
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterthesis

On detecting Web-Tracking

Thomas Müller

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterthesis

On detecting Web-Tracking

Thomas Müller

Supervising professor: Prof. Dr. Dieter Kranzlmüller

Supervisors: Dr. Michael Schiffers
Dr. Nils gentschen Felde

Date of Submission: 13. July 2015

I assure the single handed composition of this master’s thesis only supported by declared
resources.
Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Munich, 13. July 2015

. .
(Signature of the Thesis Candidate)

Web-Tracking is an incredible big business focusing on the collection of as many user data as possible and
use it - among other scenarios - for hand-crafted advertising. Trackers are constantly seeking to improve their
tracking mechanisms in order to be able to gather more user-based data. The most recent developments of
this research are fingerprinting techniques: Browser- and Canvas-Fingerprinting. Fingerprinting techniques
differ to the de facto standard for implementing Web-Tracking - Cookies - in several aspects. Firstly, it is
very hard to notice that a web site is fingerprinting the user. Secondly, even if the user knows that he is being
fingerprinted, it is very hard to effectively block it. Lastly, fingerprinting techniques enable the trackers to
recognize users, which consequently leads to even more user-based data, because this enables them to track
users among different web sites. Using the collected user data facilitates the trackers to create detailed user
profiles, which clearly threatens the privacy of users. In order to increase privacy being endangered by Web-
Tracking, the first step required is to be able to detect the use of fingerprinting techniques. This is the basic task
this thesis sets out to solve. The detection part is realized using proven detection mechanisms from different
fields like Data Mining or Knowledge Discovery in Databases. The results of the thesis show that Canvas-
Fingerprinting is reliably detectable with each of those classifiers. The more general Browser-Fingerprinting
is way harder to detect, but the best classifiers still managed to achieve a very high success rate. Consequently,
it is safe to say that the developed system is capable of detecting the use of fingerprinting techniques on a web
site and can therefore serve as a first step towards a system which can be used to increase privacy by mitigating
fingerprinting techniques.

Contents

1. Introduction 1

2. Fundamentals 3
2.1. Web-Tracking in General . 3
2.2. Cross-Domain-Tracking . 4
2.3. Fingerprinting Techniques . 5

2.3.1. Browser-Fingerprinting . 6
2.3.2. Canvas-Fingerprinting . 10

2.4. Detection Mechanisms . 13
2.4.1. Introduction . 13
2.4.2. Bayesian Classifiers . 15
2.4.3. Decision Trees . 17
2.4.4. ExtraTrees . 23

3. Related Work 24
3.1. Fingerprinting . 24

3.1.1. Browser-Fingerprinting . 24
3.1.2. Canvas-Fingerprinting . 27

3.2. Detecting Fingerprinting . 31
3.2.1. Chameleon . 31
3.2.2. CanvasBlocker . 31

3.3. Counter-Measures . 32
3.3.1. Browser-Fingerprinting . 32
3.3.2. Canvas-Fingerprinting . 34

4. Design 36
4.1. Deriving Components . 36
4.2. Architecture . 37
4.3. Sensors . 39

4.3.1. Defining Suitable Features . 39
4.4. Data Collection . 41

4.4.1. Database System . 41
4.4.2. Database Content . 42

4.5. Logic/Evaluation . 43
4.6. Communication . 44
4.7. Discussion . 45

4.7.1. Deployment Variants . 45
4.7.2. Security and Privacy . 46

5. Implementation and Evaluation 51
5.1. Implementation . 51

5.1.1. Sensors . 51
5.1.2. Data Collection . 59
5.1.3. Logic/Evaluation . 60

5.2. Evaluation and Methodology . 63
5.3. Measurements . 65

5.3.1. Naı̈ve Bayesian Classifier . 65
5.3.2. Decision Tree . 66

i

5.3.3. ExtraTrees . 68
5.3.4. Aggregator . 70

6. Discussion 72
6.1. Discussion and Interpretation . 72

6.1.1. Differences in the Training Data . 72
6.1.2. EqualSplit Results . 72
6.1.3. RandomSplit Results . 75

6.2. Room for Improvement . 78
6.2.1. Training Data . 78
6.2.2. Optimizing Classifiers . 78
6.2.3. Implementing New Classifiers . 78
6.2.4. Improve Sensors . 79

6.3. Summary . 79

7. Conclusion and Future Work 80

A. Training data 83
A.1. Training set . 83
A.2. Test set . 85
A.3. Complete training data . 86

B. Content of CD 88

C. Installation 89
C.1. Database setup . 89
C.2. Firevest . 89
C.3. Fireshorts . 89

List of Figures

2.1. Functionality of basic Web-Tracking. 4
2.2. Functionality of Cross-Domain-Tracking. 5
2.3. Exemplary result of the Panopticlick project. 8
2.4. The picture produced by the source code in Listing 2.4. 12
2.5. Example of a WebGL rendering. 13
2.6. The steps that build the basis of data classification. 14
2.7. Visualized Decision Tree after the first split. 21
2.8. Visualized Decision Tree after every split has been done. 21

3.1. Top 1.000.000 Alexa web sites using JavaScript-based font probing 28
3.2. CanvasBlocker’s notification when user approval is requested before the <canvas> element

can be used. 35

4.1. Flowchart describing the basic way of functioning of the proposed system. 37
4.2. Fundamental design of the proposed system. 38
4.3. Database scheme for the data collection layer. 42
4.4. Basic idea of a monolithic system. 45
4.5. Basic idea of a distributed system. 46
4.6. Basic concept of security tokens. 48

5.1. AST representation of JavaScript code. 52
5.2. Database scheme used in the prototype implementation. 60
5.3. Decision Tree visualization for Equal-Split with all features. 67
5.4. Decision Tree visualization for Equal-Split without Canvas-Fingerprinting-related features. . . 69

6.1. Histogram for ExtraTrees with RandomSplit and all features. 77
6.2. Histogram for ExtraTrees with RandomSplit without Canvas-Fingerprinting-related features. . 77

C.1. Firevest settings. 90

iii

List of Tables

2.1. Features used in the fingerprinting algorithm from Peter Eckersley. 7
2.2. Entropy of the Features used in the Panopticlick project. 8
2.3. Features used in fingerprintjs. 9
2.4. Selection of methods and properties of the 2D context. 11
2.5. Exemplary training data for the Naı̈ve Bayes example. 16
2.6. Prior probabilities for the training data. 16
2.7. Exemplary training data for the Decision Tree example. 19

3.1. Overview of features used in Panopticlick and in the examined fingerprinting providers. 25
3.2. Entropies of the Canvas-Fingerprinting tests. 29
3.3. Functionalities of Chameleon. 32

4.1. Relevant features for this thesis. 40
4.2. OSI Reference Model for communication. 44

5.1. Features that are left out in the set without Canvas-Fingerprinting-related features. 64
5.2. Overview of all performed tests. 65
5.3. Bayes EqualSplit with all features. 65
5.4. Bayes EqualSplit without Canvas-Fingerprinting-related features. 66
5.5. Feature importances for Decision Tree with all features. 66
5.6. Results for the Decision Tree without Canvas-Fingerprinting-related features. 68
5.7. Feature importances for DecisionTree without Canvas-Fingerprinting-related features. 68
5.8. Results for ExtraTrees with all features. 69
5.9. Results for ExtraTrees without Canvas-Fingerprinting-related features. 70
5.10. Aggregator EqualSplit without Canvas-Fingerprinting-related features. 71

6.1. Occurrences of features in the tracking and not-tracking sets. 73
6.2. Summary of the performed tests using EqualSplit. 74
6.3. Feature of the examined web sites. 75
6.4. Summary of the performed tests using RandomSplit. 76

A.1. Training set yield by EqualSplit. 83
A.2. Test Set yield by EqualSplit. 85
A.3. Overview of all web sites of the training data. 86

iv

1. Introduction

Nowadays, the Internet is omnipresent and life without it seems to be impossible for a lot of people. At
the latest with the wide distribution of Smartphones, it can be considered a fundamental part of the daily
life. Modern communication is inconceivable without the Internet and even the classic SMS is replaced by
modern messengers such as WhatsApp [1]. The Internet, however, is used for so much more: people use it for
shopping, they search for things they are interested in, they read the news or just use it for plain entertainment.
Considering all this convenient use cases, one aspect goes unnoticed: the more the Internet is used, the more
personal information is revealed.

The perception changed in 2013 when Edward Snowden published confidential material concerning programs
(PRISM, Tempora [2, 3]) of several intelligence agencies - such as the NSA - which aim at observing and
collecting personal communication. The publication of these documents had an enormous impact because of
the magnitude and impact programs, which actually put the whole population under general suspicion. Ever
since the first publication, more and more details became available and the population has started to realize
that everything they are using the Internet for is actually observed and stored by the governments. These
happenings have led many people to develop a new conscious concerning security and privacy.

While the news that governmental agencies like NSA, BND or GHCQ are tracking the user’s behavior on a
large scale led to a lot of turmoil, most people seem to simply not know that they have been tracked for a very
long time by several companies. Tracking the user and collecting as much information about him as possible
is the basis of a lot of web businesses. One way to acquire personal data is usually Web-Tracking. It describes
the process of observing the user’s behavior when surfing on web sites. This technique also enables the tracker
to trace the user among different web sites which results in trackers being able to collect a vast amount of
personal data, for example consumer behavior, political interests, financial status or health.

The information gathered by Web-Tracking is highly valuable, especially for the advertisements industry.
Using the information enables companies in this industry to handcraft advertisements. The better the adver-
tisements are, the higher the chances that users click on them, which directly results in higher revenue. In
order to maximize their gain, companies are constantly trying to improve their tracking mechanisms in order
to make them harder to block and to improve their capabilities to recognize single users which directly results
in more personal data, which can be used yet again to improve clicking rates. Nevertheless, targeted advertis-
ing is only one purpose of user-based data. Its designed use is multi layered. For instance, Web-Tracking can
also be used to create extremely detailed user-profiles containing a lot of sensitive data.

The various opportunities for use are the foundation for quite a few companies, which have built their core
business around user-based data. This industry is constantly developing advanced and better methods, so
called tracking mechanisms, to collect even more personal data. One category of these advanced tracking
mechanisms consist of fingerprinting techniques, in particular Browser- and Canvas-Fingerprinting. Those two
techniques enable trackers to recognize users on different web sites and extract highly sensitive information.
At the same time, the techniques are often performed unnoticed by the user and are hard to block, which adds
to the risky nature of these techniques from data security perspective.

This thesis wants to shed some light on Web-Tracking and add to greater transparency by focusing on the
detection of the usage of such fingerprinting techniques. The idea is to utilize traditional tracking mechanisms
from the fields of Data Mining and Knowledge Discovery in Databases and apply them in the area of Web-
Tracking. The thesis aims to dynamically detect, if a web site tries to track a user or not. For this purpose,
a system has been developed and prototypically implemented. The remainder of this thesis is structured as
follows.

Chapter two explains the fundamentals concerning Web-Tracking and two of its advanced techniques, namely
Browser- and Canvas-Fingerprinting. Additionally, it provides the basic operating principles of three relevant
detection mechanisms: Naı̈ve Bayes, Decision Tree and ExtraTrees.

1

1. Introduction

Chapter three will focus on related work and will reveal the current state of research in the fields of Browser-
and Canvas-Fingerprinting implementation as well as detection, thereby exposing the research gap. In par-
ticular, it will be shown that the idea to use traditional tracking mechanisms in order to be able to detect the
usage of fingerprinting techniques has not been done before and is completely new idea. This Chapter will
also involve possible counter-measures to fingerprinting techniques.

In Chapter four, the basic concept of the thesis will be presented. By showing the basic, wished for flowchart
of the planned system, relevant components actuators and communication paths are defined. Those are used
to derive a fundamental architectural design. The design is then discussed in detail with every component
being illustrated profoundly. Moreover, this Chapter tries to question the architecture with having security and
privacy in mind. Furthermore, two different variants to deploy the system will be presented here.

Chapter five will concentrate on the implementation and evaluation. At first, one Section for each of the pro-
posed components will both describe the according part in detail and outline different ways to implement. The
following Sections will then describe, how the evaluation of the developed system will be performed depen-
dent on the classifier. Different test scenarios will be illustrated and measurements of each tested classifier will
be presented.

Chapter six discusses the measurements. First, it will be shown that the training data collected for this thesis
provides differences in terms of used features. After summarizing the measurements, it will be explained, how
the results of the tests come into being, followed by a Section that presents an alternative way of testing. With
the help of this alternative, it will be shown that the measurements are sound. Lastly, possible improvements
to enhance the detection rate of the classifiers will be depicted. Chapter seven concludes.

2

2. Fundamentals

This Chapter explains basic fundamentals of the thesis. As the title already suggests, it exists of two parts:
Web-Tracking and detection. The Web-Tracking part will be covered in Sections 2.1 and 2.2. Those Sections
will give an overview of Web-Tracking in general and shed some light on why it is such an important topic.
Section 2.3 will illustrate ways to implement Web-Tracking, in particular fingerprinting mechanisms. With
Browser- and Canvas-Fingerprinting two techniques from this field will be demonstrated in detail. The second
important part of the thesis concerns detection. Therefore, Section 2.4 will concentrate on detection mecha-
nisms used in areas like Data Mining or Knowledge Discovery in Databases. Three different methods will be
presented: Naı̈ve Bayesian classifiers, Decision Trees and Extra Trees, where each method will be elucidated
profoundly. Moreover, their basic way of functioning will be explained by using some simple examples.

2.1. Web-Tracking in General

Web-Tracking describes the process of tracking user behavior in the Internet by third parties, so called trackers.
Usually, users do not realize that they are being tracked when surfing the Internet. Mostly, trackers are not the
providers of the web site being visited by the user. Of course, web site providers may also track their users. In
fact they might even need to implement tracking mechanisms in order to ensure fundamental features such as
a shopping basket.

While there are legitimate reasons for web site providers to track their users on their web site, the question
arises why third parties, the trackers, are so interested in the user’s behavior. Their main goal is the collection
of as much user-specific data as possible. This data is incredibly precious to companies, because it represents
the user’s interests and these interests in turn are the key to targeted advertising, which greatly improves the
chances that users click on advertisements and consequently generate money for companies.

Such business procedures go along with problems, in particular the fact that the users have never agreed to
such an information gathering. They don’t have a clue, what purposes the data serves and they never approved
the processing of this data.

Figure 2.1 shows the basic functionality of Web-Tracking. When visiting a web site, the user receives every-
thing relevant for displaying this web site correctly, for example images, text, JavaScript files and stylesheets.
Yet, there can also be parts in the response, that belong to the trackers and are connected to Web-Track-
ing. Those parts may contain pictures, tracking-pixels or similar things that need to be requested from the
tracker’s server. This request requires the establishment of a connection to the tracker and also contains a
referer-header1 that involves the currently visited web site. By reading this header field, the tracker is able to
determine, which web site the user has been visiting. If the tracker has the ability to recognize a user, he is
also able to create profiles for this very user.

Although one may assume that recognizing users can be a difficult task, there also exists a pretty trivial method
to do so. There are more web site providers than one might think, which utilize URL parameters for sensitive,
personal data, for example the name. The results are URLs like http://www.illness.com/cancer.
html?name=thomas?surname=mueller2. If there are requests to trackers sent from this URL, the
referer header contains it and the tracker automatically does know about the name and the surname of the user.
As demonstrated in [5], about 48% of the examined web site providers use identifiers in the URLs, which can
be exploited by trackers.

1The referer-header is an HTTP header that contains the address of the web page, this request stems from [4].
2Please note, that this is a fictional URL. Nevertheless, similar URLs are out there.

3

http://www.illness.com/cancer.html?name=thomas?surname=mueller
http://www.illness.com/cancer.html?name=thomas?surname=mueller

2. Fundamentals

User

Website Tracker

Figure 2.1.: Functionality of basic Web-Tracking.

Names of the users, however, are not the only interesting information, but only a piece that might be of use to
the trackers next to other characteristics such as - among others - age, gender, race, zip code, income, marital
status, education, income, drug abuse, consume behavior and health concerns [6].

2.2. Cross-Domain-Tracking

In order to tap the full potential of Web-Tracking, trackers have to spread their tracking software not only to
one domain, but to as many different domains as possible. This enables the trackers to get user data from
different domains, and therefore data from different kinds of sources. For example, a tracker may be able to
track the articles read by a user on a web page of a news magazine and he can comprehend his consumer
behavior. If a tracker is in the position to track a user across different web sites, it is called Cross-Domain-
Tracking. Combining the information gained from different domains can greatly improve the quality of the
user profile. Generally speaking, the more information trackers can get for an user, the more precise the profile
becomes.

Implementing Cross-Domain-Tracking requires the trackers to be able to recognize users and to deploy soft-
ware that is capable of doing so on every domain they wish to track users on.

Figure 2.2 shows the basic way of functioning of Cross-Domain-Tracking.

For each visited web site, the user does unknowingly establishes a connection to the tracker’s server and
consequently informs him about the visited web site. The tracker can recognize the user and extend the
respective profile.

It is pretty obvious that trackers try to deploy their software on web sites, which have a huge user base. This
enables the trackers to reach as many users as possible. Therefore, it is not surprising, that on some web pages,
more than 50 different trackers have implemented their tracking mechanisms [7].

The collection and processing of user-based data is the foundation of an enormous, worldwide market, whose
volume might very well exceed several billion dollars. While the exact volume is not known, the dimension is
pretty realistic, considering published numbers, which only cover parts of this market. According to [8], only
the Internet advertising revenue in United States equaled 49.5 billion dollars in 2014.

The main reason for the market’s rapid development has been the increasing number of sources for user-based
data. Nowadays, almost everybody possesses a Smartphone, televisions get “smarter” and with the recent
launch of the Apple Watch, technology devices are everywhere, at any time, providing information for as well

4

2.3. Fingerprinting Techniques

User

Website-Provider 1

Tracker

1. User visits web site from
Website-Provider 1

6. tracker delivers embedded data

5. inform tracker about visited web site
from Website-Provider 1 and 2

2. web site gets delivered

Website-Provider 2

3. User visits web site from
Website-Provider 2

4. web site gets delivered

Figure 2.2.: Functionality of Cross-Domain-Tracking.

as gathering data from us. Right now, the trend is to own many devices that are able to communicate with each
other via the Internet. The author of [9] shows in great detail, what information will be collected in the future.

From an economic perspective, the last paragraphs gave some first indications about the large, already ex-
isting Web-Tracking market and its enormous potential. Having in mind the current development in mobile
computing, one might dare to say, that it has almost no upper limit.

Looking at the technical components that made such an development possible, the outstanding technique for
tracking people always has been cookies. Cookies are basically small text files, which are stored on the
client-side computer. They were developed by Lou Montulli in 1994 [10] and ever since have evolved to an
absolutely fundamental principle in modern web applications. Originally, cookies were implemented in order
to rule out one of the greatest weaknesses of the HTTP protocol: statelessness. Before cookies were created,
web servers were not able to maintain a state for a client. This means, that features such as a basket shop in an
online shop, which seem totally normal today, could not be realized in the past. With cookies, this becomes
possible: whenever a cookie is set on the client, it is then sent to the server along with every following request.
This enables a web site to implement a state.

Cookies are omnipresent in the Internet, but trackers are researching new technologies to implement tracking.
Two of the most interesting ones which have a huge potential are called Browser-Fingerprinting and Canvas-
Fingerprinting. In this thesis, those two will be observed in-depth. The following Sections set out to describe
them in detail.

2.3. Fingerprinting Techniques

As mentioned before, cookies have been the standard technique used for tracking users. However, cookies
are quite easy to block: one can just adjust the browser to drop all cookies and not accept new ones. As
recent studies showed, there are other technique in the wild that make blocking a lot trickier: fingerprinting
techniques. Those are another possibility to implement Web-Tracking and two of them - Canvas- and Browser-
Fingerprinting will be demonstrated in the following Sections.

5

2. Fundamentals

2.3.1. Browser-Fingerprinting

Browser-Fingerprinting is a fingerprinting technique which can be used to implement Web-Tracking. The first
part of this Section will give a general overview about this technique. This part will refer to [11], which is
one of the first publications with a particular focus on this topic and also present Panopticlick - the project that
has been executed as part of the herein before mentioned publication. In order to give a deeper insight, this
Section will illustrate the fingerprintjs library, one of the few open-source ones which implements Browser-
Fingerprinting. The library will serve as an example and helps to explain the functioning of this tracking
mechanism.

Panopticlick or: How Unique Is Your Web Browser?

Browser-Fingerprinting is a technique that exploits the browser’s functionality to provide rich information
about the browser and its underlying system. Browsers are nowadays complex and powerful pieces of software,
which are used all the time. Moreover, they supply several different settings and properties, for example the
screen width and height or the color depth. Browser-Fingerprinting utilizes the fact that these settings and
properties are almost always slightly different on each computer. Therefore, the question arises whether the
differences are big enough to be indicative for distinguishing computers.

Peter Eckersley was the first to examine the usefulness of Browser-Fingerprinting on a large scale [11]. He
examined the effectiveness of Browser-Fingerprinting algorithms by developing an algorithm that was capable
of fingerprinting a browser and deploying it on the web site http://panopticklick.eff.org. He
spread the link to this software among colleagues and friends which ended in 470.161 different users3 visiting
the web page and therefore participating in the experiment.

But what settings and properties are suitable to be used as part of a fingerprint? Table 2.1 shows, what variables
Peter Eckersley used in his fingerprinting algorithm. As one can see, he only used eight different values to
fingerprint a browser. Those values were either already sent alongside the HTTP request (User Agent, HTTP
ACCEPT headers, cookies enabled?) or are transferred via AJAX4 (screen resolution, timezone, browser
plugins, plugin versions and MIME types, system fonts, partial supercookie test) to the server. The fingerprint
itself is than created by concatenating each value. Note that each part of a fingerprint will be called feature
throughout this work.
Those features provide more information than one might assume at first. For example, it’s easy to find out if
JavaScript is disabled on the client side. If this is the case, the return values for video, plugins, fonts
and supercookies are default ones. Another example concerns Flash. If the client uses a Flash blocking
add-on, the plugins list will show Flash, but it won’t be possible to detect the system’s fonts using Flash.
There are a lot more features that might be suitable to be used as part of a fingerprint. Peter Eckersley did
choose to not take those additional features, because he was either not aware of this feature, did not have the
time to implement it, did not think that this feature is resilient enough (for instance the IP addresses) or the
feature can not be collected without the user’s agreement.

Consisting of only eight different features, one might assume that the uniqueness of the fingerprint might not
be given in most of the cases. Contrary to that expectation, the results of Peter Eckersley’s study showed that
about 83.6% of all browsers observed had an unique fingerprint. Moreover, 94.4% of all browsers with either
Adobe Flash or a Java Virtual Machine enabled, are unique. Those numbers are impressive and show that
Browser-Fingerprinting is capable of recognizing computers by creating surprisingly precise fingerprints.

When observing the features presented in Table 2.1, one might realize that most of them are not persistent,
meaning they might change when time passes. For example the list of installed plugins is not fixed, but
can change when the user decides to install a new add-on or to delete an existing one. This leads to the
question, if such changes influence the uniqueness of the fingerprint. There are a lot of diverse scenarios
which can lead to changing features - for example an upgrade of the browser, installing a new font or using an
external monitor, which leads to a different screen resolution. While it is true that changing features results in
different fingerprints, Peter Eckersley shows the possibility to estimate if a fingerprint is an altered version of

3The visitors of the web site were informed about the Browser-Fingerprinting.
4This means that these values are selected using JavaScript on the client and then sent to the server via AJAX (Asynchronous JavaScript

and XML).

6

http://panopticklick.eff.org

2.3. Fingerprinting Techniques

Table 2.1.: Features used in the fingerprinting algorithm from Peter Eckersley.

Variable Source Remarks

User Agent Transmitted by HTTP, logged by
server

Contains Browser micro-version,
OS version, language, toolbars
and some- times other info.

HTTP ACCEPT headers Transmitted by HTTP, logged by
server

Cookies enabled? Inferred in HTTP, logged by
server

Screen resolution JavaScript AJAX post
Timezone JavaScript AJAX post
Browser plugins, plugin versions
and MIME types

JavaScript AJAX post Sorted before collection. Mi-
crosoft Inter- net Explorer offers
no way to enumerate plugins; we
used the PluginDetect JavaScript
library to check for 8 common
plugins on that platform, plus ex-
tra code to estimate the Adobe
Acrobat Reader version.

System fonts Flash applet or Java applet, col-
lected by JavaScript/AJAX

Not sorted.

Partial supercookie test JavaScript AJAX post We did not implement tests for
Flash LSO cookies, Silverlight
cookies, HTML5 databases, or
DOM globalStorage.

a fingerprint seen previously in [11]. For this purpose, he developed a pretty simple algorithm which is based
on heuristics. Despite its simplicity, the algorithm’s guesses were correct in 99.1% of the cases - although the
algorithm was in no way optimized, as Peter Eckersley stated.

In Figure 2.3 one can see the fingerprint for standard hardware5. Surprisingly, the relatively standard hardware
used is unique among 5.344.051 million browser fingerprints tested so far, which is, considering the small
amount of features in this algorithm, highly impressing.

In order to be able to determine the value of a feature, Eckersley [11] introduced the term entropy. The higher
the entropy of a feature, the more suitable it is as part of a fingerprint, because it provides more information.
This can be easily seen in Table 2.2. The possible values for the feature cookies enabled are not that diverse,
which results in a low entropy of 0.353. The installed fonts and their ordering however provide a lot of
information.

As Table 2.2 shows, the installed add-ons (15.4 bits) and fonts (13.9 bits) have the highest entropy values,
meaning that these features are considered the strongest ones among the features set. Because of that, they are
explained in greater detail in Sections 2.3.1 and 2.3.2.

Enumerating the plugins list

As mentioned in Section 2.3.1, using the installed add-ons of a browser instance is a very strong and often
used feature in Browser-Fingerprinting. Getting this list used to be quite easy. One can just iterate through the
navigator.plugins array using JavaScript. Listing 2.1 shows, how this can be done in real-life, along
with its output.

5This web site was visited with a MacBook Pro 13“, Early 2011, Firefox 37.0.2, Java, Flash and JavaScript were activated. The test was
executed on 07.05.2015.

7

2. Fundamentals

Figure 2.3.: Exemplary result of the Panopticlick project.

Table 2.2.: Entropy of the Features used in the Panopticlick project.

Feature Entropy (bits)

user agent 10.0
plugins 15.4
fonts 13.9
video 4.83
supercookies 2.12
http accept 6.09
timezone 3.04
cookies enabled 0.353

Listing 2.1: Getting a list of installed browser Add-ons.
1 for (plugin in navigator.plugins) {
2 console.log(plugin.name);
3 }
4
5 "Shockwave Flash"
6 "QuickTime Plug-in 7.7.3"
7 "Default Browser Helper"
8 "Unity Player"
9 "Silverlight Plug-In"

10 "Java Applet Plug-in"
11 "Adobe Acrobat NPAPI Plug-in, Version 11.0.02"

Browser vendors such as Microsoft or Mozilla are working hard to hamper Browser-Fingerprinting. Since
the list (and its order) of the installed browser add-ons is such a strong feature, the vendors were looking for
solutions that would make exploiting the plugins list more difficult. Microsoft, for example, forbids to iterate
over the navigator.plugins array in their browser Internet Explorer. Mozilla did something different
starting with Firefox 28 [12]. They implemented a technique called cloaking., which means that iterating over
navigator.plugins does not yield all installed add-ons, but only the common ones like Shockwave
Flash, Quicktime Plug-in or Java Applet Plugin-in. In theory, it is possible to cloak every
add-on. The reason for this to be not implemented yet, is compatibility with web sites. A lot of them check
for add-ons by iterating the add-on list and comparing each add-on with the looked for add-on. Cloaking all
add-ons would result in this check to fail and therefore, the web sites might break [12]. Uncommon add-ons

8

2.3. Fingerprinting Techniques

such as Adblock Plus or any other add-on do not appear in the output. In Listing 2.2, it can be seen, how
cloaking add-ons influences the output compared to the output without cloaking.

Listing 2.2: Getting a list of installed Browser Add-ons when cloaking is implemented.
1 for (plugin in navigator.plugins) {
2 console.log(plugin.name);
3 }
4
5 "Shockwave Flash"
6 "QuickTime Plug-in 7.7.3"
7 "Java Applet Plug-in"

While cloaking effectively hampers the use of the navigator.plugins array to get a list of all installed
add-ons, it is not the ultimate solution to the problem. There is still a mechanism to check, if a specific add-on is
installed. One can still explicitly check for a given add-on, for example by doing navigator.plugins[“Silverlight
Plugin-In“].

Fingerprintjs

Another interesting project in the field of Browser-Fingerprinting is the open-source fingerprinting library
fingerprintjs [13] 6. This library is written purely in JavaScript and aims to create a unique fingerprint of a
browser. Table 2.3 shows, which features are part of the fingerprint [15, 16, 13].

Table 2.3.: Features used in fingerprintjs.

Variable Function

User Agent User Agent String for the current browser.
Language anguage Language preferred by the user, usually the lan-

guage of the browser UI
Color depth Color depth of the screen.
Screen resolution The screen resolution of the current monitor used
Timezone difference Timezone difference between UTC and Local Time
SessionStorage supported? Is SessionStorage supported?
LocalStorage supported? Is LocalStorage supported?
database type HTML5 offers local databases. If those are used,

their type is also part of the fingerprint.
CPU class CPU type
Platform The platform of the browser.
Do Not Track Represents the user’s do not track preferences.
Browser add-ons Get a list of the browser add-ons. There is some

special handling for Internet Explorer.
Canvas-Fingerprint Use the HTML5 canvas element to create a finger-

print. This part will be described in more detail in
Section 2.3.2.

Using this library is plain simple, as Listing 2.3 shows.

Listing 2.3: Using fingerprintjs to create a fingerprint.
1 // Creating a fingerprint
2 var fingerprintWithoutCanvas = new Fingerprint().get();
3
4 // Creating a fingerprint by adding Canvas-Fingerprinting additionally.
5 var fingerprintWithCanvas = new Fingerprint({canvas: true}).get();

6Please note that there exists a successor: fingerprintjs2 [14]. This library is currently under development and not ready for
productive usage. Moreover, it has been released at a time, when this thesis already focused on fingerprintjs, which will be focused on
in this thesis.

9

2. Fundamentals

6
7 console.log("Fingerprint without Canvas-Fingerprinting: " + fingerprintWithoutCanvas);
8 console.log("Fingerprint with Canvas-Fingerprinting: " + fingerprintWithCanvas);
9

10 // OUTPUT:
11 // Fingerprint without Canvas"=Fingerprinting: 3343837964
12 // Fingerprint with Canvas"=Fingerprinting: 743329353

As one can see in the output, the fingerprintjs library hashes the fingerprint using (by default) a hash
function called MurmurHash [17]. This hash function’s output is always a 32bit integer number, as one can
see in the example output in Listing 2.3. The Canvas-Fingerprinting part is realized by printing the text
“http://valve.github.io” on a canvas and extracting the produced pixels. In-depth knowledge about that tech-
nique is presented in Section 2.3.2

This Section gave an overview of Browser-Fingerprinting, a tracking mechanism capable of fingerprinting
machines. It has been depicted that its ability to identify browsers is impressively accurate, even without using
a great number of features. With fingerprintjs, an open-source library implementing Browser-Fingerprinting
has been presented. Due to this library, tracking users with fingerprinting techniques is extremely simple and
yet powerful.

2.3.2. Canvas-Fingerprinting

Canvas-Fingerprinting is a relatively new technique that can be considered a special variant of Browser-Fin-
gerprinting. This Section will give an overview of Canvas-Fingerprinting and explain the idea behind it.
Moreover, the single parts of this technique are described, starting with the most general form: rendering a
text on a <canvas> element. Subsequently, the mechanisms behind WebFonts and how they can be used to
find out the list of installed fonts on a machine will be described. The last part of this Section will focus on
WebGL, another possibility to implement Canvas-Fingerprinting.

General Information

Browsers are becoming more and more complex. To tackle future challenges regarding performance or battery
life, browsers and the underlying operating system are tied together closely. This results in web sites having
access to resources of the operating system. One of the mainspring behind this development is the HTML5
suite of specifications [18], which provides - among others - new functionalities like embedding sound or video
in web sites, a client-side datastore, geolocation services, a 3D graphics (WebGL) or a drawing surface that
supports drawing programmatically (the <canvas> element). Especially the last one utilizes resources from
the operating system, because using the graphic card for drawing provides huge performance advantages. As
a result of these access possibilities the browser behavior depends on the resources of the operating system.

Canvas-Fingerprinting exploits this tight relation between operating system and browser. It describes a new
type of fingerprint based on browser font and WebGL rendering. The fingerprint is created by rendering text
and/or WebGL scenes to a <canvas> element. After that, the pixels produced are taken into account. Those
pixels show minimal differences, depending on the graphics card and its driver. Even very simple drawings
- for instance rendering a simple sentence in a very common system font - provide huge differences. In the
following, fingerprints created by using Canvas-Fingerprinting will be called canvas fingerprints. A canvas
fingerprint has the following properties [19]:

1. Consistency: The canvas fingerprint is consistent, meaning that the produced pixels are identical during
several executions for one user.

2. High entropy: The fingerprint provides a lot of information, which makes it possible to distinguish the
machines.

3. Independence: Due to the fact that Canvas-Fingerprinting relies on the graphics card and its driver, the
canvas fingerprint is independent of other fingerprints mentioned in 2.3.1.

10

2.3. Fingerprinting Techniques

4. Transparency: Creating the canvas fingerprint is performed in background and therefore not noticed by
the user. Moreover, its execution time is only a fraction of a second and consequently not measurable.

5. Availability: Using Canvas-Fingerprinting only requires JavaScript to be activated and the <canvas>
element to be supported. Both conditions are almost aways true on modern browsers.

HTML5 Canvas

With the HTML5 <canvas> element, it is possible to draw programmatically in the browser. In fact, this is
really simple to apply. All one has to do is getting a graphics context by calling the getContext(‘2d‘)7
function on the canvas object and use its methods and properties to draw. There exist a plethora of methods
and properties, some of them are shown in Table 2.4 [20].

Table 2.4.: Selection of methods and properties of the 2D context.

Type Name Description

Property fillStyle Sets or returns the color, gradient, or pattern used to fill the drawing
Property strokeStyle Sets or returns the color, gradient, or pattern used for strokes
Method fillRect Draws a “filled” rectangle
Method strokeRect Draws a rectangle (no fill)
Method lineTo Adds a new point and creates a line from that point to the last specified

point in the canvas
Property textBaseline Sets or returns the current text baseline used when drawing text
Property font Sets or returns the current font properties for text content
Method fillText Draws “filled” text on the canvas
Method strokeText Draws text on the canvas (no fill)
Method toDataURL Returns a Base64 encoding of a PNG image that involves the whole

contents of the canvas.

Listing 2.4 gives an example, how Canvas-Fingerprinting is used in the wild. In fact, this code snippet stems
from http://www.pof.de, a web site that is using both fingerprinting techniques extensively.

Listing 2.4: Using Canvas-Fingerprinting.
1 var canvas = document.createElement(’canvas’);
2 var ctx = canvas.getContext(’2d’);
3
4 var txt = ’http://www.plentyoffish.com’;
5 ctx.textBaseline = "top";
6 ctx.font = "14px ’Arial’";
7 ctx.textBaseline = "alphabetic";
8 ctx.fillStyle = "#f60";
9 ctx.fillRect(125,1,62,20);

10 ctx.fillStyle = "#069";
11 ctx.fillText(txt, 2, 15);
12 ctx.fillStyle = "rgba(102, 204, 0, 0.7)";
13 ctx.fillText(txt, 4, 17);
14
15 var data = canvas.toDataURL()

7In the current HTML5 specification, the 2D context is the only one defined [19].

11

http://www.pof.de

2. Fundamentals

Figure 2.4.: The picture produced by the
source code in Listing 2.4.

At first, a <canvas> element is created. However, this element
does not provide support for drawing on its own. Instead, it is
necessary to get a context object. Between line 4-7 in Listing
2.4, some traits are defined, such as the text to be drawn, its
size, font and location. Between line 5-13, text and rectangles
are painted (along with some trait-defining like in line 10 and
12). By calling the toDataURL method on the <canvas>

element, one can extract the information of the drawn picture on a pixel-level. This means that every pixel is
taken into account in the return value of this function. This is the reason, why Canvas-Fingerprinting works.
Please note that the <canvas> element is not appended to the body and therefore, not displayed on the web
page. This is not a mistake but done on purpose, because displaying the drawn image is not relevant. It is
absolutely enough, the extract the information of the drawn image and use them as a fingerprint (or at least as
a part of a fingerprint). The resulting image of the canvas drawing is shown in Figure 2.4.

According to [19], there exist two different areas of application for canvas fingerprints: black box and white
box.

• Black box: The <canvas> element can be used to create a distinguishable fingerprint, which is con-
sistent, as long as hardware and software are unchanged. Since there is no information given about the
implementation, this is called black box.

• White box: On the other hand, the <canvas> element could be used to draw conclusions about the
hardware, software and the configuration of a system. One could match the data URL produced by
the toDataURL method with a set of data URLs, whose hardware, software and system properties
are known. As a result, it might be possible to reveal private information about the user’s system.
Furthermore, the gathered information might be suitable to improve attacks on the system.

WebFonts

WebFonts is another mechanism which can be utilized for Canvas-Fingerprinting. WebFonts are specified in
CSS3 and enable web developers to load a font from another server. This circumvents the problem that web
developers are dependent on the system fonts installed on the user’s computer. To download a font, the web
developer adds a @font-face CSS rule along with a src attribute that references the location of the font. It
is than the browser’s job to download this font and to make it available for the web site. Moreover, web fonts
can be used when drawing on <canvas> elements.

Another interesting aspect of WebFonts is the browsers so called fallback strategy. When specifying an external
font, the browser must decide, what to do, if the font can not be loaded or found. In most cases, browsers use
a predefined font as fallback. This behavior leads to another very worthwhile mechanism. Fingerprinters can
exploit the fallback mechanism to detect installed fonts, which can in turn be used as a part of a fingerprint. As
shown in [21], it is sufficient to use a combination of JavaScript and CSS to be able to detect fonts. The reason
for this to work is the simple fact that each character is represented differently in each font. As a consequence,
the same string’s overall width and height will be different in almost every font.

The test for fonts is then done as follows: First of all, a given string is created with a predefined size and
specified font. Then, its height and width are saved as reference values. After that, the same text is rendered
having the searched font and the same size. The height and width of the resulting are also read out. Due to the
fallback mechanism, the fallback font is taken if the searched font could not be found. As a consequence, if
the height and width of the new font is equal to the height and width of the fallback font, the searched one is
not present on the computer. The library presented in [21] performs this test with three different standard fonts
and provides a success rate of almost 100%. Listing 2.5 shows the basic principles.

Listing 2.5: Font-Detection using JavaScript and CSS.
1 // Standard font. Its height and width are taken as a reference.
2 mmmmmmmmmmlli
3
4 // New-Font is the font that is looked for. If this font is not present on the
5 // computer, the next font specified is taken as a fallback (monospace in this case)
6 // The height and width of this element can be compared to the height and width

12

2.4. Detection Mechanisms

7 // of the first element. If they are equal, the font is not present on the computer
8 // because the fallback font has been taken.
9 mmmmmmmmmmlli

By exploiting the fallback mechanism of WebFonts, a tracker is capable of getting to know the exact list of
installed fonts on the machine, which is, as Eckersley [11] demonstrated, another very strong part of a possible
fingerprint.

WebGL

With WebGL [22], there is a JavaScript API that offers rendering 3D graphics in a <canvas> element. We-
bGL is based on OpenGL ES 2.0 and nowadays, all popular (Chrome, Firefox, Safari, Opera) do support this
API. Just like the common <canvas> element, the contents are rendered using the installed graphics card.
Consequently, the WebGL API can also be used for creating a canvas fingerprint. Figure 2.5 shows, what
WebGL is capable of. It shows, what Mowery and Shacham [19] has been rendered in the webgl test.

Figure 2.5.: Example of a WebGL rendering.

This Section showed the basics behind Canvas-Fingerprinting, followed by different possible ways of imple-
mentation which have been depicted in great detail. It became clear, that Canvas-Fingerprinting can be another
possible part of a fingerprint through its high entropy. The next Section will present existing approaches to
detect fingerprinting techniques.

2.4. Detection Mechanisms

The last Section’s focus lied on Web-Tracking and how it can be deployed. Since this thesis aims to detect
Web-Tracking, it is necessary to present detection mechanisms used in areas like Data Mining or Knowledge
Discovery in Databases. At first, Section 2.4.1 will give some general information about Data Mining and why
it is so important nowadays. Moreover, it will be explained, what classification means in this context. For this
thesis, three different techniques of this field are relevant. Bayesian classifiers, Decision Trees and ExtraTrees.
Sections 2.4.2, 2.4.3 and 2.4.4 will demonstrate those techniques, as well as highlighting their advantages and
disadvantages.

2.4.1. Introduction

Big Data might be one of the most important trends in businesses right now. Since computers become more
and more efficient and storage prices are dropping, almost every company uses this development to collect

13

2. Fundamentals

as many data as possible. Big Data is used in several different areas like health, human resources and even
sports [23, 24, 25]. However, the growing amount of data is only useful, if companies manage to extract useful
information out of it. Therefore, data specialists are needed to analyze the data. Without that process, Big
Data is just a “big trash dump” [26]. This is where Data Mining and Knowledge Discovery in Databases come
into play. These disciplines focus on analyzing huge amounts of data, try to gain as much useful information
as possible and unsurprisingly experience a lot of growth and recogniction.

This thesis will concentrate on classification, which is a form of data analysis. In classification, models, also
called classifiers, are created and used to predict classes, which can be different in each task. Just consider
spam filtering in modern E-Mail clients. The classes, the user is interested in, are spam or no spam. Since this
thesis focuses on Web-Tracking, the classes of importance are tracking and not-tracking.
Contrary to classifiers, there exists another model called predictor, which are used in numeric prediction. They
differ from classifiers insofar as they do not predict a class but a continuous-valued function or ordered values
[27].

According to Han et al. [27], data classification is a two-step-process, with the first step being called learning
step and the second step being called classification step. Those two steps are visualized in Figure 2.6.

Tr
ai

ni
ng

 d
at

a

Classification
algorithm

Te
st

 d
at

a

Classifier

Classifier

N
ew

 d
at

a

Figure 2.6.: The steps that build the basis of data classification.

• Learning: In this step, the classifier is built by using an algorithm that analyzes the tuples of training
data. Since each tuple’s class is already predefined, this procedure is called supervised learning8. There
exist several variants of how a classifier is represented, for example in form of classification rules or a
Decision Tree.

• Classification: After the classifier has been created, it has to be tested. It is measured, how well the
classifier performs in terms of accuracy. It is important to use a different set of data for the test runs,
because testing with the same data might lead to overly precise results, which don’t reflect the actual
accuracy. This is due to overfitting, which describes the problem that a classifier might adapt to pecu-
liarities present in the training set, but not present in the general data set. If the measured accuracy of
the independent test data is acceptable, the classifier can be used to classify unknown data.

Throughout this work, the following nomenclature will be used. The complete data available is called training
data. It consist of numerous tuples. Each of those tuples is denoted as X . X is an n-dimensional feature
vector, where each part of X represents one feature and its assigned class. The feature used for a split is called
splitting feature.

8As expected, there also exists unsupervised learning. In this procedure, the classes of the tuples in the training set are not known before
and even the total number of classes that will have to be learned, is unknown.

14

2.4. Detection Mechanisms

2.4.2. Bayesian Classifiers

Bayesian classifiers are based on statistical techniques. They are capable of predicting, if a given tuple belongs
to a specific class or not. Bayesian classifiers are based on the Bayes’ theorem, which has been stated by
Thomas Bayes, an English statistician, who worked in the field of probabilities [28]. He formulated the
theorem as shown in Equation 2.1.

P (H|X) =

P (X|H) · P (H)

P (X)

(2.1)

The single parts of this equation are defined as follows [27]:

• P (H|X) is called posterior probability of X conditional on H . This is the probability which will be
calculated.

• P (X|H), P (H) and P (X) are prior probabilities. Those can be computed by using the training data.

Bayes classifiers are known to have a high performance and accuracy [27]. Naı̈ve Bayesian Classifiers, which
is a simple Bayes classifier, is on par with Decision Trees and neutral network classifiers regarding speed and
performance. Moreover, Bayes classifiers are tested and proven to work. One of their main area of application
is spam filtering in E-Mails. In 2002, Paul Graham published an article called “A Plan for Spam” [29], in
which he suggested to use an approach based on Bayes’ theorem to filter spam in E-Mails. This suggestion
was a huge success, resulting in many software developers implementing Bayesian classifiers in their E-Mail
clients. In fact, even Thunderbird9, one of the most popular open-source E-Mail clients, implements Bayesian
classifiers to filter out spam [30].

Naı̈ve Bayesian Classifiers

Naı̈ve Bayesian classifiers are strictly speaking a simple form of Bayesian classifiers. They have special
properties, the most important ones for this thesis are listed below [27].

• As mentioned in 2.4.1, the training data consist of tuples X , which are composed of n features.

• Moreover, it will be assumed that there are m classes, C1, C2, . . . , Cm. The conditional probability for
a tuple X to belong to a class Ci is computed as shown in Equation 2.2:

P (Ci|X) =

P (X|Ci) · P (Ci)

P (X)

(2.2)

If there exists more than one class, one has to calculate the conditional probability for every single one
of them. The class with the highest probability conditional on X will then be the predicted class of X .
This means that the probability P (Ci|X) has to be maximized over all tuples X .
To sum it up, the Naı̈ve Bayesian classifier will predict that a tuple X belongs to the class Ci with the
highest probability conditioned on X .

• As it becomes clear, the denominator of all these calculations mentioned in the last point is always the
same: P (X). Thus, it can be ignored and it’s sufficient to maximize the numerator P (X|Ci) · P (Ci).
In case of a prior probability of a class being unknown, one will assume that each class is equally likely.
Consequently, it would be enough to maximize P (X|Ci).

• As mentioned before, X is a tuple with several features. The number of those features can be quite high,
which would mean that the calculation of P (X|Ci) would be extremely expensive. Here, the “naı̈ve”
part comes into play, meaning that for Naı̈ve Bayesian classifiers, it will be assumed that each feature
of X is conditionally independent of one another. Of course, this assumption is not always correct.
Considering the previous spam filter example, it seems pretty clear that for example the occurrence of
the word “Württemberg” is not independent of the word “Baden”, since those two are almost always used

9https://www.mozilla.org/de/thunderbird/

15

2. Fundamentals

together. However, using the independence assumption, P (X|Ci) can be calculated as demonstrated in
Equation 2.3:

P (X|Ci) =

nY

k=1

P (xk|Ci) = (2.3)

P (x1|Ci) · P (x2|Ci) · P (x3|Ci) · . . . · P (xn|Ci) (2.4)

The probability P (xk|Ci) denotes the probability of the feature xk in all tuples with the class Ci and is
easy to estimate using the training set.

Bayesian classifiers are great regarding performance and accuracy. Yet, since they assume (single) features to
be conditionally independent, they also provide some inaccuracies.

In order to make things clearer, a simple example will be introduced at this point. Let’s assume, Table 2.5
represents the training data10.

Table 2.5.: Exemplary training data for the Naı̈ve Bayes example.

Weather Depth of
snow

Skiing?

Sunshine < 50 no
Rain < 50 no
Rain � 50 no
Snow � 50 yes
Snow < 50 no
Sunshine � 50 yes
Snow � 50 yes
Rain < 50 yes

The prior probabilities would then be calculated using the formula depicted in Equation 2.2. Those probabili-
ties depend completely on the training set and computing them can be seen as a training of the classifier.

Table 2.6.: Prior probabilities for the training data.

Weather Snow

prior Sunshine Snow Rain � 50 < 50

Skiing 1
2

1
4

2
4

1
4

3
4

1
4

¬Skiing 1
2

1
4

1
4

2
4

1
4

3
4

Given these prior probabilities, it is now possible to determine the posterior probabilities using the assumption
of conditional independence. Let’s assume X = (Weather = Sunshine, Snow � 50) to be a tuple,
whose class should be predicted using this classifier. By calculating the posterior probabilities for Skiing and
¬Skiing, one can determine its class.

10This example is taken from exercise eight of the course “Knowledge Discovery in Databases”, held at the Ludwig-Maximilians-
University in SS2014 [31].

16

2.4. Detection Mechanisms

P (Skiing|Weather = Sunshine, Snow � 50) =

=

P (Weather = Sunshine|Skiing) · P (Snow � 50|Skiing) · P (Skiing)

P (Weather = Sunshine, Snow � 50)

=

1
4 · 3

4 · 1
2

P (Weather = Sunshine, Snow � 50)

=

=

3
32

P (Weather = Sunshine, Snow � 50)

P (¬Skiing|Weather = Sunshine, Snow � 50) =

=

P (Weather = Sunshine|¬Skiing) · P (Snow � 50|¬Skiing) · P (¬Skiing)
P (Weather = Sunshine, Snow � 50)

=

1
4 · 1

4 · 1
2

P (Weather = Sunshine, Snow � 50)

=

=

1
32

P (Weather = Sunshine, Snow � 50)

Since P (Weather = Sunshine, Snow � 50) is the same in both cases, it can be ignored. Moreover, as
stated before, the assigned class is the one with the highest posterior probability. Clearly, 3

32 > 1
32 hence the

class for X would be Skiing.

2.4.3. Decision Trees

A Decision Tree is a flowchart-like structure with the following components [27]:

• Internal node: Represents a test on a feature, usually denoted as a rectangle.

• Branch: Represents the outcome of the test.

• Leaf node: Represents the class. It is depicted by a oval.

• Root node. The topmost node that has only leaving, no incoming nodes.

Training Decision Trees requires the same data structures that have already been introduced: tuples X , con-
sisting of n features. Right now, there exist several algorithms to create a Decision Tree: ID3, C4.5, C5.0 and
CART. ID3 is the oldest among them, being developed in 1986 by Ross Quinlan. C4.5 followed ID3, providing
some improvements like removing the restriction that features must provide categorical data. C5.0 represents
another improvement of C4.5. It was also developed by Quinlan. C5.0 is for example more accurate than
C4.5. The last algorithm mentioned here is CART (Classification and Regression Trees) which has several
similarities to C4.5. Unlike C4.5, it is capable of numerical target variables and it does not compute rule sets
[32].

Constructing Decision Trees follows some basic procedures, as shown below [33].

1. At the beginning, the complete training data is assigned to the root node.

2. The next splitting feature is selected. This is done using the so called splitting strategy. Splitting
strategies will also be handled topic in this Section.

3. The training data is being partitioned using the splitting feature.

4. This procedure is recursively applied to the resulting partitions.

5. Break conditions:

• There are no more splitting features available.

17

2. Fundamentals

• All training data of a node belong to the same class.

Decision Trees are very popular, because they have several advantages. Some of them are listed below [32]:

• They can be visualized, which makes understanding and interpreting them a lot easier.

• Training a Decision Tree is comparatively convenient, since the training data does usually not need to
be preprocessed, for instance by removing blank values.

• Predicting data is very cheap, because only the trees height is relevant, which is usually logarithmic to
the number of training data.

• Decision Trees can process both, numerical and categorical data.

• The performance of Decision Trees is usually good.

Nevertheless, they are not perfect and also have some disadvantages:

• Decision Trees are prone to overfitting.

• They are extremely dependent on the training data. Even small changes may result in a completely
different tree.

• Creating a optimal Decision Tree is a problem known to be NP-complete. Therefore, algorithms creating
Decision Trees are not able to produce the globally optimal tree.

• If the training data is not balanced meaning that some classes occure more dominantly, the algorithms
might create biased trees.

Splitting Strategies

The splitting strategy plays a central role when building Decision Trees. The idea is to split the training data
at a given node into subsets of different classes. Ideally, all members of a subset have the same class. Hence,
the best strategy for splitting would be the strategy that comes as close as possible to this idealized scenario of
perfect splitting.
At each node, a ranking of all features present in the training data is created. According to that ranking, the
best feature for a split is selected. This can either be the one with the highest or lowest score, depending on
the strategy. Moreover, one has to distinguish between two kinds of splits: categorical splits or numerical
splits. The first ones are splits based on conditions like feature = a or feature 2 set. Such splits possibly
result in a lot of different subsets. Numerical splits however divide the training set according to conditions like
feature < a. This might lead to a lot of different splitting points [33].

For this thesis, two splitting strategies are relevant: Information Gain and Gini Index, which are described in
the following Sections.

Information Gain This splitting strategy is build on the already mentioned entropy, which has been origi-
nally introduced by Claude Shannon, who worked in the field of information theory. In the context of Decision
Trees, entropy can be seen as a measure of impurity [27] that reaches its maximum, when there are two classes
and each of them has a probability of 1

2 . One classic example for this is a coin toss, where p(heads) = 1
2 and

p(tails) =

1
2 . The entropy of a coin toss is maximal, since it is not possible to predict, what the result will

be. However, if the coin is manipulated such that p(heads) = 1, the entropy of this experiment would be 0,
because there is no additional information provided, when the result of the experiment is always the same.

The entropy of a partition D consisting of a set of training data is defined in Equation 2.5 [33]. m denotes the
number of partitions, k is the total number of classes.

entropy(D) = �
kX

i=1

pi · log2(pi) (2.5)

18

2.4. Detection Mechanisms

So let’s assume, the feature A divided the training data into partitions D1, D2, . . . , Dm. The Information Gain
of A related to D is than defined as follows [33], where |Di| denotes the number of total tuples in the partition
Di.

gain(D,A) = entropy(D)�
mX

i=1

|Di|
|D| · entropy(Di) (2.6)

gain(D,A) compares the entropy before the split with the entropy after the split. Its result can be seen as the
increase in information of the split - the Information Gain. Another way to interpret this would be to see it as
a reduction in insecurity in the subtree prediction outcome.

For each node of the tree, the Information Gain is calculated for each feature and the one with the highest
Information Gain is than selected as splitting feature.

Let’s use an example to illustrate this procedure11. Assuming, one wants to predict the risk class of car drivers
based on the data presented in Table 2.7.

Table 2.7.: Exemplary training data for the Decision Tree example.

Person # Time since
getting the
driver license

Gender Residence Risk class

1 1� 2 m City low
2 2� 7 m Countryside high
3 > 7 w Countryside low
4 1� 2 w Countryside high
5 > 7 m Countryside high
6 1� 2 m Countryside high
7 2� 7 w City low
8 2� 7 m City low

In order to predict the risk class, it is necessary to construct a Decision Tree. In this example, the splitting
strategy will be the information gain.

First of all, one has to find a feature to split on. Therefore, it’s necessary to compute the entropies of all
possible features. After that, one has to calculate their information gain and choose the one with the highest
value.

The entropy of the training data, entropy(D), is 1, since p(riskClass = low) =

1
2 and p(riskClass =

high) = 1
2 .

The first feature to examine is Time. Using this feature as splitting feature would result in three different
partitions: 1 � 2, 2 � 7, > 7. In order to be able to calculate the Information Gain of Time, it is essential to
compute the entropy of the the resulting partitions. The entropy for each partition is calculated below.

11Again, this example is taken from the course “Knowledge Discovery in Databases” that was held in SS14 [31].

19

2. Fundamentals

time = 1� 2

D1 = (Person1, P erson4, P erson6)

p(RiskClass = low) =
1

3

p(RiskClass = high) =
2

3

entropy(D1) = �
X

i=1,2

pi · log2(pi) =

= �(

1

3

· log2(
1

3

) +

2

3

· log2(
2

3

)) ⇡ 0.918

time = 2� 7

D2 = (Person2, P erson7, P erson8)

p(RiskClass = low) =
2

3

p(RiskClass = high) =
1

3

entropy(D2) = entropy(D1) ⇡ 0.918

time = 7

D3 = (Person3, P erson5)

p(RiskClass = low) =
1

2

p(RiskClass = high) =
1

2

entropy(D3) = 1

Using these entropies, it is possible to calculate the Information Gain for the feature Time.

gain(D, time) =

= entropy(D)�
mX

i=1

|Di|
|D| · entropy(Di) =

= 1� (

3

8

· 0.918 + 3

8

· 0.918 + 2

8

· 1) ⇡ 0.06

To choose the best splitting feature, the exact same calculations also have to be executed for the features
Gender and Residence. While the detailed calculations will be spared out at this point, the results for the
Information Gain of both features, Gender and Residence are given below.

gain(D,Gender) ⇡ 0.05

gain(D,Residence) ⇡ 0.55

Clearly, the Information Gain of the feature Residence has the highest value and is thus taken as a splitting
feature. Figure 2.7 shows, how the Decision Tree would be visualized after the first split.

20

2.4. Detection Mechanisms

City Countryside

Residence

Persons 1,7,8
p(RiskClass=low) = 1

Persons 2,3,4,5,6
p(RiskClass=low) = 1/5
p(RiskClass=high) = 4/5

Figure 2.7.: Visualized Decision Tree after the first split.

After this first step, the algorithm would than recursively go on and look for the best splitting feature in the
left (Persons 1, 7, 8) and the right (Persons 2, 3, 4, 5, 6) node. Since all persons of the left node already belong
to the same class (p(RiskClass = low) = 1), there is no split necessary in this node. Figure 2.8 shows the
results, after all splits have been done recursively in all nodes.

City Countryside

m w

> 7 1 - 2

Residence

Persons 1,7,8
p(RiskClass=low) = 1

Persons 2,3,4,5,6
Gender

Persons 3,4
TimePersons 2,5,6

p(RiskClass=high) = 1

Person3
p(RiskClass=low) = 1

Person 4
p(RiskClass=high) = 1

Figure 2.8.: Visualized Decision Tree after every split has been done.

Figure 2.8 also shows that the next feature used as splitting feature was Gender, although the actual information
gain for Gender and Time are equal with a score of 0.322. In this case, the selection of the splitting feature is
not relevant. This split divided the training data in two sets: D1 = (Persons2, 5, 6) and D2 = (Persons3, 4).
In D1, every person has the same class (low) assigned. Therefore, this node becomes a leaf node and it is not
necessary to split. Partition D2 however needs to be split again. The only feature remaining here is Time, which
is consequently taken. The two resulting partitions consist of Person3 with the class low and Person4 with
the class high.

Using this Decision Tree to predict a class of a new test data is relatively simple. One has to walk down the
tree beginning at its root node and compare the relevant features at each node. For example, let A = (T ime =
1, 2;Gender = w;Residence = Countryside) be a test set, which class has to be predicted. At first, one

21

2. Fundamentals

starts at the root. The first relevant feature is Residence and the left path would be taken if the residence is
City, otherwise the right path is taken. Here, the feature to look for is Gender and since Gender = w, again
the right path is chosen. The last relevant feature is Time. Because of T ime = 1, 2, one picks the right child
node. This node is a leaf node and holds expectably a class, in this case high. So this Decision Tree would
predict the class high for this exemplary test data.

This example showed, how a Decision Tree would be built with Information Gain as splitting strategy. How-
ever, there are other splitting strategies available, for example Gini Index.

Gini Index Another splitting strategy, which is often used when building Decision Trees, for example in the
original CART algorithm, is the Gini Index.
The Gini Index is a measurement for the impurity of a partition D. It is calculated as follows [27].

gini(D) = 1�
kX

i=1

p2i (2.7)

pi is assessed as the number of appearances of class Ci in D (depicted as |Ci,D|) divided by the total number
of tuples in D: |Ci,D|

|D| .

Assuming that a feature A has led to a division of the training data into partitions D1, D2, . . . , Dm, the Gini
Index of A in relation to D is than defined as showed in Equation 2.8:

giniA(D) =

mX

i=1

|Di|
|D| · gini(Di) (2.8)

Just like it has been the case with Information Gain, the feature with the highest Gini Index will be selected as
splitting feature.

Nevertheless, the way Decision Trees are created does not depend on the splitting strategy. This means that
the strategy is actually an exchangeable part, only responsible to pick the best splitting feature. The example
shown above would be executed the same way, with the only difference being the splitting strategy, which
might result in different splitting features at some point.

Tree Pruning

After the tree has been built, a lot of unnecessary branches might have been created, because of possible
peculiarities present in the training data resulting in overfitting. By using Tree Pruning, this problem can be
tackled. It typically uses statistical measures to remove branches that are not reliable, hence leading to smaller
and less complex trees which are easier to understand and to interpret. Moreover, Tree Pruning enhances the
performance and the accuracy. Of course, the very simple example presented shown above does not have
unnecessary branches due to the small training data. However, pruning is an important part in Decision Trees.
A distinction is made between two different pruning approaches [27]:

• Prepruning:
Prepruning is done during the creation of a tree. One could, for example, decide that the training data
should not be partitioned any more at a given node. Usually, this is realized by specifying a threshold
value. Partitioning the training data, the quality of the resulting split is measured with a given technique
like Information Gain or Gini Index. If the quality of the split is lower than the threshold value, the split
is aborted and there is no further partitioning allowed. However, choosing the right threshold is a very
complex calibration task, since low thresholds might result in only a few branches to be missed out and
a high threshold can lead to oversimplified trees.

• Postpruning:
Postpruning is the more common approach which is applied on fully-grown trees. It removes complete

22

2.4. Detection Mechanisms

subtrees from a tree. The idea is to remove a subtree with all its branches and replace it with a leaf node
marked with the most frequent class present in the original branches.

2.4.4. ExtraTrees

With Decision Trees in Section 2.4.3, a tree-based classifier has already been introduced. Decision Trees are
great in terms of performance and complexity and their visualization helps to comprehend the classification
process. Nevertheless, they also do suffer from some disadvantages, most notably their high variance. Trees
are heavily influenced by the randomization of the training data. In fact, each splitting feature and each
splitting node is selected based on the training data. This can lead to some problems, when the training data is
not structured the right way. Decision Trees are very simple classifiers. In order to have a more complex, but
also tree-based classifier the ExtraTrees has been picked.

The ExtraTrees classifiers has been presented in 2006 in “Extremely randomized trees” [34]. The idea behind
it is to tackle the randomization present in the training data by not just building one tree from it, but a lot
of trees. Each of those trees are built by selecting the splitting feature randomly. In each node, a random
choice of a number of features is picked and among those, the best splitting feature will be selected. Carrying
this process to extremes, one can also pick the splitting feature and the cut-points12 completely randomly and
consequently build totally randomized trees [34].

Each tree that is part of the ExtraTrees, is built by using the complete training data. The prediction of Extra-
Trees is than calculated by aggregating the results of each tree.

This Chapter elucidated the fundamentals required for this thesis, including Web-Tracking and detection mech-
anisms. The focus concerning Web-Tracking lied on fingerprinting techniques, specifically on Browser- and
Canvas-Fingerprinting. It became clear, that those techniques are capable of superseding cookies, which have
been the go to mechanism for implementing Web-Tracking until now. Moreover, it has been stated, that fin-
gerprinting techniques are performed in the background, unnoticed from the user. Furthermore, three different
classifiers from the fields of Data Mining and Knowledge Discovery in Databases have been depicted: Bayes
classifiers, Decision Trees and ExtraTrees.
The next Chapter will now present the current state of research in the according areas.

12The cut-points represent nodes used for splitting. Cut-points are only relevant in continuous features. Since in this thesis, there are only
categorical features, this is not that important here.

23

3. Related Work

With the last Chapter introducing the necessary fundamentals concerning Web-Tracking and detection mecha-
nisms, this Chapter will focus on the current status in the research community. Section 3.1 will concentrate on
publishments concerning fingerprinting techniques. This part will contain current developments in the field of
Browser-Fingerprinting, as well as Canvas-Fingerprinting. Section 3.2 will show the existing ideas to detect
Web-Tracking. It will be elaborated that the idea to use traditional techniques from Data Mining like Bayes
or Decision Trees for the detection of Web-Tracking is new and that this has not been done before. Lastly,
Section 3.3 will focus on counter-measures that can be used to defend himself against fingerprinting attacks.

3.1. Fingerprinting

This Section will concentrate on related work concerning fingerprinting techniques. Section 3.1.1 will cover
Browser-Fingerprinting and it will be shown that it can be realized by using not only JavaScript, but also Flash
and Java, which can play significant role in this technique. Moreover, current fingerprinting scripts in the wild
and the original study of Browser-Fingerprinting [11] are going to be compared. After that, the focus will lie
on font enumeration, since this is one of the strongest features available in all browsers. Section 3.1.2 will
describe the state of research concerning Canvas-Fingerprinting. It will become clear that the reason for it to
work is because of subtle differences in the rendering processes.

3.1.1. Browser-Fingerprinting

Device fingerprinting has been a research topic for a very long time and there exists several different ap-
proaches. Mowery et al. [35] proposed techniques to fingerprint a browser based on the JavaScript Interpreter.
They revealed that JavaScript performance depends on the browser. By measuring the execution time of in-
struction sequences and comparing them to the execution time of the same instruction sequences of another
browser, they were able to determine the browser family in about 98.2%. A downside of this approach is,
however, that it took about three minutes for the execution to finish, which is not feasible in real-life scenarios
[35].

Although Eckersley [11] was the first to examine Browser-Fingerprinting on a large scale and drawing lots
of attention towards the topic, there has been other research focusing on that area, most notably Jonathan C.
Mayer. In 2009, he presented an experiment, in which he fingerprinted 1328 clients [36]. As an identification,
he used the concatenated values of navigator, screen, navigator.plugins and navigator-
.mimeTypes and hashed the resulting string. This enabled him to uniquely identify about 96% of the
browsers. A year later, Peter Eckersley extended this study on a larger scale and fingerprinted about half a
million browsers (see Section 2.3.1).

Eckersley [11] drew a lot attention and, because of that, Browser-Fingerprinting became the research subject
of more and more people. Nikiforakis et al. [37] decided in their paper “Cookieless Monster: Exploring
the Ecosystem of Web-based Device Fingerprinting” [37] to examine the code of three popular Browser-
Fingerprinting providers. As a result, they revealed the techniques that enable web sites to track their users
without client-side identifiers like cookies. They also showed that there exist several questionable mechanisms
among these techniques. Moreover, they demonstrated how excellent fingerprinting of web browsers work and
they explained its reasons. Finally, Nikiforakis et al. [37] investigated browser add-ons that make user-agent
spoofing possible and they constituted that these add-ons might even enhance the fingerprintable surface of the
browser.

24

3.1. Fingerprinting

Nikiforakis et al. [37] examined three fingerprinting libraries of large, commercial companies: BlueCava1,
Iovation2 and ThreatMetrix3. Those three were chosen, because two of them appeared in the web tracking
survey “Third-Party Web Tracking: Policy and Technology” [38] published by Mayer and Mitchell and the
last one was picked because it was highly ranked in a popular search engine.

Table 3.1.: Overview of features used in Panopticlick and in the examined fingerprinting providers.

Fingerprinting Cate-
gory

Panopticlick BlueCava Iovation ThreatMatrix

Browser customiza-
tions

Plugin
enumerationJS

Mime-type
enumerationJS

ActiveX + 8
CLSIDsJS

Plugin
enumerationJS

ActiveX + 53
CLSIDsJS
Google Gears
DetectionJS

Plugin
enumerationJS

Mime-type
enumerationJS

Flash
ManufacturerFLASH

Browser-level user
configurations

Cookies enabledHTTP

TimezoneJS

Flash enabledJS

System/Browser/
User
LanguageJS
TimezoneJS

Flash enabledJS

Do-Not-Track User
ChoiceJS
MSIE Security
PolicyJS

Browser
LanguageHTTP, JS
TimezoneJS

Flash enabledJS

Date and timeJS
Proxy
DetectionFLASH

Browser
LanguageFLASH
TimezoneJS, FLASH

Flash enabledJS

Proxy
DetectionFLASH

Browser family &
version

User-agentJS

ACCEPT-
HeaderHTTP, Partial
S.Cookie testJS

User-agentJS
Math constantsJS
AJAX
ImplementationsJS

User-agentHTTP, JS User-agentJS

Operating System &
Applications

User-agentHTTP

Font
DetectionFLASH, JAVA

User-agentJS

Font
DetectionJS, FLASH
Windows
RegistrySFP

User-agentHTTP, JS

Windows
RegistrySFP
MSIE Product
KeySFP

User-agentJS

Font DetectionFLASH

OS + Kernel
versionFLASH

Hardware & Net-
work

Screen ResolutionJS Screen ResolutionJS

Driver
enumerationSFP
IP AddressHTTP
TCP/IP
ParametersSFP

Screen ResolutionJS

Device
IdentifiersSFP
TCP/IP
ParametersSFP

Screen
ResolutionJS, FLASH

Table 3.1 shows the result of the study in form of a taxonomy. The taxonomy illustrates all features that
can be collected using a fingerprinting library. It involves all features of Panopticlick and the features used
by the examined fingerprinting libraries. The features that are printed boldly are, compared to Panopticlick,
either significantly enhanced, gathered through a different method or completely new. Nikiforakis et al. [37]
designed the taxonomy as a layered system, where the top layer is represented by the browser and all of its
fingerprintable features. The further down the layer resides, the more low-level the features become, resulting
in hardware and network related fingerprintable data like TCP/IP parameters.

Hereafter, some of the major differences between Panopticlick and the three examined fingerprinting libraries
are explained.

One of the most notable disparity is the heavy usage of Adobe Flash. Nikiforakis et al. [37] discovered that
companies providing fingerprinting libraries strongly rely on Adobe Flash, despite the fact that Flash has been
under fire for a long time because of its poor performance and it not being very stable. With HTML5, there
is actually a newer technology which aims to provide lots of functionalities that used to be realized by Flash.

1http://www.bluecava.com
2http://www.iovation.com
3http://www.threatmetrix.com

25

http://www.bluecava.com
http://www.iovation.com
http://www.threatmetrix.com

3. Related Work

Despite these circumstances, Flash is still present on a majority of computers. Flash implements certain APIs
existing in the browser and callable via JavaScript, but surprisingly, Flash’s APIs do not always provide the
same results as the browser APIs do. An example for this unexpected behavior is the response of the platform
of execution. While the browser API tells “Linux x86 64”, Flash’s response is, for example, “Linux 3.2.0-
26-generic”. As one can see, the result of Flash is more detailed, providing information about the full kernel
version. This is not only critical for fingerprinting, but has also be viewed from a security point of view, since
possible attackers can now improve their attacks with this additional knowledge.
Another API call, whose results differ in case of Flash and browser is the one that provides information about
the used screen resolution. In a dual-monitor setup, Flash4 serves the sum of both monitor widths, but the
browser’s API only reports the resolution of the monitor hosting the browser window. This behavior enables
the tracker to detect, if a multi-monitor setup is utilized.

A further difference between Panopticlick and the other three fingerprinting libraries is the fact that the libraries
do not try to behave the same on different platforms, e.g. Firefox, Internet Explorer or Google Chrome.
This means that these libraries adjust their behavior. If the platform is for example Internet Explorer, they
try to fingerprint features that are specific for the Internet Explorer. Moreover, they have an extra fallback
implementation for enumerating add-ons, since the standard way used in Firefox is not possible in Internet
Explorer.

In 2013, Acar et al. [39] presented a framework called FPDetect. This framework’s goal was the identification
and analysis of web-based device fingerprinting. It was designed with scalability in mind. It could be used
simultaneously with multiple virtual machines, which enabled the authors to perform a large-scale study ex-
amining the Alexa Top 1.000.000.
The framework was capable of detecting JavaScript- and Flash-based fingerprinting attempts and consisted of
the following parts:

1. Crawler
Two browsers belong to the crawler: PhantomJS5 and Chromium6. PhantomJS is responsible for
JavaScript-based and Chromium is used to examine Flash-based fingerprinting. For controlling the
browsers and to visit web sites, CasperJS7 and Selenium8 are utilized. The authors chose to adapt the
native source code of WebKit, which poses the basis of PhantomJS and Chromium. Another possibility
would be a browser extension, but modifying the browser’s source code and therefore working on such
a low level has several advantages:

• Browser extensions can only log JavaScript-based events.

• The origin of events can be detected more precisely.

• JavaScript getter methods and extensions can be blocked or circumvented.

The modifications of WebKit allowed the authors to log the access of the following browser and device
properties, which are suitable for a fingerprint.

• navigator.userAgent, navigator.appCodeName, navigator.product, navi-
gator.productSub, navigator.vendor, navigator.onLine, navigator.app-
Version, navigator.language, navigator.plugins, navigator.mimeTypes,
navigator.cookieEnabled(), navigator.javaEnabled()

• navigator.plugins properties like name, fileName, description, length

• navigator.mimeTypes properties like enabledPlugin, description, suffixes,
type

• window.screen properties like horizontalDPI, verticalDPI, height, width, co-
lorDepth, pixelDepth, availLeft, availTop, availHeight, availWidth

4This is the case in both Linux implementations, Adobe’s and Google.
5http://phantomjs.org
6http://www.chromium.org
7http://www.casperjs.org
8http://docs.seleniumhq.org

26

http://phantomjs.org
http://www.chromium.org
http://www.casperjs.org
http://docs.seleniumhq.org

3.1. Fingerprinting

• offsetWidth and offsetHeight properties and the getBoundingRect method that be-
longs to HTML elements

• CSSFontFace::getFontData and CSSFontSelector::getFontData methods that
are used for font loading

2. Parser
This part’s responsibility is to extract useful information from the logs produced by the crawler and save
them in the database.

3. Proxy
For Flash, the usage of a HTTP-Proxy is necessary. Since this thesis concentrates on JavaScript-based
fingerprinting, the Flash-based part is leaved out. The interested reader may be referred to [39] for
further information.

4. Decompiler
The decompiler is relevant for Flash-based fingerprinting. Again, this part is not considered in this
thesis.

5. Central Database
Although the framework utilizes several virtual machines for crawling web sites, all machines save their
findings (JavaScript function calls, HTTP requests and responses, loaded/requested fonts) in a central
database that serves for further analysis.

Acar et al. [39] decided to focus in this study on font enumeration techniques. The reasons for this choice are
listed in the following.

• As Peter Eckersley has shown, the installed fonts on a machine represent one of the strongest features,
having a entropy of 13.9.

• Fonts do not depend on the operating system. Because of that, different browsers on the same device
are considered the same.

• The Tor Browser, being famous for implementing counter-measures against fingerprinting, ships with a
specific configuration state. In this state, plugins are disabled and therefore not suitable to use as part of
a fingerprint. As a consequence, fonts are the next best feature available.

The following part will concentrate on the JavaScript-based font detection mechanism, since JavaScript is the
only relevant technology in this work.

Each experiment executed consisted of two parts. At first, FPDetect was used to crawl a list of web sites. The
web sites that were marked by the framework, were potential users of fingerprinting attacks. The authors then
analyzed the marked web sites manually in order to rule out False-Positives. A measurement for potential
fingerprinters was the number of loaded fonts. To remove web sites that loaded a lot of fonts but did not use
them for font detection, the calls of the offsetHeight and offsetWidth methods of the corresponding
HTML elements were counted. The findings of the study are presented in Figure 3.1 [39].

Figure 3.1 shows the Alexa Top 1.000.000 being split into parts of 100.000 web sites, according to their rank
within Alexa. Each one of those parts is represented by two bars. The darker bar shows the total number of
web sites delivering fingerprinting scripts. However, the authors discovered that not all web sites providing
fingerprinting scripts do also execute those scripts. This number of presented as the lighter bar.

To sum it up, FPDetective was able to find 303 web sites among the Top 1.000.000 Alexa that used fingerprint-
ing scripts to track their visitors. Those scripts were delivered by 13 different fingerprinting providers and not
all of them had been discovered in early studies.

3.1.2. Canvas-Fingerprinting

The most extensive study in the field of Canvas-Fingerprinting and also the basis of Section 2.3.2 is the work
“Pixel Perfect: Fingerprinting Canvas in HTML5”. In this paper, Mowery and Shacham [19] examined the

27

3. Related Work

Figure 3.1.: Top 1.000.000 Alexa web sites using JavaScript-based font probing .

suitability of the new HTML5 <canvas> element for creating fingerprints. For this purpose, they defined six
different tests:

1. text arial
This was a very basic test with the font being Arial, which is known for its omnipresence in the web.
The pangram “How quickly daft jumping zebras vex.” was rendered in 18pt to the canvas.

2. text arial px
This was basically the same test as text arial with the only difference being the size of the text 20px
instead of 18pt.

3. text webfont
This test differed from the basic text arial test insofar that now, the font was loaded from a web server
by using the WebFonts mechanism. The text stayed the same, the size was 12pt and the font used was
Stirin Stencil, which was downloaded from the Google Web Fonts server9.

4. text webfont px
Basically the same as text webfont, except for the size being 15px.

5. text nonsense
From the code point of view, this test was for the most part the same as the Arial tests. However, the font
specification was now set to “not even a font spec in the slightest”, which was obviously not a valid font
and could consequently not be found on the web server. This triggered the fallback strategy, meaning
that a default font was taken instead.

6. webgl
This was unsurprisingly the most complex test, since rendering 3D graphics was always a tough task.
Basically, the authors rendered some 3D picture on the canvas element. For detailed information about
the content of the rendered image, one might refer to [19]. In Figure 2.5 the output produced by an
example run of the webgl test is presented.

Another point that has to be considered in such tests, is speed. It seems to be pretty clear that fingerprints
needing several seconds (or even minutes) to be finished are not feasible. Mowery and Shacham [19] stated in

9http://www.google.com/webfonts

28

http://www.google.com/webfonts

3.1. Fingerprinting

their paper that all tests were done in a fraction of a second. In fact, the longest delays stemmed from fetching
the image assets.

The results of these tests looked very promising. The text arial test revealed 50 distinct versions among the
300 samples collected. In the text arial px test, the number of distinct versions lowered to 43. This is still
pretty impressive, considering the simplicity of this test and the fact that Arial is a font that is 30 years old.
Mowery and Shacham [19] came to the conclusion that rendering a simple pangram in a widely used font like
Arial is enough to get to know the user’s operating system family and, in most cases, the browser family.
The WebFont tests showed similar results. From the 29410 text webfont tests, there are 45 distinct variants to
render the image. The text webfont px test results were very similar having 44 groups of 294 samples. The
authors discovered that some clients did not use the specified font Sirin Stencil but used a fallback font. Four
of them (Chrome 16 and 17, Firefox 10 and 11) used Times New Roman and one (Opera 9.8) used a font that
seems to be Arial. Nevertheless, since for each of these browser versions existed correct samples in which the
specified font was used, it is likely that either WebFonts were disabled on these machines or there occurred an
error loading the font. Interestingly, the participants having these results did not improve their anonymity, but
in fact, they enhanced their traceability.
The last test concerned WebGL. In 30 test cases, this test delivered no data, which can be ascribed to either
WebGL being disabled or a failure occurring in the test. From the remaining 270 successful tests, there were 50
different versions of the rendered image. The authors were quite surprised of the diversity, since the rendered
scene only consisted of basic matrix operations. However, they stated that sophisticated WebGL fingerprints
might yield better results.

Table 3.2 shows the estimated entropies of the single tests. It is calculated with the same formula presented in
Equation 2.5.

Mowery and Shacham [19] highlighted that the 300 samples were not extensive enough to serve as a represen-
tative sample of the whole Internet. Therefore, the entropies should be considered rough estimations.

Table 3.2.: Entropies of the Canvas-Fingerprinting tests.

Test Entropy (in bits)

text arial 3.05
text arial px 2.86
text webfont 2.93
text webfont px 2.95
webgl 4.30
All tests combined 5.73

All single tests combined yielded a entropy of 5.73 bits. Nevertheless, these entropies could be increased
by advanced and more specialized tests. The authors had the assumption that it might even be possible to
determine the exact installed graphics card, the underlying operating system and the browser family, if targeted
tests were created and applied.

While the number of tests in [19] was rather small, Acar et al. [40] performed the first large-scale study
in the field of advanced web web tracking mechanisms called “The web never forgets: Persistent tracking
mechanisms in the wild”. The content of this study was, as the title may already suggest, three different,
sophisticated tracking mechanisms: Canvas-Fingerprinting, Evercookies and Cookie Syncing. While Ever-
cookies and Cookie Syncing are very interesting techniques on their own, the focus in this thesis is Canvas-
Fingerprinting. Therefore, the concentration lies on this part of the study.

The goal of Acar et al. [40] was - among others - to examine the frequency of usage of Canvas-Fingerprinting.
They designed a framework capable of identifying, whether Canvas-Fingerprinting is executed on a web site.
Since the focus was on a large-scale, scalability of the framework was always in mind. In order to be able
to detect Canvas-Fingerprinting, the authors relied on the findings of Mowery and Shacham [19]. In this
publication, Canvas-Fingerprinting was realized by using the strokeText, fillText and toDataURL
10In six cases, the specified font could not be loaded due to a race condition in the WebFont Loader library. This library is developed by

Google and TypeKit and can be used to request fonts. Moreover, it provides the possibility to register callback functions.

29

3. Related Work

methods. The first two were used to write text on the <canvas> element and the last one extracted pixel-
precise data from the <canvas>. In order to detect Canvas-Fingerprinting, the authors opted to modify the
browser itself, which was in this case Mozilla Firefox. Since Firefox is a open-source project, its source code
can be altered by every interested user. Acar et al. [40] adjusted the source code of Firefox to the effect that the
arguments of the strokeText and fillText methods (one part of the arguments is the string that should
be drawn to the canvas) and the return value of the toDataURL method were logged. Moreover, they logged
the URL of the script that invoked those methods via the nsContentUtils::GetCurrentJSContext
method and they co-writed the exact line number (initiator) of this method call via the nsJSUtils::-
getCallingLocation. Thus, they were able to determine the fingerprint attempt’s script URL and the
exact location in the script. The function call logs were evaluated and finally inserted into a SQLite database,
which served as basis for further analysis. Notably, the code modifications only contained about 33 lines of
code in four different files. The performance implications were only fractional. By using Selenium11, they
visited the top 100.000 Alexa sites using the modified Firefox version and logged the respective function calls
for each web site.

Canvas-Fingerprinting is only one way of utilizing the <canvas> element. There are a lot of totally benign
reasons to draw text or images. Because of that, the authors had to analyze the data set with a focus on
False-Positives. During their examination, they formulated three conditions to filter out False-Positives:

1. Both, the toDataURL and strokeText (or fillText) function calls should be executed and both
should be called from the same URL.

2. The overall size of the canvas image(s) should be greater than 16x16 pixels and they should involve
more than one color.

3. The requested format of the images should not be a lossy compression format like JPEG.

The first points intention was to remove scripts that use the <canvas> element only for drawing and did not
read its content. If Canvas-Fingerprinting is used, drawing only is not enough, the tracker needs to get the
content of the <canvas> element in order to create a fingerprint. On the other hand, users who are only
using the canvas element for legit reasons like painting a dynamic favicon, usually do not need to extract the
canvas content.
<canvas> elements smaller than 16x16 pixels are not suitable for Canvas-Fingerprinting. The reason behind
this is the fact that operating systems or font libraries need the fonts to have a minimum size in order to exert
anti-aliasing12.
Lossy compression formats as JPEG are also not fit for Canvas-Fingerprinting, because the minimal differences
necessary to create a unique fingerprint may get lost in those formats.

By removing web sites that did not fulfill all of these conditions, Acar et al. [40] managed to lower the
number of False-Positives substantially. As a next step, the authors ensured that scripts marked as Canvas-
Fingerprinting scripts were also collecting relevant features for the more general Browser-Fingerprinting13.
Nevertheless, it is not completely safe that no False-Positives are present in the test set, because the above
mentioned conditions are not absolutely perfect and there are scenarios, in which web sites did fulfill the
conditions but were still not doing Canvas-Fingerprinting. Moreover, a tracker can still perform different
tracking mechanisms like pixel stealing by using SVG filters [42] or CSS shaders [43].

Acar et al. [40] came to the conclusion that about 5.5% of the Top Alexa 100.000 sites used Canvas-Finger-
printing. However, it is important to mention that vast majority (about 95%) stemmed from single provider:
addthis.com. Still, there were about 20 different domains found, serving Canvas-Fingerprinting scripts
and being active on 5542 sites. Eleven providers (and 5532 sites) of the 20 providers were third parties. The
authors assumed that these providers did not offer fingerprinting services directly, but delivered fingerprinting
as a part of another service. The remaining nine providers (and 10 sites) are fingerprinting scripts that were
served from first-parties. It is important to highlight that the crawls only targeted the landing page of a web
page. Crawling internal parts of a web sites might result in higher percentage of fingerprinting.
An interesting aspect of the study is the fact that by logging the text that is rendered on the canvas element, the
authors identified fingerprintjs being used on a lot of fingerprinting web sites.

11Selenium [41] is a test framework for automating browsers. For example, one can control a browser using Selenium and visit web sites.
12Anti-aliasing is one of the main reasons for the minimal differences of rendered <canvas> images.
13For example, by using static analysis, they checked for features like navigator.plugins or font enumeration.

30

3.2. Detecting Fingerprinting

As a last step, the fingerprinting script of AddThis was analyzed in greater detail, since this script was used for
the most part. Interestingly, AddThis’s script did not stop at what was published by researchers at this time.
The analysis showed that AddThis improved the Canvas-Fingerprinting in order to be able to readout more
entropy. The following list shows the additional mechanisms used:

• The fingerprinting script drew the same text twice, using different colors. Moreover, they forced the
fallback mechanism by specifying a non-existing font-name starting with no-real-font-.

• The text drawn on the canvas was the perfect pangram “Cwm fjordbank glyphs vext quiz”.

• The character U+1F603 was printed on the canvas. By doing so, it was possible to check if Unicode
drawing is supported.

• It was inspected, whether canvas globalCompositeOperation was supported.

• Two rectangles are drawn and after that, it was checked whether a given point was in the path. This was
done by using the isPointInPath method.

Finally, it is important to stress out that AddThis reacted against the study presented in this Section. As
AddThis stated [44], they deployed the Canvas-Fingerprinting part of their tracking script as a test in order
to evaluate the possibility to replace traditional cookies with Canvas-Fingerprinting. They stressed that “the
test was completed, the code has been disabled and this data was never used for personalization or targeted
advertising” [44]. Moreover, they mentioned that they “don’t identify individuals” [44]. Furthermore, they
highlighted that data created was only used for internal research and that they acknowledged the opt-out policy
during the test.

3.2. Detecting Fingerprinting

This Section represents the work in the field of detecting fingerprinting techniques. Right now, the majority of
such tools are provided in form of browser extensions. Section 3.2.1 will present Chameleon, a browser exten-
sion for Google Chrome with the aim to detect fingerprinting attempts. Section 3.2.2 will show CanvasBlocker,
another extension that is designed to detect Canvas-Fingerprinting.

3.2.1. Chameleon

Chameleon [45] is a browser extension for Google Chrome. Because of the nature of browser extensions, it has
only access to JavaScript-based fingerprinting attempts. Chameleon tries to detect fingerprinting by logging
calls to browser properties of the navigator or screen objects. This is done by overwriting the getters
of these objects. Chameleon also tries to implement protection, for example by manipulating the properties
accordingly. Table 3.3 gives an overview of the fingerprinting techniques that are detected and for which
Chameleon provides protection.

As one can see in Table 3.3, Chameleon provides a broad spectrum of fingerprinting-related features. It strikes
that a lot of features concerning the enumeration of properties of the window and navigator objects, are
detected and, in some cases, even protected against. Moreover, font enumeration, a pretty strong feature, is
also detected but not yet protected against. Nevertheless, as mentioned before, due to the nature of browser
extensions, detecting Flash-based fingerprinting attempts is not possible. This means that a potent attack vector
is ignored completely. However, this is the price one has to pay when using browser extensions.

3.2.2. CanvasBlocker

CanvasBlocker [46] is another extension with the focus on detecting Canvas-Fingerprinting. Its basic func-
tionalities will be presented in Section 3.3.2. Unlike Chameleon, it leaves out most of the significant features
of Browser-Fingerprinting. In order to detect and block it, CanvasBlocker concentrates on the <canvas>
element.

31

3. Related Work

Table 3.3.: Functionalities of Chameleon.

Fingerprinting technique Detection Protection

Request header values 3 7
window.navigator values 3 3
window.navigator enumeration 3 7
window.screen values 3 3
Date/time queries 3 3
Font enumeration 3 7
System color enumeration 7 7
CSS media queries 7 7
Canvas image data extraction 3 7
WebGL 7 7
Request header ordering/check-
sum, window.navigator check-
sum, checksumming in general

7 7

Flash/Java-driven queries 7 7
Third-party cookies 7 7
JS/rendering engine differences 7 7
Packet inspection/clock skew (?) 7 7

What Chameleon and CanvasBlocker actually do is intercepting calls to properties and functions that might
be related to fingerprinting. The problem here is the fact that it is not possible to determine, if accesses to
those properties or functions are benign or malicious. Therefore, they can not classify a web site, saying it is
tracking or it is not tracking. This is the part that this thesis tries to fulfill by mixing in entrenched detection
mechanisms.

3.3. Counter-Measures

The last Sections focused on Browser-Fingerprinting and Canvas-Fingerprinting. It has been shown that these
techniques have enormous potential to create fingerprints of machines that can consequently be used as track
users. This Section is about counter-measures against those two techniques, with Section 3.3.1 concentrating
on Browser-Fingerprinting and Section 3.3.2 focusing on Canvas-Fingerprinting. It will be shown that the
most obvious measurements to hamper fingerprinting lead to even a wider fingerprintable surface. Moreover,
it will be illustrated that randomization might be a good choice to defend against fingerprinting. It will also be
highlighted that Canvas-Fingerprinting is extremely hard to block right now and that the best defense actually
might be to involve the user.

3.3.1. Browser-Fingerprinting

Obviously, for JavaScript-based fingerprinting, which is focused on in this thesis, there exists a quite simple
and absolute secure way to block it: disable JavaScript. While this would make Browser-Fingerprinting effec-
tively worthless, it is not a real solution to the problem. With JavaScript being deactivated, the web suddenly
becomes a lot uglier. In times of Web 2.0, web sites are based on several JavaScript frameworks like jQuery14

that offer dynamic content. If this essential part of web sites is removed, it is quite likely that they become
useless. However, Section 2.3.1 showed that Browser-Fingerprinting is not something that should be ignored.

As it turns out, defending against Browser-Fingerprinting is not as easy as one might think at first. There exist
a lot browser add-ons that allow the modification of several features which are also often used as part of a
fingerprint, for example user agent or HTTP-Header. One can ask the question, if using these add-ons would

14https://jquery.com/

32

https://jquery.com/

3.3. Counter-Measures

hamper Browser-Fingerprinting. The ironic part here is that a lot of such measures actually cause the exact
opposite, because these measures are features by themselves and increase the uniqueness of a fingerprint, if not
a lot of people also install these add-ons [11]. Actually, the best way to defend against Browser-Fingerprinting
is to have the same properties, as as many other people as possible. This is the reason for iPhones being a lot
harder to fingerprint, than normal computers.

Another aspect concerns Java and Flash. Although, this thesis concentrates on JavaScript-based fingerprinting,
it is essential to say that these technologies are far too powerful right now. Flash should not provide as many
APIs to read out browser and system specific properties. In fact, Flash makes it incredibly easy to get a list of
the installed fonts, which is one of the strongest features found in [11].

A very interesting approach is mentioned in [47]. Nikiforakis et al. [47] implemented PriVaricator, an ex-
tension to the privacy mode that almost every modern browser supports. PriVaricator aimed to hamper fin-
gerprinting rely on properties of the browser environment. It is also implemented directly in the browser’s
source code and not realized as a browser add-on or something similar. The principle behind PriVaricator was
randomization. Each access to a browser property, which is potentially relevant for Browser-Fingerprinting,
was intercepted and accordingly handled. Functions that only returned integer values like offsetHeight
or offsetWidth were a lot easier to manipulate, than more complex functions as toDataURL. Therefore,
the authors identified two different groups of elements that had to be considered:

1. Strategy regarding offset: For functions or properties like offsetHeight, offsetWidth, get-
BoundingClientRect, there were three different policies defined:

a) Zero: Returns always zero.

b) Random(0..100): Return random values between 0 and 100.

c) ± 5% Noise: Return the original value ± 5% noise.

2. Strategy regarding plugins: In order to hamper the classic plugin enumeration technique mentioned in
2.3.1, a probability P (plug hide) had been defined. This probability was used, whenever the plugins
were enumerated and was applied for each plugin.

Along with these two strategies came two additional variables: lying threshold ✓ and lying probability. The
first one defined a maximum of allowed reading attempts. If for example ✓ = 50, the first 50 accesses to
offsetWidth or offsetHeight were totally legit. The 51th and every following attempt however would
trigger the specified policy. lying probability signaled the probability to lie, after the threshold had been
reached.

Manipulating the properties and methods in this way is not without any risk. First of all, not all properties are
suited to be changed. For example, the display resolution is not only a potential feature for fingerprinters, but
also an important hint for web developers that use this value to display their web page accordingly. Browsing
a web page on a tablet requires a different layout than visiting it with a desktop computer and a 24“ monitor
attached to it for instance. When implementing the policies, the authors kept in mind that web pages should
not break.

Nikiforakis et al. [47] examined how PriVaricator performs against the fingerprinting libraries of BlueCava,
Coinbase, PetPortal15 and fingerprintjs. Overall, the results of PriVaricator were pretty astonishing. It managed
to delude all tested libraries in a majority of the tested combination settings. fingerprintjs, for example, was
very fragile and was only able to track the authors, when the hiding probability of plugins was either zero
(which means, all plugins are showed) or 100% (no plugin is exposed). Of course, this was due to the fact that
fingerprintjs is not capable of font detection. As a matter of fact, the fingerprinting library from PetPortal was
the most resistant in this test.
Also the breakage concerns could be ruled out. The authors tested the Alexa Top 1.000 web sites and came
to the conclusion that the measurements made by PriVaricator did not break web sites. The differences with
PriVaricator compared to the original web site were minimal and therefore negligible.

Also, the authors of “FPDetect: Dusting the Web for Fingerprinters” [39] did test two possible counter-
measures to Browser-Fingerprinting. At first, they examined the usage of Tor Browser [49]. The Tor Project
15At http://fingerprint.per-portal.eu/, the fingerprinting framework developed by Boda et al. [48] during their study can

be visited.

33

http://fingerprint.per-portal.eu/

3. Related Work

aims to provide the highest level of anonymization possible. In order to be able to provide protection against
surveillance, Tor deployed their own browser, which is based on Firefox but implemented a lot of modifi-
cations that should ensure a higher level of privacy. A version of Tor Browser can not be fingerprinted by
browser properties, because those are either not served to the user or are fixed and thus not suitable as part of
a fingerprint. However, fonts are part of the operating system, which makes them kind of independent of Tor
Browser and consequently a fitting candidate for fingerprinting. The Tor Project tries to circumvent this by
implementing a maximum number of fonts that can be requested by a site. In [39], a bug in this system has
been found that could effectively lever out this policy, but it has been fixed since then.
Another counter-measure that has been tested by the authors is Firegloves [50], a browser add-on for Firefox
that tries to hamper Browser-Fingerprinting. For this purpose, it modifies the values of given properties like
the screen resolution or the height and width of HTML elements to be random when accessed. The authors
showed that Firegloves is not able to prevent Browser-Fingerprinting completely. This is due to several dif-
ferent reasons. First of all, not every relevant function or property is overwritten. For example, while the
properties offsetHeight and offsetWidth are modified and therefore not suitable to be used for font
detection, this can easily be bypassed by using the getBoundingClientRect method instead of those
properties. Moreover, Flash is sill a big threat, since browser add-ons are impotent against it. To be fair, it
has to be noted that Firegloves was developed as a proof-of-concept and its development has stopped a few
months ago.

3.3.2. Canvas-Fingerprinting

The first and most secure counter-measure is pretty obvious: remove the possibility to extract the data from
a canvas. While this will effectively prevent Canvas-Fingerprinting, one should not forget that some areas of
application, for example a web app for drawing, could not be realized without this functionality [19].

Another possibility to hamper Canvas-Fingerprinting is the browser adding random pixel noise whenever the
content of the canvas is extracted. Examining this approach more closely, one comes to the decision that
adding simple noise can be easily circumvented by rerendering each canvas multiple times and comparing the
results. Tackling this problem can be done by increasing the noise - this would, however, result in a decrease
of performance, which is not desirable concerning legit applications. Consequently, Mowery and Shacham
[19] come to the conclusion that adding noise is not a reasonable defense against Canvas-Fingerprinting.

Thinking about how Canvas-Fingerprinting functions, another defensive approach comes to mind. Since
Canvas-Fingerprinting works because of differences produced by hardware and software, it might be a fea-
sible attempt to force browsers to produce the exact same output regardless of their underlying hard- and
software. This would have several implications for browser vendors: Firstly, they would need to ship a list of
agreed upon fonts along with a library capable of rendering text (for example Pango16) with their browsers.
Secondly, WebGL support would need to encapsulate rendering from the graphics card and use a software
rendering library like Mesa 3D17 instead. As Mowery and Shacham [19] stated, this approach might be the
correct choice when the highest level of possible privacy is not debatable. Nevertheless, not using the graphics
card for rendering would lead to a significant performance loss. Because of that, this attempt is not acceptable
in real-life scenarios.

Another possibility to tackle Canvas-Fingerprinting at its roots is to force the browser to request user approval
before he is allowed to use the <canvas> API. The Tor Browser [49], known for extremely high standards
regarding privacy and security, implements such behavior. But also users, who do not want to use the Tor
Browser, because they don’t need such high standards, can force their normal Firefox to behave like that. This
can be achieved by installing the browser add-on CanvasBlocker [46]. The add-on provides several strategies
how to handle the usage of the <canvas> element. One strategy is the above mentioned question for user
approval, another would be to block the entire <canvas> element. Asking for user agreement allows legit
applications to use the <canvas> API and all of its functionalities, but impedes Canvas-Fingerprinting.

This Chapter presented related work in the field of fingerprinting techniques. For both Canvas- and Browser-
Fingerprinting, the according publications were presented. Moreover, two browser extensions that aim to

16http://www.pango.org/
17http://www.mesa3d.org/

34

http://www.pango.org/
http://www.mesa3d.org/

3.3. Counter-Measures

Figure 3.2.: CanvasBlocker’s notification when user approval is requested before the <canvas> element can
be used.

detect those fingerprinting techniques were illustrated. Lastly, possible counter-measures that can be imple-
mented in order to hamper fingerprinting were discussed.
The next Chapter will now try to bring fingerprinting techniques and traditional detection mechanisms to-
gether. The Chapter’s main goal is to show, how these detection mechanisms can be applied in the field of
fingerprinting, in order to be able to detect, if a web site is trying to fingerprint the user, or not.

35

4. Design

This thesis aims to detect fingerprinting techniques with the help of detection mechanisms. Therefore, a system
has to be designed, developed and ultimately implemented. This Chapter will introduce the basic design of
this system. Section 4.1 will derive all relevant components of the system based on a exemplary work flow and
Section 4.2 will the present the resulting architectural design. After that, the components of the architectural
design - Sensors (Section 4.3), data collection (Section 4.4) and logic/evaluation (Section 4.5) - are explained
in detail. Section 4.6 will focus on communication. This includes the specification of possible protocols, as
well as the data format used for transportation. Section 4.7 will propose two different ways to deploy the
proposed system. Moreover, this Section will elucidate possible concerns regarding security and privacy.

4.1. Deriving Components

The system developed in this thesis tries to apply traditional detection mechanisms to the field of Web-Track-
ing, more specifically to the area of fingerprinting techniques. Its main goal is to use those detection mech-
anisms to predict, if fingerprinting techniques are adapted on a web site. The detection should be performed
dynamically when the web site is visited. The fundamentals concerning Web-Tracking, Browser-Fingerprint-
ing and Canvas-Fingerprinting, as well as basics regarding detection mechanisms have already been introduced
in Chapter 2.

In order to make clear, how the system should function when it’s ready for deployment, Figure 4.1 shows a
basic work flow.

This work flow helps to determine actuators, components and communication paths. The first actuator is, of
course, the user. In this scenario, the user is the one that visits a web site. He does not know, if this web site
is tracking him or not. This is why he is using the detection system proposed in this thesis. When visiting a
web site, he has to wait for it to load all necessary resources which can also be located on different servers.
If the web site is using tracking mechanisms, more specifically fingerprinting techniques, it has to create a
fingerprint of the machine. Browser- and Canvas-Fingerprinting techniques do this by using several so called
features, as already explained in Section 2.3. This is where the first component of the system comes into play,
the so called sensor. The sensors have to be able to notice that the features relevant for the fingerprinting
techniques are being accessed by the page.

After all relevant features used by the web site have been extracted, the user needs to decide, whether he wants
to know, if the page is tracking him or not. If he decides that that he wants to know it, there is another compo-
nent required for this to be realized: logic/evaluation. This component is responsible for the classification of
new input. It should involve several different detection mechanisms and is used to predict, if a visited web site
is considered to use tracking mechanisms - it is tracking their users - or not. There is a wide range of diverse
detection mechanisms. Some of them require for example a set of training data to be trained with. Others try
to classify new input without the need for such data. However, this shows that the classifier heavily interacts
with another component of the system: data collection.

The data collection component is responsible for all kinds of storage. This can be various data, for example
information about the classified web sites. Moreover, it is thinkable to store training data here which can be
used to train classifiers. This is also demonstrated in the work flow.

To sum it up, the following components have been identified:

• Sensors to extract features

• Data collection to manage a database

36

4.2. Architecture

Start

User visits a web
site

Browser loads all
necessary resources Extract Features

Feature set Classification
desired? Process feature setYes

End

No

Classification

Is web site
tracking? Yes Inform user

No

Result

Sent result back to
user

User Feedback?YesProcess feedback

No

Database

Sensor

Logic/Evaluation

Data collection

Figure 4.1.: Flowchart describing the basic way of functioning of the proposed system.

• Logic/evaluation to classify

Another aspect to consider is communication between those components. The dashed lines in Figure 4.1 show,
where communication does take place.

The designed work flow from Figure 4.1 combined with the derived components along with necessary com-
munication form a basic architectural design, which will be presented in the next Section.

4.2. Architecture

Each one of the components derived in Section 4.1 is represented as one layer in the architecture. First of all,
there has to be one layer that provides information used for several purposes, including training or classifying.
This layer involves the sensors. Secondly, the information provided by this layer has to be stored and managed
in some way. That is the responsibility of the data collection layer. Besides, communication between these
two layers is mandatory. Last but not least, one layer is responsible for evaluating the processed data. Here,
evaluation is equivalent to classification. Also, communication between logic/evaluation and data collection
layer has to be established.

In Figure 4.2, the fundamental design picturing these layers is demonstrated.

37

4. Design

4.6 Communication

JavaScript Flash Java

Naive Bayesian
Classifier Decision Tree ExtraTrees

HTTP(S) JSON

4.6 Communication
SQL

Figure 4.2.: Fundamental design of the proposed system.

38

4.3. Sensors

As one can see, each of the introduced layers is present in the design. However, it must be understood as a
fundamental idea. It can be deployed in different ways. Two of them concern the distribution of the layers.
The question here is, if all layers should reside in one place, or if the system is split up and different layers are
implemented in different locations.

The system always includes a client and a server, but which layers are assigned to which part is debatable and
open for interpretation. The following Sections will refer to client and server as part of the communication.

4.3. Sensors

The sensors layer resides on the lowest level of the system. It holds several different sensors and provides
information for the upper layers. As mentioned before, fingerprinting can be done by using different technolo-
gies, for example JavaScript, Flash or Java. For each of these technologies, one sensor has to be developed.
It holds a set of relevant features and observes them. If a web site uses one of these features, the sensor must
notice that and react accordingly. The reaction is completely task-reliant. In some cases, it might be enough
to just log the access, in other scenarios, it might be required to take specific counter-measures, e.g. returning
not the original value but a modified one.

This thesis focuses only on JavaScript-related fingerprinting. Therefore, the only crucial technology is Java-
Script with Flash and Java being left out. The following part of this Section will only apply to sensors respon-
sible for JavaScript.

Since sensors are a key-part in detection systems, there are some requirements they have to incorporate in
order to be considered good ones.

1. Sensors should be “complete”.

2. Sensors should run in the background.

3. Sensors should be fast.

During this thesis, the first requirement turned out to be one of the most complex parts. Being “complete” in
this context means that sensors are not allowed to miss features that were accessed on a web page. Sensors
that are not guaranteed to notice the access of features, are not suitable to be used, because each feature is a
small piece of the puzzle and only when all pieces are collected, detection might be possible. Therefore, is has
to be ensured that sensors really are capable of identifying a web site accessing features that lie in their area of
accountability. While this behavior is wished for, it became clear that this is really hard to implement. More
information about this problem will be given in Section 5.1.1.
Of course, the prototype implementation developed during this work has been designed to be deployed in
the wild. However, deploying this system implies several requirements. First of all, sensors have to be fast,
meaning that it is absolutely crucial that they don’t delay page loading. It’s quite obvious that this would lead
to the detection system being ignored by almost every user. Delaying page loads is not an acceptable trade off.
The second consequence is the fact that sensors have to run in the background, performing their task without
the user noticing them. Again, this requirement directly results from the objective that using the detection
system should be as easy as possible.

4.3.1. Defining Suitable Features

Ideally, for each possible technology, one sensor is drafted and finally implemented. The sensor provides
features of its observed technology and forwards them to the data collection layer. As already mentioned, only
JavaScript-based features will be taken into account.

The selection of suitable JavaScript-related features is based on the fingerprintjs library and the Chameleon
browser extension. Moreover, the features used in the initial project concerning Browser-Fingerprinting -
“Panopticlick” - are also included. All three of them are already illustrated in Section 2.3.1.

The features used in all those projects can be divided into two different types:

39

4. Design

• MemberExpressions: Those features represent accesses on member variables of objects. A classic ex-
ample for this would be navigator.plugins. They consist of two different parts: the object (in
this case: navigator) and the property (here: plugins).

• FunctionCalls: These are quite similar to MemberExpressions, however their property is not a variable
of the object, but a function that is called on the object. A typical representative is toDataURL, a
function that is called on the context object, gained from the <canvas> element.

As one can see, each feature consist of a tuple (object, property). Table 4.1 shows all considered
features along with their objects and properties.

Table 4.1.: Relevant features for this thesis.

Type Object Property

FunctionCall HTMLCanvasElement toDataURL
FunctionCall HTMLCanvasElement getContext
FunctionCall CanvasRenderingContext2D fillText
FunctionCall CanvasRenderingContext2D strokeText
FunctionCall CanvasRenderingContext2D getImageData
FunctionCall WebGLRenderingContext getParameter
FunctionCall WebGLRenderingContext getSupportedExtensions
FunctionCall Date getTimezoneOffset
MemberExpression navigator plugins
MemberExpression navigator userAgent
MemberExpression navigator language
MemberExpression navigator cpuClass
MemberExpression navigator platform
MemberExpression navigator doNotTrack
MemberExpression screen height
MemberExpression screen width
MemberExpression screen colorDepth
MemberExpression window sessionStorage
MemberExpression window openDatabase
MemberExpression window localStorage
MemberExpression window ActiveXObject
MemberExpression window indexedDB
MemberExpression window devicePixelRatio
MemberExpression window innerWidth
MemberExpression window innerHeight
MemberExpression HTMLElement offsetHeight
MemberExpression HTMLElement offsetWidth

This sample of features tries to match to most popular ones used in recent studies. Both, Browser- and Canvas-
Fingerprinting related features are included in the feature set.

Canvas-Fingerprinting is a special form of Browser-Fingerprinting and it therefore requires some special at-
tention. When examining Canvas-Fingerprinting in great detail, it becomes clear that applying it is usually
done in a particular way.

1. Create a <canvas> element: document.createElement(’canvas’)

2. Get the context element used for drawing: getContext

3. Draw something on the canvas: fillText, strokeText

4. Extract the pixels produced: toDataURL, getImageData

40

4.4. Data Collection

However, the first step is kind of optional, depending on whether there is already a <canvas> element present
in the DOM1. As the above mentioned Enumeration shows, almost every FunctionCall present in the feature
set is relevant for Canvas-Fingerprinting. Obviously, some combinations of FunctionCalls, for example to-
DataURL alongside with fillText seem to be a strong indication for Canvas-Fingerprinting. The methods
getSupportedExtensions and getParameter are often used in WebGL-related fingerprinting at-
tempts.
Another technique yielding high entropy, is the list of installed fonts, which is accessible via font enumera-
tion. By logging the offsetHeight and offsetWidth methods, it might be possible to draw conclusions
whether this technique is utilized or not. This requires to count how often those methods are executed. Font
enumeration heavily relies on the offsetHeight and offsetWidth functions of elements.
 elements are a sub-type of HTMLElements, so whenever those functions are called, the counter is
incremented. Very high values for those counters might be a hint for font enumeration being used on the web
site.

4.4. Data Collection

The data collection layer is the middle ware of the system. Its objective is to store all relevant data of the
system. This involves a wide variety of information sources, like features of web sites or data applicable for
reporting purposes.

4.4.1. Database System

Whenever storing data is the topic, the first thought that comes to mind are databases. They provide huge
advantages compared to other storing technologies like simply writing files containing the data. Especially
when the amount of data stored is increasing over time, databases can play out their strengths concerning
speed and data management.

The striking advantages of databases are the reason for the data collection layer to use a database as well.
There are several different database management systems in the wild and they can be divided into two classes:
relational and non-relational (NoSQL, also interpreted as “Not only SQL”) databases. They differ in the way
they store the data, which results in some operations being faster in relational databases and some being faster
in non-relational databases. Relational databases, for example, use tables for data storage.

NoSQL databases have the following advantages over relational databases [51]:

1. Some providers (Riak, Cassandra) are able to handle hardware failures

2. Scalable

3. Wide range of data models

4. Faster, more efficient and flexible

5. No database admins required

6. Very high speed in terms of progression

The disadvantages over relational databases are stated as follows:

1. Still in development

2. No default query language (like SQL)

3. Not all are ACID2 conformable

4. No default interface

5. Service is difficult
1Document Object Model
2Atomicity, Consistency, Isolation, Durability

41

4. Design

In general, NoSQL databases provide huge upsides concerning speed and scalability. However, being a rather
new technology, they lack a standard query language like SQL. Relational databases are approved and widely
used in a lot of projects. With SQL, they provide a standard query language being well-known by a broad
majority of technicians. Relational databases should be used, when the data to be stored can easily be mapped
on tables. As the next Section will show, this is the case in this thesis. NoSQL databases are generally speaking
the better fit, when the data is unstructured.

One of the most important advantages of NoSQL over relational databases is scalability. They scale by dis-
tributing them on numerous servers. Relational databases provide difficulties with such scaling. Their per-
formance is improved by updating the server’s hardware they are running on [52]. To sum it up, this thesis
will use a relational database. The reasons for this are the presence of a query language like SQL and the fact
that the data to be stored is structured. Moreover, it won’t be necessary to scale the database extraordinarily,
because the number of features will stay manageable and won’t overexert the relational database.

4.4.2. Database Content

As already mentioned, one purpose of the data collection layer is storing web sites and their according features,
which play an essential role when it comes to classifying.

If one visits a web site, the sensors are responsible for the extraction of features of their area of application.
This means that each sensor delivers a set of features for one web site. It is enough to determine, if a given
feature is used by the web site or not; the number of its occurrences is not considered at the moment. Moreover,
each feature can occur on more than one web site. This results in many-to-many relationships between web
sites and features. Moreover, each feature has a specific type. The basic relational database design for the
system presented in this Chapter is illustrated in Figure 4.3.

Figure 4.3.: Database scheme for the data collection layer.

The web site table is used to store a web site, which consist of an id, the url, the date and time when it has
been parsed and a flag, which defines if this web site is considered to track users or not. The feature table
stores all features found on the different web sites. Each feature contains an object and a property. Please
note that this is only valid for JavaScript features. Each web site has numerous features and each feature can
occur on several web sites; this results in a many-to-many relationship between website and feature, which is
modeled by introducing the web site has feature table. The feature type table holds different types of features.
JavaScript-based features for example are MemberExpressions and FunctionCalls. Using this table ensures
that the database can be easily extended and new feature types can be added. Each feature has exactly one
feature type.

Section 4.6 will state that the format of transferred data is JSON. To bring JSON and the database scheme
proposed in this Section together, Listing 4.1 presents an example of the features found on the web site http:

42

http://www.pof.de/
http://www.pof.de/

4.5. Logic/Evaluation

//www.pof.de/. As one can see, FunctionCalls and MemberExpressions are represented using a JavaScript
object. Their keys represent the object part of a feature. Each feature forms a JavaScript object itself with
the key being the property part of it. The value of the objects denotes the total number of uses. This
additional information is not taken into account right now, but might be of use in the future. At the moment,
the only interesting aspect is, whether a feature has been used or not.

Listing 4.1: Exemplary data in the JSON format.
1 {
2 "url": "http://www.pof.de/",
3 "functionCalls": {
4 "Date": {
5 "getTimezoneOffset": 4
6 },
7 "HTMLCanvasElement": {
8 "getContext": 1,
9 "toDataURL": 1

10 },
11 "CanvasRenderingContext2D": {
12 "fillText": 2
13 }
14 },
15 "memberExpressions": {
16 "navigator": {
17 "plugins": 19,
18 "userAgent": 4,
19 "platform": 1,
20 "language": 1
21 },
22 "window": {
23 "ActiveXObject": 2,
24 "innerWidth": 1,
25 "innerHeight": 1
26 },
27 "screen": {
28 "width": 3,
29 "height": 3,
30 "colorDepth": 3
31 },
32 "HTMLElement": {
33 "offsetHeight": 1,
34 "offsetWidth": 1
35 }
36 }
37 }

4.5. Logic/Evaluation

The logic/evaluation layer is the place, where detection mechanisms are implemented. It can host several
different detection mechanisms. Some of them might require training before they are capable of classifying
new input. Moreover, it exposes an interface that expects a web site and their features as input. This input
is then classified using one of the detection mechanisms. The result of this process represents the classifier’s
estimation of the input’s class - tracking or not-tracking.

The idea behind this classification process is the following: There exist two different types of web sites: the
ones that are tracking and the ones that are not tracking their users. Each of these web sites does use a specific
set of features. The basic assumption of this thesis is that the tracking web sites and not-tracking web sites
differ in three areas:

1. Different features are present in the tracking web sites and not- tracking web sites.

2. Sites within the same category tend to use the same features.

3. Sites that are considered to track, are believed to use less features.

43

http://www.pof.de/
http://www.pof.de/

4. Design

Classification of web sites is performed based on these assumptions.

4.6. Communication

Communication between connected systems is an incredibly complex topic. Therefore, the OSI3 reference
model (will be called OSI model from now on) has been introduced. This model provides the basic architecture
for communication between systems. It consists of seven layers, which are depicted in Table 4.2 [53, 54].

Table 4.2.: OSI Reference Model for communication.

Layer name Protocol(s)

Application Layer HTTP, SMTP, DNS
Presentation Layer
Session Layer
Transport Layer TCP, UDP
Network Layer IP, ICMP
Data Link Layer DSL, Ethernet
Physical Layer

Choosing the protocol for communication depends on which layer the communication should be implemented
on. For example, the communication can be realized using the connection oriented TCP4 protocol. Another
option is UDP5, a connectionless protocol, which basically offers the same functionalities like TCP, but with
slight advantages regarding latency, but with disadvantages in terms of reliability. Both of those protocols are
located on the Transport Layer.
Also, using HTTP6 is a reasonable possibility. HTTP is the basis for the Internet and is located on the Appli-
cation Layer of the OSI model. It is used to communicate with web servers using methods like GET, POST,
PUT, DELETE and some others [53] that provide different functionalities.
HTTP seems to be the ideal choice for the system presented in this thesis, because implementing web servers
is rather easy and communicating with them is a standard task that can be achieved with a wide variety of
libraries. Moreover, security can be achieved using HTTPS7, as indicated in Section 4.7.2.

Since HTTP is the protocol of choice, the usual way to transmit data using this protocol is the POST method,
whose body is used for data transmission. The POST method does not impose requirements on the data format.
In the context of the system, the exchanged data will mostly consist of features. As discussed in Section 4.3.1,
the feature type relevant for this thesis consist of a tuple (object, property), which can be interpreted
as key-value pairs. For this kind of data, two data formats are suitable: XML8 and JSON9. XML is a really
powerful markup language and it can be used to encode any file of any format. It is even possible, to define
completely new types. These possibilities do come with downsides: XML is relatively complicated to read
and does involve a lot of boilerplate code, which ultimately leads to more bytes being transformed when using
XML. The biggest competitor to XML right now is JSON. This data format has a much simpler syntax and
less overhead. Nevertheless, it is not possible to define own data types, but only standard types like strings
or integers are allowed. Being overall smaller automatically means that less bytes are transported. Moreover,
JSON is considered to be better in terms of performance. One of its biggest upsides however is the fact that it’s
build in JavaScript, which makes using it straightforward. Since the data types being transferred in this system
are only primitive ones, the biggest advantage of XML over JSON - the ability to define own data types - is
not utilized. Moreover, being very lightweight is also a convenient aspect that has to be taken into account.
These points led to JSON being used as data format for transmitted data.

3Open Systems Interconnection
4Transmission Control Protocol
5User Datagram Protocol
6Hypertext Transfer Protocol
7HTTP over SSL/TLS
8Extensible Markup Language - http://www.w3.org/XML/
9JavaScript Object Notation - http://json.org/

44

http://www.w3.org/XML/
http://json.org/

4.7. Discussion

4.7. Discussion

The last Sections introduced the basic design of the proposed system and its components were presented.
The architecture of the system must be critically discussed. Two different variants to deploy the system, the
monolithic and the distributed approach, are presented in Section 4.7.1. Moreover, Section 4.7.2 will examine
the architecture with a special focus on security and privacy. Lastly, the security and privacy implications of
the deployments models will be discussed.

4.7.1. Deployment Variants

Monolithic Approach

One approach to structure the system is a monolithic approach. This means that each user of the detection
system hosts a full-fledged version of the whole system. There is no data shared between the users of the
system. Figure 4.4 shows the basic idea of such a structure. As one can see, every single layer of the system -
sensors, data collection and logic/evaluation - is located at the same place and forms one unit.

Logic/Evaluation

Da
ta

 c
ol

le
ct

io
n

Sensors

User

Figure 4.4.: Basic idea of a monolithic system.

The advantages of such a system are as follows:

1. Updates to the system can be easily achieved, because the whole system is deployed as one unit.

2. Communication becomes less complicated, because the communication partners are part of the same
unit. Therefore, it is not necessary to transport data via the Internet or some other network. This also
eases the requirements concerning security.

3. The user has every part of the system under control.

However, a monolithic system like that also comes with several disadvantages. They are depicted below.

1. Since the whole system is deployed as a unit, all information required by the system has to be shipped
with it, involving data collection, logic/evaluation layers, as well as sensors. Depending on what those
layers contain, the disk space required could potentially be very high.

2. As already indicated, it is thinkable to consider user feedback when classifying new input. If this user
feedback is stored for future use, those changes are only locally. Other users do not profit from them,
because every user has its own copy of the system and local changes are not distributed to other users.

45

4. Design

Distributed Approach

The distributed approach is an alternative to the monolithic one. In this approach, the sensors are located on
different places, like the user’s machine or at completely different locations. The difference to the monolithic
approach is that the distributed part of the system only consists of sensors. The other layers - data collection
and logic/evaluation - are located at a single place, usually a server. However, the operator of this server is not
specified. This can either mean that the server is self-hosted or that it is delegated to another service provider.
The basic idea of this approach is that the sensor logs the relevant features and sends them to a central server.
The server receives this set of features and classifies them using the logic/evaluation layer. The result of this
process is then sent back to the user. Figure 4.5 illustrates this approach. As it becomes clear in this image,
there is only one central server holding the data collection and logic/evaluation layers. Please note that such a
system also has a central component: the server hosting data collection and logic/evaluation layers.

Logic/Evaluation

Sensor

Sensor

Da
ta

 c
ol

le
ct

io
n

Service Provider User

Figure 4.5.: Basic idea of a distributed system.

Such a distributed system does have several upsides, which are presented below:

1. Clients only consist of sensors and are therefore relatively small and easy to implement.

2. If user feedback is taken into account (meaning that the user can give feedback on the classification), it
can be collected at a single point. This implies that classified input can be combined with the user feed-
back and stored for possible future use. Since there only exists one data collection and logic/evaluation
layer, changes here are reflected directly to every user of the system.

Most disadvantages of the distributed approach concern its central component: the server. Since it is a vital
point of the system, it becomes the single point of failure. If the server crashes, the whole system collapses
and classification is no longer possible. Moreover, the server is an interesting suspect for attackers, since all
the system’s knowledge is combined here. Overall, it is safe to say that the server needs special treatment in
distributed system. There are several requirements concerning privacy, security and availability.

4.7.2. Security and Privacy

Security and privacy both play an important role and they have to be taken into account when designing such
a system. This Section will focus on deliberations and requirements concerning security of the architecture
depicted in Figure 4.2. Each one of the layers will be examined in regards of common protective goals.
Moreover, concerns regarding privacy will be discussed. It will be shown that it is absolutely necessary to
focus on privacy, because otherwise, the detection system is in fact a better tool for Web-Tracking than most
trackers are using right now.

46

4.7. Discussion

Security

Almost every system involves data and information that is worth protecting. Nevertheless, protecting this data
is mostly a very complex task with even the smallest mistakes having fundamental repercussions, like data
leaks of sensitive and personal information. In order to provide a guideline on how to achieve security for
sensitive data, several protective goals have been defined [55]:

1. Authenticity

2. Integrity

3. Confidentiality

4. Availability

5. Non repudiation

6. Accountability

7. Anonymization

Confidentiality, Integrity and Availability form the so called CIA triad [56]. Due to their importance in infor-
mation security, they are going to be explained specifically.

• Confidentiality
Only authorized users may have access to data and information. This has to be ensured for both stored
data and also during its transport. For the purpose of ensuring confidentiality, it is necessary to define
and establish access levels for information. Consequently, it is specified, which users have access to
which information.

• Integrity
Data integrity is ensured, if unauthorized users are not able to alter or delete data undiscovered. More-
over, it has to be ensured that even if data have has changed, those changes can be undone.

• Availability
Availability means that the information must be available when it’s needed. Therefore, every authorized
user must be able to access the information he needs. This principle also counts for authentication
mechanisms used to protect the information and access channels utilized to access it.

When designing such a system, all of the above mentioned principles have to be taken into account accordingly.
Examining the proposed architecture from Figure 4.2 leads to several potential weak spots.
All layers respectively components of the detection system are potential gateways for attackers and therefore,
every component needs special attention in terms of security. But not only the layers are interesting targets
for attackers, but also the communication between them. Communication needs to be secured respectively.
It is always one of the most interesting weak spots. Each of those potential points of application - sensors,
data collection, logic/evaluation and communication - need to be secured using the CIA triad. The following
Paragraphs will discuss confidentiality, integrity and availability for each of them.

Communication Securing communication is one of the biggest topics in information security. Several
aspects have to be considered. Luckily, this topic is researched extensively and there exist several reliable
techniques to ensure confidentiality and integrity [55]. In order to detect, if data has been modified, crypto-
graphic hash functions are usually utilized, for example HMAC. For the purpose of ensuring confidentiality,
the mechanisms of choice are encryption techniques. One possible scenario in this context that really requires
data integrity is a man-in-the-middle attack. This type of attack enables a possible attacker to manipulate the
data on its way to the server. This is an extremely critical point, since the data is used as input on the server. An
attacker might be able to alter the request content in order to trigger server-side behavior that is not intended.
A classic example for this attack would be SQL injection. The approved way to circumvent this attack vector
is to encrypt the communication, for example by using TLS10 [53]. This leads to the attacker being unable to
manipulate it.

10Transport Layer Security

47

4. Design

Data collection and logic/evaluation Since the data collection layer is responsible for storing all rele-
vant data of the system, data integrity is obviously a big topic. It has to be guaranteed that the information can
not be modified or deleted by unauthorized users. Altering the data here can lead to the logic/evaluation layer
misclassifying new input, which would result in the system to be useless.
Moreover, the principle of confidentiality has to be ensured. This means that only authorized users should be
allowed to use the detection system. The architecture proposes a client-server model and therefore, the server
has to provide several APIs that can be called by the client, for example to trigger classification. The emerging
problem here is the fact that there has to be a mechanism allowing the system to identify legitimate requests.
If there is no such authentication system, everybody could send requests to this API and thus overextend the
server’s capabilities causing a crash of the server.
One way to implement such an authentication system are security tokens. This principle is often used in mo-
bile applications and Google offers a similar service using the OAuth 2.0 protocol [57]. The concept behind
security tokens is simple. Each user that wants to use the API has to request a security token at first. This can
be achieved in various ways, e.g. by registering at a web portal. From now on, each request contains not only
the relevant data but also the security token. The server knows about all legitimate security tokens and only
accepts requests with one of them attached to it. This mechanism ensures that only requests from clients with
a valid security token are processed and consequently, confidentiality is ensured. Figure 4.6 shows the basic
idea of security tokens.

Security
Token

Request Token

Request

Security
Token

Figure 4.6.: Basic concept of security tokens.

Of course, the basic concept of security tokens shown in Figure 4.6 is also a potential weak spot and has to
be secured accordingly. Again, it is necessary to guarantee safe communication. Also, the other parts of the
system - for example the server generating the security tokens - needs special treatment in terms of security.
The details of this process are not included in this thesis and are therefore not discussed.
The remaining principle is availability. Since the logic/evaluation and data collection are key-parts of the
system, availability needs to be guaranteed. If only one of those parts fails, the whole system becomes useless.
A possible mechanism would be replication.

Sensors Availability of the sensors is required for the system to work properly. Depending on the numbers
of sensors, it might be able to compensate the failure of a specific number of sensors. Nevertheless, the
accuracy is always suffering when not all sensors provide their information for the upper layers. One way to
achieve this is redundancy, meaning that every sensor is utilized multiple times on different locations.
The next part of the CIA triad concerns confidentiality. The importance of this principle here is debatable.
On the one hand, it might be of interest, which sensor provided what information. On the other hand, this
additional information might be of no use and is therefore not needed.
The last principle is integrity, which is very important for sensors. As has already been mentioned, the sensor
provides information, which is used for the classification. It’s quite obvious that the data integrity of this
information has to be ensured, because if the information is changed, the classification would be performed
based on wrong data and would therefore be of no use.
Security of sensors strongly depends on their location. If they are under control of the system’s user, the CIA
triad is way easier to establish. If they are located on a remote device, for example a router in the network

48

4.7. Discussion

or another, central gateway, confidentiality, integrity and availability suddenly become a lot more difficult to
maintain.

Privacy

Privacy also plays an important role in this context, especially since this thesis tries to detect Web-Tracking, a
technique that is often criticized for violating privacy.

Section 2.1 illustrated the enormous value of Web-Tracking for trackers. It’s well known that the industry is
worth several billion dollars and because of that, trackers make huge efforts to improve their tracking mech-
anisms - for example by implementing new fingerprinting techniques that were already discussed during this
thesis. Those techniques provide additional jeopardy, because they are incredibly hard to block and the user
does not notice them at all. One of the central aspects in the Web-Tracking practice is the collection of the list
of visited web sites of a user. This list contains a huge amount of sensitive data, which enables them to extract
information concerning health status, political attitude, consumer behavior and much more. As the thesis has
shown so far, trackers are absolutely keen on learning as much information about a user as possible.

The proposed system offers several points of criticism in regard to privacy. One of the salient points in this
area is deeply anchored within the basic way of functionality of the detection system. The system uses sensors
to extract relevant features of the web site and forwards them to the data collection and logic/evaluation layers
in order to get back a classification of the web site. This design has some weak points concerning privacy. First
of all, the data collection and logic/evaluation layers get to know the URL of the web site. If the system is now
able to recognize users, for example by using the IP address of the request or by utilizing the security token,
the system is in fact capable of building a list of visited web sites for a given user and eventually creating a user
profile. Obviously, this is exactly the same as current web trackers try to achieve. As a result, the necessity
to transmit the URL alongside its features has to be reconsidered. There exist several possibilities to mitigate
this problem:

1. Don’t send the URL alongside its features.
Apparently, this would circumvent the problem as a whole. However, this would also lead to the inability
of the system to evaluate possible user feedback.

2. Break linkability of users and web sites.
This is one of the most important things being absolutely necessary to implement. It must be ensured
that users of the system can not be linked to their visited web sites. Therefore, every mechanism enabling
recognizing users must be deactivated (no IP address, no linkability between security tokens and users).

3. Anonymize transmitted data.
The idea behind this approach is to anonymize all data being transmitted to the evaluation part of the
system. One possible approach to achieve this goal is to transport the URL only as a hashed value. By
doing so, it is not possible to draw conclusions from the hashed value to the original URL of the web
site. Of course, the second point mentioned must still be implemented. One advantage of this approach
is that user feedback could nevertheless be taken into account.

As became clear, privacy is a big concern in this system. If it is deployed in the wild, there are several aspects
that need to be implemented properly to ensure the privacy of the system’s users.

Influences of the Deployment Model

Section 4.7.1 presented two different variants to deploy the system: the monolithic approach and the distributed
approach. Of course, the choice of the model directly influences security and privacy concerns.

Monolithic Approach In terms of security and privacy, the monolithic approach is less critical. This
is because of the user having all parts of the system under his control. The first difference here concerns
communication. Since all layers reside on the same system, communication can be realized without the need
of a another network like the Internet. This has severe implications on the security techniques required. Of

49

4. Design

course, integrity remains very important. But since the user is the only one having access to the system, this
part is not as hard to preserve as it would be, if the system can be accessed from the outside. The same is true
for confidentiality. Availability is nonetheless required for the system to work as designed. But again, since
the user is under control of every part of the system, it is his responsibility to ensure the availability of all parts.

The monolithic approach is also favorable from a privacy point of view. All required parts are located on the
same system and no data is exposed. Therefore, it is not possible to access the data collected by the system
from outside and consequently, nobody is able to create a user profile. Of course, all the sensitive data is
sill collected, but since only the user can access it, it are not as endangered as they would be in a distributed
approach.

Distributed Approach The distributed approach imposes several requirements concerning security and
privacy. The main reason for this is the fact that not all data is located on the same system, but a crucial part
- the server involving data collection and logic/evaluation - is outsourced to a remote server. This means that
the user does not have full control over the system, but in fact only over the sensors, if that. In the distributed
approach, all principles presented in Section 4.7.2 are extremely important. Communication needs to be
ensured using appropriate techniques in order to be able to guarantee confidentiality and integrity. Moreover,
securing the server is inevitable. Proper mechanisms to enforce confidentiality and integrity on the server have
to be implemented. This involves an eligible authentication process (e.g. security tokens). Another important
aspect is availability. Since all users of the detection system now utilize the same server for classification,
ensuring availability is even more important.

Nevertheless, even bigger implications concern privacy. In the monolithic approach, the data collected by the
detection system does not leave the user’s machine. In the distributed approach, this is different. Classification
requires the detection system to send the collected data to a remote server. As mentioned in Section 4.7.2,
those requests contain incredibly sensitive data that is a perfect fit for the creation of user profiles, including a
list of visited web sites. In fact, this information is exactly the type of data, every provider of Web-Tracking is
absolutely keen on collecting. Therefore, appropriate mechanisms have to be implemented. Most importantly,
the linkability between users and the visited web sites has to be disrupted. Additional challenges arise, if the
remote server belongs to a third-party supplier, because this would mean that all the sensitive data collected
by the system is not under control anymore.

50

5. Implementation and Evaluation

5.1. Implementation

This Section will focus on the implementation of the system proposed in Chapter 4. It needs to be highlighted
that the implemented prototype utilizes the distributed approach. This means that there exist several sensors
that communicate with one central server, which holds the data collection and logic/evaluation layers.
This Section will contain in-depth knowledge about the implementation of sensors (Section 5.1.1), data col-
lection (Section 5.1.2) and evaluation (Section 5.1.3). However, not the entire source code will be printed
here. Instead, only basic ideas of the implementation are provided. The interested reader is advised to further
explore the source code of the prototype implementation.

5.1.1. Sensors

Sensors can be implemented on different levels. For example, Mowery and Shacham [19] opted to add their
sensor functionality directly in the browser’s source code. This has several advantages: Firstly, it is guaranteed
that the sensor is “complete”. Modifying the browser’s source code ensures that the modifications can not be
altered by any means, especially not by JavaScript code shipped with web sites. Secondly, implementing the
sensor on this level also facilitates the realization of counter-measures, as has already been shown in Section
3.3.1. However, it also comes with a severe disadvantage: changing the source code of the browser results in
a completely different browser version that has to be distributed separately. Moreover, the browser would be
in competition with approved browsers. Also, the new browser must be constantly maintained, which requires
huge resources regarding money and manpower. Last but not least, the users would have to be convinced to
take the new browser and not the one they are used to. This is an incredibly difficult task, because humans are
creatures of habit and tend to not change things that work right now.
Nevertheless, there also would be a possibility to avoid the necessity to deploy an entirely new browser. If
one would be able to to persuade the big browser vendors like Microsoft, Mozilla and Google that they should
implement these changes in their browsers, a huge user base could be affected directly. One possibility is
for example to implement the modifications in a way that they are only applied when the private mode of the
browser is activated. To be fair, one has to highlight that browser vendors are constantly seeking to decrease
the fingerprintable surface of their browsers, but some things can simply not be altered due to compatibility
reasons.

Another possibility to implement sensors are browser extensions. As already mentioned, they have only access
to JavaScript and not to other technologies like Flash or Java, which is not a problem for this work, since those
technologies are not relevant. Moreover, they also come with a big downside. If a tracker is putting great
effort in his tracking mechanisms, the browser extension’s efforts to detect and maybe block Web-Tracking
can be circumvented. More on this topic will be discussed in Section 5.1.1. Nevertheless, browser extensions
also provide a huge advantage: usability. They are rather easy to implement and - even more importantly -
incredibly simple to install and deploy. Users don’t need to change their browser, they can just add the new
browser extension. This is an upside that should not be underestimated. Balancing pros and cons of both ways
to implement sensors, the decision was made to develop a browser extension that serves as the JavaScript
sensor in the detection system.

Despite the way they are implemented, all sensors in the distributed architecture do have in common that they
should send the collected features to the server, where this web site and its features are processed accordingly.
The server therefore provides different interfaces, like one that classifiers the input and one that adds the input
to the training data.

51

5. Implementation and Evaluation

This Section will show two different ways to log features used on a web site. Both will be explained in detail
and their advantages and disadvantages will be depicted.

Static Source Code Analysis

The first possibility is to do a static source code analysis of the JavaScript code embedded in the web site. The
idea is to built the Abstract Syntax Tree for each available code snippet. The Abstract Syntax Tree (AST) is a
representation of the source code in form of a tree. Each node denotes a special construct present in the source
code. For example, two of those constructs are called CallExpression and MemberExpression. The full AST
specification of JavaScript can be found on [58]. The AST representation for the source code in Listing 5.1 is
displayed in Figure 5.11.

Listing 5.1: Exemplary source code used for AST representation.
1 var txt = ’http://www.plentyoffish.com’;
2 ctx.textBaseline = "top";
3 var data = canvas.toDataURL()

This example is a great way to demonstrate the hierarchic structure of ASTs. The first line of code can be found
in the leftmost branch. The black node labeled with VariableDeclaration shows the type of this statement. As
the name suggests, it is variable declaration, with the name of the variable being txt and its content being a
string http://www.plentyofish.com.
The second line of code shows an ExpressionStatement, which is represented as the middle branch of the AST.
The interesting part here is the MemberExpression. From the AST point of view, ctx.textBaseline is
exactly the same as for example navigator.plugins or numerous other features defined in Table 4.1.
The last line of code in this example shows a FunctionCall. The interesting part of the rightmost branch
depicting this code line is the node labeled with CallExpression. This kind of node represents FunctionCalls.
In the AST representation, a FunctionCall is a combination of a MemberExpression (the left branch) and
arguments (the right branch). Since this FunctionCall does not have any arguments, the attached arguments
node does not provide any child nodes for specific arguments.

Program

VariableDeclaration

VariableDeclarator

txt 'http://www.plentyoffish.com'

ExpressionStatement

=

MemberExpression

ctx textBaseline

"top"

VariableDeclaration

VariableDeclarator

data CallExpression

MemberExpression

canvas toDataURL

arguments

Figure 5.1.: AST representation of JavaScript code.

Transforming JavaScript code into an tree-like data structure comes with the advantage of being able to iterate
through it and handle MemberExpressions and FunctionCalls accordingly. Transformation from code into an
AST representation is realized by several libraries, most notably Esprima2 and Acorn3. Both libraries convert

1The AST has been built with http://jointjs.com/demos/javascript-ast
2http://http://esprima.org/
3https://github.com/marijnh/acorn

52

http://www.plentyofish.com
http://jointjs.com/demos/javascript-ast
http://http://esprima.org/
https://github.com/marijnh/acorn

5.1. Implementation

the code into an AST that is built of JavaScript objects. Parsing the JavaScript code presented in Listing 5.1
with Esprima results in the AST representation shown in Listing 5.2.

Listing 5.2: AST representation built by Esprima.
1 {
2 "type": "Program",
3 "body": [
4 {
5 "type": "VariableDeclaration",
6 "declarations": [
7 {
8 "type": "VariableDeclarator",
9 "id": {

10 "type": "Identifier",
11 "name": "txt"
12 },
13 "init": {
14 "type": "Literal",
15 "value": "http://www.plentyoffish.com",
16 "raw": "’http://www.plentyoffish.com’"
17 }
18 }
19],
20 "kind": "var"
21 },
22 {
23 "type": "ExpressionStatement",
24 "expression": {
25 "type": "AssignmentExpression",
26 "operator": "=",
27 "left": {
28 "type": "MemberExpression",
29 "computed": false,
30 "object": {
31 "type": "Identifier",
32 "name": "ctx"
33 },
34 "property": {
35 "type": "Identifier",
36 "name": "textBaseline"
37 }
38 },
39 "right": {
40 "type": "Literal",
41 "value": "top",
42 "raw": "\"top\""
43 }
44 }
45 },
46 {
47 "type": "VariableDeclaration",
48 "declarations": [
49 {
50 "type": "VariableDeclarator",
51 "id": {
52 "type": "Identifier",
53 "name": "data"
54 },
55 "init": {
56 "type": "CallExpression",
57 "callee": {
58 "type": "MemberExpression",
59 "computed": false,
60 "object": {
61 "type": "Identifier",
62 "name": "canvas"
63 },
64 "property": {
65 "type": "Identifier",

53

5. Implementation and Evaluation

66 "name": "toDataURL"
67 }
68 },
69 "arguments": []
70 }
71 }
72],
73 "kind": "var"
74 }
75]
76 }

Esprima and Acorn both create the same output, which can be traversed from top to bottom. A library that
supports the user in this process, is Estraverse (https://github.com/estools/estraverse). It
provides two fundamental functions [59]:

• enter: Called, when a node is entered.

• leave: Called, when a node is left.

Both functions have the same signature: function(node, parent), where node is the current exam-
ined node and parent denotes its parent node.

Using these libraries enables the extraction of every relevant part of the AST. In this thesis, only two kinds
are important: FunctionCalls and MemberExpressions. To get those, one has to built the AST of a code
snippet using Acorn or Esprima and traversing the resulting AST with estraverse. Listing 5.3 shows, how
FunctionCalls and MemberExpressions can be extracted with this combination of libraries.

Listing 5.3: Parsing an AST with estraverse.
1 estraverse.traverse(ast, {
2 enter: function (node, parent) {
3 if (node.type == ’MemberExpression’) {
4 var object = node.object.name;
5 var property = node.property.name;
6 }
7 else if (node.type == ’CallExpression’ &&
8 node.callee.type == ’MemberExpression’) {
9 var object = undefined;

10 if (node.callee.object != ’undefined’) {
11 object = node.callee.object.name;
12 }
13 var property = node.callee.property.name;
14 }
15 });

Please note that the if-clause in line 10 is necessary, because FunctionCalls do not necessarily require an object
to be called on. Moreover, it would be possible to handle arguments of the FunctionCall accordingly. This part
is left out in this example. Nevertheless, parsing arguments is not a simple task because each argument can be
a MemberExpression, FunctionCall, . . . on its own.

Transforming JavaScript code into its AST and using this to extract features does have several advantages:

1. Extracting features is very simple, as shown in 5.3. In fact, this code is enough to extract MemberEx-
pressions and FunctionCalls. Note that this also includes the ones not relevant for tracking purposes.

2. Static analysis of source code is a very powerful mechanism with numerous additional possibilities, like
searching for malicious code or looking for particular code patterns.

3. Arguments can also be taken into account. This might be of interest in some cases, for example the
getContext method is usually called with one parameter “2d” when used in Canvas-Fingeprinting.

However, static analysis also comes with some disadvantages, especially when used in the context of detecting
Web-Tracking.

54

https://github.com/estools/estraverse

5.1. Implementation

1. It is difficult to catch the entire JavaScript code embedded in web sites. The reason for this is that a lot of
third-party libraries are downloading even more JavaScript files dynamically in the background. In order
to be able to parse these files, one has to intercept outgoing requests. While this is possible in browser
extensions, it’s not very easy to achieve. Moreover, JavaScript code could also be dynamically inserted
into the DOM of a web site by using the document.write method. Several other possibilities to add
JavaScript dynamically exist and catching all of them seems like a very difficult task.

2. Even if one is able to get the entire JavaScript code, there is still a problem when applying static analysis.
This technique is not capable of distinguishing whether the JavaScript code will be used or not. The issue
here is the fact that it’s not sure that all parts of the code are actually executed. It is thinkable that only
parts of them are used. Static analysis however will also extract features of unused parts of the code.

3. Building the AST and traversing it afterwards in search of relevant features can be pretty CPU-intensive,
especially if there is a lot of JavaScript code embedded in the web site. This might lead to problems
concerning the requirement to not delay the page load.

This Section showed that building ASTs from JavaScript code and using them to extract relevant, sough-after
features, is a legitimate possibility. With Acorn and Esprima, two different libraries have been presented that
make transforming JavaScript into ASTs incredibly easy. Moreover, evaluating the ASTs is a simple task,
which can be achieved by using the estraverse library.
The next Section depicts another possibility to find out features: overwriting JavaScript objects.

Overwriting JavaScript

This Section shows another possibility to log accesses of FunctionCalls and MemberExpressions of a web site:
overwriting JavaScript functions and members. At first, JavaScript’s prototype nature will be explained, since
this is fundamentally important for understanding this technique.

JavaScript’s Prototype JavaScript is an object-oriented language. However, it implements inheritance
not with classes, as most of the other object-oriented languages like Java or C++ do, but with prototypes.
There exist several methods to create an object. The most simple one, an object literal, is shown in
5.4.

Listing 5.4: Person object in JavaScript.
1 var Person = {
2 name: ’Person’
3 }

Each time this object literal is evaluated, a new object is created and initialized. Another possibility to create
objects is the keyword new. This keyword is always followed by a function invocation. Using a function
like that is referred to as constructor, which also creates and initializes a new object. For native types,
constructor functions are already defined, as depicted in Listing 5.5.

Listing 5.5: Creating native JavaScript objects with constructor functions.
1 var obj = new Object();
2 var arr = new Array();

Of course, it is also possible to define own constructor functions for initializing objects. This will be shown
later in this thesis.

Now, the focus is on JavaScript’s prototype nature. Each object in JavaScript is connected to another JavaScript
object, its prototype. The created object inherits properties from its prototype. Objects, built with object
literals as presented in Listing 5.4 do have the same prototype: Object.prototype. This means that
they inherit all properties from this prototype, for example the methods toString() and toSource().
If constructor functions are used to create objects, the prototype is the prototype of the constructor function.
For example, creating an object with var arr = new Array(); results in the prototype of arr being
Array.prototype, since Array is the constructor function.

55

5. Implementation and Evaluation

There also exists a third possibility to create objects: the Object.create() method. This method’s first
argument is the prototype that should be used for the newly created object. Listing 5.6 shows, how this method
can be utilized.

Listing 5.6: Creating objects with the Object.create() Method.
1 var proto = {
2 forename: ’Thomas’,
3 surname: ’Mueller’
4 };
5 // Create an object with ’proto’ as prototype
6 var obj1 = Object.create(prototype);
7
8 // obj inherited the ’forename’ and ’surname’ properties from the prototype
9 console.log(obj.forename); // yields ’Thomas’

10 console.log(obj.surname); // yields ’Mueller’

It’s important to stress that Object.prototype is one of the few objects that does not have a prototype
and therefore does not inherit any properties.
As already mentioned, it is also possible to write own constructor functions. This is shown in Listing 5.7. Here,
a constructor function for Person is created. This is usually referred to as a class in JavaScript. Using this
function with the new keyword creates new objects with their prototype being set to Person.prototype.

Listing 5.7: Person class in JavaScript.
1 function Person(name) {
2 this.name = name;
3 }
4
5 var p = new Person(’Tom’);

Since all objects of this class inherit the properties from Person.prototype, it is possible to change this
prototype. Listing 5.8 shows, how this can be achieved.

Listing 5.8: Changing the Person.prototype.
1 Person.prototype = {
2 sayHello: function() {
3 console.log("Hello from " + this.name);
4 },
5
6 sayGoodbye: function() {
7 console.log("Goodbye from " + this.name);
8 }
9 }

10
11 var p = new Person("Tom");
12
13 p.sayHello(); // yields "Hello from Tom"
14 p.sayGoodbye(); // yields "Goodbye from Tom"

The changes in the Person.prototype are reflected in every instance of this class.

Another important point when talking about prototypes is property access. As already stated, objects inherit
all properties from their prototype. But what happens, when a property of an object is accessed that this object
does not have. For example, let’s assume to access the non-existent property sayGoodMorning() on a
Person object. At first, the objects tries to query its own properties in search for sayGoodMorning(). If this
property can not be found, its prototype will be queried. If the prototype does not have this property, again
the prototype of the prototype will be queried. This procedure is going on until the property is found or an
object with the property being null is queried. The linked list of prototypes of objects is called prototype
chain.

Getting the prototype of an object is quite easy and can be achieved by using two different ways [60]:

1. Each object created with a constructor function has an property called proto . Although this is a
nonstandard technique, it can be used to get the object’s prototype object.

56

5.1. Implementation

2. The Object.getPrototypeOf() method that has been introduced with ECMAScript 5, is another
possibility to get the prototype. It yields the same result as the proto object.

Last but not least, it’s necessary to explain the difference between prototype and proto , since this
is something that is often misunderstood. prototype is the prototype that is used when a new object is
created. proto is an internal property of a object that points to its prototype. So consequently, the Listing
5.9 yields true:

Listing 5.9: Comparing proto and prototype.
1 var p = new Person("Tom");
2
3 p.__proto__ === Person.prototype;

To come back to the original point, this knowledge can now be applied to find out, what features are used
on a web site. Therefore, another fundamental technology of the JavaScript language is exploited. With the
Object.defineProperty(obj, prop, descriptor) method, it is possible to overwrite existing
properties of objects. The method expects the following arguments [61]:

• obj: Denotes the object on which to define the property.

• prop: The name of the property to be altered or defined.

• descriptor: The descriptor for the altered or defined property.

Descriptor is an object of itself created by the object literal notation. It has the following keys to be defined.

• configurable: true, if the behavior of this property may be changed, for example make it non-writable.
Default: false

• enumerable: true, if the property should appear when enumerating the properties of this object. Default:
false

• value: The value of the property. Default: undefined

• writable: true, if the value of this property can be changed by assigning a new value. Default: false

• get: Function conducing as the getter of this property. When there is no getter, it is undefined. The
return value of this function will be used as the value of the property. Default: undefined

• set: Function conducing as the setter for this property, or undefined, if there is no setter. The only
argument of this function is the new value of the property. Default: undefined

There exist two types of descriptors: data descriptors and accessor descriptors. The first ones are used to
define a property having a value and being writable or not writable. The second one defines the property with
a getter-setter pair of functions. A descriptor must either be a data descriptor or an accessor descriptor, not
both.

Let’s show this in a quick example. Listing 5.10 demonstrates, how the property sayHello is overwritten by
using an accessor descriptor. Since this is done on the prototype object, every instance of the class Person now
has this modified sayHello method. Since configurable is set to false, this means that this property
will not be changeable in the future. Trying so will result in an exception.
The second part in this listing shows, how an existing instance is modified. This is realized by exploiting a
data descriptor, which leads to its name property being overwritten to yield a new name.

Listing 5.10: Overwriting properties with Object.defineProperty.
1 Object.defineProperty(Person.prototype, "sayHello", {
2 configurable: false,
3 get: function() {
4 return function() {
5 return "Modified!";
6 }
7 }
8 });
9

57

5. Implementation and Evaluation

10 p.sayHello(); // yields "Modified"
11
12 // Create a new Person with name max.
13 var x = new Person("Max");
14
15 // Overwrite the ’name’ property to yield a new name
16 Object.defineProperty(x, "name", {
17 value: "My name has been overwritten"
18 });
19
20 x.name; // yields "My name has been overwritten"

Looking back on the relevant features, it is striking that all of them are either simple accesses of properties
(plugins) of certain objects (navigator) or functions, called on objects. With the functionality mentioned
before, it is possible to overwrite those functions. However, their original functionality should be the same; it is
enough to just log that this property has been accessed. Listing 5.11 demonstrates, how navigator.plug-
ins could be overwritten, but also maintain its original functionality.

Listing 5.11: Overwriting properties with Object.defineProperty and maintaining its original functionality.
1 var property = "plugins";
2 var object = navigator;
3 var original = object[property];
4 Object.defineProperty(
5 object,
6 property,
7 {
8 enumerable: true,
9 configurable: false,

10 get: function() {
11
12 console.log("navigator.plugins has been called!");
13
14 return original;
15 }
16 }
17);

Overwriting the navigator object like that leads to every access of the plugins property being logged
to the console. Of course, this is very simple example how this technique can be used. Nevertheless, this
technique can be extended to log all accesses to relevant features. In the future work, this technique will be
called poisoning.

The great advantage of this approach is that it’s applicable in browser extensions and that only features that
are actually accessed, are logged. This is a big gain compared to using the AST. However, there are also
downsides of this technique, as shown below.

1. First of all, in order to ensure wide distribution of the system, it is necessary to implemented browser
addons for each existing browser - Mozilla Firefox, Google Chrome, Apple Safari and so on. The
problem here is that the JavaScript code used to poison existing objects and their according properties
is not portable [47], which means that the extension has be be developed from scratch for each browser.

2. Secondly, trackers are able to detect such poisoning, for example by calling the Object.getOwn-
PropertyDescriptor(object, property)4 method that returns the descriptor of this prop-
erty, which can be used to check for getters or setters of the property. In Listing 5.12, the differences be-
tween the return values of the Object.getOwnPropertyDescriptor(object, property)
method of a poisoned and a non-poisoned property are demonstrated. It is clear that the property de-
scriptor of a poisoned property can easily be identified.

Listing 5.12: Exemplary use of the Object.getOwnPropertyDescriptor() method.
1 // Get the property descriptor from a poisoned property.

4https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Object/
getOwnPropertyDescriptor

58

https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor

5.1. Implementation

2 >> Object.getOwnPropertyDescriptor(navigator, "plugins")
3 >> Object { configurable: false, enumerable: true, get: .get(), set: undefined }
4
5 // Get the property descriptor for a non-poisoned property.
6 >> Object.getOwnPropertyDescriptor(navigator, "plugins")
7 >> undefined

To sum it up, two different approaches to log relevant features were presented: using the AST of JavaScript
code or overwriting JavaScript properties. Both of them are suited to solve the task. Working with ASTs
is a quite promising approach, because the AST can not only be used for this purpose, but also for several
other means like scanning for specific patterns in the source code or even alter it. However, the disadvantages
somehow outweigh the advantages. Especially the fact that catching the entire JavaScript code of web sites is
extremely difficult to realize, is a huge downside.
Overwriting or “poison” JavaScript properties is also a good candidate to solve the objective. In particular, its
simple implementation and it only logging features that really are accessed, have to be stressed out.

All in all, both variants were implemented in form of browser extensions. While the AST-based approach
seemed quited promising at the beginning, it became clear that it is incredibly hard to get all JavaScript code
of a web site using a browser extension. Moreover, not only features that are actually used by the web site
have been logged, but anyone present in the JavaScript code. This is also a big problem, because it might lead
to wrong classification. On the other hand, the approach to poison the relevant JavaScript objects worked out
very well. The developed browser extension poisons the relevant JavaScript objects like navigator, screen and
Date and logs calls to appreciable MemberExpressions and FunctionCalls. However, one challenge here was
to find out, when the collected features should be sent to the server. The naive approach is to transmit them,
when the window.onload event fires, because this is the time, when the entire page, including its content
(images, css, scripts) has been finished loading [62]. However, as it turned out, this point in time is actually
too early to use as the event that triggers the extension to send the collected features to the server. In fact, there
are still JavaScript files that are evaluated after this event fires and features accessed by these scripts would
than not be part of the transmitted data. Therefore, it became apparent that it is necessary to wait a given time
(30 seconds for example) before the features are sent to the server.

5.1.2. Data Collection

In the distributed approach used in this implementation, the sensors represent the clients. What’s missing right
now, is the server, which involves data collection and evaluation. These parts will be discussed in the following
Sections.

From a technical point of view, the server is based on a web server using flask5. Flask is a BSD licensed
microframework for Python. The web server exposes three APIs:

• /collect: Expects a POST request and stores the input in the database in order to use it as training
data.

• /classify: Also awaits a POST request with the data having the same format. But the input is
classified using the classifier of the logic/evaluation layer. The result (True/False) is sent back to the
client.

• /overview: Called via GET request. Returns an overview of the current training data available.

The web server utilizes a MySQL6 database. The scheme of this database is shown in Figure 5.2. It is slightly
different to the one presented in Figure 4.3.

The reason for this is that only JavaScript-based features were collected and therefore only two different
types of features are taken into account: MemberExpressions and FunctionCalls. Moreover, for each of those
types, one table has been created in order to be able to use the ORM library peewee7. The feature type
table is consequently dropped. Furthermore, two tables are necessary to realize the many-to-many relationship

5http://flask.pocoo.org/
6https://www.mysql.de/
7https://peewee.readthedocs.org

59

http://flask.pocoo.org/
https://www.mysql.de/
https://peewee.readthedocs.org

5. Implementation and Evaluation

Figure 5.2.: Database scheme used in the prototype implementation.

between web sites and FunctionCalls as well as web sites and MemberExpressions. In Figure 5.2, the resulting
database scheme used in the prototype implementation is depicted.

5.1.3. Logic/Evaluation

This Section focuses on the logic/evaluation layer. Section 5.1.3 will show how a suitable training data set
has been created. After that, a popular library involving several detection mechanisms is presented in Section
5.1.3. Lastly, Section 5.1.3 will concentrate on how the collected data has to be preprocessed in order to be
able to use it for training or to classify it.

Building Training Data

The detection mechanisms presented in 2.4 have in common that they need to be trained to be capable of
classifying new input. Therefore that data collection layer has to provide training data. As already discussed,
there doesn’t exist a list of web sites that are known to track their users. Fortunately, Gunes Acar, one of
the author of [40], had the same problem and was able to create a list with web sites that are guaranteed to
do Canvas-Fingerprinting. At first, its correctness has been verified using the Chameleon (see Section 3.2.1)
browser extension. After that, each web site of this list has been visited with a browser that had the sensor
developed in this thesis (which is a browser extension), installed. Therefore, when visiting a web site with this
browser, the sensor sends the relevant features to a specific interface provided by the server. The features for
each web site are then stored in the database. The list also contains web sites that are considered to not track
their users. Their features have also been extracted and saved in the data collection layer. The result is a set of
training data, consisting of tracking web sites and not tracking web sites, along with their features, which is a
perfect fit for training classifiers.

In order to automate this process of getting training data, Selenium has been used. With this, instrumenting
the browser to visit one web site after another can be achieved. Listing 5.13 shows, how Selenium can be used
to visit one web site after another with a Firefox browser that has installed a specific extension.

Listing 5.13: Visiting a list of web sites with a browser containing a JavaScript sensor.
1 from selenium import webdriver
2 import time
3
4 TIMEOUT = 15
5

60

5.1. Implementation

6 fp = webdriver.FirefoxProfile()
7 fp.add_extension(’/path/to/browser_extension/firevest/@firevest-0.0.1.xpi’)
8
9 browser = webdriver.Firefox(firefox_profile=fp)

10
11 with open(’web sites.txt’, ’r’) as file:
12 sites = file.readlines()
13
14 number_of_sites = len(sites)
15 count = 1
16
17 for site in sites:
18 print("Visiting {}".format(site.rstrip()))
19 print("This is {} of {}".format(count, number_of_sites))
20 browser.set_page_load_timeout(30)
21 try:
22 browser.get(site)
23 except:
24 print("Timeout when visiting: " + site)
25
26 # Wait 60 seconds before visiting the next web site
27 time.sleep(60)
28
29 count += 1
30
31 browser.close()

Scikit-Learn

The detection mechanisms presented in Section 2.4 are among the most popular ones, because they are rather
easy to implement, but still yield very good results and are great in terms of performance. Therefore, it
is not surprising that they are implemented in several libraries for numerous programming languages. For
example, just for Bayesian classifiers exist a wide range of implementations like Scala8, JavaScript9 or the
more traditional Java10. Another common possibility is to focus on the R programming language (http://
www.r-project.org/) that was explicitly designed for statical computing and consequently implements
a wide range of different detection mechanisms. However, R has been developed with a focus on statical
computing and graphics [63]. Therefore, its other areas of application are somewhat limited.
Another very interesting project in the field of detection mechanisms is the Python library scikit-learn [64]. It
is built upon the well-known libraries NumPy, SciPy and matplotlib and is completely open source. It provides
a number of diverse tools from the fields of data mining and data analysis, including [64]:

• Classification (nearest neighbors, support vector machines, random forest, extra trees, . . .)

• Regression (ridge regression, Lasso, . . .)

• Clustering (k-Means, spectral clustering, mean-shift, . . .)

• Dimensionality reduction (feature selection, . . .)

• Model selection (grid search, cross validation, . . .)

• Preprocessing (feature extraction, preprocessing, . . .)

It becomes clear that scikit-learn offers everything the logic/evaluation layer requests. Moreover, Python is
a general-purpose programming language and using it assures that every part of the evaluation layer can be
implemented without boundaries imposed by the programming language.

The prototype developed in this thesis uses the implementation of the DecisionTree, Naı̈ve Bayes and Extra-
Trees of scikit-learn.

8https://github.com/arnaudleg/naive-bayes-classifier-scala
9https://github.com/ttezel/bayes

10https://github.com/ptnplanet/Java-Naive-Bayes-Classifier

61

http://www.r-project.org/
http://www.r-project.org/
https://github.com/arnaudleg/naive-bayes-classifier-scala
https://github.com/ttezel/bayes
https://github.com/ptnplanet/Java-Naive-Bayes-Classifier

5. Implementation and Evaluation

Data Preparation

Scikit-learn requires the data to have a specific format to be of use. Each web site has to be transformed into
this format, so that scikit-learn is capable of understanding the data. In the following, it will be explained how
the data stored in the data collection layer can be transformed into the required format.

The relevant features defined in Section 4.3.1 can be arranged in a fixed order. Let’s assume the fixed order of
the feature is the same they appear in Table 4.1. This ordering is shown in Listing 5.14.

Listing 5.14: Fixed ordering of relevant features.
1 ordered_features = [
2 FunctionCall(object=’HTMLCanvasElement’, property=’toDataURL’),
3 FunctionCall(object=’HTMLCanvasElement’, property=’getContext’),
4 FunctionCall(object=’CanvasRenderingContext2D’, property=’fillText’),
5 FunctionCall(object=’CanvasRenderingContext2D’, property=’strokeText’),
6 FunctionCall(object=’CanvasRenderingContext2D’, property=’getImageData’),
7 FunctionCall(object=’WebGLRenderingContext’, property=’getParameter’),
8 FunctionCall(object=’WebGLRenderingContext’, property=’getSupportedExtensions’),
9 FunctionCall(object=’Date’, property=’getTimezoneOffset’)

10 MemberExpression(object=’navigator’, property=’plugins’),
11 MemberExpression(object=’navigator’, property=’userAgent’),
12 MemberExpression(object=’navigator’, property=’language’),
13 MemberExpression(object=’navigator’, property=’cpuClass’),
14 MemberExpression(object=’navigator’, property=’platform’),
15 MemberExpression(object=’navigator’, property=’doNotTrack’),
16 MemberExpression(object=’screen’, property=’height’),
17 MemberExpression(object=’screen’, property=’width’),
18 MemberExpression(object=’screen’, property=’colorDepth’),
19 MemberExpression(object=’window’, property=’sessionStorage’),
20 MemberExpression(object=’window’, property=’openDatabase’),
21 MemberExpression(object=’window’, property=’localStorage’),
22 MemberExpression(object=’window’, property=’ActiveXObject’),
23 MemberExpression(object=’window’, property=’indexedDB’),
24 MemberExpression(object=’window’, property=’devicePixelRatio’),
25 MemberExpression(object=’window’, property=’innerWidth’),
26 MemberExpression(object=’window’, property=’innerHeight’),
27 MemberExpression(object=’HTMLElement’, property=’offsetHeight’),
28 MemberExpression(object=’HTMLElement’, property=’offsetWidth’),
29]

Consequently, each web site can be transformed into a list of boolean values, where each value states, if the fea-
ture at this index is present on the web site or not. This representation of a web site will be called binary vector.
So if for example the value at index 0 in the binary vector of a web site is 1, the feature at index 0 in the ordered
feature list (FunctionCall(object=’HTMLCanvasElement’, property=’toDataURL’)) is
present on the web site.

Let w be a web site with a list of features denoted as features, which is a property of w. The binary vector
for w is then built11 as shown in Listing 5.15.

Listing 5.15: Pseudo code for building the binary vector of a web site.
1 def create_binary_vector(w):
2 relevant_features = get_ordered_features()
3 vector = list()
4 for index, feature in relevant_features:
5 if feature in w.features:
6 vector[index] = 1
7 else:
8 vector[index] = 0
9 return vector

Let’s assume, the features of a web site are the ones shown in Listing 5.16.

11This code listing is written in pseudo code being loosely based on Python syntax.

62

5.2. Evaluation and Methodology

Listing 5.16: Exemplary feature set of a fictional web site.
1 features = [
2 FunctionCall(object=’HTMLCanvasElement’, property=’toDataURL’),
3 FunctionCall(object=’HTMLCanvasElement’, property=’getContext’),
4 FunctionCall(object=’CanvasRenderingContext2D’, property=’fillText’),
5 FunctionCall(object=’Date’, property=’getTimezoneOffset’)
6 MemberExpression(object=’navigator’, property=’plugins’),
7 MemberExpression(object=’navigator’, property=’userAgent’),
8 MemberExpression(object=’navigator’, property=’language’),
9 MemberExpression(object=’HTMLElement’, property=’offsetHeight’),

10 MemberExpression(object=’HTMLElement’, property=’offsetWidth’),
11]

Listing 5.15 shows, how the binary vector for this fictional web site can be calculated. The result is presented
in Listing 5.17.

Listing 5.17: Binary vector of the fictional web site.
1 binary_vector = [1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1]

Scikit-learn heavily relies on this representation of data. In fact, the training data also has to be structured in
that way. Training the three detection mechanisms presented in Section 2.4 is done by calling the fit(X,
y) method [65, 66, 32], which expects two values:

• X: A list of lists, where each inner list is a binary vector of a web site.

• y: A list containing classes. In this case, only boolean values are considered, since the only classes are
tracking and not tracking. Therefore, this list contains boolean values. The index of the boolean value
denotes the class of the binary vector in X at the same index. For example, if y[0] == 1, the web site
with the binary vector at X[0] is marked as tracking the users.

Binary vectors play an essential role in scikit-learn, because they are not only used for training but also for
classifying new input. Therefore, if a new web site has to be classified using one of the trained classifiers, this
web site’s binary vector is generated and passed in the classifier’s predict(X) method as input. The return
value of this method call is a class; tracking or not-tracking.

5.2. Evaluation and Methodology

The results that were collected with the prototype system will be evaluated in this Section. Therefore, all
tested classifiers will be presented. Moreover, four different test cases will be demonstrated and it will be
explained, how they are designed. After that, the performance of every classifier for every test will be shown
and analyzed.

For the purpose of evaluating the classifiers, it is inevitable to have a set of training data. Section 5.1.3 dis-
cussed in detail how the training data has been collected. This set constitutes the basis of the whole assessment
process. The entire training data consists of two distinct sets: the one that involves all web site that are tracking
their users (tracking set) and the one with web sites that are considered to not track their users (not-tracking
set).

Overall, the training data consist of 82 different web sites, with 41 being marked as tracking and 41 as not-
tracking. The tracking set has been collected with the help of Gunes Acar, who offered a list of web sites that
are using Canvas-Fingerprinting. The not-tracking set is built of randomly selected sites among the Alexa Top
100. The whole set of training data is illustrated in Section A.3.

At the moment, there are four different classifiers implemented [65, 66, 32].

• Naı̈ve Bayesian Classifier12

12The concrete implementation uses a Gaussian Naı̈ve Bayes.

63

5. Implementation and Evaluation

• DecisionTree

• ExtraTrees

• Aggregator

To measure the performance of a classifier, four different test have been designed. They differ in the web
sites used for training and classifying and in their respective features. These are relevant for both training and
classifying and a different set of features will result in a different outcome. At the beginning of each test, the
set of training data is split into two separate sets: test set and training set. The employed strategy is called
EqualSplit. Here, the tracking set and not-tracking set are each split into two equally sized parts, where the
first part of each resulting set belongs to the training set and the second part to the test set. This splitting
strategy makes sure that always the same web sites are used for training and for testing. This is necessary for
comparing the results of the various classifiers. The resulting sets are depicted in Sections A.2 and A.1. As it
becomes clear, there are 40 web sites used for training and 42 web sites are tested with the trained classifier.

Moreover, two different types of feature sets have been identified.

• With Canvas-Fingerprinting: This feature set contains all features presented in Table 4.1. Every one of
them is used for training and classifying.

• Without Canvas-Fingerprinting: In this feature set, features that are considered to be highly relevant only
for Canvas-Fingerprinting, are left out. This set is used to determine the success rate of the classifiers
for Browser-Fingerprinting only.

Table 5.1 shows the features that are not considered in this feature set. The ignored ones are features that are
specific to Canvas-Fingerprinting and not to Browser-Fingerprinting.

Table 5.1.: Features that are left out in the set without Canvas-Fingerprinting-related features.

Type Object Property

FunctionCall HTMLCanvasElement toDataURL
FunctionCall HTMLCanvasElement getContext
FunctionCall CanvasRenderingContext2D fillText
FunctionCall CanvasRenderingContext2D strokeText
FunctionCall CanvasRenderingContext2D getImageData
FunctionCall WebGLRenderingContext getParameter
FunctionCall WebGLRenderingContext getSupportedExtensions

After the training and test sets are created, the first one is used to train the classifier and the second one is used
to evaluate its performance. Therefore, each web site from the test set is classified. After that, the result of the
classification is compared with the predefined class. There are three different outcomes of this comparison.

• Correct: The result predicted by the classifier is the same as the predefined one.

• False-Positive: The classifier predicted the web site to track users, but in fact it is not.

• False-Negative: The classifiers predicted the web site to belong to the not-tracking set, but it is part of
the tracking set.

To sum it up, one test is performed in the following order.

1. Split the training data into training set and test set using the splitting strategy.

2. Train the appropriate classifier using the training set.

3. Classify each web site of the test set with the trained classifier.

4. Compare the predicted class with the actual class of the web site.

Table 5.2 demonstrates all tests that are performed in this Section. As one can see, this results in a total of
eight tests, two tests for each classifier. They differ in the feature sets, used for training and classifying.

64

5.3. Measurements

Table 5.2.: Overview of all performed tests.

Classifier Splitting Strategy Canvas-Fingerprinting

Naı̈ve Bayes EqualSplit 3
Naı̈ve Bayes EqualSplit 7
DecisionTree EqualSplit 3
DecisionTree EqualSplit 7
ExtraTrees EqualSplit 3
ExtraTrees EqualSplit 7
Aggregator EqualSplit 3
Aggregator EqualSplit 7

The following Sections will present the outcome of the tests for each classifier. As already stated, two tests will
be executed for each classifier, one with all features to be considered, and one with the Canvas-Fingerprinting-
related ones ignored.

5.3. Measurements

5.3.1. Naı̈ve Bayesian Classifier

All Features

This test considers all features. The results are shown in Table 5.3. As one can see, only two web sites
from the test set are classified incorrectly. The web sites http://www.imgur.com/ and http://www.
aliexpress.com are classified as tracking, but, in fact, they are not tracking their users. Nevertheless, only
two out of 42 are misclassified, which yields a success rate of 95%.

Table 5.3.: Bayes EqualSplit with all features.

URL False-
Positives

False-
Negatives

http://imgur.com/ 3
http://www.aliexpress.com/ 3
Summary 2 0

Without Canvas-Fingerprinting-related Features

In this test, Canvas-Fingeprinting-related features are not taken into account. The outcome differs critically to
the test shown in Section 5.3.1. This time, there are seven False-Positives and three False-Negatives, which
equals a total of ten web sites not being misclassified. Table 5.4 illustrates the performance. Having misclas-
sified ten out of 42 web sites results in a success rate of only 76%.

The increasing number in misclassified web sites is not surprising considering the features that are incredibly
strong indicators for tracking are not considered here. Moreover, it strikes that the False-Positives of the last
test presented in Section 5.3.1 are also misclassified here. This means that those two web sites can not be
classified correctly although the features have changed. This leads to the assumption that misclassification is
not related to the features that have been left out.

65

http://www.imgur.com/
http://www.aliexpress.com
http://www.aliexpress.com
http://imgur.com/
http://www.aliexpress.com/

5. Implementation and Evaluation

Table 5.4.: Bayes EqualSplit without Canvas-Fingerprinting-related features.

URL False-
Positives

False-
Negatives

http://www.sohu.com/ 3
http://imgur.com/ 3
https://www.pinterest.com/ 3
http://instagram.com/ 3
https://www.paypal.com/de/
webapps/mpp/home

3

http://www.aliexpress.com/ 3
http://www.alibaba.com/ 3
http://us.webnode.com/ 3
http://www.webnode.cz/ 3
http://www.pof.de/ 3
Summary 7 3

5.3.2. Decision Tree

The Decision Tree has been built with the following parameters [32]:

• criterion: gini
This is the function that is used to measure the quality of a split (the splitting strategy).
Options are gini (Gini Index) and entropy for (Information Gain).

• splitter: best
Strategy utilized to choose the split at each node.
Options are best (select the best split) and random (select the best random split).

The Decision Tree implementation of scikit-learn offers more parameters [32] than the ones listed above, but
those were the only ones being considered. For the other parameters, the default values have been taken. Of
course, optimizing the parameters might lead to an improved success rate of the classifier. However, due to
the sheer amount of possibilities, this has not been done here. This is part of possible improvements and will
be explained in Section 6.2.

All Features

This test considers all features to be relevant. Its outcome is extremely accurate, resulting in zero misclassified
web sites and consequently yielding a success rate of 100%.

One great thing about Decision Trees is the fact that they can be visualized in order to ease interpretation. In
Figure 5.3, one can see the visualized Decision Tree after it has been trained. This representation is great for
understanding, how Decision Trees work.

Table 5.5.: Feature importances for Decision Tree with all features.

Feature Importance

openDatabase 0.818181818182
fillText 0.181818181818

Interpreting this visualization is very straight forward. Each node consists of three parts: The first part is the
criteria that is used to determine the next child node. Since only binary values are considered here, this means
that if the feature mentioned is not present, its value is zero. If the condition yields true, the left child node
is taken, else the right child node. The second part of the node shows the value calculated by the splitting

66

http://www.sohu.com/
http://imgur.com/
https://www.pinterest.com/
http://instagram.com/
https://www.paypal.com/de/webapps/mpp/home
https://www.paypal.com/de/webapps/mpp/home
http://www.aliexpress.com/
http://www.alibaba.com/
http://us.webnode.com/
http://www.webnode.cz/
http://www.pof.de/

5.3. Measurements

����������������������
����������

������������

�����������������
���������������������

������������

�������������
������������

�������������������

�������������
������������

�������������������

�������������
�����������

�����������������

Figure 5.3.: Decision Tree visualization for Equal-Split with all features.

strategy used. The part labeled with “samples” shows the total number of web sites of this node. Leaf nodes
however do not contain the condition but instead, they denote the classes. This is done in the part labeled with
“value”. This part shows, how many web sites belong to what classes. Again, only boolean data is considered.
Therefore, the value is an array of two, with the number at the index 0 representing the total count of web sites
classified as not-tracking. The number at index 1 denotes the total count of web sites classified as tracking.
For example, value = [20. 0.] means that 20 web sites are not tracking and zero are classified as tracking.
Having this knowledge, the image illustrated in Figure 5.3 is simple to interpret. The first split is done using
the feature openDatabase. The training set is consequently divided into two parts: one in which all web
sites use this feature and one with all web sites not using this feature. The choice of openDatabase is
not surprising, because this is one of the features, almost every tracking web site uses. Therefore, it can
divide the training set in two almost equally sized subsets. The second split is done in the set containing
openDatabase and using the feature fillText. Again, this results in two subsets with web sites using this
feature and web sites not using this feature. To sum it up, web sites accessing openDatabase are immediately
classified as tracking, else the next feature of importance is fillText. If this feature is present on the web site, it
is considered to track, otherwise, its class is not-tracking.

Scikit-learn provides a functionality to print out the feature importances. To preserve the overall view, only
features with an importance unequal to zero are listed. Table 5.5 shows the feature importances for this test
case. The features depicted here are also the ones used as splitting features.

Without Canvas-Fingerprinting-related Features

Here, the relevant features do not contain the Canvas-Fingerprinting-related ones. The result reminds one of
the Naı̈ve Bayesian classifier’s outcomes. The total number of misclassified web sites is increasing if not all
features are considered. The result of this test is shown in Table 5.6. As one can see, there is a total of two
False-Positives and four False-Negatives, which sums up to six misclassified web sites. This still means a
success rate of 86%. Interestingly, the Decision Tree has a higher number of False-Negatives - it tends to
predict web sites to not track, although they are tracking. This differs from the Naı̈ve Bayesian classifier, who
yields a higher number of False-Positives.

The visualized Decision Tree is illustrated in Figure 5.4; its feature importances as shown in Table 5.7. Com-
pared to the one considering all features, this tree became more complex and more splits were necessary.

Table 5.7 shows the feature importances of this tree. The best feature is still openDatabase with an impor-
tance of ⇡ 0.82. This is a very high value, especially when compared with the importances of the next features
devicePixelRatio (⇡ 0.08), localStorage (⇡ 0.07) and language (⇡ 0.04).
Since there are now four splits necessary, the tree becomes bigger and more complex. Figure 5.4 shows exactly,

67

5. Implementation and Evaluation

Table 5.6.: Results for the Decision Tree without Canvas-Fingerprinting-related features.

URL False-
Positives

False-
Negatives

https://www.pinterest.com/ 3
http://stackoverflow.com/ 3
https://
robertsspaceindustries.com/

3

http://us.webnode.com/ 3
http://www.webnode.cz/ 3
http://www.pof.de/ 3
Summary 2 4

Table 5.7.: Feature importances for DecisionTree without Canvas-Fingerprinting-related features.

Feature Importance

openDatabase 0.818181818182
devicePixelRatio 0.0761904761905
localStorage 0.0666666666667
language 0.038961038961

how the features are taken as splitting features one after another, creating the final Decision Tree.

5.3.3. ExtraTrees

The following parameters have been used in the tests [66]:

• n estimators: 20
This parameter determines the number of trees.
Default value: 10

• criterion: gini
Again, this specifies the splitting strategy.
Options are gini (Gini Index) and entropy for (Information Gain).

• max features: auto
Determine the number of features that are considered when the best split is searched for.
Options are:

– integer value: max features are considered at each split.

– float value: max features is a percentage; at each split, int(max features · n features)13 are
considered.

– “auto”: max features =
p
n features

– “sqrt”: max features =
p
n features

– “log2”: max features = log2 n features

– None: max features = n features

The scikit-learn implementation of the ExtraTrees classifier provides a lot more parameters [66], but due to
the incredible high amount of possibilities, those are set to their default values. Tweaking them can however
improve the detection rate of the classifier. This will also be mentioned in Section 6.2.

13n features denotes the total number of features used for building the classifier.

68

https://www.pinterest.com/
http://stackoverflow.com/
https://robertsspaceindustries.com/
https://robertsspaceindustries.com/
http://us.webnode.com/
http://www.webnode.cz/
http://www.pof.de/

5.3. Measurements

����������������������
����������

������������

������������������
���������������������

������������

�������������
������������

�������������������

�������������
������������

�������������������

��������������������������
���������������������

�����������

�������������
�����������

�����������������

����������������������
���������������������

�����������

�������������
�����������

�����������������

�������������
�����������

�����������������

Figure 5.4.: Decision Tree visualization for Equal-Split without Canvas-Fingerprinting-related features.

It is important to mention that due to the randomized creation of ExtraTrees, is is not guaranteed to get the
same results for a test, even if the same web sites are used for training. The reason for this lies in the way
ExtraTrees are built up. They are effectively not just one tree but a complete forest, with each tree being built
with randomly selected splitting features. Because of this randomization, the resulting forest of trees is almost
always different, which might lead to varying outcomes.

All Features

This test considers all features and the training data are split using the Equal-Split strategy. The results are
really good with only one web site being misclassified. The outcome is illustrated in Table 5.8. With only
one False-Positive, the success rate is 98%. This means that the ExtraTrees classifier is slightly behind the
DecisionTree in this test.

Table 5.8.: Results for ExtraTrees with all features.

URL False-
Positives

False-
Negatives

http://www.microsoft.com/de-
de/default.aspx

3

Summary 1 0

69

http://www.microsoft.com/de-de/default.aspx
http://www.microsoft.com/de-de/default.aspx

5. Implementation and Evaluation

Without Canvas-Fingerprinting-related Features

This is where things get usually more interesting. As it has been the case in all of these tests before, the number
of misclassified web sites is higher. This is also true for the ExtraTrees classifier. However, this test produces
five misclassified web sites and all of them are False-Negatives. Nevertheless, a success rate of 88% is still a
very strong result.

Table 5.9.: Results for ExtraTrees without Canvas-Fingerprinting-related features.

URL False-
Positives

False-
Negatives

https://
robertsspaceindustries.com/

3

http://us.webnode.com/ 3
http://www.webnode.cz/ 3
http://www.cheatsheet.com/ 3
http://www.pof.de/ 3
Summary 0 5

An interesting aspect is that, just like it has been the case with DecisionTrees, ExtraTrees also seem to have
problems to detect tracking web sites when Canvas-Fingerprinting-related features are left out. In fact, all
False-Negatives of DecisionTrees appear in the False-Negatives of ExtraTrees. Therefore, the ExtraTrees does
not yield any False-Positives like the DecisionTree which makes him overall superior to the DecisionTree, at
least in this test.

5.3.4. Aggregator

This classifier is not based on a new technique in the field of Data Mining or similar topics, but is rather a
combination of the three classifiers already presented. The idea is to combine the results of each of those
classifiers and mix them together. The final result is the one that has the absolute majority. This means that
for example, if the DecisionTree and ExtraTrees predict a web site to track, but the Naı̈ve Bayesian classifier
states that it is not tracking, the Aggregator will predict the web site to track the users because this result is in
the majority. Right now, every classifier is considered to be equally important. Another possibility is to weigh
classifiers, such that one classifier is more important than the others. This approach seems reasonable, if it
turns out that one classifier is far superior to the others.

All Features

This test utilizes all features. There are no misclassified web sites in this test. The reason for this is that
all three core classifiers performed really well and the Aggregator is able to adapt to this great performance.
Although the ExtraTrees yielded one False-Positive and the Naı̈ve Bayes produced two False-Positives, the
Aggregator was still able to correctly classify all webs sites, because of it taking the majority result of the core
classifiers. This means a success rate of 100%.

Without Canvas-Fingerprinting-related Features

Again, this is the more interesting test. The Canvas-Fingerprinting-related features are not taken into account.
The outcome of the Aggregator is shown in 5.10.

Due to the nature of this classifier, the outcome has actually been clear even before the test has been executed.
When a web site is misclassified by at least two of the other classifiers, the Aggregator will also fail to classify
it correctly. This is exactly what happens for example to https://robertspaceindustries.com/.

70

https://robertsspaceindustries.com/
https://robertsspaceindustries.com/
http://us.webnode.com/
http://www.webnode.cz/
http://www.cheatsheet.com/
http://www.pof.de/
https://robertspaceindustries.com/

5.3. Measurements

Table 5.10.: Aggregator EqualSplit without Canvas-Fingerprinting-related features.

URL False-
Positives

False-
Negatives

https://www.pinterest.com/ 3
https://
robertsspaceindustries.com/

3

http://us.webnode.com/ 3
http://www.webnode.cz/ 3
http://www.pof.de/ 3
Summary 1 4

Although the Naı̈ve Bayes is able to predict the correct class, the other two classifiers fail in doing so. Con-
sequently, the Aggregator also fails. To sum it up, the Aggregator fails in five cases, where one web site is
a False-Positive and four web sites are False-Negatives. Five misclassified web sites out of a total of 42 web
sites leads to a success rate of 88%.

71

https://www.pinterest.com/
https://robertsspaceindustries.com/
https://robertsspaceindustries.com/
http://us.webnode.com/
http://www.webnode.cz/
http://www.pof.de/

6. Discussion

The last Chapter presented the measurements of the classifiers. Section 6.1 will discuss those measurements
and evaluate them in detail, beginning with differences in the training data. Moreover, the outcomes of all
classifiers using the EqualSplit strategy will be compared with each other in Section 6.1.2. Furthermore,
Section 6.1.3 will illustrate a second splitting strategy, which is used to measure the quality of the results of
the EqualSplit. In Section 6.2, possible improvements to enhance the detection rates of the classifiers will be
elucidated.

6.1. Discussion and Interpretation

6.1.1. Differences in the Training Data

As already mentioned, the system relies on the assumption that web sites from the tracking set and from the
not-tracking set use different features. This proposition will be tested by examining what features are used in
the tracking and in the not-tracking sets. Table 6.1 presents all features1 along with the number of occurrences
in the respective set.

This overview is really interesting and allows worthwhile conclusions at a first glance. Firstly, the features
toDataURL, getContext, fillText, getImageData, getParameter and getSupportedEx-
tensions, which all happen to be FunctionCalls, are almost exclusively found on web sites from the tracking
set. Moreover, these features are considered to be only relevant in Canvas-Fingerprinting. Interestingly, the
feature strokeText is not used on any web site at all. Since this seemed to be suspicious, it has been
verified that the sensor correctly detects the usage of this feature, in order to rule out the possibility that
this is the sensor’s fault. There are other interesting features almost exclusively used in the tracking set,
for example openDatabase, indexedDB or doNotTrack. The presence of those features seems to be a
strong indicator that the web site is tracking their users. Since a lot of the strong features are almost exclusively
related to Canvas-Fingerprinting, a second test with these features being ignored is executed. This should shed
light on the classifier’s capability to detect Browser-Fingerprinting.

However, some features seem to be no hint for the classification of the web site. For instance, the features
userAgent, height, width or ActiveXObject are used in both sets frequently. This fact leads to the
assumption that the presence of them is not a decisive factor in the classification of the web site.

6.1.2. EqualSplit Results

Section 5.3 demonstrated the outcomes of the tests using EqualSplit. To summarize, the overall performance
of the different classifiers for all tests performed are presented in Table 6.2.

As this Table shows, the classifiers really excel when all features were taken into account. Especially the
ExtraTrees and Decision Tree performed really well and were able to predict the right class for all 42 tested
web sites or yielded only one misclassified web site. But also the Naı̈ve Bayesian classifier achieved results
close to the two tree-based classifiers with only two False-Positives.

If Canvas-Fingerprinting-related features were removed, the number of misclassified web sites increased for
all classifiers. Nevertheless, this behavior is absolutely understandable because those features are the ones

1For simplicity reasons, the object of features are left out. The interested reader is advised to have a look at Table 4.1 which shows
the features with both, object and property.

72

6.1. Discussion and Interpretation

Table 6.1.: Occurrences of features in the tracking and not-tracking sets.

Feature (property only) Tracking occurrences (41 in
total)

Not Tracking occurrences
(41 in total)

toDataURL 39 0
getContext 40 7
fillText 39 0
strokeText 0 0
getImageData 2 0
getParameter 2 0
getSupportedExtensions 2 0
getTimezoneOffset 40 16
plugins 41 26
userAgent 41 37
language 41 19
cpuClass 34 3
platform 41 25
doNotTrack 35 3
height 41 30
width 41 30
colorDepth 41 26
sessionStorage 34 13
openDatabase 29 0
localStorage 38 26
ActiveXObject 31 31
indexedDB 29 0
devicePixelRatio 23 15
innerWidth 28 18
innerHeight 28 21
offsetHeight 40 30
offsetWidth 39 30

which are almost guaranteed to be only used by web sites that are tracking their users. The reason for this lies
in the way Canvas-Fingerprinting functions. If someone wants to apply Canvas-Fingerprinting, he has only
very few options to do so. It is necessary to use the feature toDataURL, which enables the extraction of
the data from the canvas. Also, the getContext method needs to be utilized, because it provides a context
element which can be used for drawing. These very strong dependencies on certain features lead to them being
an incredibly strong indicator for Canvas-Fingerprinting. The Decision Tree shown in Figure 5.3 elucidates
this. The second splitting feature right after openDatabase was fillText. Web sites which are using
both of them are automatically considered to track their users.

Browser-Fingeprinting is a more general technique. The difference to Canvas-Fingerprinting lies in the fea-
tures. The reason for it being not as accurately classified as Canvas-Fingerprinting is that there are no com-
pletely typical features for it. However, there exist several features, which turned out to be almost exclusively
used on tracking web sites but are not considered to be related to Canvas-Fingerprinting, for example open-
Database and indexedDB. The presence of them is a good indication, but it alone is not sufficient to
classify a web site as tracking. The problem is that a lot of features that can be used in Browser-Finger-
printing are totally legit and are in fact used by a lot of web sites for benign reasons. For example, calls to
the screen.height and screen.width MemberExpressions are no hint for tracking or not-tracking.
This one is frequently used for determining the screen resolution, which is necessary to display the web site
correctly. This dual use makes identifying the presence of Browser-Fingerprinting rather complex. Still, the
classifiers performed really well, even when strong Canvas-Fingerprinting-related features were left out. Es-
pecially the ExtraTrees and Aggregator produced success rates of 88%, even in the more difficult test with not

73

6. Discussion

Table 6.2.: Summary of the performed tests using EqualSplit.

Classifier Test False-Positives False-
Negatives

Correct Correct (in %)

Aggregator With Canvas 0 0 42 100%
Without Can-
vas

1 4 37 88%

Bayes With Canvas 2 0 40 95%
Without Can-
vas

7 3 32 76%

Decision Tree With Canvas 0 0 42 100%
Without Can-
vas

2 4 36 86%

ExtraTrees With Canvas 1 0 41 98%
Without Can-
vas

0 5 37 88%

all features being considered. This is a clear sign that detecting Browser-Fingerprinting is possible.

The web pages http://www.pof.de, http://us.webnode.com/ and http://www.webnode.
cz/ are really interesting ones, because those were misclassified by all classifiers when Canvas-Fingerprinting-
related features were not taken into account. This is worth examining in detail. Obviously, the last two pages
seem to be extremely similar, judging from the URL and as Table 6.3 demonstrates, they do in fact use the
same features.

Table 6.3 shows all features of the three web sites of interest. In the following, it will be analyzed, why those
web sites are misclassified. The easiest way to do this is by using the Decision Tree classifier, because of
the possibility to visualize it. The visualization helps in comprehending the classification process. This is
a great advantage to the other classifiers. Using the Decision Tree classifier demonstrated in Figure 5.4, the
classification of the web page http://www.pof.de is performed.
The first feature of interest is openDatabase. The examined web site does not utilize this feature, so
consequently the left child node is taken. Here, the relevant feature is language. This feature is in fact used,
which leads to the right child node being visited next. In this node, the devicePixelRatio is the feature
of interest. Since it is not present on the web site, the left child node is picked next. This is actually a leaf
node, which results in the class of the page being not-tracking.
As Table 6.3 shows, the other two web site are similar concerning the above mentioned features. This means
that all those web sites are misclassified in the Decision Tree, because of the combination of the features
openDatabase, language and devicePixelRatio.

This example shows the difficulties when classifying Browser-Fingerprinting for at least three misclassified
pages. Unfortunately, the other classifiers - Naiı̈ve Bayes and ExtraTrees - are more complex to analyze,
because they don’t provide such a helpful visualization. The ExtraTrees classifier for example consists of a
whole set of such Decision Trees.

In summary, the Aggregator can be considered the best classifiers among all tested ones with a success rate of
100% for Canvas- and 88% for Browser-Fingerprinting. The second best ones were ExtraTrees and Decision
Trees, whose results are almost as good as the ones from the Aggregator. Especially the Decision Tree’s
performance is somewhat surprising, considering the fact that it is an incredibly simple classifier. Naı̈ve Bayes
was also very good when all features were taken into account, but showed difficulties with detecting Browser-
Fingerprinting only.

74

http://www.pof.de
http://us.webnode.com/
http://www.webnode.cz/
http://www.webnode.cz/
http://www.pof.de

6.1. Discussion and Interpretation

Table 6.3.: Feature of the examined web sites.

Feature http://www.pof.
de

http://us.
webnode.com/

http://www.
webnode.cz/

getTimezoneOffset 3 3 3
plugins 3 3 3
userAgent 3 3 3
language 3 3 3
cpuClass 7 7 7
platform 3 3 3
doNotTrack 7 7 7
height 3 3 3
width 3 3 3
colorDepth 3 3 3
sessionStorage 7 7 7
openDatabase 7 7 7
localStorage 7 7 7
ActiveXObject 3 7 7
indexedDB 7 7 7
devicePixelRatio 7 7 7
innerWidth 3 7 7
innerHeight 3 7 7
offsetHeight 3 3 3
offsetWidth 3 3 3

6.1.3. RandomSplit Results

The last Section focused on the EqualSplit strategy, which ensures that always the same web sites are used for
training and testing. While this strategy is great for comparing different classifiers, it’s also not completely
representative for the real world. The problem here is that the training set and test set can contain certain
peculiarities that are only present in those sets. Therefore, tackling this problem is important. For this purpose,
a new strategy called RandomSplit is introduced. This strategy splits the tracking web sites and not-tracking
web sites into two equally sized parts. This time, the web sites belonging to the training and test sets are chosen
randomly. Therefore, the resulting sets are different for each execution. Please note that the nature of this way
of splitting makes it not suitable to compare different classifiers, since in each execution, different web sites
are used for training and testing. This new way of creating a training and test set is used to implement a further
test for each classifier. The test is performed as follows:

1. Split the training data into a training and a test set using the RandomSplit function.

2. Train the classifier with the training set.

3. Classify each web site in the test set with the trained classifier.

4. Mesmerize the False-Positives, False-Negatives and correct ones.

5. Repeat step one to four 100 times.

The above mentioned test is executed for each classifier. The aggregated results were used to calculate the
average values for False-Positives, False-Negatives and correct ones. Moreover, the standard deviation for
each of the possible outcomes was computed. The standard deviation is considered to be the average scatter
around the mean values.

Table 6.4 demonstrates that the test results for the EqualSplit are neither extremely good nor extraordinary bad.
Overall, they are very similar to the results of the EqualSplit. This is very good news, because this means that
the results summarized in Section 6.1.2 are sound and they do represent the whole training data. Moreover,
the standard deviations show that the dispersion of the values is within the scope. In fact, the highest deviation

75

http://www.pof.de
http://www.pof.de
http://us.webnode.com/
http://us.webnode.com/
http://www.webnode.cz/
http://www.webnode.cz/

6. Discussion

Table 6.4.: Summary of the performed tests using RandomSplit.

Test False-Positives False-Negatives Correct
Avg � Avg � Avg �

Aggregator With
Canvas

0.34 0.71 0.43 0.81 41.23 0.93

Without
Canvas

2.57 1.37 1.87 1.25 37.56 1.37

Bayes With
Canvas

1.23 1.57 0.46 0.85 40.31 1.43

Without
Canvas

5.58 2.42 0.74 1.14 35.68 2.30

Decision Tree With
Canvas

0.21 0.77 0.66 0.88 41.13 1.04

Without
Canvas

3.32 1.91 2.96 2.02 35.72 2.30

ExtraTrees With
Canvas

0.33 0.67 0.79 0.87 40.88 0.89

Without
Canvas

2.26 1.45 2.2 1.55 37.54 1.64

is 2.42 for the False-Positives of the Bayes classifier. Something that has to be highlighted is the fact that the
number of correctly classified web sites is almost always very close to the expected value with RandomSplit.
This is actually the most interesting number, because it directly reflects to the overall success rate of the
classifier. Nevertheless, there are also some interesting differences concerning the False-Positives and False-
Negatives. For example, the ExtraTrees Without Canvas test using EqualSplit (zero False-Positives, five False-
Negatives, 37 correct) differs from the same test with RandomSplit. While the number of correct web sites is
similar to the expected value (37 compared to 37.54 expected correct ones), the number for False-Positives is
too low (zero compared to 2.26 expected False-Positives) and the number of False-Negatives is too high (five
compared to 2.2 expected False-Negatives). Similar observations can be made when examining the Aggregator
Without Canvas test results. Examining the standard deviations for the classifiers, one can assess that, again,
the Aggregator outperforms the other classifiers. Among the basic classifiers - Naı̈ve Bayes, Decision Tree
and ExtraTrees - the standard deviations for the ExtraTrees were the lowest (1.45 False-Positives, 1.55 False-
Negatives, 1.64 correct), with the exception for the False-Negatives for Naı̈ve Bayes (only 0.74).

A further possibility to analyze the results of the RandomSplit tests are histograms. Those diagrams show
the number of tests resulting in a specific number of False-Positive or False-Negative. The y-axis defines
the number of tests and the x-axis denotes the total number of False-Positives or False-Negatives. In the
following, the ExtraTrees test will be examined using histograms for False-Positives or False-Negatives. Since
the analysis is the same for the other ones, only one classifier will be analyzed this way.

Figure 6.1 shows the histogram for the ExtraTrees test using RandomSplit and considering all features.

As one can see, about 80 tests yielded zero False-Positives and about 50 tests resulted in zero False-Negatives.
Interestingly, the False-Negatives are distributed more evenly than the False-Positives, meaning that about 25
tests each yielded one or two False-Negatives. The False-Positives on the other hand only occur in about 25
tests. Summarizing, one can say that ExtraTrees tend to have a higher rate of False-Negatives. This is in line
with the results shown in Table 6.4.

Figure 6.2 shows the histogram for the outcome of the test that does not consider Canvas-Fingerprinting-related
features. As usual, there are a lot more misclassified web sites which can be seen in this Figure. Obviously,
there are relatively few tests that did not yield any False-Positives or False-Negatives. Only in about seven
tests, there were no False-Positives and only about 13 tests did not yield any False-Negatives. Most tests
resulted in one or two False-Positives or False-Negatives. This outcome represents almost half of the tests.
Approximately 32 tests led to three or four False-Positives and in about 25 cases, there were the same amount

76

6.1. Discussion and Interpretation

Figure 6.1.: Histogram for ExtraTrees with RandomSplit and all features.

Figure 6.2.: Histogram for ExtraTrees with RandomSplit without Canvas-Fingerprinting-related features.

of False-Negatives. Surprisingly, almost ten tests yielded five False-Negatives.

To sum it up, it can be stated that almost every classifier is suitable to be used in such a detection system. How-
ever, removing the Canvas-Fingerprinting-related features directly influences the success rate significantly.
Nevertheless, the success rates are - with the exception of Naı̈ve Bayes - still very good, ranging from 86% to
88%.

77

6. Discussion

6.2. Room for Improvement

This Section will show possible improvements to the detection system. Section 6.2.1 will focus on the training
data and will show that there is a lot of hidden potential. Section 6.2.2 will illustrate that the classifiers
themselves leave room for improvements, for example by tweaking the input parameters. Section 6.2.3 will
state that another possible enhancement is to implement completely new classifiers. Last but not least, Section
6.2.4 will elucidate that also the sensors provide potential for improvement, for example by implementing new
sensors or by improving the existing ones.

6.2.1. Training Data

The first approach to improve the detection rate is the set of training data. As it became clear, the classifiers
heavily rely on it and all predictions are based on it. Consequently, the detection rate is directly linked to the
quality of the training data. Right now, the set of training data encompasses 82 different web sites, with 41
being marked as tracking and 41 being marked as not-tracking. Of course, one possibility is to add further web
sites to the set. While gathering new web sites that are not-tracking is a rather simple task, gathering web sites
being considered to track their users is relatively complex. However, there are possibilities to get new tracking
sites.

One option is to use the Chameleon browser extensions that has been presented in Section 3.2.1. This extension
is really good when it comes to logging the site’s features. There is even a tool called Chameleon Crawler2

that offers browser automation with the Chameleon extension. This means that one can specify a list of URLs,
which is than visited one after another and each URL is stored along with its features. After that, the summary
of all crawled web sites and their related features can be seen in the web browser. Nevertheless, the results
produced by Chameleon Crawler have to be examined manually and one must decide for each URL, if it is
tracking the users or not. Chameleon does not offer a detection mechanism like the system presented in this
thesis.

Another option to extend the training data is to use the system developed here. Section 5.1.3 showed, how
the existing set of training data has been created. Now that the system can be used to detect fingerprinting
attempts, one could just crawl URLs and use the system to predict the site’s class. After that, the site and the
related features are added to the data collection layer and are from now an part of the training data. However,
this approach is a risky one, because, as shown in Section 6.1, the best classifier tested so far has a success
rate of 88% when not all features are relevant. There is a small chance left that web sites are misclassified and
consequently worsen the set of training data.

6.2.2. Optimizing Classifiers

Another point to consider concerns the current implementation of the classifiers. The prototype developed
in this thesis relies on scikit-learn. However, due to the time constraints, it was not possible to optimize the
classifiers by any means. This specifically concerns parameters. Every classifier of scikit-learn offers a vast
range of parameters that can all be adjusted in order to enhance detection rates. One example is the splitting
strategy for tree-based classifiers. The tests applied the Gini Index, but it is also imaginable to use Information
Gain and see whether the results are better. Especially the ExtraTrees being one of the most complex classifiers
tested here offers several other properties that can be optimized in order to improve the success rate.

For possible parameters of the classifiers, the reader is advised to visit the scikit-learn documentation [65, 66,
32].

6.2.3. Implementing New Classifiers

The three detection mechanisms implemented in this thesis are just a small selection of all the possibilities
of Data Mining and Knowledge Discovery in Databases. It is possible that other detection mechanisms like

2https://github.com/ghostwords/chameleon-crawler

78

https://github.com/ghostwords/chameleon-crawler

6.3. Summary

Support Vector Machines, Random Forest or Nearest Neighbors (just to mention a few) yield better results
and are more suitable for this problem. Again, because of the limited scope of this work, the performance of
those classifiers could not be evaluated. However, the prototype implementation’s focus was on extensibility.
Consequently, it is rather simple to extend the prototype and implement new classifiers from the scikit-learn
library.

6.2.4. Improve Sensors

The system developed in this thesis does only consider one type of features: JavaScript-based ones. As it has
already been mentioned, there are other technologies used for fingerprinting techniques like Java or Flash. In
order to improve the detection rate of the classifiers, adding new sensors and new features and consequently
extending the information used for training and classifying is a promising approach.

Another idea in this context is to reevaluate the list of features that should be considered. It has already been
stated that a lot of features turned out to be not very telling concerning the classification of web site. This
is something that has to be assessed. For example, features like navigator.userAgent are not suitable,
because the feature’s appearance on a web site does say nothing about its classification. As seen in Table 6.1,
this feature is used on 41 of the tracking sites and 37 of the not-tracking sites.

Moreover, since the tree-based classifiers provide the possibility to print out the feature importances, this can
be used to identify features, whose appearance on a web site is a strong hint towards its class. At best, there
were four features taken into account (see Table 5.7). The feature list presented in 4.1 involves 27 features at
the moment. It’s quite obvious that there are a lot of features that are not applicable at all.

6.3. Summary

This Chapter discussed the measurements produced by the prototype implementation of the system. It became
clear that the system is capable of detecting the usage of fingerprinting techniques. Section 6.1.2 showed that
Canvas-Fingerprinting is almost always detectable with the Aggregator and Decision Tree classifiers yielding
a success rate of 100%. However, the more general Browser-Fingerprinting is harder to detect, but the best
classifier sill managed to correctly classify it with a success rate of 88%. Furthermore, it has been proofed
that the results from Section 6.1.2 are not specific to the data used for training and classifying, but represent
the complete the entire data set. Moreover, several possibilities to improve the detection rates of the classifiers
have been proposed.

With a success rate of 100% for Canvas-Fingerprinting, it is safe to say that the developed system can ef-
fectively be utilized to detect this kind of fingerprinting technique. Although the more general Browser-
Fingerprinting turned out the be harder to detect, the best classifier sill managed to correctly classify it with
a success rate of 88%. The test results presented in Section 6.1.2 and their generalization is reflected on the
daily use of the system. Web sites that are known to fingerprint their users are reliably detected. Consequently,
new web sites not being part of the training set can also be classified with the system. This greatly enhances
perceived privacy, because it is now possible to determine if the web site currently being visited is considered
to track or not.

The number of False-Positives and False-Negatives is also something that needs to be reevaluated. As Section
6.2 illustrated in-depth, there are several possibilities to improve the system’s detection rate. Even if it is
not possible to eliminate all misclassified web sites, it might still be feasible to either decrease the number
of False-Positives or False-Negatives. The decision, which one of those should be lowered depends on the
purpose. If one aims to increase privacy as much as possible, the focus should be on a very low number of
False-Negatives, because misclassifying a web site which is tracking, is worse than saying that a web site is
tracking, which is in fact not. However, if privacy is not the focus, one could aim to lower the False-Positives
and consequently not disturb or unnecessarily unsettle the user.

79

7. Conclusion and Future Work

Web-Tracking is omnipresent in the Internet. Using it enables trackers to collect huge amounts of personal
data. All this happens in the background and unnoticed by the users. The growing number of individual
devices each person is using leads to even more personal data being distributed on the Internet. This data
is incredible valuable to a complete industry sector specializing in the field of gathering personal data and
being worth multi billion dollars. Especially the advertisement sector is incredible keen on personal data,
because those enable them to improve their advertisements and handcraft them for each user. The better the
advertisements, the higher the chance that users click on them and consequently the higher the revenue of the
carriers. Moreover, Web-Tracking is slowly becoming a thread to privacy, because with the growing amount of
personal data, trackers are able to build up user profiles, representing the user’s habits, affections and interests.

This thesis presented a system that tried to utilize classic detection mechanisms from the fields of Data-Mining
and Knowledge Discovery in Databases to detect the usage of Web-Tracking on a web site. The system
specialized in fingerprinting techniques involving Browser- and Canvas-Fingerprinting. Moreover, the system
concentrated on only one technology used for realizing the fingerprinting techniques: JavaScript.

Using fingerprinting techniques enables the trackers to generate a unique fingerprint for each machine, making
it possible to recognize users. This enables possible trackers to build profiles of the users, which constitutes a
severe intrusion in the user’s privacy. Another critical aspect of fingerprinting techniques is the fact that they
are very hard to hamper or even to block.

The goal of the system developed in this thesis was to detect the usage of fingerprinting techniques on the
fly. For this purpose, a general architectural design for a system has been proposed. The architecture consists
of three different layers, with every layer specializing in one specific task. Chapter 4 demonstrated the basic
concept behind the system.

As a proof of concept, the proposed system has been implemented. Four different classifiers are included:
Naı̈ve Bayes, Decision Tree, ExtraTrees and an Aggregator (combination of the other three classifiers). In
order be able to test the performance of those, it was necessary to obtain a set of training data involving web
sites that are considered to track and web sites, which are believed to not track their users.

The results of the classifiers were pretty good. In special, detecting Canvas-Fingerprinting is something,
almost every classifier excels in. When it comes to detecting Browser-Fingerprinting, the success rates slightly
dropped. Nevertheless, the best classifier had still a success rate of 88%. Summing it up, it is safe to say that
the usage of fingerprinting techniques can be detected using traditional detection mechanisms.

While the system turned out to be able to detect fingerprinting techniques, this is just the beginning. The devel-
oped system can be improved in several aspects. For example, the system does not consider font enumeration
at the moment, which is, as already mentioned, one of the strongest features. Implementing this could greatly
enhance the detection rate and improving this rate is a general goal for future work. This thesis could only
provide a basic proof of concept implementation. The system is - at the moment - not ready to be used in a
production environment. But this would in fact be one of the most exciting things to do. Right now, only a
small sample of the real world could be tested. By deploying the system into the wild, it could be evaluated,
how the system performs in real life. Having a user base that utilizes the system actively and sends back
feedback could greatly improve the whole system.

Reliably detecting is just one step in the right direction. The obvious next step would be hampering finger-
printing techniques. However, implementing counter-measures is a very difficult task. On the one hand, one
has to ensure that the counter-measures do not result in the exact opposite: to even increase the fingerprintable
surface of a machine. On the other hand, the system as it is designed right now is not capable of realizing cer-
tain counter-measures to fingerprinting techniques. The reason for this is the fact that the system’s detection
is based on the features that were accessed by a web site. However, once all those features are collected and

80

the web site is classified, it is already too late to implement counter-measures. So consequently, it would be
necessary to redesign, if one future goal will be hampering fingerprinting techniques.

Finally, the developed detection system can be seen as first step towards a system that is capable of effectively
detecting the use of fingerprinting techniques on web sites. Further developments in this area can lead to an
increased privacy, which would be huge gain for every user that wants to protect his privacy when surfing in
the Internet.

81

A. Training data

This Chapter contains the content of the training data.

A.1. Training set

This Section presents the training set, which have been used for training the classifiers.

Table A.1.: Training set yield by EqualSplit.

ID URL isTracking

1 http://ponpare.jp/ 1
2 http://www.todayifoundout.com/ 1
3 http://www.styletv.com.cn/ 1
4 http://english.ctrip.com/ 1
5 http://www.expedia.co.uk/ 1
6 http://www.webroot.com/us/en/ 1
7 http://www.ustream.tv/ 1
8 https://www.foodpanda.in/ 1
9 http://www.mvideo.ru/ 1
10 http://www.lazada.co.id/ 1
11 http://www.sears.ca/ 1
12 http://www.sciencemag.org/ 1
13 http://v5.ele.me/ 1
14 http://fantasti.cc/ 1
15 http://www.groupon.co.uk/ 1
16 https://www.groupon.com/ 1
17 http://www.groupon.com.br/ 1
18 http://www.groupon.it/ 1
19 http://guff.com/ 1
20 http://www.hjenglish.com/ 1
21 https://www.facebook.com/?_rdr 0
22 http://baidu.com/ 0
23 http://www.baidu.com/ 0
24 https://de.yahoo.com/?p=us 0
25 http://www.wikipedia.org/ 0
26 http://www.amazon.com/ 0
27 https://twitter.com/ 0
28 http://www.taobao.com/market/global/index_new.

php
0

29 http://www.qq.com/ 0
30 https://www.linkedin.com/nhome/ 0

83

http://ponpare.jp/
http://www.todayifoundout.com/
http://www.styletv.com.cn/
http://english.ctrip.com/
http://www.expedia.co.uk/
http://www.webroot.com/us/en/
http://www.ustream.tv/
https://www.foodpanda.in/
http://www.mvideo.ru/
http://www.lazada.co.id/
http://www.sears.ca/
http://www.sciencemag.org/
http://v5.ele.me/
http://fantasti.cc/
http://www.groupon.co.uk/
https://www.groupon.com/
http://www.groupon.com.br/
http://www.groupon.it/
http://guff.com/
http://www.hjenglish.com/
https://www.facebook.com/?_rdr
http://baidu.com/
http://www.baidu.com/
https://de.yahoo.com/?p=us
http://www.wikipedia.org/
http://www.amazon.com/
https://twitter.com/
http://www.taobao.com/market/global/index_new.php
http://www.taobao.com/market/global/index_new.php
http://www.qq.com/
https://www.linkedin.com/nhome/

A. Training data

31 https://login.live.com/login.srf?wa=wsignin1.0&
rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_
SSL_SHARED&wreply=https:%2F%2Fmail.live.com%
2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&
lc=1031&id=64855&mkt=de-DE&cbcxt=mai

0

32 http://www.sina.com.cn/ 0
33 http://overseas.weibo.com/ 0
34 http://www.yahoo.co.jp/ 0
35 http://www.tmall.com/ 0
36 http://www.ebay.com/ 0
37 https://accounts.google.com/ServiceLogin?

service=blogger&passive=1209600&continue=https:
//www.blogger.com/home?bpli%3D1&followup=https:
//www.blogger.com/home?bpli%3D1<mpl=start

0

38 http://www.hao123.com/ 0
39 http://www.reddit.com/ 0
40 http://www.bing.com/ 0

84

https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
http://www.sina.com.cn/
http://overseas.weibo.com/
http://www.yahoo.co.jp/
http://www.tmall.com/
http://www.ebay.com/
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
http://www.hao123.com/
http://www.reddit.com/
http://www.bing.com/

A.2. Test set

A.2. Test set

This Section presents the test set - a list of web sites that were used for testing the classifiers.

Table A.2.: Test Set yield by EqualSplit.

ID URL isTracking

1 http://hypem.com/ 1
2 http://video.tt/ 1
3 http://www.washingtonpost.com/ 1
4 https://vid.me/ 1
5 http://www.linio.com.mx/ 1
6 http://letitbit.net/ 1
7 http://www.boulanger.com/ 1
8 https://www.zalando.pl/ 1
9 http://www.theaustralian.com.au/?nk=

13606d45f20ce9b84fa5dff357ee1ed4
1

10 http://pikabu.ru/ 1
11 http://www.lamoda.ru/ 1
12 https://robertsspaceindustries.com/ 1
13 http://dantri.com.vn/ 1
14 http://us.webnode.com/ 1
15 http://www.webnode.cz/ 1
16 http://www.inquisitr.com/ 1
17 http://www.philly.com/ 1
18 http://www.eater.com/ 1
19 http://www.salon.com/ 1
20 http://www.cheatsheet.com/ 1
21 http://www.pof.de/ 1
22 http://www.sohu.com/ 0
23 http://www.amazon.co.jp/ 0
24 https://www.tumblr.com/ 0
25 http://t.co/ 0
26 http://imgur.com/ 0
27 https://de.wordpress.com/ 0
28 https://www.pinterest.com/ 0
29 http://instagram.com/ 0
30 http://www.msn.com/de-de/ 0
31 https://www.paypal.com/de/webapps/mpp/home 0
32 http://www.apple.com/ 0
33 http://www.microsoft.com/de-de/default.aspx 0
34 https://www.google.it/?gws_rd=ssl 0
35 http://www.imdb.com/ 0
36 http://fc2.com/ 0
37 http://www.xvideos.com/ 0
38 http://www.aliexpress.com/ 0
39 http://www.alibaba.com/ 0
40 http://stackoverflow.com/ 0
41 http://360.cn/ 0
42 http://de.ask.com/?o=312&l=dir 0

85

http://hypem.com/
http://video.tt/
http://www.washingtonpost.com/
https://vid.me/
http://www.linio.com.mx/
http://letitbit.net/
http://www.boulanger.com/
https://www.zalando.pl/
http://www.theaustralian.com.au/?nk=13606d45f20ce9b84fa5dff357ee1ed4
http://www.theaustralian.com.au/?nk=13606d45f20ce9b84fa5dff357ee1ed4
http://pikabu.ru/
http://www.lamoda.ru/
https://robertsspaceindustries.com/
http://dantri.com.vn/
http://us.webnode.com/
http://www.webnode.cz/
http://www.inquisitr.com/
http://www.philly.com/
http://www.eater.com/
http://www.salon.com/
http://www.cheatsheet.com/
http://www.pof.de/
http://www.sohu.com/
http://www.amazon.co.jp/
https://www.tumblr.com/
http://t.co/
http://imgur.com/
https://de.wordpress.com/
https://www.pinterest.com/
http://instagram.com/
http://www.msn.com/de-de/
https://www.paypal.com/de/webapps/mpp/home
http://www.apple.com/
http://www.microsoft.com/de-de/default.aspx
https://www.google.it/?gws_rd=ssl
http://www.imdb.com/
http://fc2.com/
http://www.xvideos.com/
http://www.aliexpress.com/
http://www.alibaba.com/
http://stackoverflow.com/
http://360.cn/
http://de.ask.com/?o=312&l=dir

A. Training data

A.3. Complete training data

This Section presents the complete set of training data.

Table A.3.: Overview of all web sites of the training data.

ID URL isTracking

1 http://ponpare.jp/ 1
2 http://www.todayifoundout.com/ 1
3 http://www.styletv.com.cn/ 1
4 http://english.ctrip.com/ 1
5 http://www.expedia.co.uk/ 1
6 http://www.webroot.com/us/en/ 1
7 http://www.ustream.tv/ 1
8 https://www.foodpanda.in/ 1
9 http://www.mvideo.ru/ 1
10 http://www.lazada.co.id/ 1
11 http://www.sears.ca/ 1
12 http://www.sciencemag.org/ 1
13 http://v5.ele.me/ 1
14 http://fantasti.cc/ 1
15 http://www.groupon.co.uk/ 1
16 https://www.groupon.com/ 1
17 http://www.groupon.com.br/ 1
18 http://www.groupon.it/ 1
19 http://guff.com/ 1
20 http://www.hjenglish.com/ 1
21 http://hypem.com/ 1
22 http://video.tt/ 1
23 http://www.washingtonpost.com/ 1
24 https://vid.me/ 1
25 http://www.linio.com.mx/ 1
26 http://letitbit.net/ 1
27 http://www.boulanger.com/ 1
28 https://www.zalando.pl/ 1
29 http://www.theaustralian.com.au/?nk=

13606d45f20ce9b84fa5dff357ee1ed4
1

30 http://pikabu.ru/ 1
31 http://www.lamoda.ru/ 1
32 https://robertsspaceindustries.com/ 1
33 http://dantri.com.vn/ 1
34 http://us.webnode.com/ 1
35 http://www.webnode.cz/ 1
36 http://www.inquisitr.com/ 1
37 http://www.philly.com/ 1
38 http://www.eater.com/ 1
39 http://www.salon.com/ 1
40 http://www.cheatsheet.com/ 1
41 http://www.pof.de/ 1
42 https://www.facebook.com/?_rdr 0
43 http://baidu.com/ 0
44 http://www.baidu.com/ 0
45 https://de.yahoo.com/?p=us 0

86

http://ponpare.jp/
http://www.todayifoundout.com/
http://www.styletv.com.cn/
http://english.ctrip.com/
http://www.expedia.co.uk/
http://www.webroot.com/us/en/
http://www.ustream.tv/
https://www.foodpanda.in/
http://www.mvideo.ru/
http://www.lazada.co.id/
http://www.sears.ca/
http://www.sciencemag.org/
http://v5.ele.me/
http://fantasti.cc/
http://www.groupon.co.uk/
https://www.groupon.com/
http://www.groupon.com.br/
http://www.groupon.it/
http://guff.com/
http://www.hjenglish.com/
http://hypem.com/
http://video.tt/
http://www.washingtonpost.com/
https://vid.me/
http://www.linio.com.mx/
http://letitbit.net/
http://www.boulanger.com/
https://www.zalando.pl/
http://www.theaustralian.com.au/?nk=13606d45f20ce9b84fa5dff357ee1ed4
http://www.theaustralian.com.au/?nk=13606d45f20ce9b84fa5dff357ee1ed4
http://pikabu.ru/
http://www.lamoda.ru/
https://robertsspaceindustries.com/
http://dantri.com.vn/
http://us.webnode.com/
http://www.webnode.cz/
http://www.inquisitr.com/
http://www.philly.com/
http://www.eater.com/
http://www.salon.com/
http://www.cheatsheet.com/
http://www.pof.de/
https://www.facebook.com/?_rdr
http://baidu.com/
http://www.baidu.com/
https://de.yahoo.com/?p=us

A.3. Complete training data

46 http://www.wikipedia.org/ 0
47 http://www.amazon.com/ 0
48 https://twitter.com/ 0
49 http://www.taobao.com/market/global/index_new.

php
0

50 http://www.qq.com/ 0
51 https://www.linkedin.com/nhome/ 0
52 https://login.live.com/login.srf?wa=wsignin1.0&

rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_
SSL_SHARED&wreply=https:%2F%2Fmail.live.com%
2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&
lc=1031&id=64855&mkt=de-DE&cbcxt=mai

0

53 http://www.sina.com.cn/ 0
54 http://overseas.weibo.com/ 0
55 http://www.yahoo.co.jp/ 0
56 http://www.tmall.com/ 0
57 http://www.ebay.com/ 0
58 https://accounts.google.com/ServiceLogin?

service=blogger&passive=1209600&continue=https:
//www.blogger.com/home?bpli%3D1&followup=https:
//www.blogger.com/home?bpli%3D1<mpl=start

0

59 http://www.hao123.com/ 0
60 http://www.reddit.com/ 0
61 http://www.bing.com/ 0
62 http://www.sohu.com/ 0
63 http://www.amazon.co.jp/ 0
64 https://www.tumblr.com/ 0
65 http://t.co/ 0
66 http://imgur.com/ 0
67 https://de.wordpress.com/ 0
68 https://www.pinterest.com/ 0
69 http://instagram.com/ 0
70 http://www.msn.com/de-de/ 0
71 https://www.paypal.com/de/webapps/mpp/home 0
72 http://www.apple.com/ 0
73 http://www.microsoft.com/de-de/default.aspx 0
74 https://www.google.it/?gws_rd=ssl 0
75 http://www.imdb.com/ 0
76 http://fc2.com/ 0
77 http://www.xvideos.com/ 0
78 http://www.aliexpress.com/ 0
79 http://www.alibaba.com/ 0
80 http://stackoverflow.com/ 0
81 http://360.cn/ 0
82 http://de.ask.com/?o=312&l=dir 0

87

http://www.wikipedia.org/
http://www.amazon.com/
https://twitter.com/
http://www.taobao.com/market/global/index_new.php
http://www.taobao.com/market/global/index_new.php
http://www.qq.com/
https://www.linkedin.com/nhome/
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=12&ct=1433184657&rver=6.4.6456.0&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2Fdefault.aspx%3Fshowunauth%3D1%26rru%3Dinbox&lc=1031&id=64855&mkt=de-DE&cbcxt=mai
http://www.sina.com.cn/
http://overseas.weibo.com/
http://www.yahoo.co.jp/
http://www.tmall.com/
http://www.ebay.com/
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
https://accounts.google.com/ServiceLogin?service=blogger&passive=1209600&continue=https://www.blogger.com/home?bpli%3D1&followup=https://www.blogger.com/home?bpli%3D1<mpl=start
http://www.hao123.com/
http://www.reddit.com/
http://www.bing.com/
http://www.sohu.com/
http://www.amazon.co.jp/
https://www.tumblr.com/
http://t.co/
http://imgur.com/
https://de.wordpress.com/
https://www.pinterest.com/
http://instagram.com/
http://www.msn.com/de-de/
https://www.paypal.com/de/webapps/mpp/home
http://www.apple.com/
http://www.microsoft.com/de-de/default.aspx
https://www.google.it/?gws_rd=ssl
http://www.imdb.com/
http://fc2.com/
http://www.xvideos.com/
http://www.aliexpress.com/
http://www.alibaba.com/
http://stackoverflow.com/
http://360.cn/
http://de.ask.com/?o=312&l=dir

B. Content of CD

The attached CD contains the following additional information:

1. Sources

• firevest
Prototype implementation of a Firefox extension, that used the object poisoning technique pre-
sented in Section 5.1.1 to log the accessed features of a web site.

• firehelmet
Prototype implementation of a Firefox extension utilizing the static analysis approach shown in
Section 5.1.1. Please note, that this extension is not working correctly, since it’s not capable of
logging all accessed features.

• fireshorts
Backend implementation of a web server. This software is responsible for the data collection and
logic/evaluation.

2. Database
This directory contains a database dump of the training data. The dump is suited for a MySQL Server
v5.6.21.

88

C. Installation

This Chapter will explain, how the developed system can be installed, in order to be able to recreate the
results. Section C.1 will show, how the database is set up. After that, Section C.2 will show the installation of
the Firefox extension called Firevest. Lastly, Section C.3 will provide information about, how the server side,
Fireshorts can be installed.

C.1. Database setup

The CD contains a dump file of the MySQL data used for training and testing. The database utilized for the
development, has been a MySQL Community Server v5.6.21. The dump was created using mysqldump1.

Restoring the database is plain simple. At first, one must create a database with a suitable name. After that,
the database can be restored using the dump file. Listing C.1 shows the basic command. Please note, that this
assumes, that the MySQL Server is running on the localhost on its default port 3306.

Listing C.1: Restoring the database.
1 mysql -u <user> -p<password> <name_of_database> < firevest.sql

After restoring the database, it can be used by the data collection and logic/evaluation layers.

C.2. Firevest

The Firefox extension has been developed using the Addon-SDK provided by Mozilla [67]. This SDK helps
the user to create new Firefox extensions by offering numerous APIs, that facilitate the daily work. In special,
the most modern version of the SDK has been used: jpm [68]. jpm is distributed with the Node.js package
manager (npm). However, this tool can only be used with Firefox v38 onwards. It eases the development of a
browser extensions by providing several helpers to, for example, initiate a new project, run the current project
using a Firefox instance and a lot more.

To run Firevest, one has to install jpm using npm. Obviously, Firefox has to be installed as well. After that,
one can switch to the firevest directory in a terminal and run jpm run. After that, a Firefox instance opens
with the current version of the Firevest extension being installed. Figure C.1 shows the current available
settings of the extensions. Right now, there is only one setting changeable. This concerns the interface, the
collected features should be sent to. Activating this settings leads to the extensions sending the features to
the /collect interface of the server, that is used for building training data. Otherwise, the /classify
interface is used, which - as the name suggests - classifies the input and sends back True (1) or False (0).

C.3. Fireshorts

This project represents the server-side of the whole detection system. Consequently, it contains the data
collection and logic/evaluation layers.

The Fireshorts project does have the following dependencies, which can be installed via pip(3).

1https://dev.mysql.com/doc/refman/5.1/en/mysqldump.html

89

https://dev.mysql.com/doc/refman/5.1/en/mysqldump.html

C. Installation

Figure C.1.: Firevest settings.

• peewee: Object-relational mapping framework

• flask: web framework

• PyMySQL: MySQL library

Fireshorts is a web server based on flask. Running it is extremely simple. Just start the Fireshorts.py by calling
python3 Fireshorts.py.

The following list will provide basic information about each package/file:

1. fireshorts

• classifier
This package contains all implemented classifiers. In BaseClassifier.py, their superclass located.
This class implements most of the classifiers functionality.

• db
Here, the DAO is implemented. This concerns the storage of new web sites and their features.

• model
This package involves the relevant models. Those have already been depicted in Figure 5.2. As
mentioned before, peewee is used as ORM-framework.

• util
This package contains several utility modules. Most notably, the Settings.py file, that involves
settings like the classifier to use for classification.

2. templates
In this package, template-files are stored. This is used to either serve dynamic HTMl content or to write
the relevant LATEX-Tables.

3. test
Package, that contains the tests for each classifier.

4. Fireshorts.py
Main file of the system. Here, interfaces are defined and the main logic of the system is implemented.

90

Bibliography

[1] Whatsapp sails past sms, but where does messaging go next?, 1 2015. URL http://ben-
evans.com/benedictevans/2015/1/11/whatsapp-sails-past-sms-but-where-
does-messaging-go-next.

[2] Edward snowden: Prism, June 2013. URL http://www.washingtonpost.com/
investigations/us-intelligence-mining-data-from-nine-us-internet-
companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-
8845-d970ccb04497_story.html.

[3] Edward snowden: Tempora, June 2013. URL http://www.thewire.com/national/2013/
06/uk-tempora-program/66490/.

[4] Referer header. URL http://en.wikipedia.org/wiki/HTTP_referer.

[5] Balachander Krishnamurthy, Konstantin Naryshkin, and Craig E. Wills. Privacy leakage vs. protection
measures: the growing disconnect. Web 2.0 Security and Privacy Workshop, May 2011.

[6] Sites feed personal details to new tracking industry, July 2010. URL http://www.wsj.com/
articles/SB10001424052748703977004575393173432219064.

[7] Markus Schneider, Matthias Enzmann, and Martin Stopczynski. Web-tracking-report 2014. Technical
Report SIT-TR-2014-01, Fraunhofer-Institut für Sichere Informationstechnologie, February 2014.

[8] PWC and Interactive Advertising Bureau. Internet advertising revenue full-year report 2014, July 2015.

[9] Ein bild aus tausend spuren, August 2013. URL http://www.zeit.de/2013/32/
datenspuren-internet-snowden-prism-tempora.

[10] Giving the web a memory cost its users privacy. URL http://nytimes.com/2001/09/04/
technology/04COOK.html.

[11] Peter Eckersley. How unique is your web browser? In Proceedings of the 10th International Confer-
ence on Privacy Enhancing Technologies, PETS’10, pages 1–18, Berlin, Heidelberg, 2010. Springer-
Verlag. ISBN 3-642-14526-4, 978-3-642-14526-1. URL http://dl.acm.org/citation.cfm?
id=1881151.1881152.

[12] Mozilla wiki: Fingerprinting. URL https://wiki.mozilla.org/Fingerprinting.

[13] Fingerprint.js, . URL https://github.com/Valve/fingerprintjs.

[14] Fingerprint.js2, . URL https://github.com/Valve/fingerprintjs2.

[15] Javascript navigator object, . URL https://developer.mozilla.org/de/docs/Web/API/
Navigator.

[16] Javascript screen object, . URL https://developer.mozilla.org/en-US/docs/Web/
API/Screen.

[17] Murmurhash. URL http://en.wikipedia.org/wiki/MurmurHash.

[18] Html5 specification, . URL http://www.w3.org/TR/html5/.

[19] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting canvas in HTML5. In Matt Fredrik-
son, editor, Proceedings of W2SP 2012. IEEE Computer Society, May 2012.

91

http://ben-evans.com/benedictevans/2015/1/11/whatsapp-sails-past-sms-but-where-does-messaging-go-next
http://ben-evans.com/benedictevans/2015/1/11/whatsapp-sails-past-sms-but-where-does-messaging-go-next
http://ben-evans.com/benedictevans/2015/1/11/whatsapp-sails-past-sms-but-where-does-messaging-go-next
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.thewire.com/national/2013/06/uk-tempora-program/66490/
http://www.thewire.com/national/2013/06/uk-tempora-program/66490/
http://en.wikipedia.org/wiki/HTTP_referer
http://www.wsj.com/articles/SB10001424052748703977004575393173432219064
http://www.wsj.com/articles/SB10001424052748703977004575393173432219064
http://www.zeit.de/2013/32/datenspuren-internet-snowden-prism-tempora
http://www.zeit.de/2013/32/datenspuren-internet-snowden-prism-tempora
http://nytimes.com/2001/09/04/technology/04COOK.html
http://nytimes.com/2001/09/04/technology/04COOK.html
http://dl.acm.org/citation.cfm?id=1881151.1881152
http://dl.acm.org/citation.cfm?id=1881151.1881152
https://wiki.mozilla.org/Fingerprinting
https://github.com/Valve/fingerprintjs
https://github.com/Valve/fingerprintjs2
https://developer.mozilla.org/de/docs/Web/API/Navigator
https://developer.mozilla.org/de/docs/Web/API/Navigator
https://developer.mozilla.org/en-US/docs/Web/API/Screen
https://developer.mozilla.org/en-US/docs/Web/API/Screen
http://en.wikipedia.org/wiki/MurmurHash
http://www.w3.org/TR/html5/

Bibliography

[20] Canvas in html5, . URL http://www.w3schools.com/tags/ref_canvas.asp.

[21] Font detection using js and css. URL http://www.lalit.org/lab/javascript-css-
font-detect/.

[22] Webgl specification. URL https://www.khronos.org/registry/webgl/specs/1.0/.

[23] How big data has changed healthcare, . URL http://www.investopedia.com/articles/
investing/042815/how-big-data-has-changed-healthcare.asp.

[24] Go big or go home: How to utilize big data for human resources, . URL http://www.business.
com/human-resources/how-to-utilize-big-data-for-human-resources/.

[25] Big data: The winning formula in sports, . URL http://www.forbes.com/sites/
bernardmarr/2015/03/25/big-data-the-winning-formula-in-sports/.

[26] Without good analysis, big data is just a big trash dump, . URL http://www.entrepreneur.
com/article/246470.

[27] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining Concepts and Techniques. Morgen Kaufmann,
2011.

[28] Thomas bayes. URL http://en.wikipedia.org/wiki/Thomas_Bayes.

[29] Paul graham - a plan for spam, August 2002. URL http://www.paulgraham.com/spam.html.

[30] Thunderbird. URL http://en.wikipedia.org/wiki/Mozilla_Thunderbird.

[31] Knowledge discovery in databases i - ss2014. URL http://www.dbs.ifi.lmu.de/cms/
Knowledge_Discovery_in_Databases_I_%28KDD_I%29_14.

[32] Scikit-learn: Decision tree, . URL http://scikit-learn.org/stable/modules/tree.
html.

[33] PD Dr. Arthur Zimek and Dr. Erich Schubert. Knowledge discovery in databases i. Course, 2014.

[34] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning, 63
(1):3–42, 2006. ISSN 0885-6125. doi: 10.1007/s10994-006-6226-1. URL http://dx.doi.org/
10.1007/s10994-006-6226-1.

[35] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Fingerprinting information in
JavaScript implementations. In Helen Wang, editor, Proceedings of W2SP 2011. IEEE Computer Society,
May 2011.

[36] Jonathan R. Mayer. “Any person... a pamphleteer”: Internet Anonymity in the Age of Web 2.0. PhD
thesis, Princeton University, 2009.

[37] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. Cookieless monster: Exploring the ecosystem of web-based device fingerprinting. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages 541–555, Washington,
DC, USA, 2013. IEEE Computer Society. ISBN 978-0-7695-4977-4. doi: 10.1109/SP.2013.43. URL
http://dx.doi.org/10.1109/SP.2013.43.

[38] Jonathan R. Mayer and John C. Mitchell. Third-party web tracking: Policy and technology. In IEEE
Symposium on Security and Privacy, pages 413–427. IEEE Computer Society, 2012. ISBN 978-0-7695-
4681-0. URL http://dblp.uni-trier.de/db/conf/sp/sp2012.html#MayerM12.

[39] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank Piessens, and Bart Pre-
neel. Fpdetective: Dusting the web for fingerprinters. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, pages 1129–1140, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2477-9. doi: 10.1145/2508859.2516674. URL http:
//doi.acm.org/10.1145/2508859.2516674.

92

http://www.w3schools.com/tags/ref_canvas.asp
http://www.lalit.org/lab/javascript-css-font-detect/
http://www.lalit.org/lab/javascript-css-font-detect/
https://www.khronos.org/registry/webgl/specs/1.0/
http://www.investopedia.com/articles/investing/042815/how-big-data-has-changed-healthcare.asp
http://www.investopedia.com/articles/investing/042815/how-big-data-has-changed-healthcare.asp
http://www.business.com/human-resources/how-to-utilize-big-data-for-human-resources/
http://www.business.com/human-resources/how-to-utilize-big-data-for-human-resources/
http://www.forbes.com/sites/bernardmarr/2015/03/25/big-data-the-winning-formula-in-sports/
http://www.forbes.com/sites/bernardmarr/2015/03/25/big-data-the-winning-formula-in-sports/
http://www.entrepreneur.com/article/246470
http://www.entrepreneur.com/article/246470
http://en.wikipedia.org/wiki/Thomas_Bayes
http://www.paulgraham.com/spam.html
http://en.wikipedia.org/wiki/Mozilla_Thunderbird
http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_I_%28KDD_I%29_14
http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_I_%28KDD_I%29_14
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1109/SP.2013.43
http://dblp.uni-trier.de/db/conf/sp/sp2012.html#MayerM12
http://doi.acm.org/10.1145/2508859.2516674
http://doi.acm.org/10.1145/2508859.2516674

Bibliography

[40] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and Claudia Diaz.
The web never forgets: Persistent tracking mechanisms in the wild. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14, pages 674–689, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2957-6. doi: 10.1145/2660267.2660347. URL http://
doi.acm.org/10.1145/2660267.2660347.

[41] Selenium. URL http://www.seleniumhq.org/.

[42] Paul Stone. Pixel perfect timing attacks with html5. Technical report, context Information Security, July
2013.

[43] Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. Cross-origin pixel stealing: timing
attacks using css filters. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security, CCS ’13, pages 1055–1062, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2477-9. doi: 10.1145/2508859.2516712. URL http://doi.acm.org/10.1145/2508859.
2516712.

[44] Addthis: Reaction on the canvas element usage, July 2014. URL http://www.addthis.com/
blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-
recent-rd-test/#.VViNJ5PtlBc.

[45] Chameleon extension. URL https://github.com/ghostwords/chameleon.

[46] Canvasblocker. URL https://addons.mozilla.org/de/firefox/addon/
canvasblocker/.

[47] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiving fingerprinters with
little white lies. Technical Report MSR-TR-2014-26, February 2014. URL http://research.
microsoft.com/apps/pubs/default.aspx?id=209989.

[48] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. User tracking on the web
via cross-browser fingerprinting. In Proceedings of the 16th Nordic Conference on Information Secu-
rity Technology for Applications, NordSec’11, pages 31–46, Berlin, Heidelberg, 2012. Springer-Verlag.
ISBN 978-3-642-29614-7. doi: 10.1007/978-3-642-29615-4 4. URL http://dx.doi.org/10.
1007/978-3-642-29615-4_4.

[49] Tor browser. URL https://www.torproject.org/projects/torbrowser.html.en.

[50] Firegloves. URL http://fingerprint.pet-portal.eu/?menu=6.

[51] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Type of nosql databases and its comparison with
relational databases. International Journal of Applied Information Systems, 5(4):16–19, March 2013.
Published by Foundation of Computer Science, New York, USA.

[52] Neal Leavitt. Will nosql databases live up to their promise? Computer, 43(2):12–14, February 2010.
ISSN 0018-9162. doi: 10.1109/MC.2010.58. URL http://dx.doi.org/10.1109/MC.2010.
58.

[53] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. Pearson, 5 edition, 2011.

[54] Jürgen Scherff. Grundkurs Computernetzwerke. Vieweg + Teubner, 2 edition, 2010.

[55] Prof. Dr. Claudia Eckert. IT-Sicherheit. Oldenbourg Verlag München, 8 edition, 2013.

[56] The cia triad. URL http://www.techrepublic.com/blog/it-security/the-cia-
triad/.

[57] Using oauth 2.0 to access google apis. URL https://developers.google.com/identity/
protocols/OAuth2.

[58] Ast specification of javascript, . URL https://github.com/estree/estree.

93

http://doi.acm.org/10.1145/2660267.2660347
http://doi.acm.org/10.1145/2660267.2660347
http://www.seleniumhq.org/
http://doi.acm.org/10.1145/2508859.2516712
http://doi.acm.org/10.1145/2508859.2516712
http://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/#.VViNJ5PtlBc
http://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/#.VViNJ5PtlBc
http://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/#.VViNJ5PtlBc
https://github.com/ghostwords/chameleon
https://addons.mozilla.org/de/firefox/addon/canvasblocker/
https://addons.mozilla.org/de/firefox/addon/canvasblocker/
http://research.microsoft.com/apps/pubs/default.aspx?id=209989
http://research.microsoft.com/apps/pubs/default.aspx?id=209989
http://dx.doi.org/10.1007/978-3-642-29615-4_4
http://dx.doi.org/10.1007/978-3-642-29615-4_4
https://www.torproject.org/projects/torbrowser.html.en
http://fingerprint.pet-portal.eu/?menu=6
http://dx.doi.org/10.1109/MC.2010.58
http://dx.doi.org/10.1109/MC.2010.58
http://www.techrepublic.com/blog/it-security/the-cia-triad/
http://www.techrepublic.com/blog/it-security/the-cia-triad/
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/identity/protocols/OAuth2
https://github.com/estree/estree

Bibliography

[59] Estraverse, . URL https://github.com/estools/estraverse.

[60] David Herman. Effective JavaScript. Addison-Wesley, 2013.

[61] Javascript object.defineproperty, . URL https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Object/defineProperty.

[62] Javascript globaleventhandlers. URL https://developer.mozilla.org/de/docs/Web/
API/GlobalEventHandlers/onload.

[63] The r project for statistical computing. URL http://www.r-project.org/about.html.

[64] Scitkit-learn: Machine learning in python, . URL http://scikit-learn.org/stable/.

[65] Scikit-learn: Gaussian naive bayes, . URL http://scikit-learn.org/0.15/modules/
generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.
GaussianNB.

[66] Scikit-learn: Extratrees, . URL http://scikit-learn.org/0.15/modules/
generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.
ensemble.ExtraTreesClassifier.

[67] Mozilla addon-sdk, . URL https://developer.mozilla.org/en/Add-ons/SDK.

[68] Mozilla addon-sdk: Jpm, . URL https://developer.mozilla.org/en-US/Add-ons/
SDK/Tools/jpm.

94

https://github.com/estools/estraverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/de/docs/Web/API/GlobalEventHandlers/onload
https://developer.mozilla.org/de/docs/Web/API/GlobalEventHandlers/onload
http://www.r-project.org/about.html
http://scikit-learn.org/stable/
http://scikit-learn.org/0.15/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/0.15/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/0.15/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/0.15/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier
http://scikit-learn.org/0.15/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier
http://scikit-learn.org/0.15/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier
https://developer.mozilla.org/en/Add-ons/SDK
https://developer.mozilla.org/en-US/Add-ons/SDK/Tools/jpm
https://developer.mozilla.org/en-US/Add-ons/SDK/Tools/jpm

	Titel
	1 Introduction
	2 Fundamentals
	2.1 Web-Tracking in General
	2.2 Cross-Domain-Tracking
	2.3 Fingerprinting Techniques
	2.3.1 Browser-Fingerprinting
	2.3.2 Canvas-Fingerprinting

	2.4 Detection Mechanisms
	2.4.1 Introduction
	2.4.2 Bayesian Classifiers
	2.4.3 Decision Trees
	2.4.4 ExtraTrees

	3 Related Work
	3.1 Fingerprinting
	3.1.1 Browser-Fingerprinting
	3.1.2 Canvas-Fingerprinting

	3.2 Detecting Fingerprinting
	3.2.1 Chameleon
	3.2.2 CanvasBlocker

	3.3 Counter-Measures
	3.3.1 Browser-Fingerprinting
	3.3.2 Canvas-Fingerprinting

	4 Design
	4.1 Deriving Components
	4.2 Architecture
	4.3 Sensors
	4.3.1 Defining Suitable Features

	4.4 Data Collection
	4.4.1 Database System
	4.4.2 Database Content

	4.5 Logic/Evaluation
	4.6 Communication
	4.7 Discussion
	4.7.1 Deployment Variants
	4.7.2 Security and Privacy

	5 Implementation and Evaluation
	5.1 Implementation
	5.1.1 Sensors
	5.1.2 Data Collection
	5.1.3 Logic/Evaluation

	5.2 Evaluation and Methodology
	5.3 Measurements
	5.3.1 Naïve Bayesian Classifier
	5.3.2 Decision Tree
	5.3.3 ExtraTrees
	5.3.4 Aggregator

	6 Discussion
	6.1 Discussion and Interpretation
	6.1.1 Differences in the Training Data
	6.1.2 EqualSplit Results
	6.1.3 RandomSplit Results

	6.2 Room for Improvement
	6.2.1 Training Data
	6.2.2 Optimizing Classifiers
	6.2.3 Implementing New Classifiers
	6.2.4 Improve Sensors

	6.3 Summary

	7 Conclusion and Future Work
	A Training data
	A.1 Training set
	A.2 Test set
	A.3 Complete training data

	B Content of CD
	C Installation
	C.1 Database setup
	C.2 Firevest
	C.3 Fireshorts

	List of Abbreviations

