

https://github.com/crest42/freeradius-server/commit/a8413f27af
https://github.com/crest42/hostapd/commit/ee05c5fd8fa68c3b0b54b4c638a575cfbedd9ff2
https://github.com/crest42/freeradius-server

5 Implementation

final evaluation:

1. Benchmarking the authentication
For the generic performance measurement, the code was instrumented before the start
of the EAP authentication and right after the authentication was finished success-
fully. The glibc implementation of clock gettime was used to get measurements
with nanosecond precision. For the evaluation of the CPU time, the built-in clock
CLOCK PROCESS CPUTIME ID was used. To evaluate the wall-clock runtime, the built-in
clock CLOCK MONOTONIC was used.

2. Benchmarking the TLS handshake
For benchmarking the TLS handshake, an already available OpenSSL callback mech-
anism was used. OpenSSL allows registering two types of callbacks. First, a message
callback is invoked on every handshake message received or sent, with different meta-
data regarding the message. Wall-clock and CPU time is measured on every invocation
of the callback and stored together with the metadata provided by the handshake. Ad-
ditionally, an info callback is provided, which is invoked for every state change in the
TLS handshake. As for the message callback, timing information is gathered and stored
with the metadata provided by this callback.

3. Benchmarking the network traffic
To get precise information about the network traffic, the raw network traffic was cap-
tured as seen by the operation system, using the dumpcap program provided by the
Wireshark project.

60

6 Evaluation

This chapter focuses on the evaluation of a PQ EAP implementation, as discussed in the
last chapter. The evaluation is done experimentally, with different key exchange and signa-
ture algorithms as the controlled variables. On each iteration, different metrics regarding
performance are collected and evaluated in this chapter.

6.1 Framework

For the experimental evaluation, the eapol test client from hostapd is used for the client-
side, and a FreeRADIUS installation is used for the server-side. The evaluation is done on
the client-side and focuses on two main parts:

1. Performance Evaluations
For performance evaluation, different approaches can be selected. As a high-level
evaluation, the total runtime of the EAP client is used. Additionally, the runtime for
the TLS handshake is of further interest since a rather high overhead is expected due
to the request-response-based design of EAP. At last, the runtime of the cryptographic
primitives is relevant. To generate performance data, code instrumentation in the
client implementation and the OpenSSL library is used.

2. Traffic Evaluations
An EAP authentication process involves the invocation of multiple protocols, some of
which are used simultaneously. Due to the modularity of hostapd, instrumentation
of the code for exact measurements would involve a rather large overhead. For this
reason, the raw traffic captures on the client machine are used for traffic analysis.

The experiments run single-threaded on an AMD Ryzen 5 2600X Six-Core Processor and
are performed 100 times. The evaluation only concerns algorithms with a stated security
level of 3. This is done to keep the visualization of the data manageable due to a large number
of parameter sets per security level. Usually, the algorithmic overhead between the different
security levels is a linear dependency, and the proportions between the different algorithms
stay the same. This further allows a direct comparison with the graphs synthesized from the
ROBOCOP benchmark in Chapter 2.

6.2 Key encapsulation methods

This section focuses on the evaluation of different key encapsulation methods. To avoid
overhead from the signature algorithm, a classical ECDSA signature algorithm is used with
NIST curve P-384 and SHA256 as the hash algorithm. The evaluation includes all PQ KEM
currently available in Round 3 of the NIST PQ project and a hybrid alternative using a
combination of the PQ algorithms with NIST curve P-384. Hybrid algorithms are denoted
by the prefix p384 .

61

6 Evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
CPU Cycles 1e8

saber
ntrulpr761

kyber90s768
ntru_hps2048677

kyber768
ntru_hrss701

sntrup761
P-384

p384_ntrulpr761
p384_kyber768

p384_kyber90s768
p384_ntru_hrss701

p384_saber
p384_ntru_hps2048677

p384_sntrup761
hqc192

p384_hqc192
frodo976aes

p384_frodo976aes
frodo976shake

bike1l3cpa
p384_bike1l3cpa

p384_frodo976shake
bike1l3fo

p384_bike1l3fo
sidhp610

p384_sidhp610
sikep610

p384_sikep610

Al
go

rit
hm

Runtime
EAP
Total

Figure 6.1: Total runtime of a single key exchange in CPU cycles. The bar represents the
quartiles of the distribution, and the whiskers represent the minimum and max-
imum. Outliers are detected and marked by a diamond symbol.

6.2.1 Performance Evaluation

Figure 6.1 shows the runtime of the experiment grouped by the runtime for the total exe-
cution time of the binary and the total execution time of the EAP subroutine. The graph
shows a clear dependency between both values since the total runtime of the experiment is
dominated by the time it takes for a complete EAP authentication. The difference between
both values is due to the overhead to set up the configuration of the execution and the
cleanup routine at the end of the execution. Both values reassemble the values from the
ROBOCOP benchmark presented in Chapter 2. Since the figure only shows the CPU time
spent by the process, the predicted overhead for the request-response design of EAP is not
visible and the CPU time spent is dominated by the runtime of the KEM rather than by
the amount of traffic.

This gets clearer when looking at the wall-clock runtime of a single authentication. Ad-
ditionally, the experiments run in a local environment with little to no network delay. Fig-
ure 6.2 shows the correlation between the wall-clock runtime of the experiments and the
amount of data transmitted in both directions. For this experiment, an artificial network
delay was added. A delay of x ms means that x milliseconds of network delay were added
for the transmission in a single direction. This results in 2 ∗ x milliseconds total delay for a

62

6.2 Key encapsulation methods

0 10000 20000 30000 40000
Bytes RX+TX

0

1

2

3

4

5

6

7

8

W
al

l-C
lo

ck
 R

un
tim

e
1e9

Delay
0ms
1ms
10ms
100ms

Figure 6.2: Total wall-clock runtime of a single key exchange plotted against the total amount
of TLS data sent (TX) and received (RX). The delay is an artificial fixed-time
delay added to send a message in a single direction.

single round trip. The graph clearly shows a strong correlation between the total runtime
of the experiment and the amount of data sent.

Table 6.1 makes this dependency even more clear by showing the calculated Pearson
correlation between the amount of data transferred, and the wall-clock runtime and the
CPU cycles spent by the experiments. The first row shows the coefficient when no artificial

Table 6.1: Pearson Correlation between the amount of data send and the Wall-Clock Time
(WCT), and the CPU time spent with different amount of network delay. The
last column shows the average wall-clock runtime in seconds.

Delay WCT CPU Time WCT/Seconds

Data 0.147101 0.134977 0.132811

1ms Data 0.634502 0.193965 0.162495

10ms Data 0.985996 0.182698 0.341885

100ms Data 0.998727 0.178201 2.026868

63

6 Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
CPU Cycles hostpad

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

Cy
cle

s R
ob

oc
op

Algorithm
bike1l3fo
frodo976aes
frodo976shake
hqc192
kyber768
kyber90s768
ntru_hps2048677
ntru_hrss701
ntrulpr761
saber
sikep610
sntrup761

Figure 6.3: Regression plot of execution times for PQ algorithms. The y-axis shows the 50th
percentile of the ROBOCOP benchmark runtime in CPU cycles. The x-axis
shows the runtime of the experimental evaluation in CPU cycles. The values are
calculated using log10 and normalized to [0, 1] for visualization purposes.

delay is added. In this case, no correlation is visible. After a short delay of 1ms is added,
a clear correlation with the wall-clock time is visible. This gets even more significant with
a delay of 10ms. In this case, the runtime is already almost completely influenced by the
amount of traffic.

When no network delay is present, the runtime of a single EAP authentication is dominated
by the runtime of the key exchange algorithm. Figure 6.3 shows a correlation plot between
the mean number of CPU cycles for a single key exchange in the experiments and the
number of CPU cycles to generate a single key pair plus a single decapsulation operation
according to the robocop benchmark suite. The time to encapsulate a key is not included
since this happens on the server-side, which is not included in the execution time on the
client. The plot shows that there is a strong linear correlation between the runtime measured
by ROBOCOP and the experiments. This gives some confidence in the correctness of the
measurements and shows that without network delay, the runtimes of the cryptographic
primitives are indeed a dominating factor of the overall runtime of the experiments. The
line is a computed regression line between both measurements. While the line shows no
perfect correlation (i. e. f(x) = y, the slope shows a clear linear dependency between both
variables.

To get a sense of the runtime, including the computation time spent on the server, Fig-
ure 6.4 shows the total runtime until a certain point in the TLS handshake is reached. For
the visualization of the data, different steps in the handshake were grouped. “client hello”
reflects the time until the TLS Client Hello message is sent and includes the time for key

64

6.2 Key encapsulation methods

0.0 0.5 1.0 1.5 2.0
Time in usec 1e8

saber
ntru_hps2048677

ntrulpr761
kyber90s768
ntru_hrss701

kyber768
sntrup761

P-384
p384_ntru_hps2048677

p384_saber
p384_ntrulpr761
p384_kyber768

p384_kyber90s768
p384_ntru_hrss701

p384_sntrup761
hqc192

p384_hqc192
frodo976aes

bike1l3cpa
p384_bike1l3cpa

p384_frodo976aes
bike1l3fo

p384_bike1l3fo
frodo976shake

p384_frodo976shake
sidhp610

p384_sidhp610
sikep610

p384_sikep610

Al
go

rit
hm

TLS Record Type
client hello
server hello
finished

Figure 6.4: Total wall-clock runtime of a single key exchange, grouped by progress in the TLS
handshake. The bar represents the quartiles of the distribution, and the whiskers
represent the minimum and maximum. Outliers are detected and marked by a
diamond symbol.

generation. “server hello” reflects the time until the TLS Server Hello message is received by
the client and includes the time to encapsulate a shared secret on the server-side. “finished”
reflects the time until TLS Finished message is received.

Between the “Server Hello” and the “finished” message, certificates are exchanged and
verified by both the client and the server and include the time to decapsulate the shared
secret on the client. An interesting observation is that in some cases, the PQ ciphers perform
even faster than a classical cipher with the same security level. This is partly due to statistical
variances in the measurements and partly due to using data with no delay. This neglects the
role of the delay in the total runtime. In cases with an artificial delay of 10ms, the classical
cipher is the fastest even after considering statistical errors within a small margin.

6.2.2 Traffic Evaluation

For the evaluation of the traffic pattern, only PQ algorithms will be considered. The reason
is that using a hybrid algorithm only adds a rather small overhead of few bytes for the corre-
sponding ECDH key exchange to the overall traffic. Figure 6.5 shows the overall amount of
traffic sent for every key exchange with security level 3 in a hybrid and non-hybrid setting.
The plot shows that there is only a small cap between both settings, and a numerical evalu-
ation shows an overhead of about 300 bytes for using the NIST P-384 curve as an additional
classical algorithm. This is about a factor of 0.04 additional traffic on average. Since this
additional traffic is a small constant overhead, it will be ignored in the remainder of the

65

6 Evaluation

0 10000 20000 30000 40000
Sum of Frame Length in Bytes

P-384

sidhp610

sikep610

ntru_hps2048677

saber

ntrulpr761

sntrup761

kyber768

kyber90s768

ntru_hrss701

bike1l3cpa

bike1l3fo

hqc192

frodo976aes

frodo976shake

Al
go

rit
hm Hybrid

False
True

Figure 6.5: Average amount of traffic sent for a single key exchange. The different bars
represent whether a hybrid or PQ-only variant was used.

traffic evaluation for a cleaner visualization.

Since RADIUS/EAPOL only supports rather small packet sizes, messages are usually frag-
mented in multiple frames. In the evaluation, fragmentation can occur in multiple protocol-
levels. First, the transmitted TLS records need to be sent in different EAP Packets. The size
of a single EAP message is limited to 1.400 bytes. Secondly, the EAP fragments exceed the
size of a single RADIUS Attribute Value Pair (AVP), resulting in additional fragmentation of
the EAP Packet in multiple 255-byte long RADIUS AVPs. Since every fragmentation adds
additional overhead to the communication, Figure 6.6 shows the amount of traffic grouped
by the different protocols. The first notable observation is that the fraction of EAP-TLS
traffic to the total amount of traffic gets smaller as the number of total traffic increases. This
is a result of the mentioned fragmentation since every RADIUS packet adds a rather large
boilerplate of redundant accounting information. Figure 6.7 provides an overview of the
sources of different overheads in network communication. In this plot, the ratios of different
protocol levels are displayed. In the first group, the amount of actual TLS traffic on the
overall sent amount of bytes is plotted. In the second category, the ratio of EAP traffic in
RADIUS AVP values to the overall amount of AVP messages is shown. The last category
shows the ratio of TLS traffic to actual EAP traffic. The plot shows that the ratio of actual
TLS to EAP traffic and the ratio of AVP Values to RADIUS traffic is > 0.95. On the other

66

6.2 Key encapsulation methods

0 5000 10000 15000 20000 25000 30000 35000 40000
Sum of Traffic in Bytes

P-384

sidhp610

sikep610

ntru_hps2048677

saber

ntrulpr761

sntrup761

kyber768

kyber90s768

ntru_hrss701

bike1l3cpa

bike1l3fo

hqc192

frodo976aes

frodo976shake

Al
go

rit
hm

Protocol Type
TLS Records
EAP
Radius AVP
Radius
Ethernet

Figure 6.6: Amount of traffic for a single key exchange grouped by the type of traffic.

hand, the ratio of TLS to the total amount of traffic is rather low and about 25% of traffic
is due to overheads in the RADIUS layer. Figure 6.8 shows a detailed overview of the mean
amount of AVP traffic for a single key exchange, without the AVP messages used for EAP.

The figure shows that a large amount of traffic occurs for non-EAP related attributes.
Some attributes are further limited to certain RADIUS types. RADIUS messages of type
“Access-Request” are sent from the client to the RADIUS server and are acknowledge using
a RADIUS “Access-Challenge” packet. The “Access-Accept” type is used at the end of
the EAP authentication as a final acknowledgment. The following RADIUS attributes were
included in the raw packet captures:

• NAS-Port-Type This value is a mandatory value that needs to be included in all
“Access-Request” messages and identifies the physical port type of the Authenticator.
Either this or the “NAS-Port” attribute needs to be included.[RRWS00]

• User-Name This optional attribute indicates the username of the EAP Peer. For
RADIUS/EAP, this is the value that is reported by the EAP-Identity packet sent by
the Peer.

• NAS-IP-Address This attribute identifies a unique IP-address of the Authenticator.
Either this or a NAS-Identifier attribute is mandatory by RFC 2869[WRC00]

67

6 Evaluation

TLS/Total EAP/AVP AVP/Radius TLS/EAP
Protocol Type

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ra

tio

Figure 6.7: Overhead of traffic, expressed as a ratio of different traffic types. A/B correspon-
dence to the ratio of the traffic of type A to the traffic of type B. A value close
to 1, therefore, indicates little overhead for the encapsulation of the protocols.

• Framed-MTU This optional attribute is a hint by the Authenticator to the server
and states a preferred MTU size. The server is free to choose whether to honor this
request.[RRWS00]

• Service-Type This attribute indicates the type of service the user wants to use. For
EAP, this is usually fixed to “Framed” and is optional.

• State This is a response attribute sent by the server to the Authenticator and must
be returned unmodified by the Authenticator. The usage of this AVP is not further
defined by RFC 2869[RRWS00]. However, it is defined by RFC 5080 to distinguish
between a restarted and ongoing session by a Peer.

• Message-Authenticator This attribute is mandatory and used for integrity protec-
tion of the RADIUS messages. EAP-TLS is integrity protected by itself but is scoped
to the TLS handshake and, therefore, an authentication of the RADIUS messages is
needed to ensure that the RADIUS messages are not altered.

• Calling-Station-Id This AVP identifies the Peer by its hardware address. Since
the identity of the Peer is already included in the User-Name attribute, this AVP is

68

6.2 Key encapsulation methods

B
y
te

s

AVP Type

Radius Type

Figure 6.8: Amount of AVP traffic generated by attribute types. The plot is divided into
Access-Challenge and Access-Request RADIUS messages. The boxes show the
amount of traffic generated for sending the corresponding attribute.

redundant.

• Connect-Info This AVP includes information on the type of connection the Peer
uses to connect to the Authenticator. It includes the type of the link and further
information such as the link speed[WRC00].

• Vendor Specific This attribute contains vendor-specific information. In this case, the
value includes Microsoft MPPE-Send-Key and MPPE-Recv-Key messages for compat-
ibility with the Microsoft Point-to-Point encryption protocol and includes a shared
secret value[Zor99].

Overall only the following attributes are mandatory: NAS-Port-Type, User-Name, NAS-
IP-Address, Message-Authenticator, State. Figure 6.9 shows a comparison of the amount of
traffic used for mandatory attributes to the amount of traffic used for optional attributes in
the left plot. It shows that up to 50% of AVP traffic is unnecessary and can be removed. On
the right side plot, the figure shows a comparison between the average amount of AVP traffic
for two settings. In the “Full” setting, all AVP attributes as described above are included.
In the “Sparse” setting, only the necessary attributes are included. The plot shows that a

69

6 Evaluation

False True
Mandatory

50000

100000

150000

200000

250000
Su

m
 A

VP
 B

yt
es

Full Sparse
Setting

0

1000

2000

3000

4000

5000

6000

Su
m

 A
VP

 B
yt

es

Figure 6.9: Amount of traffic generated by RADIUS AVP attributes in Bytes. The left plot
shows the amount of mandatory vs. the amount of optional AVP traffic. Manda-
tory traffic includes all AVP attributes that need to be sent for EAP-RADIUS to
work correctly. Optional attributes include additional billing information that is
of no further relevance for a simple key exchange. The right-sided plot shows a
boxplot of the amount of traffic in the sparse setting and in the full setting. In
the sparse setting, the protocol is stripped of all optional attributes.

rather large amount of overhead can be removed. This is beneficial for algorithms with large
key sizes, where many RADIUS messages need to be sent.

6.2.3 Forward Secrecy

As already discussed in the previous chapter, it is possible to build a non-forward secrecy-
based approach by omitting the call to generate a new key pair and use a pre-generated key
pair instead. Figure 6.10 shows the time for a single execution of a key exchange with two
different settings. In the “static” setting, a pre-generated key is copied in every execution.
In the “non-static” setting, a fresh key pair is generated for every execution. The graph
shows almost no difference in execution times for most key exchange algorithms. Table 6.2
further shows a two-sided t-test for the null hypothesis of identical averages. As already
seen in Figure 6.10, for most algorithms, it is not possible to reject the null hypothesis,
meaning that there is no statistically significant difference in execution times. The reason is
that for most algorithms, only a small amount of computation in the experiment is spent on
calculating the actual keys and savings on this part of the computation are within the error
bounds. The most notable differences exist in isogeny-based approaches and in FrodoSHAKE.
For SIDHp610, the results are of no further relevance since the algorithm is not IND-CCA
secure, and therefore a static key re-usage would weaken the cryptosystem. For Frodo and
SIKE, the mean difference spent on CPU cycles is up to 30%. Overall, there is hardly any
difference for most algorithms and the savings may not be worth sacrificing forward-secrecy.

70

6.3 Signature Algorithms

A
lg

o
ri

th
m

CPU Cycles

Static

Figure 6.10: Boxplot of the number of CPU cycles spent for a single key exchange in a static
and a non-static setting. In the static setting, a pre-generated key is used for
the key exchange. In the non-static setting, a PFS approach is used, where the
key pairs are freshly generated for every run.

6.3 Signature Algorithms

This section focuses on the evaluation of different signature algorithms. In this setting,
the used key exchange algorithm is fixed to the classical ECDH-based curve P-384. The
evaluation includes all PQ signature algorithms currently available in round 3 of the NIST PQ
project, except for GeMSS, which is currently missing due to license issues1. The evaluation
further focuses on variants with a security level of 3, except FALCON, for which no parameter
set with security level 3 is available. In this case, the next higher level 5 is chosen. Hybrid
variants additionally use NIST curve P-384 with SHA256 as a classical algorithm and P-521
with SHA256 for FALCON. This section will closely follow the evaluation as performed for the
key exchange algorithms.

1https://github.com/PQClean/PQClean/pull/326

71

https://github.com/PQClean/PQClean/pull/326

6 Evaluation

Table 6.2: Difference between the static key and the PFS approach. Mean static is the mean
number of CPU cycles for a single key exchange. The mean fresh column is the
mean number of CPU cycles for a key exchange with a fresh key for every run.
The p-value is the result of a two-sided t-test for identical averages of 100 runs
in both settings. A value close to 0 means that the null hypothesis of identical
averages needs to be rejected.

Algorithm Mean static Mean fresh p-value Difference %

sidhp610 38424.9 69788.92 2.14036282× 10−53 −81.62

frodo976shake 24738.31 31495.17 5.80376001× 10−36 −27.31

sikep610 73012.13 99656.51 9.47968457× 10−27 −36.49

ntru-hrss701 5034.1 5275.87 0.0588850454705 −4.8

hqc192-1-cca2 12693.86 12328.74 0.0739710246481 2.88

frodo976aes 18649.7 19107.92 0.0898095252353 −2.46

bike1l3fo 35057.7 36726.38 0.0936540624538 −4.76

ntru-hps2048677 4834.48 5026.03 0.1477249533302 −3.96

kyber90s768 5135.0 5003.17 0.2927721808090 2.57

saber 5165.54 5052.02 0.3374748380608 2.2

hqc192-2-cca2 12846.73 12917.97 0.7592122653455 −0.55

bike1l3cpa 28813.97 28643.6 0.8295043228439 0.59

kyber768 5143.36 5140.64 0.9834967926456 0.05

6.3.1 Performance Evaluation

The first evaluation focuses on the overall runtime of the signature algorithms. Figure 6.11
shows the total runtime of a single authentication round, grouped by the total runtime of the
experiment and the runtime spent for the actual EAP authentication. It is visible that both
settings are almost equal in all cases, meaning that most of the time spent on the experiment
is actual time spent on the authentication. The graph further shows rather small variances
in the error bounds, meaning that the execution time for a single authentication is almost
constant. When compared to the runtime of the key exchange algorithms, the amount of
time spent on authentication is clearly a dominating factor. The number of CPU cycles spent
for a single key exchange ranges from 4.000 cycles for BIKE to 130.000 cycles for SIKEp610.
The authentication time ranges from 6.000 cycles for dilithium4 to 3.261.770 cycles for
sphincsshake256192ssimple, with a mean runtime of 500.000 cycles.

Figure 6.12 shows a boxplot of the runtime for a single authentication round in wall-clock
time, grouped by the states for the TLS handshake. As for the key exchange methods, the
runtime in this setting does not depend on the amount of traffic but rather on the actual
runtime of the algorithms. sphincsshake256192srobust, for example, uses a significant
more amount of CPU time compared to rainbowIIIcclassic but needs to transmit 20
times less data for a single key exchange. For the client hello TLS message, the amount
of time spent until the message is transmitted is low in almost all cases. One remarkable
exception is the rainbow family. Since at this point in the TLS handshake, no signatures
are used, this is due to the large sizes of the public keys, which need to be loaded at the
start of the experiment. Indeed, a calculation of the Pearson correlation coefficient yields a

72

6.3 Signature Algorithms

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CPU Cycles 1e9

ED25519
falcon1024
dilithium4

sphincsharaka192fsimple
picnic3l3

sphincsharaka192frobust
sphincssha256192fsimple
sphincssha256192frobust

sphincsshake256192fsimple
sphincsshake256192frobust

rainbowIIIcircumzenithal
sphincsharaka192ssimple
sphincsharaka192srobust

sphincssha256192ssimple
rainbowIIIclassic

rainbowIIIcompressed
sphincssha256192srobust

sphincsshake256192ssimple
sphincsshake256192srobust

Al
go

rit
hm

Runtime
EAP
Total

Figure 6.11: Boxplot of the number of CPU cycles spent for a single authentication round.

very strong dependency of over 0.99 for the number of CPU cycles and the combined size
for the public and private keys. Table 6.3 shows the dependency between the key sizes and
the increased load times. As the key size increases, the time until the client hello is sent and
the server hello is received increases almost linear.

This changes when taking the time until the TLS finished message is received into account.
As visible in Table 6.3, there seems to almost no dependency between the key size and the
time until the TLS finished message is received. As for key exchange algorithms, this only
holds in an experimental setting without network delay. If the same experiment as in the
last section is performed, where an artificial network delay is added, similar results can
be observed. Figure 6.13 shows a scatter plot of different experiments with an increasing
network delay added. As already observed for the key exchange methods, the amount of time
for a single key exchange increases drastically for algorithms with a large communication
pattern as more network delay is added. In contrast to the key exchange algorithms, the
effect is not as drastic for the SPHINCS algorithm family. This is because the runtime for
this type of signature algorithms is dominated by signature operations even after a delay of
10ms was added.

73

6 Evaluation

Table 6.3: The average number of CPU cycles until either TLS client hello, server hello, or
finished message is recorded. Key size refers to the overall size for the public and
private key in bytes.

Algorithm Client Hello Server Hello Finished Key size

dilithium4 6384.71 8973.87 10789.73 15047

sphincssha256192ssimple 6670.89 16199.79 759470.87 23834

sphincssha256192srobust 6501.56 15981.15 1299688.44 23834

sphincsharaka192ssimple 6450.69 15724.77 344412.16 23834

sphincsshake256192srobust 6548.64 16179.73 3181622.52 23834

sphincsharaka192srobust 6451.65 15878.81 372063.67 23834

sphincsshake256192ssimple 6587.52 16048.19 1909818.61 23834

picnic3l3 6815.40 21510.97 70558.27 37163

sphincsharaka192fsimple 6799.86 25563.80 48117.99 49021

sphincssha256192frobust 6773.12 25479.43 106482.23 49021

sphincssha256192fsimple 6774.90 25791.80 81174.88 49021

sphincsshake256192frobust 6829.87 25619.42 195378.33 49021

sphincsshake256192fsimple 6828.78 25340.79 135287.96 49021

sphincsharaka192frobust 6734.59 25508.63 51836.98 49021

rainbowIIIccycliccompressed 13423.43 66192.65 634429.51 560714

rainbowIIIccyclic 19388.64 71122.35 125270.74 1253211

rainbowIIIcclassic 34170.45 212697.65 303599.41 2617927

0.5 1.0
CPU Cycles 1e7

ED25519dilithium4sphincsharaka192fsimplesphincsharaka192frobustpicnic3l3sphincssha256192fsimplesphincssha256192frobustsphincsshake256192fsimplesphincsshake256192frobustsphincsharaka192ssimplesphincsharaka192srobustsphincssha256192ssimplesphincssha256192srobustsphincsshake256192ssimplesphincsshake256192srobust

client hello

1 2 3
CPU Cycles 1e7

server hello

0 2
CPU Cycles 1e9

finished

Figure 6.12: Boxplot of the number of CPU cycles spent for a single authentication round.
The different plots show the spent CPU time on different stages of the TLS
handshake. The “client hello” plot displays the point in time when the client
hello message is sent, the server hello and finished message represent the time
when those messages are received by the client.

6.3.2 Traffic Evaluation

Figure 6.14 shows an overview of the overall traffic pattern group by the different signature
algorithms. As expected, the traffic pattern depends strongly on the keys that need to
be transmitted twice for a single key exchange. As already observed in the key exchange

74

6.3 Signature Algorithms

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bytes RX+TX 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
al

l-C
lo

ck
 R

un
tim

e
1e11

delay
0ms
1ms
10ms
100ms

Figure 6.13: Scatterplot of the total amount of send and received TLS bytes vs. the amount
of wall-clock time spent for a single authentication. The different groups repre-
sent different experimental settings with an artificial delay inserted, as described
in the last section.

algorithms, the ratio of TLS traffic to the overall traffic is between 70 to 85 percent. The
reasons are the same as for the key exchange algorithms. Because of the request-response
nature of EAP and the resulting fragmentation, larger overall traffic for EAP-TLS messages
results in an increased overhead for the transmission and acknowledgment of single EAP
frames. Table 6.4 shows the total amount of traffic, the total amount of TLS record traffic,
and the fraction of TLS record traffic to the total traffic, as an indicator for the overhead for a
specific algorithm. As already mentioned in the evaluations for the key exchange algorithms,
a large part of the AVP fields consists of redundant and unnecessary information. Since the
overhead ratio observed in this evaluation is almost identical to the overhead ratio observed
in the key exchange evaluations, a similar amount of savings are expected if these non-
mandatory AVP fields are removed.

One interesting observation in Table 6.4 is the fact that the overhead ratio seems to
increase by a small fraction for protocols with rather small traffic footprints like dilithium4
and falcon1024. This seems counter-intuitive but is due to the overhead caused by the initial
EAP-Identity and the final EAP-Success message. Usually, this is only a small amount of a
few hundred bytes and gets less significant as more data is sent.

75

6 Evaluation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Bytes 1e6

ED25519
falcon1024
dilithium4

sphincssha256192ssimple
sphincssha256192srobust
sphincsharaka192ssimple

sphincsshake256192srobust
sphincsharaka192srobust

sphincsshake256192ssimple
picnic3l3

sphincsharaka192fsimple
sphincssha256192frobust
sphincssha256192fsimple

sphincsshake256192frobust
sphincsshake256192fsimple

sphincsharaka192frobust
rainbowIIIccycliccompressed

rainbowIIIccyclic
rainbowIIIcclassic

Al
go

rit
hm

Protocol Type
TLS Records
EAP
Radius AVP
Radius
Ethernet

Figure 6.14: Total amount of sent and received bytes grouped by algorithm and protocol.

Effect of Frame Length

Due to the fragmented nature and the corresponding overhead and delay caused by this
mechanism, the frame length has an important impact on both the amount of traffic and
the total runtime of a single authentication. RFC 2865 defines a maximum size of 4096
bytes for a single RADIUS packet[RRWS00]. However, RADIUS uses a two-byte length field
and, therefore, would also work with messages up to 65 kB. Figure 6.15 shows the impact
of the frame size on the runtime of the experiment. Both plots show the average wall-clock
runtime of a single authentication round with increased frame sizes. Two left plot shows
the runtime without network delay, and the right plot shows the runtime when an artificial
delay of 10ms was added to the network. Figure 6.16 shows the amount of traffic send vs.
an increasing MTU size. Both plots show a significant positive impact on the runtime and
the amount of data send with an increasing frame size used. The traffic savings between
an MTU size of 1.000 and 10.000 bytes is about 0.25, which matches the expectations from
the overhead evaluation. However, both plots show a diminishing improvement as the frame
size increases linearly. This may be of further interest when choosing an appropriate frame
size. A frame-size of 4.000 bytes already provides a significant improvement over the usual
default value between 1.000 and 1.500 bytes without interfering with the 4.096 byte limit in
RFC 2865.

Alternatively, an alternative AAA protocol like Diameter could be used. In contrast

76

6.4 Summary

Table 6.4: Ratio of send and received bytes for TLS records and overall send and received
bytes.

Algorithm Total Bytes TLS Record Bytes Overhead

rainbowIIIcclassic 1788120 1425003 1.25

rainbowIIIccyclic 522615 416157 1.26

rainbowIIIccycliccompressed 522615 416157 1.26

sphincsshake256192fsimple 181859 144511 1.26

sphincsshake256192frobust 181859 144511 1.26

sphincsharaka192frobust 181859 144511 1.26

sphincsharaka192fsimple 181859 144511 1.26

sphincssha256192frobust 181859 144511 1.26

sphincssha256192fsimple 181859 144511 1.26

picnic3l3 139332 110561 1.26

sphincsharaka192srobust 88491 70043 1.26

sphincssha256192ssimple 88491 70043 1.26

sphincssha256192srobust 88491 70043 1.26

sphincsshake256192ssimple 88491 70043 1.26

sphincsshake256192srobust 88491 70043 1.26

sphincsharaka192ssimple 88491 70043 1.26

dilithium4 24089 18645 1.29

falcon1024 13687 10308 1.33

to RADIUS, Diameter works connection-oriented through using the TCP instead of UDP.
Additionally, there is no limit on the maximum size of a single packet. It is important to
keep in mind that TCP would introduce additional overhead for packet acknowledgment.
Additionally, the maximum size of a single packet is often limited to Ethernet frame size,
which is usually about 1.500 bytes. This limitation and the connection-oriented nature
of Diameter can neglect the benefits of arbitrary large frame sizes. Due to the complex
combinatorial effects, an additional variable would introduce in this evaluation and due to
the fact that there are additional security implications that would be needed to be taken
into account, an evaluation of Diameter is omitted in this work and left as future work.

6.4 Summary

In Chapter 4, proposals were made for suitable key exchange and signature algorithms. By
combining the results from the raw benchmarks used in Chapter 4 and the experimental
evaluation provided in this chapter, it is possible to check the proposals for their practical
applicability and further refine the selection of one or more algorithms.

For key exchange algorithms, Kyber and Saber were suitable candidates for both optimized
latency and optimized bandwidth. For optimized latency, NTRU and SIKE were selected
as additional candidates. When taking a closer look at the evaluation, indeed, it seems
that Saber provides the best performance regarding the latency of all evaluated methods.
The evaluation further shows that Kyber and NTRU are almost as good as Saber and no

77

6 Evaluation

1 2 3 4 5 6 7 8 9 10
MTU Size in kB

0.6

0.8

1.0

1.2

1.4
W

al
l-C

lo
ck

 R
un

tim
e

in
 n

se
c

1e8 delay = 0

1 2 3 4 5 6 7 8 9 10
MTU Size in kB

0.2

0.4

0.6

0.8

1.0

1.2
1e9 delay = 10

Figure 6.15: Average wall-clock runtime for a single key exchange. The y-axis shows the
time in nanoseconds until the TLS handshake is finished and the x-axis shows
the used MTU sizes in kB.

statistically significant difference can be shown for these algorithms. For NTRU, this seems
surprising when looking at the robocop benchmark, in which a clear difference between
NTRU on one side and Kyber and Saber on the other side is visible. This is due to different
levels of optimization and different parameter sets of the robocop implementation and the
variant used in liboqs. Since all algorithms show similar results, a further look into the traffic
evaluation is needed to further refine the selection of the key exchange algorithm.

When looking at the traffic pattern, it is again possible to confirm the predictions from
Chapter 4. Saber, Kyber and NTRU again all have the smallest traffic footprint. As shown
in the evaluation, the amount of traffic has a huge impact on the overall runtime of the key
exchange due to the fragmented request-response nature of the encapsulation RADIUS/EAP.
For this reason, a small traffic footprint is more important than initially stated in the design.
The similarity of the results makes it hard to select a clear winner out of the possible proto-
cols. This is also reflected in the announcement of the third round of the NIST PQ project,
which includes all three algorithms as final candidates for the evaluation. Since the results
of the measurements are almost indistinguishable, a specific pick of any algorithm would
almost certainly be biased and therefore is omitted at this point. A further evaluation of the
algorithms by the cryptographic research community eventually will show which algorithm
withstands the test of time.

Another promising candidate for optimized communication costs was SIKE. While it
stands true that SIKE performs exceptionally well traffic-wise, it only provides a small
benefit over other protocols while introducing the highest latency costs of all protocols by a
large margin. It may be tempting to select SIKE for the promised DH like structure and for
forward-secrecy, but it is important to keep in mind that all protocols were evaluated with
ephemeral keys, and a DH like structure alone does not justify the selection of SIKE over
other protocols.

78

6.4 Summary

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
MTU Size in Bytes

115000

120000

125000

130000

135000

140000

145000
Su

m
 E

th
er

ne
t F

ra
m

e
By

te
s

Figure 6.16: Average total amount of data sent to perform a single authentication round.
The y-axis shows the sum of the send bytes and the x-axis shows the used
MTU/frame size in Bytes.

Regarding signature algorithms, the most important metric defined in Chapter 4 was
the communication cost of the algorithms. It was stated that the Falcon and Dilithium
families show the lowest traffic footprint of all algorithms. This could be confirmed by the
experimental evaluation. While the difference between falcon1024 and dilithium4 may be
relatively small, it is nevertheless significant. Additionally, falcon1024 states a security level
of 5, while dilithium4 only provides a security level of 3. This gives more confidence in the
security of the parameter selection while still providing a smaller traffic footprint. This gets
even more relevant when looking into the performance evaluation. While dilithium provides
a better mean performance over all experiments, the difference is negligible. This makes
falcon1024 a clear winner for an appropriate signature algorithm.

At this point, it is important to emphasize again that the NIST evaluation is an ongoing
process and further research may yield different security levels for the parameters evaluated
in this chapter or even may render whole algorithm families broken. While it is almost
impossible to quantify the abstract concept of maturity for a cryptographic algorithm, a
good way is following the trust of established cryptographers on this topic. Therefore the
selection of any algorithm in this section is explicitly performance-driven and the author
strongly recommends following the results of the NIST PQ project when in doubt.

79

6 Evaluation

6.5 Practical Evaluation

Table 6.5: Combination of Signature and KEX algorithms used for the practical evaluation
with the sizes for the corresponding public keys. The concatenation symbol (||)
means that a hybrid method with both algorithms was used.

Setting Signature KEX Public Key Bytes

ECDH P-521 P-384 517

RSA RSA4096 P-384 1289

PQ falcon1024 Saber 3308

Hybrid falcon1024 || P-521 Saber || P-384 3582

As mentioned in Chapter 1, this thesis is a cooperation between the LMU University
Munich and ADVA Optical Networking as a part of the QuaSiModO project. For this
reason, a practical implementation of the evaluation was performed in a real-world scenario,
using the ADVA software stack. For this practical implementation, two computers located in
Munich and in Tel Aviv used the implementation of the experimental evaluation to perform
a post-quantum key exchange and authentication with a RADIUS server located at a virtual
machine at the “LRZ Computing Cloud” in Munich. As a result of the authentication, a
static key can be transferred from the RADIUS server to the endpoints that can be further
used to send authenticated, integrity-protected and confidential MACSec frames between
Munich and Tel Aviv.

In this section, a short overview of the results of this practical evaluation is shown. For
the post-quantum part of the protocol, two settings were used. First, a pure post-quantum
implementation, using falcon1024 as a signature scheme and Saber as the key exchange
mechanism. In the second post-quantum setting, a hybrid cipher is used, which combines
falcon1024 with the NIST P-521 ECDH curve and Saber with the NIST P-384 ECDH curve.
The curves were chosen to match the security level of the respective post-quantum algorithm.
For comparison, two classical schemes were evaluated in addition. First, a RSA based scheme
with 4096 bit security level as the signature algorithm together with the NIST P-384 ECDH
curve for the key exchange. Secondly, a purely ECDH based variant with the NIST P-521
curve as the signature algorithm and the NIST P-384 ECDH curve for key exchange. An
overview of the used combinations is shown in Table 6.5. The mean latency between the
Supplicant and the RADIUS server was 0.86ms. Figure 6.17 shows a scatter plot of the spent
CPU cycles for a single authentication and the amount of traffic. As expected, the classical
settings both perform better in terms of CPU cycles and traffic but within a small distance
between the Hybrid and the PQ variant. As expected from the evaluation, the traffic gap
between the classical and the PQ variants is rather large. The main contributing factor is
the size of the public keys as sown in Table 6.5. Since both endpoints need to transfer a
public key for mutual authentication together with a corresponding signature, the sum of
the sent traffic is (2 ∗ pk + 2 ∗ sig + overhead). Since falcon1024 signatures are about 1500
Bytes long, the minimum amount of traffic is at least 9000 Bytes. This leaves about 3000
Bytes for additional overhead and the key exchange when compared to Figure 6.17.

When looking at the CPU cycles spent for the mutual authentication, the CPU cycles spent
for a PQ authentication are about double the time needed for an ECDH based authentication.

80

6.5 Practical Evaluation

2000 4000 6000 8000 10000 12000
Sum Traffic in Bytes

1.5

2.0

2.5

3.0

3.5

4.0

4.5
CP

U
Cy

cle
s

1e7
Type

PQ
ECDH
Hybrid
RSA

Figure 6.17: Scatterplot of the total amount of send and received TLS bytes vs. the number
of CPU cycles spent for a single authentication.

For the hybrid variant, the number of CPU cycles spent closely reassembles the time needed
for a PQ authentication plus the time needed for an ECDH based authentication. When
compared to the RSA based variant, the distance to the PQ variant only is within a small
margin. While not being as fast as ECDH based key exchange and signatures yet, the selected
PQ variant already reaches values close to classical algorithms. When keeping into account
that both Saber and falcon are rather new algorithms, which may not profit from low-level
optimization like specifically tailored CPU instructions or highly optimized assembly code,
the gap may even become smaller in the future until a point is reached where PQ algorithms
can replace ECDH variants entirely.

81

7 Conclusion

This work aims to provide a post-quantum design and evaluation for IEEE 802.1X and
802.1AE. As the foundation for such a design, multiple requirements are defined. Require-
ments on the symmetric parts of the protocol that arise from the implications of Grover’s
algorithm can be solved by increasing the key sizes for symmetric encryption by a constant
factor. For components of the protocols that rely on asymmetric cryptography, a solution
that involves bigger problem spaces is not a viable option due to the polynomial runtime
of Shor’s algorithm. Most of the requirements on the asymmetric key exchange and au-
thentication in 802.1X can be solved by inheriting security guarantees already provided by
the EAP-TLS framework, which is already used in many modern IEEE 802.1X implemen-
tations. To provide security against quantum adversaries, the implementation includes an
OpenSSL fork by the Open Quantum Safe project. The fork includes the vast majority of
post-quantum algorithms chosen for Round 3 of the NIST PQ project. Also, it includes the
notion of hybrid algorithms that allows using a combination of post-quantum and classical
algorithms.

Further, and due to the NIST PQ project’s API-design, the design also achieves the no-
tion of forward-secrecy. Another requirement focuses on performance-related aspects for the
asymmetric primitives used as a replacement for the currently used classical variants. To pick
a contester from the NIST PQ project suitable for a PQ design of IEEE 802.1X, an extensive
evaluation of most algorithms currently employed in the project is provided. Contrary to the
common understanding of post-quantum key-exchange algorithms, the evaluation not only
shows that there are algorithms that perform only slightly worse when compared to classi-
cal variants but even perform on-par or even slightly better in some cases. While multiple
algorithms perform orders of magnitude worse than classical ECDH based variants, some
show similar or even slightly better results than selected ECDH and RSA-based schemes.
Especially lattice-based variants like Kyber, Saber and NTRU provide a smaller overhead
in terms of CPU cycles than the contester algorithms. Another interesting result from the
evaluation shows that using a forward-secrecy variant for the post-quantum algorithms does
not introduce a significant overhead on a single key exchange’s overall runtime instead of
variants where a static key is used. For signature algorithms, the interpreted results indi-
cate a similarly positive outlook. The evaluation shows promising results for the runtime of
the algorithms. While no algorithm performed better than a classical ECDH-based variant,
some algorithms perform only slightly worse when measured over the runtime of a complete
authentication. As for the key-exchange algorithm, lattice-based variants show the best per-
formance with acceptable traffic patterns. The additional traffic costs introduced by most
algorithms can be problematic in scenarios where bandwidth is a limiting factor. Some of
the presented algorithms require a few Kilobyte to one Megabyte of traffic for a single TLS
handshake. Even in scenarios like IEEE 802.1X, where the handshake usually happens in
the same LAN infrastructure, these values can be considered problematic. On the lower end,
two algorithms perform notably well. Dilithium and Falcon both need about ten Kilobyte
of traffic for a complete SSL handshake. This is practical for modern Ethernet networks,

83

7 Conclusion

but modern ECDH-based algorithms still need a notably lower amount of traffic. The most
notable result from the evaluation is that the latency between the Supplicant and Authen-
tication Server significantly impacts the authentication’s overall runtime. This is due to the
request-response nature of EAP(OL) and is an interesting point for future optimizations.

A practical implementation of the design in cooperation with our partner ADVA Optical
Networking is described and evaluated. This practical evaluation covers a hybrid post-
quantum key exchange and authentication as a proof of concept and for a final comparison
of classical vs. post-quantum variants of the protocols. For the practical evaluation, Saber
is chosen for the key exchange algorithm and falcon1024 for the signature algorithm. For
the classical algorithms, a pure ECDH variant and an RSA variant with 4096-bit keyspace
are used for comparison. A hybrid algorithm which combines ECDH and PQ algorithms
is also evaluated. The practical evaluation can reproduce the theoretical evaluation’s result
and again shows a promising outlook for lattice-based post-quantum algorithms.

Future Work

Due to constrains in time and scope, some parts of a PQ design for MACSec couldn’t be
considered in this thesis and are regarded as future work:

TEAP

As discussed in Chapter 4, EAP-TLS is inferior to TEAP in terms of supported security
claims. TEAP supports cryptography binding by introducing a RADIUS TLV field that
includes a Message Authentication Code (MAC) to combine the RADIUS TLV values used
outside of the tunnel and the outer TLS-tunnel to the inner EAP method. While the author
does not expect much difference to EAP-TLS as evaluated in this thesis, it may be interesting
to evaluate TEAP and compare it to this work’s results.

Adapt to Further Development of the NIST Project

The NIST PQ project is an ongoing process that may result in drastic changes to some
involved cryptography algorithms. It is important to monitor the process further and take the
results into account when considering this work. While changes to parameter selections of the
algorithms may not skew the evaluation results entirely, they may lead to a reconsideration
of the results. An adaption to the future development of the NIST PQ project, therefore,
should be done when the final results of the third round of the evaluation are available.

PQ-TLS

While a PQ EAP-TLS design profits from the modular design of TLS 1.3, the protocol still
is very reliant on (EC)DH-based key exchanges. It may be valuable for future designs of TLS
to consider a more generic approach that includes a generic key exchange-API and support
for hybrid schemes. This may be relevant for PQ design and also benefit classical TLS
implementation to a certain degree. One example includes the “trust” on certain ECDH
curve instances. By supporting arbitrary hybrid key exchanges, it would be possible to
extend the security of a TLS key exchange on multiple elliptic curve parameter selections.
If one parameter selection turns out to be insecure in the future, the key exchange’s overall
security could still be maintained.

84

Open Quantum Safe

Finally, the author wants to acknowledge the work provided by the Open Quantum Safe
project that provided many implementations and designs used in this thesis, namely liboqs,
liboqs/OpenSSL, PQFresh and much pioneer work for practical post-quantum implemen-
tations. Without them, this thesis would have been impossible in this form. Disclosure of
research in the form of a public available Free and Open Source Software (FOSS) implemen-
tation is not self-evident and shows the importance of transparent and free software for the
computer science community. The author hopes that the small contributions and the forks
associated with this thesis are helpful for future research on this topic.

85

List of Figures

1.1 Estimates of the number of qubits needed to break an RSA/ECC problem
of a certain size. The y-axis is logarithmic to a base of two. The estimated
number for breaking an RSA key of 2n is 2n + 2, according to [HRS17]. For
an ECC DLP of size 2n the number is 9n + 2 ln(n), according to [RNSL17].
The dotted, red line shows the amount of currently available physical qubits
supported by Google’s Bristlecone architecture (72). 2

2.1 Schematic overview of an 802.1X controlled Port with MACSec and an exter-
nal AAA Server[IEE02]. 8

2.2 The MACSec MPDU format[IEE02] . 10

2.3 Schematic overview of the MACSec Key Hierarchy[IEE02] 10

2.4 Overview of the current lattice-based Round 3 candidates of the NIST PQ
standardization project. Only parameter selections with ING-CCA guaran-
tees are shown. The x-axis shows the average latency for key generation,
encapsulation and decapsulation of a shared secret in CPU cycles on a loga-
rithmic scale. The y-axis shows the public key size in bytes on a logarithmic
scale. Benchmark results are part of eBACS[Be] 18

2.5 Overview of the current code-based Round 3 candidates of the NIST PQ stan-
dardization project. Only parameter selections with ING-CCA guarantees
and NIST security level 3 are shown. The axes are displayed on a logarithmic
scale. The x-axis shows the average latency for key generation, encapsulation
and decapsulation of a shared secret in CPU cycles on a logarithmic scale. The
y-axis shows the public key size in bytes on a logarithmic scale. Benchmark
results are part of eBACS[Be] . 20

2.6 Overview of the current implementations of the SIKE Round 3 candidates of
the NIST PQ standardization project. All parameter selections that corre-
spond to different security levels are shown. The x-axis shows the average
latency for key generation, encapsulation and decapsulation of a shared secret
in CPU cycles. The y-axis shows the public key size in bytes. Benchmark
results are part of eBACS[Be] . 21

2.7 High level overview of classical DH on the right and isogeny based DH on the
left[Jea16]. 22

2.8 Overview of the current implementations of lattice-based signature schemes
in Round 3 of the NIST PQ standardization project. The y-axis shows the
latency to sign a 59 Byte message in CPU cycles. The x-axis shows the size
of a signature for a 23 Byte message. The size of the markers reflects the
relative size of the public keys. The color encodes the stated security level.
Benchmark results are part of eBACS[Be] . 24

87

List of Figures

2.9 Overview of the current implementation of multivariate signature schemes
in Round 3 of the NIST PQ standardization project. The y-axis shows the
latency to sign a 59 Byte message in CPU cycles on a logarithmic axis. The
x-axis shows the size of a signature for a 23 Byte message. The size of the
markers reflects the relative size of the public keys in KB. The color encodes
the stated security level. Benchmark results are part of eBACS[Be] 25

2.10 Overview of the current implementation of hash-based signature schemes in
Round 3 of the NIST PQ standardization project. All security level 3 im-
plementations are shown. The y-axis shows the latency to sign a 59 Byte
message in CPU cycles on a logarithmic axis. The x-axis shows the size of a
signature for a 23 Byte message. Benchmark results are part of eBACS[Be] . 27

2.11 Overview of the current implementation of ZK-based signature schemes in
Round 3 of the NIST PQ standardization project. All security level 3 im-
plementations are shown. The y-axis shows the latency to sign a 59 Byte
message in CPU cycles on a logarithmic axis. The x-axis shows the size of a
signature for a 23 Byte message. Benchmark results are part of eBACS[Be] . 29

3.1 CPU cycles for a single ephemeral key exchange on a logarithmic axis. In
the case of SIKE and EC(DH)-based schemes, the time for the computation
of a shared secret is shown. The remainder of the ciphers shows the com-
bined time for the generation of a fresh key pair in addition to the time to
compute a shared secret. Benchmark results are part of eBACS[Be]. Only
implementations concerning security level 3 are shown. 36

3.2 The time needed to exchange a single shared secret in 109 CPU cycles. Bench-
mark results are part of eBACS[Be]. Only implementations concerning secu-
rity level 3 are shown. 37

3.3 Network communication in Bytes for a single key exchange. Benchmark re-
sults are part of eBACS[Be]. Only implementations concerning security level
3 are shown. 38

3.4 Computational effort for the creation and validation of a single signature in 109

CPU cycles. Benchmark results are part of eBACS[Be]. Only implementations
concerning security level 3 are shown. 40

3.5 Network communication in Bytes for one signature. Benchmark results are
part of eBACS[Be]. Only implementations concerning security level 3 are shown. 41

3.6 CPU cycles and bytes traffic for one single signature creation and validation.
Both axes are displayed on a logarithmic scale. Benchmark results are part
of eBACS[Be]. 42

6.1 Total runtime of a single key exchange in CPU cycles. The bar represents the
quartiles of the distribution, and the whiskers represent the minimum and
maximum. Outliers are detected and marked by a diamond symbol. 62

6.2 Total wall-clock runtime of a single key exchange plotted against the total
amount of TLS data sent (TX) and received (RX). The delay is an artificial
fixed-time delay added to send a message in a single direction. 63

88

List of Figures

6.3 Regression plot of execution times for PQ algorithms. The y-axis shows the
50th percentile of the ROBOCOP benchmark runtime in CPU cycles. The
x-axis shows the runtime of the experimental evaluation in CPU cycles. The
values are calculated using log10 and normalized to [0, 1] for visualization
purposes. 64

6.4 Total wall-clock runtime of a single key exchange, grouped by progress in the
TLS handshake. The bar represents the quartiles of the distribution, and the
whiskers represent the minimum and maximum. Outliers are detected and
marked by a diamond symbol. 65

6.5 Average amount of traffic sent for a single key exchange. The different bars
represent whether a hybrid or PQ-only variant was used. 66

6.6 Amount of traffic for a single key exchange grouped by the type of traffic. . . 67

6.7 Overhead of traffic, expressed as a ratio of different traffic types. A/B cor-
respondence to the ratio of the traffic of type A to the traffic of type B. A
value close to 1, therefore, indicates little overhead for the encapsulation of
the protocols. 68

6.8 Amount of AVP traffic generated by attribute types. The plot is divided into
Access-Challenge and Access-Request RADIUS messages. The boxes show
the amount of traffic generated for sending the corresponding attribute. . . . 69

6.9 Amount of traffic generated by RADIUS AVP attributes in Bytes. The left
plot shows the amount of mandatory vs. the amount of optional AVP traffic.
Mandatory traffic includes all AVP attributes that need to be sent for EAP-
RADIUS to work correctly. Optional attributes include additional billing
information that is of no further relevance for a simple key exchange. The
right-sided plot shows a boxplot of the amount of traffic in the sparse setting
and in the full setting. In the sparse setting, the protocol is stripped of all
optional attributes. 70

6.10 Boxplot of the number of CPU cycles spent for a single key exchange in a
static and a non-static setting. In the static setting, a pre-generated key is
used for the key exchange. In the non-static setting, a PFS approach is used,
where the key pairs are freshly generated for every run. 71

6.11 Boxplot of the number of CPU cycles spent for a single authentication round. 73

6.12 Boxplot of the number of CPU cycles spent for a single authentication round.
The different plots show the spent CPU time on different stages of the TLS
handshake. The “client hello” plot displays the point in time when the client
hello message is sent, the server hello and finished message represent the time
when those messages are received by the client. 74

6.13 Scatterplot of the total amount of send and received TLS bytes vs. the amount
of wall-clock time spent for a single authentication. The different groups
represent different experimental settings with an artificial delay inserted, as
described in the last section. 75

6.14 Total amount of sent and received bytes grouped by algorithm and protocol. . 76

6.15 Average wall-clock runtime for a single key exchange. The y-axis shows the
time in nanoseconds until the TLS handshake is finished and the x-axis shows
the used MTU sizes in kB. 78

89

List of Figures

6.16 Average total amount of data sent to perform a single authentication round.
The y-axis shows the sum of the send bytes and the x-axis shows the used
MTU/frame size in Bytes. 79

6.17 Scatterplot of the total amount of send and received TLS bytes vs. the number
of CPU cycles spent for a single authentication. 81

90

Bibliography

[AAB+19] Arute, Frank ; Arya, Kunal ; Babbush, Ryan ; Bacon, Dave ; Bardin,
Joseph C. ; Barends, Rami ; Biswas, Rupak ; Boixo, Sergio ; Brandao,
Fernando G. ; Buell, David A. u. a.: Quantum supremacy using a pro-
grammable superconducting processor. In: Nature 574 (2019), Nr. 7779, S.
505–510

[ABF+15] Adjih, Cédric ; Baccelli, Emmanuel ; Fleury, Eric ; Harter, Gaetan ;
Mitton, Nathalie ; Noel, Thomas ; Pissard-Gibollet, Roger ; Saint-
Marcel, Frédéric ; Schreiner, Guillaume ; Vandaele, Julien ; Watteyne,
Thomas: FIT IoT-LAB: A Large Scale Open Experimental IoT Testbed.
Milan, Italy, Dezember 2015

[AD97] Ajtai, Miklós ; Dwork, Cynthia: A public-key cryptosystem with worst-
case/average-case equivalence. In: Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, 1997, S. 284–293

[Ajt96] Ajtai, Miklós: Generating hard instances of lattice problems. In: Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, 1996,
S. 99–108

[BBBV97] Bennett, Charles H. ; Bernstein, Ethan ; Brassard, Gilles ; Vazirani,
Umesh: Strengths and weaknesses of quantum computing. In: SIAM journal
on Computing 26 (1997), Nr. 5, S. 1510–1523

[BCD18] Barker, Elaine ; Chen, Lily ; Davis, Rich: Recommendation for Key-
Derivation Methods in Key-Establishment Schemes. In: NIST Special
Publication 800 (2018), S. 56C

[Be] Bernstein, Daniel J. ; (editors), Tanja L.: eBACS: ECRYPT
Benchmarking of Cryptographic Systems. https://bench.cr.yp.to, . – Ac-
cessed: 2020-06-25

[Ben80] Benioff, Paul: The computer as a physical system: A microscopic quan-
tum mechanical Hamiltonian model of computers as represented by Turing
machines. In: Journal of statistical physics 22 (1980), Nr. 5, S. 563–591

[BHH+15] Bernstein, Daniel J. ; Hopwood, Daira ; Hülsing, Andreas ; Lange,
Tanja ; Niederhagen, Ruben ; Papachristodoulou, Louiza ; Schneider,
Michael ; Schwabe, Peter ; Wilcox-O’Hearn, Zooko: SPHINCS: practi-
cal stateless hash-based signatures. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques Springer, 2015, S.
368–397

91

https://bench.cr.yp.to

Bibliography

[BLP08] Bernstein, Daniel J. ; Lange, Tanja ; Peters, Christiane: Attacking
and defending the McEliece cryptosystem. In: International Workshop on
Post-Quantum Cryptography Springer, 2008, S. 31–46

[BMVT78] Berlekamp, Elwyn ; McEliece, Robert ; Van Tilborg, Henk: On
the inherent intractability of certain coding problems (corresp.). In: IEEE
Transactions on Information Theory 24 (1978), Nr. 3, S. 384–386

[Bra] Braithwaite, Matt: Experimenting with Post-Quantum Cryptography.
https://security.googleblog.com/2016/07/experimenting-with-post-

quantum.html, . – Accessed: 2020-05-13

[Bra97] Bradner, Scott O.: Key words for use in RFCs to Indicate Requirement
Levels. RFC 2119. http://dx.doi.org/10.17487/RFC2119. Version: März
1997 (Request for Comments)

[CDG+17] Chase, Melissa ; Derler, David ; Goldfeder, Steven ; Orlandi, Clau-
dio ; Ramacher, Sebastian ; Rechberger, Christian ; Slamanig, Daniel
; Zaverucha, Greg: Post-Quantum Zero-Knowledge and Signatures from
Symmetric-Key Primitives. Cryptology ePrint Archive, Report 2017/279,
2017. – https://eprint.iacr.org/2017/279

[CPS19] Crockett, Eric ; Paquin, Christian ; Stebila, Douglas: Prototyping post-
quantum and hybrid key exchange and authentication in TLS and SSH. In:
IACR Cryptol. ePrint Arch. 2019 (2019), S. 858

[CS98] Canteaut, Anne ; Sendrier, Nicolas: Cryptanalysis of the original McEliece
cryptosystem. In: International Conference on the Theory and Application of
Cryptology and Information Security Springer, 1998, S. 187–199

[DJ92] Deutsch, David ; Jozsa, Richard: Rapid solution of problems by quan-
tum computation. In: Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences 439 (1992), Nr. 1907, S. 553–558

[Feo17] Feo, Luca D.: Mathematics of Isogeny Based Cryptography. In: CoRR
abs/1711.04062 (2017). http://arxiv.org/abs/1711.04062

[FS86] Fiat, Amos ; Shamir, Adi: How to prove yourself: Practical solutions to iden-
tification and signature problems. In: Conference on the theory and application
of cryptographic techniques Springer, 1986, S. 186–194

[GMO16] Giacomelli, Irene ; Madsen, Jesper ; Orlandi, Claudio: Zkboo: Faster
zero-knowledge for boolean circuits. In: 25th {usenix} security symposium
({usenix} security 16), 2016, S. 1069–1083

[GPV07] Gentry, Craig ; Peikert, Chris ; Vaikuntanathan, Vinod: Trapdoors
for Hard Lattices and New Cryptographic Constructions. Cryptology ePrint
Archive, Report 2007/432, 2007. – https://eprint.iacr.org/2007/432

[Gro96] Grover, Lov K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, 1996, S. 212–219

92

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://dx.doi.org/10.17487/RFC2119
https://eprint.iacr.org/2017/279
http://arxiv.org/abs/1711.04062
https://eprint.iacr.org/2007/432

Bibliography

[Hei19] Heider, Tobias: Towards a Verifiably Secure Quantum-Resistant Key
Exchange in IKEv2, Diplomarbeit, 10 2019

[HPS98] Hoffstein, Jeffrey ; Pipher, Jill ; Silverman, Joseph H.: NTRU: A ring-
based public key cryptosystem. In: International Algorithmic Number Theory
Symposium Springer, 1998, S. 267–288

[HRS17] Häner, Thomas ; Roetteler, Martin ; Svore, Krysta M.: Factoring us-
ing 2n+ 2 qubits with Toffoli based modular multiplication. In: Quantum
Information & Computation 17 (2017), Nr. 7-8, S. 673–684

[IEE02] Institute of Electrical and Electronics Engineers: IEEE Standard
for Local and metropolitan area networks–Port-Based Network Access Control.
2002. – Standard

[IEE18] Institute of Electrical and Electronics Engineers: IEEE Standard
for Local and metropolitan area networks-Media Access Control (MAC) Secu-
rity. 2018. – Standard

[Jea16] Jean, Jérémy: TikZ for Cryptographers. https://www.iacr.org/authors/

tikz/, 2016

[Kam] Kampanakis, Panos: Post-quantum MACsec in Cisco switches. https://

blogs.cisco.com/security/post-quantum-macsec-in-cisco-switches, .
– Accessed: 2020-05-13

[KK18] Kiefer, Franziskus ; Kwiatkowski, Kris: Hybrid ECDHE-SIDH Key Ex-
change for TLS / Internet Engineering Task Force. Internet Engineering
Task Force, November 2018 (draft-kiefer-tls-ecdhe-sidh-00). – Internet-Draft.
– Work in Progress

[KPG99] Kipnis, Aviad ; Patarin, Jacques ; Goubin, Louis: Unbalanced oil and
vinegar signature schemes. In: International Conference on the Theory and
Applications of Cryptographic Techniques Springer, 1999, S. 206–222

[KS98] Kipnis, Aviad ; Shamir, Adi: Cryptanalysis of the oil and vinegar signature
scheme. In: Annual International Cryptology Conference Springer, 1998, S.
257–266

[Lam79] Lamport, Leslie: Constructing digital signatures from a one-way function /
Technical Report CSL-98, SRI International. 1979. – Forschungsbericht

[Lan] Langley, Adam: CECPQ2. https://www.imperialviolet.org/2018/12/

12/cecpq2.html, . – Accessed: 2020-05-13

[Lyu09] Lyubashevsky, Vadim: Fiat-Shamir with Aborts: Applications to Lattice
and Factoring-Based Signatures. In: Matsui, Mitsuru (Hrsg.): Advances in
Cryptology – ASIACRYPT 2009. Berlin, Heidelberg : Springer Berlin Heidel-
berg, 2009. – ISBN 978–3–642–10366–7, S. 598–616

[McE78] McEliece, Robert J.: A public-key cryptosystem based on algebraic. In:
Coding Thv 4244 (1978), S. 114–116

93

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://blogs.cisco.com/security/post-quantum-macsec-in-cisco-switches
https://blogs.cisco.com/security/post-quantum-macsec-in-cisco-switches
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html

Bibliography

[MR09] Micciancio, Daniele ; Regev, Oded: Lattice-based cryptography. In:
Post-quantum cryptography. Springer, 2009, S. 147–191

[MWN] Overview of the Munich Scientific Network (MWN). https://www.lrz.de/

services/netz/mwn-ueberblick_en/, . – Accessed: 2020-08-11

[Pat96] Patarin, Jacques: Hidden fields equations (HFE) and isomorphisms of poly-
nomials (IP): Two new families of asymmetric algorithms. In: International
Conference on the Theory and Applications of Cryptographic Techniques
Springer, 1996, S. 33–48

[PCG01] Patarin, Jacques ; Courtois, Nicolas ; Goubin, Louis: Quartz, 128-bit long
digital signatures. In: Cryptographers’ Track at the RSA Conference Springer,
2001, S. 282–297

[RNSL17] Roetteler, Martin ; Naehrig, Michael ; Svore, Krysta M. ; Lauter,
Kristin: Quantum resource estimates for computing elliptic curve discrete
logarithms. In: International Conference on the Theory and Application of
Cryptology and Information Security Springer, 2017, S. 241–270

[RRWS00] Rubens, Allan ; Rigney, Carl ; Willens, Steve ; Simpson, William A.:
Remote Authentication Dial In User Service (RADIUS). RFC 2865. http://
dx.doi.org/10.17487/RFC2865. Version: Juni 2000 (Request for Comments)

[RSA78] Rivest, Ronald L. ; Shamir, Adi ; Adleman, Leonard: A method for ob-
taining digital signatures and public-key cryptosystems. In: Communications
of the ACM 21 (1978), Nr. 2, S. 120–126

[SFG20] Steblia, Douglas ; Fluhrer, Scott ; Gueron, Shay: Hybrid key exchange
in TLS 1.3 / Internet Engineering Task Force. Internet Engineering Task
Force, April 2020 (draft-ietf-tls-hybrid-design-02). – Internet-Draft. – Work in
Progress

[Sho99] Shor, Peter W.: Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. In: SIAM review 41 (1999), Nr.
2, S. 303–332

[SK05] Seo, Karen ; Kent, Stephen: Security Architecture for the Internet Protocol.
RFC 4301. http://dx.doi.org/10.17487/RFC4301. Version: Dezember 2005
(Request for Comments)

[SM16] Stebila, Douglas ; Mosca, Michele: Post-quantum key exchange for the
internet and the open quantum safe project. In: International Conference on
Selected Areas in Cryptography Springer, 2016, S. 14–37

[SS17] Schanck, John M. ; Stebila, Douglas: A Transport Layer Security (TLS)
Extension For Establishing An Additional Shared Secret / Internet Engineer-
ing Task Force. Internet Engineering Task Force, April 2017 (draft-schanck-
tls-additional-keyshare-00). – Internet-Draft. – Work in Progress

94

https://www.lrz.de/services/netz/mwn-ueberblick_en/
https://www.lrz.de/services/netz/mwn-ueberblick_en/
http://dx.doi.org/10.17487/RFC2865
http://dx.doi.org/10.17487/RFC2865
http://dx.doi.org/10.17487/RFC4301

Bibliography

[SWZ16] Schanck, John M. ; Whyte, William ; Zhang, Zhenfei: Quantum-Safe
Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) version 1.2 /
Internet Engineering Task Force. Internet Engineering Task Force, Juli 2016
(draft-whyte-qsh-tls12-02). – Internet-Draft. – Work in Progress

[SZCWM07] Salowey, Joseph A. ; Zhou, Hao ; Cam-Winget, Nancy ; McGrew, David:
The Flexible Authentication via Secure Tunneling Extensible Authentication
Protocol Method (EAP-FAST). RFC 4851. http://dx.doi.org/10.17487/

RFC4851. Version: Mai 2007 (Request for Comments)

[Unr12] Unruh, Dominique: Quantum proofs of knowledge. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques
Springer, 2012, S. 135–152

[VCB+04] Vollbrecht, John ; Carlson, James D. ; Blunk, Larry ; Ph.D., Dr.
Bernard D. A. ; Levkowetz, Henrik: Extensible Authentication Protocol
(EAP). RFC 3748. http://dx.doi.org/10.17487/RFC3748. Version: Juni
2004 (Request for Comments)

[VSB+01] Vandersypen, Lieven M. ; Steffen, Matthias ; Breyta, Gregory ; Yan-
noni, Costantino S. ; Sherwood, Mark H. ; Chuang, Isaac L.: Experimental
realization of Shor’s quantum factoring algorithm using nuclear magnetic res-
onance. In: Nature 414 (2001), Nr. 6866, S. 883–887

[WRC00] Willats, Ward ; Rigney, Carl ; Calhoun, Pat R.: RADIUS Extensions.
RFC 2869. http://dx.doi.org/10.17487/RFC2869. Version: Juni 2000 (Re-
quest for Comments)

[WZFGM17] Whyte, William ; Zhang, Zhenfei ; Fluhrer, Scott ; Garcia-Morchon,
Oscar: Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Secu-
rity (TLS) version 1.3 / Internet Engineering Task Force. Internet Engineering
Task Force, Oktober 2017 (draft-whyte-qsh-tls13-06). – Internet-Draft. – Work
in Progress

[ZCWSH14] Zhou, Hao ; Cam-Winget, Nancy ; Salowey, Joseph A. ; Hanna, Steve:
Tunnel Extensible Authentication Protocol (TEAP) Version 1. RFC 7170.
http://dx.doi.org/10.17487/RFC7170. Version: Mai 2014 (Request for
Comments)

[Zor99] Zorn, Glen: Microsoft Vendor-specific RADIUS Attributes. RFC 2548.
http://dx.doi.org/10.17487/RFC2548. Version: März 1999 (Request for
Comments)

QGM Quantum Gate Model . 1

PQC Post Quantum Cryptography . 4

TLS Transport Layer Security . 47

95

http://dx.doi.org/10.17487/RFC4851
http://dx.doi.org/10.17487/RFC4851
http://dx.doi.org/10.17487/RFC3748
http://dx.doi.org/10.17487/RFC2869
http://dx.doi.org/10.17487/RFC7170
http://dx.doi.org/10.17487/RFC2548

Bibliography

NASA National Aeronautics and Space Administration 3

IEEE Institute of Electrical and Electronics Engineers 4

NIST National Institute of Standards and Technology 4

PQ Post-Quantum . 4

RSA Rivest-Shamir-Adleman . 12

ECDSA Elliptic Curve Digital Signature Algorithm 12

DH Diffie-Hellman . 2

DSA Digital Signature Algorithm . 12

PQC Post-Quantum Cryptography . 4

LAN Local Area Network . 3

MAN Metropolitan Area Network . 33

SA Security Associations . 7

VPN Virtual Private Network . 3

PAE Port Access Entity . 8

AAA Authentication, Authorization and Accounting 8

EAPOL EAP over LAN . 8

PSK Pre-shared Keys . 8

CAK Connectivity Association Key . 8

96

Bibliography

EAP Extensible Authentication Protocol . ix

IETF Internet Engineering Task Force . 30

OTP One-Time Password . 9

GTC Generic Token Card . 9

MSK Master Session Key . 9

MAC Message Authentication Code . 84

PDU Protocol Data Unit . 8

FFT Fast Fourier Transform . 14

OTP One-Time Pads . 9

ECC Error Correction Code . 19

LWE Learning With Errors . 19

FIPS Federal Information Processing Standard . 15

ETSI European Telecommunications Standards Institute 31

CA Secure Connectivity Association . 8

SAK Secure Association Key . 8

CAK Connectivity Association Key . 8

ICK ICV Key . 11

KEK Key Encrypting Key . 11

97

Bibliography

KDF Key Derivation Function . 11

MKA MACSec Key Agreement . 9

FLOPS Floating Point Operations per Second . 34

SVP Shortest Vector Problem . 17

CVP Closest Vector Problem . 17

SIVP Shortest Independent Vector Problem . 17

ECC Elliptic Curve Cryptography . 19

EC Elliptic Curve . 21

ECDH Elliptic Curve Diffie-Hellman . 2

SIDH Supersingular Isogeny Diffie–Hellman . 22

IND-CPA Indistinguishability under chosen plaintext attack 16

IND-CCA Indistinguishability under chosen ciphertext attack 16

IND-CCA2 Indistinguishability under adaptive chosen ciphertext attack 16

KEM Key Encapsulation Method . 13

KEX Key Exchange Protocol . 13

DSA Digital Signature Algorithm . 12

DSS Digital Signature Standard . 23

HFE Hidden Field Eqaution . 25

98

Bibliography

MPC Multi-Party Computation . 28

PFS Perfect Forward Secrecy . 13

IoT Internet of Things . 33

FIPS Federal Information Processing Standards . 15

MWN Munich Scientific Network . 33

MCU Micro Controller Unit . 33

IANA Internet Assigned Numbers Authority . 47

RFC Request for Comments . 47

AVP Attribute Value Pair . 66

DLP Discrete Logarithm Problem . 2

PEAP Protected Extensible Authentication Protocol

CPU Central Processing Unit . 37

MPDU MACSec Protocol Data Unit . 10

ECC Error Correction Code . 19

FOSS Free and Open Source Software . 85

99

	Introduction
	Motivation
	Problem Statement
	Methodology

	Background
	IEEE 802.1X
	Notations
	Authentication
	EAP and EAPOL

	IEEE 802.1AE
	MACSec Key Hierarchy

	Classical Cryptography
	Asymmetric Cryptography
	Symmetric Cryptography

	Post Quantum Cryptography
	Shor's Algorithm
	Grover's Algorithm

	Post-Quantum Cryptography Standardization
	Public-key Encryption and Key-establishment Algorithms
	Digital Signature Algorithms

	Related Work

	Requirements
	Scenario
	Threat Model
	PQC Requirements
	Asynchronous Key Exchange
	Comparison of NIST PQ-KEX Algorithms
	Asynchronous Signature Schemes
	Comparison of NIST PQ Signature Algorithms
	Synchronous Schemes

	IEEE 802.1X Requirements
	Summary

	Design
	Regarding the EAP Method
	Regarding Key Exchange
	Regarding Signatures

	Implementation
	IEEE 802.1X Implementation
	liboqs
	hostapd
	FreeRADIUS

	Forward Secrecy
	Measurements

	Evaluation
	Framework
	Key encapsulation methods
	Performance Evaluation
	Traffic Evaluation
	Forward Secrecy

	Signature Algorithms
	Performance Evaluation
	Traffic Evaluation

	Summary
	Practical Evaluation

	Conclusion
	List of Figures
	Bibliography

