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Master’s Thesis

Experimental Examination of

Distributed Conflicts
in Software Defined Networks

Nicholas Reyes





INSTITUTE OF INFORMATICS
LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN
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Abstract

This thesis explores policy conflicts in Software Defined Networks (SDN) between multiple
applications and across multiple nodes in a network. The research questions comprise a
concept for reproducible experimental infrastructures to examine conflicts and the develop-
ment of new applications that enforce policies. In experiments, the new implementations are
deployed in combination with existing applications in order to discover new conflict classes.
For any discovered conflict classes, detection mechanisms are required. The role of presented
implementations while taking into account security in SDN is evaluated. We examine exist-
ing work and the technical background to the presented approach in order to answer these
topics. A software architecture for experiment automation is devised, and a set of designed
and random network topologies serve as input for the experimental process. The results
include new conflict classes based on the tested networks and applications, detection algo-
rithms for the conflicts and an experimental architecture that facilitates further research.
Three approaches to generate random networks that display realistic properties and three
new control applications are presented. Insights on the validity of discovered distributed
conflicts and the soundness of presented detection methods as well as experiment automa-
tion are gained by a second set of experiments on additional, untested networks. The results
advance the understanding of distributed conflicts in SDN and promote future approaches
to conflict resolution and interpretation.
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Zusammenfassung

Diese Arbeit untersucht Policy-konflikte in Software Defined Networks (SDN) zwischen
mehreren Anwendungen und mehreren Knoten in einem Netz. Die Forschungsfragen um-
fassen ein Konzept für reproduzierbare experimentelle Infrastrukturen zur Untersuchung von
Konflikten und die Entwicklung neuer Anwendungen, die Richtlinien durchsetzen. In Exper-
imenten werden die neuen Implementierungen in Kombination mit bestehenden Anwendun-
gen eingesetzt, um neue Konfliktklassen zu entdecken. Für alle erkannten Konfliktklassen
sind Erkennungsmechanismen erforderlich. Die Rolle der vorgestellten Implementierungen
unter Berücksichtigung der Sicherheit in SDN wird evaluiert. Wir untersuchen bestehende
Arbeiten und die technischen Hintergründe des vorgestellten Ansatzes, um diese Themen
zu beantworten. Eine Softwarearchitektur für automatisierte Experimente wird entwickelt,
und eine Reihe von entworfenen und zufälligen Netztopologien sind die Basis für den exper-
imentellen Prozess. Die Ergebnisse umfassen neue Konfliktklassen, Erkennungsalgorithmen
für die Konflikte und eine experimentelle Architektur, die weitere Forschung ermöglicht.
Drei Ansätze zur Generierung von zufallsbasierten Computer-Netzen, die realistische Eigen-
schaften aufweisen, und drei neue SDN-Anwendungen werden vorgestellt. Erkenntnisse
über die Validität entdeckter verteilter Konflikte und die Zuverlässigkeit der vorgestellten
Erkennungsalgorithmen und die Automatisierung werden durch eine zweite Reihe von Ex-
perimenten an zusätzlichen, ungetesteten Netzen gewonnen. Die Ergebnisse fördern das
Verständnis verteilter Konflikte in SDN und zukünftige Ansätze zur Konfliktlösung und
-interpretation.
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1 Introduction

Effective and secure operation of networks is an unresolved issue in light of IT services that
require reactive, adaptive and highly automated computing environments [CSb]. In conven-
tional networks, nodes are dedicated to a specific purpose with e.g. routing, switching or
traffic filtering capabilities and need to be managed individually. Each node comprises a for-
warding plane consisting of rules for forwarding network traffic, a control plane for decision
processes based on the characteristics of incoming traffic not handled by existing data plane
policies and a management plane that enables administration of the two previous planes and
the node itself.
The concept of Software Defined Networks (SDN) encompasses a paradigm shift by devolv-
ing management and control facilities from individual nodes into centralized entities. Hard-
ware properties can be abstracted by exploiting communication protocols such as OpenFlow
[ONFb], that provide a common interface to the data plane via a central controller node.
Furthermore, controllers can be interfaced to an arbitrary number of applications that ad-
dress the need for enforcing network functions such as traffic filtering and load-balancing
concurrently. Consequently, a network is transformed to a modular, programmable architec-
ture and networking policies are implementable on an application level by separate teams or
vendors. While SDN enable adaptable, pluggable but centralised decision making, control
applications are agnostic to each other and can exhibit conflicting intents as shown by Tran
and Danciu [TD20]. Moreover, the assumption itself suggests that an open interface can be
exploited for malicious intents.
A study conducted by Cisco Systems in 2019 [CSa] shows that network strategists and over-
seeing IT leaders across the world consider network automation (25%) and SDN (23%) as
high impact topics for future network strategies. The following report in 2020 [CSb] states
that 44% of traffic is expected to be processed by systems based on SDN or Network Func-
tion Virtualization (NFV) by the year 2021, highlighting the necessity of automated conflict
detection and mitigation on general principles. NFV is not dependent on but benefits from
centralization, further indicating the importance of SDN. State-of-the-art implementations
and current research on conflict detection and resolution are lacking in their ability to address
the need for generality. Problem scenarios and their resulting conflict patterns are engineered
for distinct use cases. Detection and resolution are realized by comparing existing policies
in the data plane [PNC+19][LCL+18][PSY+12] or by confronting existing policies with pre-
defined network invariants [KZCG12] and management models [DSNW15][SMR+14].
The findings by Tran and Danciu [TD19] exemplify hidden conflicts through side-effects that
disable the expected behavior of the application layer. Race conditions let one application
enforce rules to handle traffic, such that other control applications interested in the same
traffic patterns are not notified. The authors conclude that detection mechanisms should
not be based on simple examination of the data plane state but also on predictive measures
and a thorough understanding of conflict patterns to realize conflict resolution mechanisms.
Tran and Danciu [TD20] introduce a framework [TD20] to define and detect conflicts based
on a generalized scope and parameter space. The parameter space includes dimensions that
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1 Introduction

are oblivious of data plane policies such as the start order of control applications and the
characteristics of a network topology. The introduced methodology is based on choosing an
unexplored object in the parameter space to conduct a suitable experiment. The exhibited
and expected network behavior are compared and deviations are analyzed to derive conflict
classes. The proposed detection engine by Tran and Danciu [TD20] requires a possibly ex-
ponential set of conflict patterns and the mentioned predictor [TD19] can also benefit from
a set of known input patterns to anticipate hidden conflicts.
In this work, the introduced methodology is implemented through a software architecture
with concise inputs and outputs to facilitate experiments on arbitrary, untested and complex
infrastructures. The experiments comprise a set of designed and random network topolo-
gies to expose distributed conflicts. These conflicts arise due to the deployment of routing
policies on multiple nodes and resulting inter-policy conflicts as defined by Hamed and Al-
Shaer [HA06], as well as the side-effects elicited by independently running multiple control
applications and a missing mechanism for their coordination. Detection methods for newly
discovered conflicts complement an existing prototype by Tran [Tra22]. The deployment of
control applications processing the same traffic characteristics and targeting multiple SDN
switches is the foundation for examining previously unknown conflict classes. They are anal-
ysed and validated through a prototype for conflict detection. The detection engine resides
in the control layer and is built into the controller processing chain as a means of passively
intercepting conflicts. The prototype and applied methodology demonstrate the importance
of detection and interpretation, based on a common set of parameters.

1.1 Distributed Conflicts

Policy conflicts and their causes are usually defined in a specific, limited context as explained
in Chapter 2. A conflict is given if the data plane enters an inconsistent state, i.e. flow entries
are contradicting, invariants such as bandwidth and availability are violated or performance
degrades. Distributed conflicts are based on the data plane of all nodes in a topology. The
definition is not bound to a use case or a specific topology shape. Figure 1.1 depicts an
occurrence of a distributed conflict and the base requirements for the network setup. Any
topology that comprises at least two switches and a minimum of two control applications
that are deployed on separate switches is viable. Figure 1.1 shows a local conflict based
on ambiguous policies within one switch for forwarding packets from host A to host B. On
the right side, two conflicting policies residing in separate switches constitute a distributed
conflict with an equivalent outcome of a blocked network connection. The two patterns are
also defined as intra-policy and inter-policy conflict by Hamed et al. [HA06].
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1.2 Motivation

Figure 1.1: Scenario for a distributed conflict with the minimal environment of at least two
switches and two individually deployed control applications, compared to a local
policy conflict within one switch. The example is based on the definition of intra-
and inter-policy conflicts by Hamed et al. [HA06].

1.2 Motivation

One critical aspect of operating network infrastructure is the identification of problems that
encompass contradicting policies, inefficiency and unsolicited side-effects. Some of these is-
sues can only be observed in production and others are detectable in test environments.
Gaining insights from experiments and their validation is the key motivation for this work.
OpenFlow [ONFb] provides the protocol for obtaining insights on these problems, but lacks
an implementation for analyzing relevant data. As discussed in Chapter 2, current research
and technologies analytically engineer conflicts and present an implementation that solves
them. The scope of these conflicts is limited to a confined use case or a specific topology.
In current work exemplified policy deviations usually reside within one node and are purely
theoretical in some cases. Chapter 2 demonstrates the need to identify and classify con-
flicts between nodes and between applications through an empirical approach. In SDN an
interface between control applications does not exist and asynchronous communication from
controllers to applications can lead to race conditions and overlapping decisions [TD19].
With regard to flexibility and independent life cycles for control applications, such an inter-
face could even prove undesirable. The centralization in SDN allows for negotiation between
control functions, provided that the cause for conflicts is well-defined and conflict resolution
does not inhibit SDN principles. Continual expansion of the currently incomplete set of
conflict classes is necessary to advance the means for analysis as well as interpretation, and
to provide for reproducible results across use cases, networks and implementations. Network
engineers can benefit from a set of validated patterns to understand issues. Since automated
resolution of conflicts can lead to unintended data plane states, mitigation and manual res-
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1 Introduction

olution is considered a sound approach. Once the source of a conflict is clear, constructive
resolution is possible and control applications stay free of defects. Generating and analyzing
data on distributed conflicts supports this effort.

1.3 Problem Statement

This work examines distributed conflicts in generic and automated testbeds, since current
research is mostly focused on local conflicts and specialised conflict environments. To achieve
this the following topics need to be explored.
Currently unconnected and specialized implementations for creation, definition and deploy-
ment of network topologies, configuration of the SDN context and software stack, as well
as monitoring of network state need to be interfaced to achieve a sophisticated level of
SDN experiment automation and a generic implementation to allow for integration of new
control applications. A consolidating architecture for conflict exploration and detection re-
quires a common approach for analyzing data plane state, independent of specific control
applications. The implementation needs to accommodate input and automated generation
of application configurations, which are then used to determine application intent as an
input for conflict detection. Since applications are the source of SDN conflicts we will con-
tribute new implementations and evaluate them in co-deployment with those devised by Tran
[Tra22]. Furthermore, an interface for experiment deployment that abstracts from irrelevant
technical details and ensures reproducible experiments and accessible results needs to be
determined. Next to applications, network topologies are an important dimension for ex-
perimental exploration of conflicts. We examine an approach to generate random topologies
that display relevant and realistic features. For newly exposed conflict classes automated
detection mechanisms are devised and evaluated. We examine existing work on security in
SDN an evaluate the presented architecture in light of the defined requirements.

1.4 Methodology

The procedure for achieving the goals in the problem statement are based on introducing
a formal model for experiments in SDN. The model addresses the parameters of the exe-
cuted experiment and serves as a common definition for creating its technical infrastructure.
From the model the nodes and edges of a topology are created and the configuration of an
experiment is derived, including control applications and expected invariants as input for
the detection algorithm. The parameter space [TD20] depicted in Figure 2.5 is the point of
origin for each iteration in the applied methodology for experiments. The existing frame-
work [Tra22] for examining conflicts in SDN is augmented towards enhanced automation
for setup of the technical infrastructure and processing of generated data. An experimental
run is started automatically, any activity and it’s output is processed by a conflict moni-
toring and detection prototype, and the resulting dataset is analysed. The proof-of-concept
includes the implementation of a detection algorithm to reaffirm known conflicts and mark
the observed data plane state in consideration of the expected state. Identifying relevant
sections immediately through the prototype is key for more efficient inspection. The ex-
isting applications used for the experiments, conceived and described by Tran [TD20], are
complemented by three new control applications. This provides for a diverse set of control
applications to elicit distributed conflicts. The motivation for this work calls for examining
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1.5 Results

the topology definition process. Designed networks based on common or intentional concepts
serve as a blueprint and can be both realistic or synthetic. Furthermore, randomized topolo-
gies are inspected, too. This approach provides for a balance between exploitation of known
domains and their characteristics as well as exploration of possibly unexpected conflict do-
mains. The devised experimental architecture for gradual coverage of the parameter space
is paramount for reproducible experiments and results. Formal criteria are presented for
describing distributed conflicts, which serve as a basis for detection in the proof-of-concept
and provide a common format for formulating new classes. The collected data is reviewed
based on the flagging by the prototype and any derived conflict classes are added to the pro-
totype. The classes are presented and evaluated to determine if they adhere to the definition
of distributed conflicts. New conflict classes, their characteristics and the composition of the
experimental parameters are evaluated based on the generated data.

1.5 Results

A concise summary of the results is given by the following points:

• an experimental architecture for examination of SDN policy conflicts

• an approach for generation of random topologies for the experimental process

• new distributed conflict classes

• detection algorithms for the conflict classes where feasible

• an evaluation of the introduced detection mechanisms and the detection prototype

• an evaluation of security in SDN which is applied to the implementations

The contribution of this work supports and extends the approach of Tran and Danciu [TD20]
to identify and define distributed conflicts in SDN through experiments and a standardized
methodology. The results include the definition of new conflict classes and a dataset for
further processing. The introduction of a model for generating a dedicated, virtualized in-
frastructure increases the level of automation, which promotes reproducible experiments.
Similar experiments on the parameter space can be conducted based on the given instruc-
tions. Conflict detection based on a set of well-defined criteria is demonstrated by the
implemented prototype. Uncovering symptoms of unknown conflict types by comparing ex-
pected and observed data plane state between application deployments proves the utility of
the methodology for this work and it’s feasibility for future work. The methodology, ex-
perimental design and parameter space is agnostic to technical implementations and serves
as a guideline for generating, defining and interpreting conflicts in SDN. Figure 1.3 depicts
the components of the proof-of-concept. The detection engine resides in the control layer
and registers new modifications of the forwarding plane. The impact of new policies on
the current data plane state is evaluated based on a set of given invariants or manually to
identify other inconsistencies. It facilitates detection based on known conflict classes as well
as manual interpretation, where necessary. The prototype as an element of the methodology
proves the value of conflict detection over engineering conflict patterns and scenarios. An
evaluation of flow characteristics used for conflict detection promotes a continuous and gen-
eralized expansion of conflict classes. The necessity of an approach based on interpretation
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1 Introduction

of application intent is outlined, be it for the definition of conflicts, or their resolution and
monitoring. The evaluation of the examined parameter space and relevant flow characteris-
tics helps narrow the focus on promising criteria for conflict definition and detection. This
work entails a stable and reproducible experimental process with well-defined, coherent in-
puts and outputs.
The experiments elicit known distributed conflict classes in the SDN context as well as new
conflicts that promote further research on detection and resolution of distributed SDN con-
flicts. The taxonomy of conflict classes is shown in Figure 1.2. The taxonomy includes
Spuriousness and General Multi-Transform conflicts in the SDN context, which are inspired
by the work of Hamed and Al-Shaer [HA06].

Invariant 
Contention

Transformation
Contention

Path 
Ambiguity

Distributed Conflicts

Spuriousness Loops

Focusing Dispersion Occlusion General Mutli-
Transform

Incomplete 
Transformation

InjectionBypass

Figure 1.2: Taxonomy of detected distributed conflict classes in the SDN context. Conflict
classes are grouped under a parent node if their conflict patterns relate.
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1.6 Structure

Figure 1.3: Components of the proof-of-concept that detects discovered distributed conflicts.
The implementation attaches a conflict detection engine notified of flow table
modifications to determine violations of expected network state. The generated
data is stored for manual interpretation.

1.6 Structure

This thesis is structured into seven chapters. The first chapter covers the problem statement
and motivation as well as the methodology for their accomplishment. An overview of the
results and ensuing benefits is given. Chapter 2 provides an overview of relevant background
knowledge on technologies and current work. In addition to the concept of SDN and Open-
Flow [ONFb] as an implementation, the researched scenarios for SDN conflicts and existing
conflict classifications are described. Details of the applied experimental design, the char-
acteristics of examined topologies as well as individual features of the newly developed and
adapted control application and the software architecture of the experimental process are
illustrated in Chapter 3. Chapter 4 comprises the implementation of the presented architec-
ture for experiment automation. An experiment model serves as the input for the experiment
building process and the following experiment execution. The chapter includes step-by-step
instructions for an example deployment. Results on distributed conflict classes are presented
in Chapter 5, starting with the required definitions, followed by details and examples on the
conflicts. Technical details of the proposed detection prototype and detection algorithms for
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1 Introduction

the conflict classes presented in Chapter 5 are explained in Chapter 6. The reasoning behind
the algorithms is given and consequences are outlined. Chapter 7 comprises a qualitative
evaluation of the experimental architecture compared to similar work. The utility of the con-
flict classes and detection algorithms are reviewed. The detection prototype, which is based
on a rule graph 6.1, is evaluated. Traffic flow characteristics and their value for detection
are presented. Furthermore, the parameter space as a basis for conducting experiments is
assessed. The final Chapter 8 includes an overview of future improvements and closes with
a summary of the conducted research.
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2 Background

As a first step the concept of Software Defined Networks are explained to highlight the dif-
ferences to traditional networking. Said differences, especially centralized decision making,
serve as a basis for the implementations in this and related work and implicate the pos-
sibilities and limits for conflict detection and resolution. The experimental approach for
discovering conflicts is independent of SDN in theory, but the technical infrastructure and
detection algorithms are closely related to characteristics that are specific to SDN and its
implementation. This chapter conveys the common terminology of related work as well as
the utilized communication interfaces and data structures in detection prototypes. Outlin-
ing the existing approaches shows why the approach in this work is different. It serves the
understanding of requirements for the automation process and the current shortcomings.
The insights on security in SDN through the discovered results is put into a broader context
by examining security related aspects of current research.
Recent and older work generally limits the context for the definition of conflicts to a certain
type of control application, use case, conflict criteria or topology. Consequently, a compre-
hensive study of conflict patterns incorporating and complementing the following approaches
is necessary. This chapter gives an overview of the scope of conflicts, how they can be clas-
sified, which dimensions influence them and the existing technologies for handling them.

2.1 Software Defined Networks

Understanding the characteristics and definition of SDN requires knowledge on the modeling
of conventional networks. The functions of a network are assigned to three network planes
as depicted on the left side of Figure 2.1, the data plane, control plane and management
plane. Connected and closely coupled, the planes are implemented in vendor firmware with
distinct commands and interfaces. They are isolated within each node that performs a spe-
cific network function, such as routing, switching or traffic engineering.
Also referred to as the forwarding or user plane, the data plane satisfies the function of
transmitting data packets that enter the network. In order to determine the destination of
a packet, its protocol headers are dissected and processed according to currently installed
policies. The policies are cached in data structures referred to as forwarding information
bases (FIB) or routing information bases (RIB) and are again vendor specific. The policies
for the data plane are provided by the control plane. While the data plane is a snapshot
of how the user packets flow through the infrastructure, the control plain administers the
state of the network itself. It comprises the algorithms for decision-making processes and
the topology state is captured in routing tables, a cache for media access control (MAC) or
Internet Protocol (IP) addresses or other dedicated structures. Decisions are communicated
to the data plane and inserted as policies to forward, modify or block packets. Also the
decisions and information of a nodes view on the network might be propagated consecu-
tively to adjacent nodes. This enables a common view on the network to find optimal paths,
avoid loops and other functions. Decisions are reached within a node and can only be shared
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Figure 2.1: In traditional networks, management, control and data plane are contained
within each node and decisions are reached individually. In software defined
networks, the control plane is detached from individual nodes, decisions are cen-
tralized in a controller node and the management plane is based on a common
interface.

with adjacent nodes, without a central instance. An administrator configures hardware on
the management plane. Access is usually provided by a user interface that provides custom
features between vendors and based on proprietary configuration parameters. Nevertheless,
this often results in an implementation of the same network functions and represents an
unnecessary layer of complexity for the administrative process.
The concept of SDN is a decoupling of the three network planes as shown in Figure 2.1 on
the right side. In order to implement centralized decisions, dynamic handling of topology
changes and hardware agnostic network functions, the planes are not implemented in distinct
firmware, but in a common software stack that is deployed on generic nodes. The data plane
still persists in individual nodes, but they are connected to a central controller node. When
lacking a policy for processing and forwarding a packet, it is sent to the controller along with
additional information. Data plane structures are not bound to a specific network function.
In SDN a node can serve several of these and facilitates convoluted policies across Open
Systems Interconnection (OSI) layer protocols. The most relevant part of the OSI layering
model for this work comprise layer addresses, such as IP (layer 3) and MAC (layer 2) ad-
dresses as well as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
ports (layer 4). Controllers implement the control layer for the entire network and handle
the decision-making process. Decisions are communicated to all affected nodes and trans-
lated into hardware specific data plane policies through the common software interface. This
avoids the need for propagating control layer information between adjacent nodes. Nodes
are still administrated individually but through a common interface and based on the same
set of commands for configuration. The software abstracts from the type of hardware or
specific operating systems, reducing complexity and promoting a programmatic approach.
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The characteristics of SDN are more appropriately described by a layering model depicted
in Figure 2.2, which accounts for the workings of the centralized control layer and the pro-
grammable, dynamic networking features. The decoupling of network planes necessitates
an interface to communicate decisions. A south-bound application programming interface
(API) connects control and infrastructure layer, the later corresponding to the data plane
with its generic SDN switches. The term switch does not describe a nodes function and is
simply a naming convention.
The control layer is usually made up of a monolithic controller. A multi-controller envi-
ronment is viable but counteracts centralized decision-making. Controllers can implement
base functions such as loop detection or topology discovery. One novel characteristic of
SDN is the north-bound API that provides an interface to third party control applications
and allows for programmable network functionality. The application layer can comprise sev-
eral independent applications, contributing to the decision-making process simultaneously
for similar or completely different types of network traffic. They can be added or removed
without disrupting the network.
SDN entail a regression due to the increased administrative network load and the bottle-
neck represented by controller channels. Controllers are single points of failure and can be
subjected to high loads in terms of bandwidth and processing. The distribution of policies
from the controller to the target nodes is paramount to a functional network. In traditional
networks, nodes can reach decisions independently according to their function but might fail
to propagate information to their neighbors. Thus broken connections pose problems under
both paradigms.
The benefits of SDN are given by the dynamic process for adding network functions and
adapting the network structure. Nodes in the infrastructure layer need not be changed
physically to perform a new role. Controllers or control applications can query a node to
determine its capabilities and formulate their policies accordingly. The state of the network
is monitored and adaptable by the control layer. Therefore, SDN permit for programmatic,
transitory realignments and reconciliation of contradicting functions. No physical machines
need to be replaced or new software needs to be added to realize any new network function
or structure, and in a virtualized environment nodes can be inserted dynamically.
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Figure 2.2: Layering model of software defined networks. The figure depicts application,
control and infrastructure layers which are interfaced via the south- and north-
bound application programming interface to exchange information. The figure
is an adaption of Figure 1 in a white paper [ONFa] of the Open Networking
Foundation. Additional input was taken from RFC 7426 [IRTF] and the survey
by Kreutz et al. [KRV+15] on SDN.

2.2 OpenFlow

OpenFlow comprises a specification for hardware and software capabilities of network devices
as well as a protocol for communication between SDN layers. The following information is
based on Version 1.3 [ONFb] of the specification. The application layer is not explicitly
mentioned. Its capabilities are comparable to control layer functions but dependent on the
communication interface between control and application layer. The relevant components of
an OpenFlow switch and their relations are depicted in Figure 2.3. OpenFlow switches may
be virtualized over hardware.
Network packets enter or leave the switch through physical or logical ports, which again are
categorized as standard and reserved ports that facilitate required and optional functions.
Physical ports can be one-to-one mappings to network interfaces or a slice of an interface
in case of a virtualized instance. Logical ports may map to several physical ports and
can represent abstractions unknown to OpenFlow, such as loopback interfaces or tunneling
devices. Reserved ports enable forwarding functions such as flooding, local management
and most importantly must include one instance that represents the controller channel.
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The controller channel acts as an output and input port for information that is sent to
and from controllers. Controllers act in three different roles, at most one in the role of a
master, as well as any number with the role slave or equal. These roles are mainly used as a
fallback mechanism for broken connections to a master controller or for load balancing and
scalability. A switch is required to implement at least one flow table, representing the FIB or
RIB of an OpenFlow device and the start of the OpenFlow packet processing pipeline. Flow
tables contain flow entries that identify specific streams of packets through the switch. Flow
entries are ordered by priority for matching against packets. They contain instructions, flow
entry timeouts and match fields. Instructions allow for rate limiting through meters, adding
metadata and forwarding to subsequent tables or groups and adding or performing actions to
alter, output or drop packets. Groups are addressable by multiple flow entries from any table
and facilitate the aggregation of forwarding mechanisms, e.g. multicast. OpenFlow packets
are data structures derived from incoming network packets. The contained packet headers
are compared to a flow entries match fields, e.g. source and destination addresses or ports.
Queue structures are related to ports and provide for simple scheduling of packet output for
quality of service (QoS) operations. Counters record statistics for data traversal through any
of the mentioned structures. They are implemented differently based on ports, flow entries,
groups, meters and queues. OpenFlow mandates a mapping to standard ethernet packets and
consistency with processing them in ports, flow tables and groups. For example, hardware
that implements a mechanism for loop detection outside of OpenFlow must flag ports for
the underlying network interfaces to prevent their use for SDN processing and possible
instabilities. OpenFlow describes messages exchanged between the control and infrastructure
layer, which will always include a unique datapath-id of a switch. Asynchronous messages are
unsolicited, subscribed messages by a controller and synchronous messages follow a request-
reply pattern. Messages for establishing and maintaining the relationship between controller
and switch are always synchronous. After establishing a TCP connection, the controller and
switch perform a handshake to negotiate an OpenFlow version. The controller then queries
the switch for its capabilities in order to determine the statistics a switch communicates and
how IP fragmentation is handled. The switch capabilities also indicate if optional structures
of the OpenFlow [ONFb] specification are implemented. Furthermore, controllers can update
their role within a switch, which changes the set of messages they receive. Topology discovery
is implemented by handshake and echo messages, as well as asynchronous port statistics to
register links. They are sent from a switch to the controller as shown in Figure 2.2. The
most relevant messages are depicted on the boundary of control and infrastructure layer.
Message delivery is guaranteed, unless the connection enters a failed state and switches
process packets according to existing flow entries. Hybrid switches containing capabilities
outside of OpenFlow can optionally proceed by updating tables independently, although
this entails reconciliation of state once a controller reconnects. A switch must process every
message from controllers and is required to send update messages for changes on ports and
flow entries, to ensure that controllers maintain a consistent state. In addition, controllers
can request aggregate or individual statistics from a switch or flush all flow entries after
reestablishing a connection. The use of queues and meters is encouraged to provide minimal
protection against denial of service attacks and overburdening the processing pipeline in a
controller. Message and packet processing is not ordered and subject to QoS operations.
Packet processing in a switch is triggered by an incoming network packet through one of its
ingress ports or the arrival of a packet-out message on a controller channel. An incoming
packet is inserted to the matching pipeline. Along with the ID and metadata of its ingress
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Figure 2.3: Depiction of an OpenFlow switch device including hardware and software com-
ponents. The FIB of the device is implemented in flow tables that consist of flow
entries. Flow entries contain match fields for packet headers. Meters and queues
are implemented to facilitate quality of service (QoS) operations. Network pack-
ets enter and leave the switch through ports, logical or physical mappings to
network interfaces. Controller channels connect the switch to at least one SDN
controller.

port, the contents of packet headers are compared to the match fields of flow entries in the
first flow table. A flow entries match as shown in Figure 2.3 includes header match fields
that are validated on a packet and pipeline match fields for processing in subsequent tables.
For multiple matching entries, the priority of the flow entry decides which is applied. In case
of a match, the flow entry’s instructions are executed. Instructions can pass packets to a
table or group, apply meters, add pipeline metadata and update, apply or remove an action
set. The instruction set is implemented to fit the needs of a switches processing pipeline
with a specific order of execution. Actions change packet headers, send data to queues,
push and pop tags to a packet and output packets to egress ports. An empty action set
implies that a packet will be dropped without further processing. Usually some table will
contain a wildcard table miss entry to invoke the controller channel, otherwise a packet is
dropped directly. If a table miss entry is hit or an action leads to the output on a controller
port, a packet-in message is generated in the switch. The message includes the match fields
as well as data on the flow table, a packet-id to identify the packet in a switches buffer
and the cookie data of the flow entry as shown in Figure 2.3. Cookie data is irrelevant for
pipeline processing and a method for controllers to insert and read additional information
for managing flows. A controller should react to a packet-in message by replying with either
a packet-out or modify-flow message or both. The packet-out includes the buffer-id of the
packet, which may or may not still exist in the switch, and an action set. The action set can
again lead to reinsertion into the matching pipeline of a switch. Table entries are deleted,
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modified and added by a controller through modify-flow messages that include cookies and
timeouts for the entry. The switch will update respective tables or replies with an error
message if it does not support necessary functions.

Figure 2.4: Flowchart depicting packet handling in an OpenFlow switch and the commu-
nication of its statistics through the OpenFlow [ONFb] protocol. Exchanged
OpenFlow messages are shown on the boundary of infrastructure and control
layer, control processes are shown on the boundary of control and application
layer. The figure depicts an excerpt of the OpenFlow [ONFb] protocol, relevant
to this thesis.

2.3 Conflicts in Software Defined Networks

The existing work on conflicts in SDN is based on three general paradigms, namely network
management, the intent concerning applications or adversaries and data plane state. Most
approaches outline a concept for conflict detection and resolution, complemented with a
tool as proof-of-concept. Dwaraki et al. [DSNW15] argue that exposing application intents
based on authorization, recording of state changes and resolution of conflicts, as well as
management of related metadata is necessary for reliable SDN operation. This entails in-
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sights into data plane state to determine application intent and also requires applications to
consider state management outside of their own scope. Although the suggestion contradicts
the programmable and dynamic nature of SDN, it implies that intents can only be deducted
from the mentioned requirements, which in turn is necessary to interpret conflicts and sound
resolution strategies. Below is an examination of current approaches for detection and reso-
lution in light of the requirements of Dwaraki et al. [DSNW15]. The existing classification
of conflicts is presented as a basis for the current work and to illustrate where it might be
lacking.

2.3.1 Conflict Classification

Hamed et al. [HA06] provide the first extensive classification of conflicts based on the in-
terpretation of forwarding plane state. The context are firewall rule conflicts, but as shown
by Pisharody et al. [PCH16], the classification can be directly transferred to SDN, and the
scope is not limited to security applications. The important distinction is that while Hamed
et al. [HA06] observe and evaluate policies that are administered manually by administra-
tors, the later work deals with conflicts of dynamic SDN environments. Where in SDN the
rule priority determines precedence, for conventional firewalls, the same effect is given by
rule order in the RIB and FIB data structures. Access-list conflicts and map-list conflicts
are the two main conflict categories, as defined by Hamed et al. [HA06]. Access-list con-
flicts emerge between filtering rules and entail malfunctioning traffic flow. Map-list conflicts
result from an inconsistent order or superposition of security transformations on packets,
such as encryption and encapsulation. Weak protection, unnecessary overhead or clear text
transmission of data is the consequence. While map-list conflicts are application bound and
usually arise due to configuration errors, access-list conflicts occur between any SDN ap-
plication and despite correct configuration. Another important definition is the difference
between intra- and inter-policy conflicts. The first are based on comparing rules within one
node in the topology. The latter are given by rule conflicts between several nodes and are
of most interest for this work.
First of all, the set of relations between policies is defined based on pairs of related poli-
cies..Two rules exactly match if all of their attributes are equal. In terms of SDN this implies
equal match fields. For intra-policy conflicts, the priority is the main distinction between
two matching rules. A correlation between rules as defined by Hamed et al. [HA06] is most
easily conceived by considering the rules with indices three in Table 2.1. The address spaces
overlap, but none is a superset of the other. An inclusive match is given if one rule is a
subset in at least one match field and at most equal in all other fields compared to a second
rule. Inclusive matches are shown independently by the rules with indices one and two in
Table 2.1. Completely disjoint rules satisfy none of the above criteria and partially disjoint
rules are given by a completely disjoint rule with a relation in a match field that does not
constitute an ordering, such as a TCP socket port. The previous rule relations where defined
on the address space of rules only. When taking the priority and the action of a policy into
account, the conflict patterns become apparent.
For inter-policy conflicts the patterns comprise Redundancy, Correlation, Shadowing and
Exception. As already mentioned, conventional RIB policies are oblivious of rule priorities,
but since the rule ordering implies a priority, the concept will be applied in the following
explanation. A higher priority implies a precedence in rule application. Redundancy is given
in case of an inclusive or exact match and equal actions, illustrated by rules with index one
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in Table 2.1 if A = B. While Redundancy does not pose a issue for traffic flow, an excess
of redundant rules can impede performance. The rules with indices 3 show a Correlation
conflict if A 6= B, i.e. the address space is a correlated match and the actions differ. A
Correlation conflict is interpretative, due to the undetermined effect of the correlated match
on different traffic profiles. Shadowing is given in case of an inclusive or exact match and
differing actions, shown by rules with index one in Table 2.1 if i > j and A 6= B. This can
lead to security issues where filtering policies are not applied. Exceptions can be intended
conflicts for fine grained control of traffic flow. An Exception is given by rules with indices
two if i > j and A 6= B or for rules with indices one if j > i and A 6= B.

Index Priority Source address Dest. address Action

1 i 10.0.1.* 10.0.1.* A
1 j 10.0.1.* 10.0.1.1 B

2 i 10.0.1.1 10.0.1.2 A
2 j 10.0.1.* 10.0.1.* B

3 i 10.0.1.* 10.0.2.2 A
3 j 10.0.1.1 10.0.2.* B

Table 2.1: Illustration of address space relations and rule conflicts as defined by Hamed et
al. [HA06]. Rules with index one and two show an inclusive match, while index
three is a correlated match. The choice for priorities and actions constitute the
conflict patterns Redundancy, Shadowing, Exception and Correlation.

When considering inter-policy conflicts, there are only two main types, namely Shadowing
and Spuriousness, and the definition and effects are not as specific. Shadowing corresponds
to the definition for intra-policy conflicts, although with an added effect. The shadowed
rule on the corresponding device never gets applied and traffic enters the network that will
ultimately never reach it’s expected destination. Complete Shadowing is given when the
address spaces exactly match and partial Shadowing results in functional traffic for some
cases due to an inclusive match. Spuriousness is linked to a security context and occurs if
filtering polices are applied too late. With an exact match, complete Spuriousness is given
and partial Spuriousness for an inclusive match. If a firewall is placed at a intermediate po-
sition within a topology, spurious traffic is never meant to reach a destination but still enters
part of the internal network. As stated by Hamed et al. [HA06] this creates vulnerabilities
to network reconnaissance and intrusion.
Pisharody et al. [PCH16] reached a classification in context of SDN and based on the flow
table state within one node in the infrastructure layer. The criteria for the classification is
again given by comparing rule priorities as well as their address spaces and actions. Since
the mentioned patterns Generalization, Overlap and Imbrication are simply a new conven-
tion for the before mentioned patterns Exception, Correlation and partial disjoint matches,
the novel contribution is the distinction between the possible choices for the priority. Ul-
timately it is arguable, especially when considering OpenFlow as the SDN framework, if
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the definition of patterns with equal priority is sensible at all since the processing pipeline
behavior is not specified in that case and implementation dependant, e.g. by favoring the
older policy. Therefore we will look at the definition for ordered priorities only. The two
new conflict patterns are Generalization and Overlap. An Overlap as stated by Pisharody
et al. [PCH16] is a specialised form of Correlation where actions A = B. When looking at
rules with indices three, an Overlap is given for i < j or i > j. A Generalization conflict is
in effect the same as a Shadowing conflict. The effect is that a rule with lesser precedence
will not be applied and the address space of the later rule is a subset of the first rule. A
Generalization conflict would be given by rules with indices one, where i > j and A 6= B and
rules with indices two, where j > i and a also A 6= B. Pisharody et al. [PCH16] assign the
conflict patterns to two main categorizes that indicate the resolution strategies. Shadowing,
Redundancy and Overlaps are intelligible conflicts that can be resolved so that all resulting
rules cover the interest of the conflicting rules. Generalization, Imbrication and Correlation
are interpretative conflict types that require adaption depending on the given environment,
and resolution strategies might lead to subsequent violations and inconsistent data plane
states.
In order to detect and define distributed conflicts, we need to correlate rules between switches
in a network topology to form a path from a traffic source to it’s destination. Therefore
match overlaps are not part of distributed conflict classes but the basis for discovering them.
Although we need to compare policies across data plane entities to build such paths, the
mechanism is the same as with finding contending match fields for local conflicts. Further-
more, actions are key to defining a distributed conflict class. With local conflicts the conflict
patterns depend on action equivalence, in a distributed scenario we will have to examine the
accumulated effect of all involved actions. Accumulated effects of actions across switches
concerns the described Multi-Transform and Spuriousness classes by Hamed et al. [HA06].
We expect to encounter these in the experiments. Considering the definition of inter-policy,
or distributed conflicts, the priority is irrelevant, which serves as the first insight for the
approach of this work and the relevant criteria for distributed conflicts. Nevertheless, the
precedence of policies decides which rules across network nodes connect, implying a direct
effect of local conflict resolution on any distributed conflicts. The similarities between local
and distributed conflicts are given by how candidates are generated through match correla-
tion and the fact that actions dominate the effects of each conflict type. Spuriousness and
Multi-Transform conflicts form the foundation of a distributed conflict data base to build
upon. The experiments show that faulty configuration can be the reason for other conflict
classes too. As with local resolution, resolution in distributed cases can evoke new conflicts
that need to be resolved in an iterative manner. The concept of intelligible and interpretative
conflicts [PCH16] when applied to distributed conflicts has two implications that are differ-
ent to local conflicts. Firstly, the existence and negative effects of some distributed conflicts
can only be determined by monitoring endpoints, and others require the input of application
intent. This seems infeasible when applied in a productive environment. Secondly, the res-
olution strategy for some of the presented conflict classes will always be interpretative and
dependent on manual resolution.

2.3.2 Conflict Domains

A popular topic for SDN conflicts are security applications, concerning attack vectors, mis-
configuration and overlapping responsibilities. Covert channels, established by exploiting
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Authors Scope Criteria Detection Resolution Tool

Shin et al.
[SPY+13]

Security
applications

Threat
models

X X FRESCO

Porras et al.
[PSY+12]

Security
applications

Application
intent

X X FortNox

Li et al.
[LCL+18]

Covert channel
attacks

Threat
models

X X CCD

Lu et al.
[LFX+19]

Multi
Controller

Traffic
monitoring

X X -

Khurshid et al.
[KZCG12]

All
conflicts

Static
invariants

X X VeriFlow

Sun et al.
[SMR+14]

Resource conflicts
Static

invariants
X X Statesman

AuYoung et al.
[AMB+14]

Resource
conflicts

Network
state

X X Athens

Pisharody et al.
[PCH16] [PNC+19]

Local
conflicts

Data plane
state

X X Brew

Table 2.2: Overview of research on SDN conflicts and corresponding tools.

conflicts between applications, are researched by Li et al. [LCL+18]. The authors define
threat models and their attack vectors that exploit filtering applications in SDN. Conflict
patterns are derived from the threat models, and a means for active prevention by inserting
automatically generated policies to ensure a correct data plane state or blocking them en-
tirely is presented. The detection mechanism is based on comparing candidate flow entries to
the existing data plane state. Conflict resolution is automated and no feedback is provided
for interpretation by an operator. The authors introduce a novel data structure for efficient
comparison of flow entries through equivalence classes, which results in an overhead of 18.7%
for processing packet-in messages [LCL+18]. The resulting prototype is the Covert Channel
Detector.
Another approach is given by Porras et al. [PSY+12]which additionally considers flow entry
priorities and defines three authorization levels. Manually installed rules by administrator
are given the highest priority, followed by security applications and ending with other ap-
plications in the third tier. For matching fields in policies that intersect, redundant and
malformed ones are ignored automatically. Resolution of all other rule intersections and
policies with the same authorization level are presented to an administrator for manual in-
spection. With FortNox Porras et al. [PSY+12] present a mechanism that prevents rule
insertions that affect performance but addresses the need for interpretation for other con-
flicts and the ambiguity of automated resolution. Invariants and authorization levels can be
defined and are upheld by the system. Porras et al. [PSY+12] implemented the prototype by
detecting conflicts by rule comparisons but do not provide explicit definition of conflict pat-
terns. The initial effort by Porras et al. [PSY+12] was further persued by the work of Shin
et al. [SPY+13] and resulted in the tool Fresco. The detection and resolution mechanism
is the same, but the focus is put on debugging and development of security applications.
Fresco adds a layer of configurable security modules on the security enforcement kernel of
FortNox.

19



2 Background

As stated in Section 2, an SDN environment with multiple controllers is feasible, although
prone to issues due to controllers that cannot reconcile responsibilities. Lu et al. [LFX+19]
investigate conflicts that arise due to multiple controllers in a topology and discern between
weak conflicts that merely handicap traffic flow and strong conflicts that prevent traffic flow
entirely. Again this work relies on theoretically designed patterns based on flow rules, and in
effect shows that the scope of the two conflict patterns capture their general repercussions,
but no tangible interpretation. Furthermore, the benefits of deploying multiple controllers
of a lesser load for single instances is replaced by the new bottle-neck of the proposed shim
layer between control and data plane to coordinate the controllers.
Sound network state also depends on network resources, such as available forwarding paths.
A network management model is formulated by Sun et al. [SMR+14], which mediates inter-
ests between resource control applications. The model captures the state at three phases:
the currently observed state, a new state as proposed by an application and a target state
that emerges from safely consolidating all proposed states. In Statesman the two invariants
that are the basis for determining a target state are reachability and network capacity. The
authors [SMR+14] introduce the concept of Controllability. Resource control applications
are supposed to work on information that is relevant to their functionality only but cannot
propose states that can be consolidated without any knowledge on their interdependence to
other applications. Controllability is a metric computed in the control layer based on all
application invariants and communicated to applications in context of the network invariants
they influence.
The work by AuYoung et al. [AMB+14] apply the concepts of Statesman in a SDN context
and suggest a voting scheme based on the proposed network states. The framework involves
an SDN controller and a separate resource controller. The introduced resource controllers
possibly demand for conflicting network invariants such as high or low bandwidth or addi-
tional nodes and links. Consequently, this model aims at keeping infrastructure consistent
with invariants. Voting on proposals from different modules, e.g. a switching, fault tolerance,
or bandwidth module results in choosing the proposed state with highest implied benefit.
The authors state that the value of a proposition is hard to quantify and differs across mod-
ules [AMB+14]. This might result in an inferior target state and impaired safety from the
standpoint of some applications. AuYoung et al. [AMB+14] developed Athens to resolve
SDN as well as resource conflicts by automated comparison of proposed network states and
a voting mechanism. The intention of control and resource applications and the individual
value of proposed changes is subject to interpretation. Two key concepts are introduced,
Parity and Precision. Precision implies if an application can accurately determine the value
and impact of its own proposals. Parity denotes if applications are able to rate their propos-
als on a commonly known metric. Depending on the given combination of precisions and the
level of parity, different voting mechanism are viable and an administrator needs to interpret
application effects to e.g. introduce weights to influence the impact of applications in the
voting process.
Examination of data plane state and their alignment with defined invariants is implemented
in VeriFlow by Khurshid et al.[KZCG12]. The framework is agnostic to applications and
ignores temporary network state, i.e. only fully processed packets, and inserted rules are rel-
evant. The approach is based on monitoring state changes and generating forwarding paths
for updates to determine the entities in the network that will be affected. This decreases the
regions of data plane state that need to be considered.
Brew is a tool implemented by Pisharody et al. [PNC+19] for conflict detection and resolu-
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tion in SDN environments. It is agnostic to topology characteristics and handles intra-policy
conflicts only. It provides automated resolution of intelligible conflicts and a visualization
for interpreting and resolving interpretative conflicts manually.
There are again several key implications that can be expanded to distributed conflicts. Con-
flict resolution in most projects is either done by heuristics, e.g. voting or approximation of
functional network state, by definition of priority levels of applications on top of rule priori-
ties, or simply by handling intelligible conflicts and presenting interpretative conflicts. Any
heuristics imply unpredictable consequences for network security. Since distributed conflicts
other than loops produce interpretative conflict classes, resolution as of now appears arbi-
trary at best and in the worst case more harmful than the conflict itself. Tran and Danciu
[TD20] emphasize the need for discovering more conflict classes and the need of application
intent to collect data that can serve as a basis for developing sound resolution strategies.
The existing tools show that added latency due to detection and resolution can be optimized
but is inevitable. While the trie data structure used in several implementations is an ex-
ample for successful optimization, it is based on layer 3 destination addresses only. Adding
bi-directional addresses or addresses from additional layers defeats the optimization. An-
other difference is that detection of distributed conflicts can only be performed once a newly
generated policy is connected to a subsequent policy. The subsequent policy comes into
existence only if the current is accepted. Any form of resolution that alters the predecessor
policy can prevent the emergence of the subsequent policy.

2.4 Security Requirements in Software Defined Networks

While several tools listed in Table 2.2 address security issues in SDN [SPY+13] [PSY+12]
[LCL+18] [PNC+19], the criteria and motivations for detection and resolution as well as con-
cepts of security vary. The only work on SDN firewalls exclusively, therefore excluded from
the overview on general tools, is given by Hu et al. [HHAZ14] and the author’s tool Flow-
Guard. FlowGuard requires a set of firewall rules as input, which are enforced globally in the
entire network. Another limitation is the requirement that typical optimization strategies,
based on the order of firewall rules, the correlation of targeted packets and differing actions,
are exempt. No policy that allows access is allowed to overlap with target packets of a
blocking policy. All named tools enforce their security policies across the entire network and
operate as an intermediate layer between controller and applications, or between controller
and data plane. Dixit et al. [DKZ+18] review filtering applications in SDN, with a focus
on FlowGuard, and define several characteristics firewalls must have in SDN. This includes
centralized flow tracking, i.e. maintenance of connections between flow entries across devices,
centralized policy enforcement across the entire network, tracking of connection states, au-
tomated conflict resolution, robustness against concurrent policy insertion and the need for
scalability. The notion of a traditional firewall is not applicable to these requirements, and
the tools, including FlowGuard, represent a security enforcement layer that prevent con-
trol applications from inserting violating policies or aim at resolving conflicts. Conventional
firewalls usually enforce policies within one device and are unaware of other applications
and the complete network state. There are three distinguishable circumstances that lead to
security conflicts. Packet transformation related conflicts that circumvent firewalls [HA06]
[LCL+18] [HHAZ14] [PSY+12], role-based scenarios [PSY+12] and the deployment of malign
applications or policies [HHAZ14], and the location of conflicting policies [HA06] [HHAZ14].
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Transformation of packet headers disguise packets from filtering rules targeting specific pro-
tocols such as the Internet Control Message Protocol (ICMP) used for network diagnostics,
or layer 2 and layer 3 address ranges. Authorization roles provide an extra layer of infor-
mation outside of the control channel to verify the origins of deployed policies and can be
implemented by digital signatures. Lastly, the deployment of applications within a network
for network intrusion detection, traffic quarantining, filtering and traffic shaping defines what
partitions of a topology can be reached by the affected traffic, before it is processed by said
applications. We will utilize these notions on security contexts and requirements for security
applications to evaluate new conflict classes and the presented detection mechanism.

2.5 Hidden Conflicts

Hidden conflicts in SDN as defined by Tran and Danciu [TD19] occur if a control appli-
cation fails to receive a packet-in event with flow criteria that would trigger a decision by
the application. The reason is the deployment at a time after another application has al-
ready enforced a policy based on such a packet-in event. This is a direct consequence of
the OpenFlow [ONFb]standard, which specifies that packets handled by an existing flow
entry in an switch conforming to the protocol refrain from generating another message to
optimize bandwidth on the control channel. As a consequence, data plane state needs to be
cleared whenever a new application enters the decision making process, which counteracts
the optimization efforts and entails guaranteed downtime in the network. Tran and Danciu
present an approach based on extraction and consideration of application intent to generate
artificial packet-in messages and prevent the mentioned shortcomings [TD19]. While appli-
cation intent can be undecidable and open for interpretation, the work on Hidden Conflicts
[TD19] demonstrates it’s importance for local conflicts in SDN. The results in Chapter 5
show that an overlap in application intent can be a primary cause for distributed conflicts,
where a similar approach is necessary for detection. Tran [Tra22] implements a rule graph
based on correlations between flow entries that fulfills a fundamental role for detection of
distributed conflicts. The current implementation, as well as adaptions and extensions from
this work are described in Chapter 4.

2.6 Experiment Parameters for Software Defined Networks

The conflicts in the forwarding plane are the combined symptoms of several underlying
causes. Tran and Danciu [TD20] define a parameter space that encompasses the dimensions
that lead to apparent conflicts in the data plane as well as hidden conflicts [TD19] for control
applications interested in the same traffic flows. The parameter space shown in Figure 2.5
consists of three types of dimensions that relate to traffic characteristics, topology shapes
and SDN configurations.
Data flowing into a network can arrive in a variable, bursty or constant bit rate. The traffic
profile can be consistent over time or changeable and mixed. Data rate and its patterns can
affect applications such as rate limiters. Transport protocols and a combination of such can
directly affect SDN applications that enforce policies on certain match fields. Also control
policies can cause problems if they fail to address certain transport types. Networks exert a
specific endpoint combination depending on its use case. If fault tolerance or a balanced load
in the network is a priority, the nodes and the established links between them can provide
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alternative or multiple paths. This will result in one-to-many, many-to-many and one-to-one
combinations. There are common, realistic shapes for network topologies, e.g. mesh or star
topologies that can be considered. Synthetic networks are a mix of realistic shapes or are
explicitly designed to produce conflicts unseen in realistic setups. Control applications or
control functions of a SDN controller generate policies with a certain priority. The priority
greatly influences which policies actually become active in handling the traffic flow. Applica-
tions working on a mixed set of priorities are prone to other conflicts than those that operate
on the same priority. Security levels and optimization can be reasons for the choice of pri-
orities. Control applications can be configurable with invariants, e.g. for quality of service
settings, and might implement variable or conflicting configurations. Control functions in
the controller are deployed at the same time, but the start order for applications working via
an asynchronous interface through the north-bound API results in unpredictability due to
the start order. Applications that get to insert flow entries first, deprive other applications
interested in the same traffic of their influence [TD19]. Applications can target specific or all
nodes in the infrastructure layer, depending on their function. The choice of target switches
might imply overlaps in their responsibility.
This work introduces enhancements of the technical aspects devised by Tran [Tra22] and
evaluates the parameter space dimensions in regard of any exposed distributed conflicts.
The currently application dependent comparison of data plane state and application intents
is generalized with a concept to include new control applications dynamically. Experiment
inputs and outputs are abstracted from technical details and the existing implementations
are adapted and fitted into a modular software architecture. Key dimensions are applica-
tion and topology related. Consequently, we need to devise the missing approach to make
the exploration of the topology dimension easier and incorporate random topologies. Ad-
ditional control applications facilitate the expansion of application related dimensions. We
will demonstrate the discovery of distributed conflicts and validate the methodology of Tran
and Danciu [TD20].
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Figure 2.5: Parameter space for SDN environments defined by Tran and Danciu [TD20].
The dimensions relate to traffic, topology and SDN characteristics and serve as
a data space for an empirical approach to examining conflicts. The figure is a
simplified version of Figure 4 in [TD20] by Tran and Danciu.
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There is an infinite amount of data points in the parameter space due to an arbitrary number
of nodes in a topology. The methodology for an iterative completion of the classification is
illustrated in Figure 3.1. It comprises tasks at different levels of automation and is based on
the methodology introduced by Tran and Danciu [TD20].
The selection of parameters as well as modeling a topology for the data point and building
the technical infrastructure is the first step for conducting an experiment. A topology model
is created manually, which serves as blueprint for generation of a virtual infrastructure and as
reference point for future experiments. The deployment of the chosen control applications
and simulation of network traffic follows. All control applications are run in isolation to
determine their expected behavior. Once these isolated executions are complete, the entire
power set of application combinations is executed to compare the observed behavior to the
expected data plane state. The work by [Tra22] automates these steps, yet application
input is processed individually and lacks a generalized approach. The developed prototype
is incorporated to validate already seen conflict patterns in repeated or new experiments.
Utilizing the detection prototype at this step helps reduce the amount of data that indicates
already seen conflicts. Furthermore, validation of patterns is important to avoid the impact
of singularities and to demonstrate the value of conflict detection in an empirical approach.
Any remaining inconsistencies between expected and observed state usually require manual
inspection and interpretation. By comparison of the observed data plane states and the
expected as well as other notable inconsistencies, conflict patterns are deduced if present.
The prototype provides a user interface to compare and analyze conflict classes. The figure
intentionally lacks a terminating state, since the data space has an infinite complexity as
mentioned above.
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Figure 3.1: This figure depicts the major steps for discovering new conflict classes, topol-
ogy setup, traffic simulation and conflict deduction, and is an adaption of the
methodology of Tran and Danciu [TD19].
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3.1 Network Topologies

In order to examine the presented parameter space, different categories of network topologies
will be tested. One category will be intentionally designed networks and the other random,
to avoid a bias towards certain shapes and configurations. These two categories do not cor-
respond one to one to real or synthetic topologies as defined by Tran and Danciu [TD20].
Especially random instances can be both real or synthetic, and a deliberate design of a
topology can also yield both types. The networks can be seen as graphs with the following
properties.

Nodes are the computing and routing resources in the network. They can be SDN switches
in the context of this thesis and are depicted as blue programmable switching devices. Hosts
are the nodes that initiate or answer to network traffic in the experiments and are depicted
as desktop-like icons. A nodes degree is given by the number of edges it connects to.

Edges are the connections between the nodes and represent virtual data links.

Degree distribution is a property of the entire network and signifies, the inter-connectivity
of a topology. It is a metric of the shape and can imply a clustering in certain regions of the
network.

Shapes are common structures in graphs that correspond to rings and stars as well as
bus topologies. A ring topology will connect a node to its neighbours and the deficiency of a
node will impair the connectivity of the entire network, although reachability is still given.
A star topology exerts central hub nodes for connectivity between the edge nodes. While the
deficiency of a single node is usually of low impact, a dysfunctional hub node will split the
topology into its individual branches. A mesh topology in its most complex form exemplifies
a fully connected graph, where all nodes are connected to each other. Mesh structures are
most commonly utilized to keep the average distance between computing resources small
and decrease latency, e.g. in computing centres. Large scale networks such as backbone
infrastructures across research facilities usually exhibit a hybrid shape to provide redundant
paths for resilience and a balanced load on the links, while exploiting the properties of more
specific shapes in smaller clusters.

3.1.1 Designed Topologies

The following networks where designed for examining conflicts on the basis of realistic or
existing topologies. A simple network design is devised for providing example topologies to
explain and test the deployed control applications. The concepts are based on literature on
SDN as well as publicly available resources.
The first and simplest topology is devised for testing. It includes four switches and four hosts,
to provide for all topology characteristics that are needed for simply application testing and is
still light-weight to build and deploy. The characteristics include multiple alternative paths
between hosts, a loop in the topology and multiple hosts to test endpoint load-balancing
scenarios. Figure 3.2 depicts the described topology.
The second topology depicted in Figure 3.3 is conceived as a simple abstraction of several
use cases. It includes several hosts to initiate traffic, two endpoints that represent resources
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Figure 3.2: Simple network topology for application tests. Switches are illustrated by blue
nodes and hosts by the desktop resembling icons. The lines between the nodes
depict the established virtual connections between the nodes.

for web services and several tightly meshed computing resources with high availability and
redundant paths to each other. It exerts a cluster of nodes in a mesh and a ring, unified by
a bottleneck node that serves as the hub of a connecting star topology.

Figure 3.3: Network architecture feature a simple mesh and ring topology, connected by a
bottleneck node and several redundant paths.

Asadujjaman et al. [ARAM18] devise the network illustrated in Figure 3.4 and use it for
research on SDN controller resilience. The authors test for failure recovery of controller com-
munication and connectivity and the network that contains core features that are of interest
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such as loops, bottleneck nodes, parallel and fallback routes as well as a nested cluster in
the core backbone. Most nodes have an average degree and three central switches display a
high degree.

Figure 3.4: SDN topology used by Asadijjaman et al. [ARAM18] for research on failure
recovery of the control channel.

The Münchner Wissenschaftsnetz (MWN) is a network between the three main univer-
sities and other research facilities in Munich. It connects all locations to the Leibniz-
Rechenzentrum (LRZ) computing centre and provides access to the internet via two internet
service provides. The topology in Figure 3.5 abstracts the backbone net of the Munich uni-
versities and research facilities and their inter-connectivity. The shape consists of redundant
links that connect the individual sites and internet providers, as well as a star topology
centralised around the campus next to the computing centre with a central node of very
high degree.
The abstraction of the Nippon Telegraph and Telephone backbone, illustrated in Figure 3.6,
is the network of one of Japans main internet service providers listed in the Nikkei index.
It serves as a test topology for various SDN implementations on the Ryu controller frame-
work [Nip]. The network consists of 55 switches and is the largest topology tested in this
work. Its shape corresponds to the geographical outlines of the island state and consists of
connected ring topologies in various sizes. The hosts are placed for simulating long range
connections across the island. Most nodes have average degree, with the exception of the
central connecting switches.
Pisharody et al. [PNC+19] use the topology depicted in Figure 3.7 for scalability testing
of their work. It simulates the backbone switching structure of a computing centre. Hosts
are placed below the access level switches to simulate traffic between computing resources.
Switches in the backbone layer exert the highest degree at the core of two connected star
topologies. Their child nodes in the distribution layer are part of a hybrid shape which yields
a network tree. The distribution and access layer form a mesh with nodes of lower degrees.

3.1.2 Random Topologies

To avoid a bias towards conflicts that arise in constructed scenarios and to validate conflicts
that arise in designed settings, random topologies are used as testbeds. There are several
undesirable properties for the testbeds that randomly generated graphs can possess, which
include unconnected nodes or simple and trivial shapes such as a pure bus topology. There-
fore it is paramount to choose suitable algorithms for graph generation that address these
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Figure 3.5: The MWN network connects multiple university campuses, several research fa-
cilities and the LRZ computing centre.

constraints. The following algorithms differ in their properties for exhibiting realistic shapes
and degree distributions as well as their characteristic for ensuring connectivity.
The choice of the Erdős–Rényi model for the first set of random graphs is due to the three
main criteria the model is based on, i.e. the property that edges are generated independently
edges and with equal probability and the study on the connectivity of graphs of such graphs.
Erdős and Rényi [ER60] as well as Gilbert [Gil59] independently devised the G(n,p) model
and described its properties. While n denotes the number of nodes, p is the probability for
creating an edge between two nodes. The graph is constructed by connecting labeled nodes
randomly in a process that corresponds to percolation theory, with a binomial degree distri-
bution of the nodes. The most important property discovered by Erdős and Rényi [ER60]
is that if p > (1 − ε)ln(n)/n, graphs will usually be connected. In other terms, there is a
critical percolation threshold for maintaining a robust connected graph with pc = 1/ < k >,
where < k > is the average degree of a node [ER60]. This yields connected networks without
independent components and as the network grows, depending on the choice of p and the
size of n, moderate clustering and leaf nodes become more probable. A sample graph is
depicted in Figure 3.8.
A study of graphs that relate to realistic applications is conducted by Newman et al. [NSW01]
and explicitly contains a comparison to the structure of the World Wide Web. The graphs
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Figure 3.6: Illustration of the core backbone of the Nippon Telegraph and Telephone network
in Japan. Host nodes are inserted for experiments on distributed conflicts.

Figure 3.7: This figure approaches the network design of a computing centre backbone and
is used by Pisharody et al. [PNC+19] for scalability testing of their SDN appli-
cation. The figure is an adaption of a depiction by Pisharody et al. [PNC+19].
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Figure 3.8: Random graph generated based on the Erdős–Rényi model [ER60], with binomial
degree distribution and moderate clustering.
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generated with the Newman-Watts-Strogatz algorithm tend towards a collection of circular,
connected ring topologies. The network shape is constructed based on principles that relate
to triadic closures mentioned first by Georg Simmel [Sim09]. The graphs show a high clus-
tering coefficient and short average path lengths. The defining parameters are the number
of nodes n, the number k of nearest neighbors for a node and the probability p for creating
new edges. The initial step is to create a ring shape with n nodes. Then the nodes are
connected to k nearest neighbors and finally for each existing edge between two nodes (u,v),
a new edge (u,w) to a third node is generated with probability p. As depicted in Figure
3.9, by choosing k > 1 we can avoid pure ring topology, while keeping p and the number
of random edges low, independent of the size n. The basis is still a graph that relies on
properties of the Erdős–Rényi model, while displaying small world properties often seen in
realistic settings.

Figure 3.9: Random graph generated with the Newman-Watts-Strogatz algorithm [NSW01]
that displays small world properties with short average paths and a tendency
towards clustering.

The concept of scale-free networks that possess a power-law distribution concerning node
degrees was the result of a study by Barabasi and Albert [BA99]. Social networks like the in-
ternet infrastructure are supposedly subject to self-organising mechanisms that yield power-
law distributions and densely connected hub nodes. While a study by Amral et al. [ASBS00]
shows that networks rarely show a true power-law distribution, the Barabasi-Albert model
is accepted as a good approximation of realistic topologies. Two natural mechanisms in
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the evolution of networks are growth and preferential attachment and Albert and Barabasi
[AB01] argue at a later point that both are necessary to attain small-world networks with
scale-free properties. One element of study are the dynamics behind citation networks and
their growth as well as preferential attachment to central studies. The concept can be con-
ceived by putting this thesis into the context. A new thesis, i.e. a new node, enters the
citation network and since the work by Barabasi and Albert [BA99] is a central and widely
applied concept in generating scale-free networks, it attracts new nodes more easily than
other references. The Extended-Barabasi-Albert algorithm has four parameters. n is the
number of nodes, m is a fixed number of edges that are randomly added with probability
p, and q is the probability that m existing edges are rewired. Consequently the algorithm
allows for growth and reconnecting, both on the basis of preferential attachment, i.e. more
connected nodes will receive more reconnected edges or new edges and evolve to become
hubs. Interestingly, the critical percolation threshold is pc = 0 for large n, since the removal
of a central node usually leads to disconnected islands in the graphs and degeneration to
multiple components, although the removal of most nodes does not affect network stability.
Figure 3.10 illustrates a graph based on the Barabasi-Albert model [BA99], with an obvious
high edge degree and clustering around a small number of hub nodes.
The caveat of the described algorithms is that they expose their distinct properties for graphs
more strongly with a growing number and especially large numbers of nodes. This is due to
the binomial and power-law distributions for node degrees and can be see when comparing
Figures 3.11, 3.12 and 3.13. The small graphs generated with these algorithms tend towards
a more uniform shape.
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Figure 3.10: Random graph generated with the Barabasi-Albert model [BA99] through
growth and preferential attachment and additional random re-connections of
edges, therefore called Extended-Barabasi-Albert algorithm.
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Figure 3.11: Random graph generated based on the Erdős–Rényi model [ER60], with bino-
mial degree distribution

Figure 3.12: Random graph generated with the Newman-Watts-Strogatz algorithm [NSW01]
that displays small world properties.
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Figure 3.13: Small random graph generated with the Barabasi-Albert model [BA99] through
growth and preferential attachment.

3.2 Control Applications

SDN conflicts implicate a conflict of interest in controlled domains and resources. Therefore
it is necessary to observe the cumulative effects of several control applications with different
intents for a given network and its traffic profile. The aim is usually filtering, throttling,
redirecting, balancing of flows and determining efficient paths between two endpoints. In
this experimental approach seven control applications with varying functions are considered
as well as a base routing implementation. Integration of new implementations in the appli-
cation or control layer is supported by the flexible experiment model 4.1 and a Hypertext
Transfer Protocol (HTTP) interface based on the OpenFlow [ONFb] standard that abstracts
from the Ryu controller framework [Nip]. Figure 3.14 depicts the components that form the
Representational State Transfer (REST) [Fie00] interface and allow for querying of topology
and data plane state by exposing status messages, as described in Figure 2.4, as well as flow
modification messages. The decision to exempt packet-in messages from the REST interface
is based on the assumption that the additional latency that comes with HTTP connections
affects performance of the control channel and controller, since delayed decisions will result
in an increased amount of packet repetitions and bandwidth on the control channel. Imple-
mentations in the control layer are limited to the scope of the Ryu controller framework [Nip]
and several custom components of the experiment testbed. The module utility detector.py
provides methods for flow entry insertion. Their employment is mandatory for enabling the
detection prototype. Current state of topology components, i.e. the available datapaths,
links, and known endpoints are obtained via the module topology.py.
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Figure 3.14: Control applications within the Ryu controller framework [Nip] subscribe to and
request controller messages, insert flow entries via the module utility detector.py
and access topology information through the module topology.py. REST in-
terfaces conforming to the Openflow standard expose flow table and topology
statistics through the module ofctl rest.py. The implementations are part of the
work in [TR].

3.2.1 Firewall

Operating in the application layer, the firewall bandwidth manager implements the REST
communication pattern described in Figure 3.14. Configuration options comprise a maxi-
mum bandwidth for switch ports, a maximum per flow bandwidth and the interval of the
monitoring cycle. It functions as a reactive blacklist targeted at individual flow entries with-
out limitations to OSI layers and match fields. The amount of data for each flow and port
is monitored in megabyte (MB) per second by requesting flow table and port statistics of
each target switch. The delta between two measurements is defined by the monitoring in-
terval and the total runtime of the update algorithm on reach interval. To avoid permanent
stress on the REST endpoints of the controller, the monitoring interval is necessary to set a
minimum time difference between sending requests. The cached statistics for ports consist
of the amount of transferred bytes, a timestamp and the calculated bandwidth, which are
compared to newly requested values and mapped to a switch’s port number. Flow entries
are mapped to a switch’s egress port and the string representation of the match fields, which
ensures uniqueness for flow entries that are functionally equivalent, i.e. equivalent for every
match field. Below code snippet 1 demonstrates how flows are filtered depending on port
and flow bandwidth limits. If a flow’s bandwidth is higher than the threshold, the actions
of the flow entry are flushed, effectively dropping the flow. The priority is incremented to
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enforce the block policy and it’s timeout is increased exponentially. The blocking policy is
active until the timeout is reached. Connections that repeatedly violate the threshold, induce
the exponential increase for the mentioned timeouts. Once all flow statistics are processed
and filtered, the port statistics are checked against the port threshold. Port bandwidths
exceeding the limit lead to a random choice of connections that are blocked, although with
static timeouts. In order to reduce the runtime complexity and avoid cumulative latency,
REST requests are sent concurrently. As soon as all results arrive, the data structures are
updated and individual timestamps are determined. Nevertheless, updated bandwidths are
snapshots, and the latency between request of port and flow statistics is only addressed by
the individual timestamps.

input: cached port metrics, cached flow metrics, target switches, flow bandwidth
limit, port bandwidth limit

foreach switch in target switches do
flowStats← getFlowStatsForTargetSwitch;
portStats← getPortStatsForTargetSwitch;
blockCandidates← emtpy list;
foreach flowStat in flowStats do

bandwidth← calculcateFlowBandwidth(flowStat, cachedF lowMetrics);
if bandwidth > flow bandwidth limit then

update cached flow metrics;
block flow;

else
update cached flow metrics;
update blockCandidates with flowStat;

end

end
foreach portStat in portStats do

bandwidth← calculcateFlowBandwidth(portStat, cachedPortMetrics);
while bandwidth > port bandwidth limit do

candidate← random element from blockCandidates;
remove candidate from blockCandidates;
subtract flow bandwidth from bandwidth;
block flow;

end
update cached port metrics;

end

end
Algorithm 1: Core algorithm of the REST Firewall Application

3.2.2 Path Enforcer

Enforcing specific routes in a network is a form of traffic engineering that allows for controlled
flow through nodes where further processing, packet inspection and filtering is implemented.
It also allows for confining flows to a less used or prioritized route. The application is
configurable to discern between OSI layer 4 protocols. The topology depicted in Figure 3.3
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provides a suitable complexity to showcase an example configuration. Given switch 9 as a
target switch and switches 7 and 5 as jumps, in this specific order, the app would route
the flows of hosts 5-9 to hosts 1-4 through switch 7. Flow entries will only be installed on
switches 9 and 7, from there the packets are sent to switch 5 for further handling. Traffic
originating from hosts 1-4, with hosts 5-9 as destination, will be routed directly to switches
10 and 11, since traversing the jump nodes 7 and 5 yield would result in a self-induced loop
when the packets reach switch 9 repeatedly on their way to the destination.
Any target switch of this application is given a number of other switches in the topology
and the implementation will try to send traffic along this route. The configuration can be
a series of directly connected switches or any series of switches within the topology with an
unspecified route between them. The implementation interpolates any unspecified links in
the jump path using a shortest path algorithm. To enforce the entire route, flow entries are
installed on all but the last node. A flow entry for the backward flow towards the incoming
link is installed on the target switch. Thus, from the perspective of a specific target switch,
we can only route one direction of a bidirectional communication over the jump path and
avoid ambiguous configurations. There are several edge cases that need to be managed
when forcing traffic on a specific path to avoid traffic loops. Let us consider a scenario where
packets are sent upstream from a client to a server. If the traffic flow traverses a bottleneck
node, such as switch 8 in topology 3.4, and the desired path leads over switches that are
downstream from that node, the path cannot be enforced for the upstream flow, since it will
create a self induced loop. In this example, the client is endpoint 1 in topology 3.4 and the
server is endpoint 6. The desired path from switch 8 leads to switch 7 and then switch 6.
A simple method to prevent this occurrence is a check of the route from the last jump node
towards the destination of a packet flow. If the target switch is part of the determined route,
the edge case is confirmed. In this scenario, the implementation ignores the upstream flow
and installs a flow entry on switch 8 that outputs traffic to switches 9 or 10. The returning
downstream packets can be routed over the specified jumps, and a flow entry towards switch
7 is installed and from there to switch 6. The next edge case is the interaction with routing
decisions of other applications. The path enforcer does not install any flow entries on the
last node on it’s jump route. Therefore it is paramount to check the quality of the route
from this last node towards the destination endpoint. If it is not a shortest path route, the
risk is too high that another application will reverse the decision of the path enforcer and
routes traffic back over one of the jumps. This will result in a distributed conflict and a
shortcut traffic loop. While this simple heuristic cannot prevent loops in general, it still
prevents trivial loops from emerging. Another trivial edge case is a sanity check for a valid
path from source to destination. If the specified jumps on the path are not valid, or a route
cannot be determined, the path enforcer ignores the packets and does not install any flow
entries.

3.2.3 Host Shadower

Inspired by the concept of domain shadowing, the Host Shadower can be categorized as
an adversarial application within a SDN. Traffic is redirected from an intended target
host to a backend host, while the counterpart in the communication stays oblivious of the
redirection. Next to malicious intents, the implementation allows for prioritization of servers
depending on network routes and domains. Consequently, the application could be used in
a configuration where a frontend host does not offer the targeted service at all. An example
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configuration in topology 3.3 of this app could be switches 10 and 11 as target switches.
Host 6 is the frontend host and host 7 the backend. Packets flowing from endpoints 1-4 to
host 6 will be transformed in the target switches to destination IP and MAC addresses of
host 7. The returning packets will be adapted again to contain the IP and MAC addresses
of host 6 as source entries.
The implementation transforms OSI layer 3, layer 2 addresses of forward and backward
flowing packets and routes the traffic to the backend. The flow entries for the backward
flows, which rewrite the packets to make them appear like they are originating from the
frontend host, are installed on all target switches of this app. A list of one-to-one mappings
between a frontend server whose layer 2 and layer 3 addresses are exposed and a backend
server that provides the service forms the configuration. The only edge case involved in
handling the packet rewrites is constituted by a check if hosts are directly connected to a
target switch and if a route to the backend server needs to be determined, in order to send
packets out to the correct link and install flow entries accordingly.

3.2.4 Routing

This is an OSI layer 2-4 and universally deployed application based on a shortest path first
algorithm and devised by Tran [Tra22]. It is session aware if applicable and handles TCP,
UDP and ICMP flows. The application is topology aware and generates paths depending
on the state of nodes and links in a network. It implements caching for layer 2 address
resolution. Since the routing function is required on every switch node in the network, it is
the most likely candidate to produce local conflicts, such as generalization. Consequently
it is implemented to be aware of configurations of other applications in the control layer to
avoid handling of flows that are supposed to be processed by respective control functions.
Although this can not be considered a realistic approach for an entire application stack in a
SDN topology, especially for those that implement a REST service, it is necessary to enable
the unobstructed control flow that leads to distributed conflicts. Considering topology 3.2,
this application will always suggest a path between switches 1-2-4 or switches 1-3-4 and vice
versa when processing packet-in messages for traffic between host 1 and hosts 2,3 and 4.
It will send a message to mentioned switches via the control channel to add appropriate
flow entries. The configuration comprises only the target switches, which will always be all
switches in the topology.

3.2.5 Path-Load-Balancer

This application aims at prevention of overloaded links in the topology and is conceived by
Tran [Tra22]. Once a threshold is reached for a specified port on a target switch, the flow
with the largest bandwidth is redirected on any alternative paths between two endpoints in
the network. Depending on a fixed monitoring cycle and the threshold, flows are redirected.
Consequently, flow paths from and to a destination might differ and paths are not optimal
concerning the number of traversed nodes. The configuration contains the monitoring cycle
in seconds as well as target switches with individual thresholds for port bandwidths. Con-
sidering topology 3.2 and the target switch 2, the implementation will monitor the outgoing
ports to switch 4 when host 1 communicates with the other hosts. If the bandwidth on this
port surpasses the specified threshold, the largest flow will by redirected to its destination
via the link to switch 3 and from there to switch 4. In this work the configuration and im-
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plementation is changed to allow for individual bandwidth limits on target switches, instead
of a global threshold. Individual thresholds allow for configurations that are adjustable to
different regions of a topology and address the fact that topologies can comprise any combi-
nation of network shapes and degree distributions on its nodes. In light of the experiments,
the increased flexibility can reduce the complexity concerning experiment iterations.

3.2.6 Passive Path-Load-Balancers

Balancing network load on all available paths between two endpoints is the intent of this
application, which is devised by Tran [Tra22]. Flows from specific endpoints are balanced
alternately between routes, depending on the number of flows. Starting from a target switch,
the traffic of a previously seen origin is fanned out. This application comes in two variations.
One will balance and consider paths outgoing to a destination and beginning from the balance
point, e.g. traffic to a server, and the other will balance on the return paths to an initiator
of a flow, e.g. the answers of a server to a client request. Both the source and destination
based version takes a list of servers as configuration. As an illustration, we will consider
topology 3.3. The source based path load balancer deployed on switch 9 and given switches
6-9 as servers will distribute flows on all paths between switches 1-9. This not only includes
balancing for links to switches 6-8 but also the two possible paths from switch 5. The
destination based variant with the same configuration, will perform the balancing on paths
facing to the right side of switch 9 to switches 10-15.

3.2.7 Endpoint-Load-Balancer

The scenario for this application is a server with several mirror servers. The application
balances flows to a server and its proxies in a round robin implementation and is developed
by Tran [Tra22]. The configuration contains the target switches as well as a set of servers
with their proxy endpoints. Each target switch balances the set of servers that are provided
in its configuration. In an example configuration we consider topology 3.3. Host 6 is defined
as server for the service and hosts 7-9 as proxies. When deploying the application on switch
9, connections from all other hosts will alternate between the server and its proxies but the
hosts will appear to be communicating with host 6, the main server, only. At the balance
point switch 9, packets will be manipulated going out to the proxies and returning from
proxies and layer 2 and layer 3 addresses will be rewritten.
The adaptions of the Endpoint Load Balancer affect the number of balancing configurations
and as a result, also the configuration format. Where before only one set of proxy server and
offloading servers was implemented, now a list of mappings of proxy servers to offloading
instances is possible. The specification of endpoints and their mapping is loaded from a
JavaScript Object Notation (JSON) file that adheres to the list of mappings. Consequently,
the application features increased flexibility and allows for configurations that had to be
covered by multiple experiment runs before the changes.

3.3 Experiment Automation

All presented topologies are complemented with an experiment model 4.1 that defines which
region of the parameter space will be covered. This includes configuration files for control
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applications and mappings for endpoint-combinations as well as target switches. All permu-
tations of possible priorities and application configurations are iterated, each representing
a data point in the parameter space 2.5. Comparison of flow insertions when running an
application isolated from others to it’s policy insertion in a combined run, exposes symptoms
for possible conflicts. If an application behaves differently during co-deployment, it might
not enforce expected policies that hint at a new or known conflict. Another indication of
possible deviations between isolated and combined runs is the monitored bandwidth through
link-layer virtual ports. Fluctuation in bandwidths and deviating paths in the network can
again lead to unexpected policy insertions.
The current implementation of experiment automation exhibits problems in the build process
of topologies, namely resilience against memory allocations for switch and host nodes as well
as errors due to timing issues when generating physical machine instances for them. These
might appear to be minor technical details, yet corrupted images or stale block devices break
the automation process, and missing nodes in a topology render it invalid. Furthermore, a
scaling of the topology also requires a scaling of the provided resources, i.e. a feasible number
of processors, memory and disk space. While these can only be provided by the administra-
tor of the host machine, it is important to give feedback and provide a means for allocation
in an automated system. The experiment runs proved to need at least four processors on the
host machine, while the controller node required two of them to run reliably even in small
topologies and at least 512 MB memory. The results of the experiments include monitoring
of bandwidth on ports and endpoint reachability as well as data plane comparison on target
switches. The processes to generate these results are application bound and implemented
redundantly since there is no common interface to define the input for them.
Depending on the number of applications in an experiment and the number of their config-
urations, the runtime complexity of the experiments lead to errors on smaller, less reliable
machines and lacking conciseness renders the result output convoluted. The complexity of
an experiment concerning the number of deployed applications a and the number of con-
figurations per app c is given by Formula 3.3, where r is the current subset of applications
that are deployed together. This is assuming that all applications have the same number of
configurations. The first term cr denotes all combinations of app configurations, rr all per-
mutations of app priorities, and the last term stands for the number of subsets that can be
obtained from all apps a and a given r. This includes redundant runs for all equal priorities.
An example of four applications with two configurations each requires 2440 repetitions of
starting the controller process, simulating traffic, analysing the data plane and generating
result files. While this does not appear as a large number, depending on the size of a topol-
ogy traffic simulation takes up to several hours or days. Since checkpoints for the execution
or intermediate output of results is not implemented, this could entail a substantial loss of
computational resources if any failure occurs. The same insights can also be obtained by
multiple experiments with less configurations per applications and will reduce the amount of
repetitions to 320 by a factor over seven. However, this requires 16 individual experiments
with one configuration per app to cover the same fraction of the parameter space. The
benefit are individual results that can be check-pointed or transferred to other machines to
avoid loss of data and quicker evaluation.

∑
1<=r<=a

cr ∗ rr ∗ a!

(r!(a− r)!)
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Increasing and improving the level of automation of the experimental process addresses the
need for reproducability, scalability, reliability and usability. If the inputs and outputs of
the system are unclear or hard to reproduce and an interface that abstracts from technical
details is missing, scalability and usability are compromised and the main task becomes
the configuration of the software, as opposed to using it. This work focuses on a concise
and flexible experiment configuration that produces tangible results and reproducible exper-
iments. The goal is to drive the automation process by one source of configuration for any
type of application and topology, which enables us to develop a general process of generating
experiment results on a common interface even for new applications. The key component
is a formal experiment model as well as several loosely coupled modules for generating the
technical infrastructure, any required configuration files and for running the experiment.
The desired architecture is depicted in Figure 3.15 and shows the key components of defin-
ing a testbed and application configurations, building a topology for the testbed as well as
deployment of an experiment and the generation of results. A well-defined model is the pre-
requisite for easy reproduction and serves as the entry point of both topology generation and
application configuration. A topology builder module and asset generator prepare specifica-
tion files that define the topology, including scripts for executing the experiment, technical
details and other resources. Details on these steps are described in Chapter 4. Given the
specification files as input, the topology builder module either generates the testbed directly
on the local machine. The config generator extracts the model specification concerning the
target domain of the parameter space and produces global and individual configuration files
for the SDN controller. The experiment is run based on the before mentioned configurations,
comprising all dimensions of the parameter space 2.5.
A common model, especially for app configuration, permits for a generalized process of app
deployment, monitoring of bandwidths and specification of endpoint interest, traffic genera-
tion as well as automated comparison of relevant regions in the data plane. Results include a
copy of the flow tables on all switches, a log of all detected conflicts and the input parameter
space. Several reasons call for a common interface and format to structure the input for an
experiment run and describe a topology. Firstly, specifying and building complex topologies
with Openflow switches, endpoints and the required edges is an error prone task, while the
only novel contribution of a new topology is purely its structure. Therefore, we can enforce
a simple format for defining such a structure. Secondly, in order to generate experiment
results that are not application bound, we need to enforce a shared, yet flexible interface
to configure applications. This declarative approach will conceal the technical details of the
testbed while exposing its functionality to a researcher. An explicit model is a tool for a
user of the system as well as a tool to determine if a user is using a system correctly and
provides transparency by checking structure and types of the experiment input. Researchers
testing a new application can integrate their configuration in the provided format and use it
in their app deployment. However, the most important utility is the declaration of interests,
namely on target switches and endpoints, and automated analyzing or detection of conflicts.
Topology generation, application configurations and experiment deployment can evolve over
time, yet the input model has an independent life cycle. A modular implementation of the
architecture allows for an adaption or replacement of individual components. This makes
the architecture flexible for future maintenance, refactoring, improvements and updates to
new technologies.
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Figure 3.15: Architectural model illustrating the key components of testbed generation and
experiment execution, based on reproducible inputs and results.
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Since the experiment model is the entry point for testbed automation, the structure and
utility is introduced first. The following sections describe the additions to the existing
code base for experiment automation and topology generation and any exposed errors, with
the appropriate patches. While researchers need to administer the entire procedure in the
current state of the project, decoupling of components allows for an Infrastructure as Code
implementation, where only an experiment model and any new applications are needed as
input and results are provided as output. Additionally, any experiments on a generated
topology can be repeated, adapted and processed in bulk. Readers interested in testing
the implementation should refer to Sections 4.1 and 4.5 and can avoid the technical details
describing the changes of the current system and new implementations. The source code for
the implementation of the experiment model and experiment building process, as well as for
the practical example deployment is accessible in the public repository [TR]. The mentioned
and depicted source code and files are part of the file structure shown in the Appendix 8.2.

4.1 Experiment Model

YANG is a data modeling language common in the networking domain and specified in
RFC 6020 [IETF]. It features a type system and customizability for generic definition
of configuration files. The following YANG model is used to generate experiment model
instances in Python [PSF] as JSON files and to verify said JSON files as input for testbeds.
Suitable libraries for other programming languages exist. This implies that researchers can
also configure experiments by directly writing JSON instances and use them as input to
build topologies and run experiments.
The model is structured into three main parts, i.e. topology configuration, app configuration
and settings for bandwidth monitoring and traffic generation. The autostart attribute is a
utility that can be used if necessary, e.g. if additional configuration before an experiment run
is desired. topologyId is a simple identifier, provided in the result output. The evaluationRun
attribute is added for easier tests with the automation process. The current implementation
aborts an experiment, if a connection between endpoints fails during an isolated run of an
application. In case of intentionally constructed conflicts, we need a mechanism to skip this
check. Traffic types comprise UDP and TCP. At the current state, the attributes for e.g.
bursty or variable traffic profiles are ignored. The attribute bw difference threshold is used to
determine the accepted difference on port bandwidths in target switches. If the throughput
on the link changes by the specified amount of bandwidth between application deployments,
a warning is generated. As said before, topologies are made up of switches, hosts and links.
What the model enforces is uniqueness in IDs and types for the different nodes to avoid any
ambiguity. App configurations include the mandatory attributes cookie and targetSwitches.
A cookie is a settable field in flow entries. If an application sets this value and provides
information on its target switches, the experiment scripts will check their flow entries and
compare data plane state between an isolated and co-deployment of apps. Target switches are
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identified by their ID, the same type as in the topology definition. Optionally, switches can
declare invariants and assets. Invariants are made up of keys and either an integer or a string
as value, or a list of integers and strings. Only one type of value can be given and if multiple
are provided, only one will be mapped to the key in the JSON file. This basically allows
a researcher to introduce arbitrary invariants, yet in future work a specific set of keys can
be defined to declare application interest and use these interests in detection of distributed
conflicts. Assets represent references to endpoints or switches and the model allows for
providing a one-to-many or one-to-one configuration nodes. Application’s configurations
and switch configurations have the same format. While application assets and invariants
are converted to a flat list, switch configurations will be mapped to their switch ID. This
represents a different granularity of scope that the individual configurations are applied to.
An example for a set of assets is a list of switches (jumps,router2, router3) as used by the
Path Enforcer app, a mapping of endpoints (proxy,pc1):(servers,pc1, pc2) as used by the
Endpoint Load Balancer or a one-to-one mapping (frontend,pc1):(backend,pc1) for the Host
Shadower. Sample invariants can be an integer representing a monitoring cycle in seconds,
a set of IP protocols that an app is supposed to handle or ignore, or a bandwidth limit for
ingress ports in a switch. The output and generation of a model instance can be examined
in the example for configuring and running an experiment 4.5. While this appears to be
an arbitrary structure for app configuration, it is inspired by the current applications but
flexible enough to suit new implementations that want to share the format or simply declare
interests as an input for generating detailed experiment results. The model aims at flexibility
concerning configuration structures, while still providing a test harness for the experimental
process and evaluation of endpoint and switch interests. The contained topology definition
avoids details tied to the technical implementation of the physical network.

+−−rw te s tbed
+−−rw topo logyId ? s t r i n g
+−−rw a u t o s t a r t ? boolean
+−−rw evaluationRun ? boolean
+−−rw b w d i f f e r e n c e t h r e s h o l d ? u int8
+−−rw apps∗ [ id ]
| +−−rw id s t r i n g
| +−−rw c o n f i g
| +−−rw cook i e cook i e
| +−−rw appInvar iants ∗ [ invar iantKey ]
| | +−−rw invar iantKey s t r i n g
| | +−−rw intValue ? in t8
| | +−−rw s t r ingVa lue ? s t r i n g
| | +−−rw int I t ems ∗ i n t 8
| | +−−rw s t r i n g I t e m s ∗ s t r i n g
| +−−rw ta rge tSw i t che s ∗ [ id ]
| | +−−rw id switchId
| | +−−rw s w i t c h I n v a r i a n t s ∗ [ invar iantKey ]
| | | +−−rw invar iantKey s t r i n g
| | | +−−rw intValue ? in t8
| | | +−−rw s t r ingVa lue ? s t r i n g
| | | +−−rw int I t ems ∗ i n t 8
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| | | +−−rw s t r i n g I t e m s ∗ s t r i n g
| | +−−rw swi tchAsse t s ∗ [ id ]
| | +−−rw id in t8
| | +−−rw majorAsset
| | | +−−rw assetKey s t r i n g
| | | +−−rw assetValue host Id
| | +−−rw minorAssets
| | +−−rw assetKey s t r i n g
| | +−−rw assetValue ? nodeId
| | +−−rw as s e t I t ems ∗ nodeId
| +−−rw appAssets ∗ [ id ]
| +−−rw id in t8
| +−−rw majorAsset
| | +−−rw assetKey s t r i n g
| | +−−rw assetValue host Id
| +−−rw minorAssets
| +−−rw assetKey s t r i n g
| +−−rw assetValue ? nodeId
| +−−rw as s e t I t ems ∗ nodeId
+−−rw t r a f f i c P r o f i l e s ∗ t r a f f i c P r o f i l e
+−−rw t r a f f i c T y p e s ∗ t r a f f i c T y p e
+−−rw swi t che s ∗ [ id ]
| +−−rw id switchId
+−−rw hos t s ∗ [ id ]
| +−−rw id host Id
| +−−rw source ? boolean
+−−rw edges ∗ [ id ]

+−−rw id u int8
+−−rw nodes∗ nodeId

Listing 4.1: Source code of the presented experiment model implementation in YANG [IETF]
syntax.

4.2 Technical Infrastructure

The presented network topologies are made up of testbeds that simulate nodes as virtual ma-
chines (VM). Host virtualization is the concept of emulating physical and software resources
of a host machine for a guest operating system (OS) through a layer of abstraction, the hy-
pervisor. The paradigm of para-virtualization requires that a guest OS is adapted to be run
on a host OS through the hypervisor. This provides for a more light weight hypervisor and
a more efficient execution of an individual VM. The caveat is that Xen [TLF] guest domains
need to be run on a host that provides their specific Linux kernel version. To satisfy this
requirement on any given physical host that cannot provide the right Linux kernel version,
the setup allows generation of testbeds within an additional wrapper VM. The outer virtual
machine is created with the open source version of VirtualBox [OC] and runs Debian Stretch
as OS. Virtualbox [OC] is based on a hypervisor that implements full virtualization. Guest
machines are agnostic of the host OS, but that requires a heavy-weight implementation in
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the hypervisor. The inner VM are Xen [TLF] guest domains and the edges are connections
between the their virtual network interfaces. The interfaces are bridged through the main
master bridge in the outer VM. Every switch node is connected to a controller VM on one
network interface to provide a management net based on one IP subnet. All other interfaces,
depending on the degree of the node are layer 2 links.
Ryu [Nip] is a Python [PSF] based implementation of the OpenFlow [ONFb] protocol.
Python is an interpreted, object-oriented programming language suitable for scripting and
light-weight, rapid development and an extensive system set of libraries. A Ryu controller
starts threads for all attached control applications, so basically apps are started in parallel.
The controller main thread maintains events and exposes them to subscribing applications.
Ryu provides several built-in REST applications that expose the messaging mechanism,
topology state and OpenFlow 2.2 control functions to HTTP clients. Representational State
Transfer (REST) is a concept defined by Fielding [Fie00] in his thesis on styles and designs
of software architectures. The HTTP standard implements the suggested architecture. Key
properties comprise a client-server architecture, statelessness in servers and a uniform inter-
face between servers and clients. Since state is maintained in clients and all clients implement
a common interface, a REST control application can be implemented in any programming
environment and on any endpoint, complementing the pluggable nature of SDN.
Network traffic between the host nodes is generated using the tools iperf [Sofb] for testing the
bandwidth limits and netcat [Sofc] as a general utility for sending data between computing
nodes. Both tools provide the option to generate connection oriented TCP and connection-
less UDP traffic. This simulates flows in the network that can be handled by the control
applications. Monitoring, logging and analysis of the generated traffic is implemented with
the tool tcpdump [Sofa].

4.3 Experiment Building

The static components depicted in Figure 3.15 are referenced in VM specification files that
include a unique identifier for each VM instance, a path to a template OS image, as well as
any desired files that are copied to the file system. File resources for the host machine or
wrapper VM contain a copy of all experiment automation scripts from the project repository,
including the apps, their configurations and setup scripts to create network interfaces and
assign MAC and IP addresses. Furthermore, researchers can provide a path to a directroy
that contains a cryptographic key-pair and ssh config file for a Secure Shell (SSH) connection
to a remote machine. Transferring intermediate results for a batch run of experiments helps
reduce the risk of data loss. It is also a means for enabling an Infrastructure as Code service
in the future, where researcher do not have to administer the host machine anymore and
simply provide an experiment model and get results. Security is an issue in this approach
but it serves to showcase the utility of the experimental process.
Template images for controller, switch and host nodes are fully configured and contain all
necessary installations and resources for experiment execution to enable a deployment with
or without public internet connection. Node specifications additionally contain a list of net-
work interfaces. The first for each is bridged over a master interface in the host machine to
form a management net and to establish the control channel between switches and controller.
The following network interface identifiers are paired to form the edges of the network and
each pair again is bridged over a dedicated master interface on the host machine. Figure

50



4.3 Experiment Building

4.1 illustrates management and testbed networks as well as the control channel. The auto-
generated VM IDs are used to establish SSH connections to the individual nodes through
the management net. IP addresses are assigned to hosts within the testbed net. Figure

Figure 4.1: Sample topology with depiction of management, testbed net and control channel
between controller and switches. All network interfaces are bridged over inter-
faces of the host machine to form the edges of the testbed net. Host nodes are
assigned an IP address within the testbed network.

4.2 shows the resources involved in generating VM specification files and their dependen-
cies. A requirement for automated generation of specification files is the adaption of the
script constants generate spec.py to a user’s settings in order to provide absolute paths to
the VM template images. It features an absolute path to a directory containing an archive
with scripts to create bridges and Xen [TLF] domains, and the mentioned optional SSH
configuration archive can be added at this location. Depending on the desired method for
defining an experiment model, a programmatic approach here exemplified by the python
script sample topology.py or a corresponding JSON file is the entry point for the experi-
ment build procedure. The YANG model is translated to a python module with the shell
script setup pyang module, which requires the software library pyangbind. The module ran-
dom topo.py provides several functions to generate random topologies described in Section
3 and a helper method to generate a diagram for switches and edges. Once a JSON file has
been created manually or via code, the script generate sdn spec.py is executed and given
a path to the model instance. The helper class parameter space loader.py loads and vali-
dates a YANG models and processes different model versions. The loaded model is used in
app config generator.py to create app configurations. These two modules are reused in the
experiment execution process and ensure adaptability for future changes of YANG models.
The main script generate sdn spec.py integrates app configurations with the required scripts
from the project repository and generates the final VM specification files that tie together
all references and mentioned settings. This architecture let a user specify nodes and edges
in one configuration file and abstracts the generation of specification files and details on
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network interfaces. Up to this point, no VM image has been instantiated. The generated

generate_sdn_spec.py app_config_generator.py

parameter_space
_loader.py sample_topology.json

VM
Specification

constants_generate_spec.py

sample_topology.py

random_topo.py
sdn_testbed_spec.yang

setup_pyang_module sdn_testbed_spec.py

App
ConfigurationsApp Configs

App
ConfigurationsTar FilesVM

Imagesssh config Repository

Figure 4.2: Figure depicting the scripts and static resources that generate VM specification
files. The specifications aggregate all information to produce OS images, a correct
setup of network interfaces of a testbed and an experiment run. Blue components
mark the entry points for defining an experiment model instance or generating
a specification from it.

specification files serve as input for the topology building processes depicted in Figure 4.3.
The main tasks are copying and configuration of template OS images as well as the insertion
of necessary resources to the specified destination in the host machine or into an optional
wrapper VM. Once the machine images are assembled the topology is deployed on the local
machine.
An adaption of the configuration in constants build env.sh for the local directory is a re-
quirement for running the build process. The default configuration creates VM images in
the /tmp directory and it is important to provide absolute paths with any change of the
configuration. This entails that encapsulated topologies will be deleted on any Linux system
upon restart or shutdown, so depending on the host machine and the retention period of the
topology, an adaption is advised. The entry points for topology generation are the two scripts
deploy sdn conflicts experiment.sh and build sdn conflicts experiment.sh. The minimum re-
quirement for building a topology is the software package qemu-utils and a Debian-based OS
with a kernel version that matches the version of the template images. Another requirement
for the direct local deployment is a Linux kernel version with the Xen [TLF] hypervisor
extension. The script deploy sdn conflicts experiment.sh will copy a Virtualbox [OC] VM
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image and insert all resources and Xen [TLF] VM images into its file system. It calculates
and prints the required memory for the topology to the command line and prompts the
user to enter base settings for allocation of processors and a local port for creating a local
SSH port forwarding for access to the wrapper VM. Root access is required to administer
and access the Virtualbox [OC] VM. The latter script omits any steps for the wrapper VM
and deploys the Xen [TLF] domains on the local machine directly. All file resources will
be also created on the local machine. The auxiliary scripts exhibited several issues that
entailed some unreliability, lacking portability between Linux kernel versions and inhibitions
to scalability. The script common network helpers.sh produces MAC addresses for the Xen
[TLF] domains and is adapted to generate up to 253 IP addresses. The implementation of
the script common qcow helpers.sh is adapted to remove a portability issue with caching and
asynchronous I/O mode between threads for connection of a local block device to a mounted
image using the command qemu-nbd. While the previous image might increase efficiency with
the right OS, the implemented settings are more portable and less error prone in general.
Another issue was a race condition between unmounting the outer VM image and detaching
the network block device, which lead to unreliable behavior, frozen network block devices and
invalid images. The commands are now reversed, to ensure that a block device is detached
first and an image is unmounted if the detachment is successful. Furthermore, the script
common generate xen topology.sh is a slimmed version of common generate qcow image.sh
that omits steps for the wrapper VM and deploys the Xen [TLF] domains on the local
machine.
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Figure 4.3: This diagram shows the dependencies and components of the topology generation
system. Entry points for the topology build process are the blue components and
take a path to VM specifications as input. The result is a local deployment of Xen
[TLF] domains or an encapsulated topology within a wrapper VM. The scripts
originate from the MNM-Team [MT]. Adaptions and additions are described in
this section.
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4.4 Experiment Execution

Execution of an experiment, i.e. reachability tests, traffic generation, invariant monitoring,
data plane comparison and result generation, requires the following preparations within a
testbed. First of all, bridges that connect the interfaces of nodes within the testbed are cre-
ated. The Xen [TLF] domains that form the testbed need to be created from the generated
images and configurations. Endpoints need to be assigned IP addresses within the testbed
network and the switches connections to the control channel are established. The script
rnp vms.sh originally implemented by the MNM-Team [MT] and adapted in this work ties
together all of these steps and is executed automatically once a topology has been deployed.
The script is adapted to avoid errors during Xen [TLF] domain creations, a critical process
for the entire automation. The error is caused by the fact that all Xen [TLF] domains are
started in background processes at the same time. This leads to memory allocation errors
of the Xen [TLF] hypervisor and occurs on a regular basis even for small testbeds and on
any host machine. Trying to start up Xen [TLF] domains in parallel is more time efficient,
but even one error had the effect of total failure of any further automation. Even when
starting the domains sequentially, said memory allocation errors can occur and will occur
for large topologies. Therefore, the scripts are adapted to check if domains are created suc-
cessfully and repeat the process on failure. It is paramount that the process is reliable for
further automation steps. For experiment configurations that set the autostart attribute
explained in Section 4.1, the following steps are executed automatically through the script
config and start.sh. Otherwise they can be performed manually. The script config testbed.sh
by Tran [Tra22] requires the number of switches and hosts as parameters to configure all
nodes in the testbed. The script read parameter space.sh starts an experiment run as speci-
fied in the model instance, i.e. a simulation of all combinations of applications, application
configurations and application priorities on the testbed. For automated starts of experiment
runs, the process is started within a tmux [Mar] session. The results for each permutation
include:

• a dump of the entire data plane state

• logs of detected differences between isolated and co-deployment of applications in data
plane state and port bandwidths in respect to the configured bandwidth threshold

• a log of any known conflict classes that are detected by the detection prototype

• a copy of the input parameter space

The common interface for application configuration through the experiment model allows
for a generalized process to produce these results. The script read parameter space.bash is
adapted for this purpose. While before the implementation was application bound, now
any application configured through the model will be considered. Furthermore, deviations
between traffic bandwidth on switch ports is performed based on a static value defined in
this script. The parameter is now definable through the experiment model and processed
by the script. Concerning bandwidth monitoring, the threshold was applied to any case.
This implementation fails to address the significance of a link that did not receive any
bandwidth in an isolated run but is used in a co-deployed instance. Now we also take ports
into consideration that exhibit bandwidth changes below the bandwidth threshold but are
unused in expected state and used in observed state. Simply said, when we encounter a
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bandwidth of 0.0 in an isolated run on a link and a bandwidth of any value above zero in a
co-deployed run, a warning is raised oblivious of the configured bandwidth threshold. Two
versions exist of read parameter space.bash for backwards compatibility. A YANG model
instance dictates the version and which script is executed. If a SSH configuration for a remote
host was given, all result files are uploaded to the host. Since the creation of testbeds take a
considerable amount of resources to create, it suggests itself to define a number of experiment
instances and process all of them automatically. The script iterate parameter space.bash
accepts a directory path as argument and processes any number of model instances in the
directory by loading each model, generating appropriate application configuration files and
the necessary input for the script read parameter space.bash. While this process supports
mass processing of the parameter space depicted in Figure 2.5 and production of experiment
results for further inspection, researchers might want to exert more control and get direct
feedback. Researchers can use the system as a debugger, by attaching to the created tmux
[Mar] session to check the output of experiment runs in process. Furthermore, for complete
verbosity and control, a user can open a SSH connection to the controller domain to run
control applications manually and access switches and endpoints to generate any desired
form of traffic within the testbed.
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app_config_generator.py
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Figure 4.4: Overview of software modules required for experiment runs. The architec-
ture consists of implementations by Tran [Tra22] and auto generated scripts
(all vms.sh, rnp vms.sh and bridges.sh) from the MNM-Team [MT]. Adaptions
and extensions are described in this section. Blue elements mark the entry points
for topology deployment as well as single or batch experiment runs.
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4.5 Example Deployment

This example shows how to create an experiment model, build a testbed and run experiments.
Next to this step by step guide, the repository [TR] contains README files as a guide, which
are also shown in the attached directory tree 8.2. The required packages for this example
are the following:

• qemu-utils

• python3

• python3-pip

• pyangbind (pip3 install pyangbind)

• networkx (pip3 install networx)

• pygraphviz and utilities (sudo apt install graphviz libgraphviz-dev pkg-config && pip3
install pygraphviz)

• Linux kernel version 4.9.0-13-amd64 with Xen [TLF] hypervisor extension for local
topology

• Virtualbox [OC] version 5.2.42 or later for encapsulated topologies

Unless a dedicated machine for executing this example is available, which can be down-
graded to the required kernel version and provisioned with the Xen hypervisor [TLF], it is
recommended to build an encapsulated topology with VirtualBox [OC]. If you choose to
build a local topology, be informed that the directories /xen and /control will be created on
the local file system and that any contents could be overwritten. References to the project
repository and VM images are also required and are part of the work of Tran [Tra22]. They
are accessible through the project repository [TR].

The first step is the creation of an experiment based on the YANG module. Open a command
line terminal in the project repository and execute commands:

$ : cd topogen / autogen
$ : touch sample topo logy . py

Use any desired text editor and create a model. The below code is an example experiment
with four switches and four hosts as a testbed, illustrated by Figure 3.2. We deploy the Host
Shadower and Path Load Balancer applications. The code shows the use of a model for a
custom application that can be provided by a researcher. The someApp application needs to
be provided by a researcher, either based on a Openflow REST interface as a Python module
but independent of any controller framework, or as a Ryu [Nip] control application. In this
example file has to be named someApp.py and copied to the directory controller/massive of
the repository. In this example we assume that the application does not actually use the
generated config file from the model, but it still provides a configuration to declare interest
for hosts pc1 and pc2 as well as switch router1. A definition of a cookie, which should be
used for flow entries as well as a declaration of at least one target switch, is mandatory. If
you do not want to provide a custom application, comment out the respective lines in the
code. Below the application configurations, we add hosts, switches and edges to the topology
and draw a diagram.
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import os
import j son
import random topo
import pyangbind . l i b . pybindJSON as pybindJSON
from pyangbind . l i b . s e r i a l i s e import pybindJSONDecoder
from s d n t e s t b e d s p e c v 2 import s d n t e s t b e d s p e c v 2
from c o n s t a n t s g e n e r a t e s p e c import TOPOLOGY DIR

topoId = ” sample topo logy ”
topoFileName = os . path . j o i n (TOPOLOGY DIR, ”” . j o i n ( [ topoId , ” . j son ” ] ) )
model = s d n t e s t b e d s p e c v 2 ( )

model . t e s tbed . s e t a u t o s t a r t (” t rue ”)
model . t e s tbed . topo logyId = topoId

# Host Shadower c o n f i g
hs = model . t e s tbed . apps . add (” hs ”)
hs . c o n f i g . cook i e = ”0 x440”
hs . c o n f i g . t a rge tSw i t che s . add (” route r2 ”)
hs . c o n f i g . t a rge tSw i t che s . add (” route r3 ”)
# add (1) i s j u s t an i n i t i a l i z e r and has no f u r t h e r meaning
appAssetsConf ig = hs . c o n f i g . appAssets . add (1 )
appAssetsConf ig . majorAsset . assetKey = ” frontend ”
appAssetsConf ig . majorAsset . as se tVa lue = ”pc2”
appAssetsConf ig . minorAssets . assetKey = ”backend”
appAssetsConf ig . minorAssets . a s se tVa lue = ”pc3”

# Path Load Balancer c o n f i g
plb = model . t e s tbed . apps . add (” plb ”)
plb . c o n f i g . cook i e = ”0 x300”
bw = plb . c o n f i g . appInvar iants . add (” bw time ”)
bw . intValue = 5
t s = plb . c o n f i g . t a rge tSw i t che s . add (” route r1 ”)
bw thres = t s . s w i t c h I n v a r i a n t s . add (” bw thresho ld ”)
bw thres . intValue = 10

# c o n f i g u r a t i o n f o r custom app
# which does not use c o n f i g f i l e but
# prov ides c o n f i g f o r automated r e s u l t s
someApp = model . t e s tbed . apps . add (”someApp”)
someApp . c o n f i g . cook i e = ”0 x200”
someApp . c o n f i g . t a rge tSw i t che s . add (” route r4 ”)
appAssetsConf ig = someApp . c o n f i g . appAssets . add (1 )
appAssetsConf ig . minorAssets . assetKey = ” hos t s ”
appAssetsConf ig . minorAssets . a s s e t I t ems = [ ” pc1 ” ,” pc2 ” ]
appAssetsConf ig = someApp . c o n f i g . appAssets . add (2 )
appAssetsConf ig . minorAssets . assetKey = ” switch ”
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appAssetsConf ig . minorAssets . a s se tVa lue = ” route r1 ”

# s e t t r a f f i c p r o f i l e and types
model . t e s tbed . t r a f f i c T y p e s = [ ” udp ” , ” tcp ” ]
model . t e s tbed . t r a f f i c P r o f i l e s = [ ” cbr ” , ”vbr ” , ” bursty ” ]

# add swi t che s and hosts , s e t host 1 as t r a f f i c source
f o r i in range ( 1 , 5 ) :

model . t e s tbed . sw i t che s . add (” route r {}” . format ( i ) )
pc = model . t e s tbed . hos t s . add (” pc {}” . format ( i ) )
i f i == 1 :

pc . s e t s o u r c e (” t rue ”)

# s e t the edges between nodes
# host s need to be connected to one switch
# swi t che s are connected to a switch or host
r o u t e r e d g e s = [ [ ” route r1 ” ,” route r2 ” ] ,

[ ” route r1 ” ,” route r3 ” ] , [ ” route r2 ” ,” route r3 ” ] ,
[ ” route r2 ” ,” route r4 ” ] , [ ” route r3 ” ,” route r4 ” ] ]

# draw the switches , hos t s not supported yet
agraph = random topo . c r ea te agraph f romedges ( r o u t e r e d g e s )
random topo . draw switches ( agraph , topoId )

hos t edge s = [ [ ” route r1 ” ,” pc1 ” ] , [ ” route r4 ” ,” pc2 ” ] ,
[ ” route r4 ” ,” pc3 ” ] , [ ” route r4 ” ,” pc4 ” ] ]

edges = hos t edge s + r o u t e r e d g e s

f o r i in range ( l en ( edges ) ) :
edge = model . t e s tbed . edges . add ( i )
edge . nodes = edges [ i ]

# wr i t e yang model to j son in i e t f format
output = pybindJSON . dumps( model , mode=” i e t f ”)
p r i n t ( output , f i l e=open ( topoFileName , ”w”) )

Listing 4.2: Sample configuration for an experiment on Software Defined Network conflicts,
including specifications for the network topology shown in Figure 3.2. Source
hosts generate traffic, all other endpoints start mock servers for services. The
current implementation supports automated generation of network diagrams for
switch nodes.

To generate the experiment JSON file, run the following command within the directory
topogen/autogen of the repository.

$ : python3 sample topo logy . py

The directory topogen/topology contains experiment models for all topologies listed in Sec-
tion 3 with various app configurations and can be used for generating a JSON model instance
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for this example. Adjust the constants in the file constants generate spec.py to the local file
system, provide absolute paths to template images and a path to the optional SSH config
and cryptographic key-pair. To generate the specification files for building the topology and
any app configuration files, execute the following command within the directory topogen/au-
togen:

$ : python3 gene ra t e sdn spec . py path/ to / sample topo logy . j son

This produces specification files in the directory topogen/specs and will show the absolute
path on the command line. Be sure to check for the correct path to the generated specification
files. Now move to the directory topogen/scripts and execute one of the following command
to build an encapsulated topology:

$ : sudo d e p l o y s d n c o n f l i c t s e x p e r i m e n t . sh . . / spec s / sample topo logy

You will be prompted for the amount of processors that can be allocated to the VM and
a number to create a local port forwarding for SSH access to the VM. The required SSH
command will be printed on the command line.

For deploying a Xen [TLF] topology locally, execute the alternative script:

$ : sudo b u i l d s d n c o n f l i c t s e x p e r i m e n t . sh . . / spec s / sample topo logy

Root privileges are required for both scripts,since the implementation mounts images to the
local file system.

For a successful deployment within a Virtualbox [OC] VM, it can now be accessed. Since
the experiment model contains the autostart attribute, no further steps are required. As
soon as a tmux [Mar] session is created, the experiment run has started. Switch to the root
user and access the the VM via SSH with the following command if your provided port was
e.g. 2226:

#: sudo −s && ssh −p 2226 l o c a l h o s t

Now check if a tmux [Mar] session has been created and attach to it.

#: tmux l s
#: tmux attach −t ID

For a locally deployed Xen [TLF] topology check, for any new tmux [Mar] session with the
above commands and attach to it. If you provided a SSH config, any results will be uploaded
to the target machine within the directory sdn results. If you want to start more experiment
runs, create more experiment models, and insert the JSON files into the encapsulated VM if
necessary. From there move to the directory /control/automating experiment and execute
the following command:

#: bash i t e r a t e p a r a m e t e r s p a c e . bash p a t h t o j s o n f i l e s

This will only work for models that fit the generated testbed. The testbed is not recreated,
but the application configurations are based on nodes in the testbed and will only be valid
for these nodes. For every JSON model instance the script app config generator.py will gen-
erate app configuration files and any required global settings for an experiment run. This
process is used for experiment building, as well as experiment deployment and the script
will be imported automatically where needed. The script can also be used to automatically
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generate configuration files from an experiment model for a manual execution of the Ryu
[Nip] controller and control applications. The experiment results are saved to the directory
/control/automating experiment/dataset or on the configured remote machine under /home-
/user/sdn results.

When building a new testbed, be sure to tear down an established topology in order to
free up needed resources and avoid deploying any remnant Xen [TLF] domains in case of a
local deployment. This also applies for removing testbeds after finishing experiments. For
an encapsulated topology, simply stop and delete the wrapper VM. To determine the name
of a wrapper VM, try either of the following commands.

#: vboxmanage l i s t vms
#: vboxmanage l i s t runningvms

Be sure to collect any generated results from /control/automating experiment/dataset if
you did not supply a valid SSH configuration. To stop and delete the VM, execute both
commands:

#: vboxmanage controlvm sample topology −1633001718 powero f f
#: vboxmanage unreg istervm sample topology −1633001718 −−d e l e t e

In case of a local topology, the control folder needs to be deleted and the created Xen [TLF]
domains need to be destroyed and deleted:

#: rm −r c o n t r o l
#: /xen/rnp vms stop

Check if all Xen [TLF] domains have been removed:

#: xen l i s t

If only the domain with id 0 shows in the list, all files can be deleted:

#: rm −r /xen

The presented approach promotes sharing of topology designs between researchers. It in-
tegrates a universal set of tools that maintain close control over technical details, while
automating mundane tasks that result in configuration errors and increased workload for
topology setup.
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The results presented in this chapter are the product of 403 experiment rounds on the de-
signed topologies 3.2 (15), 3.3 (129), 3.4 (170), 3.6 (22) and random topologies 3.10 (12),
3.8 (17), 3.11 (19), 3.12 (19). Each experiment round comprises at least three experiments
for two applications and at most 541 for five applications with one configuration. This in-
cludes repetitions to verify the validity of the results. Although OpenFlow 2.2 is the SDN
framework chosen for this approach, the presented results are not bound to the OpenFlow
[ONFb] specification. Conflicts are determined with the procedure described in Section 3.
This includes the comparison of data plane state when running applications in isolation and
concurrently. The number of flow entries an application deploys is noted and compared to
the number of flow entries it deploys when several applications are run together. The second
criteria concerns endpoint reachability and the number of successful TCP and UDP connec-
tions established on a host. In case of a deviation between isolated and co-deployed runs, the
deviation is noted. A comparison of link bandwidths is the last considered criterion, however
it is important to note that the threshold for logging a conflict due to deviating bandwidths
is part of the experiment configuration. All criteria represent symptoms indicating a pos-
sible yet unconfirmed conflict. This means that correlation between the criteria need to
be considered to determine the existence of a conflict. While bandwidth deviation by itself
might not lead to an unexpected data plane state or a change in endpoint reachability, it can
still indicate a conflict. A preliminary, unproven attempt at a formal notation for conflict
patterns of the presented conflicts classes is included in the Appendix 8.2 and serves as a
guideline for the implementation of detection algorithms 6. Any presented conflict classes
are defined in the following context.

5.1 Definitions

Packets are part of a data stream between two endpoints. In this implementation only IP
packets are considered for the definition of conflict patterns.

Actions can be either packet transformations, e.g. the adaption of a specific property
of coherent packets, the output to a link or subsequent flow table, or no action at all with
the consequence of a packet drop. Transformations are always followed by an output action.
Therefore, an empty action set denotes a drop, a single action denotes an output to a link
and an action set larger than one denotes the existence of packet transformations with an
output action. A transformation action can be described as a mapping a→ a′, where a 6= a′

and a, a′ are instances of the same property of a packet, e.g. a destination IP address. For
any action that transforms packets of a bi-directional flow, there must be a reverse trans-
formation b′ → b of returning packets, in our example a transformation of the source IP
address, for successful communication between two endpoints.

Match fields as described in Section 2.2, are layer 2 and 3 addresses and layer 4 ports,
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the port number assigned to an incoming link in a switch. When determining a correlation
between two sets of match fields, there are three characteristic relations. An address based
field can be disjunct to, equal to or a subset of another address. The relations are described
in detail in Section 2.3.1 and are first mentioned by Hamed et al. [HA06]. Ports and IP
protocols can be equal or disjunct. Fields like the ingress port of a rule cannot be compared
for flow entries in two separate switches. Any further match fields are exempt since they
cannot be covered by the experimental approach yet. Since the three types of relations still
apply to further match fields, the conflict patterns apply to any related match fields.

Rules are flow entries, consisting of an indicator of it’s originating application, a set of
match fields and a set of actions.

Target switches are the switch nodes of a topology in the decision domain of a control
application.

Paths consist of any number of connected rules in subsequent flow tables within a tar-
get switch or between target switches. That said, paths are not given by a list of switches
but by a list of rules residing in the switches.

Rule graphs consist of any number of paths where the collection of unique switches are
the same as in the physical topology, but the number of links are made up of connections
between rules, not connections between switches, and are directed. Figure 6.1 depicts such
a rule graph and the underlying physical topology.

5.2 Invariant Contention

Input by the inducing applications is required to detect Invariant Contention conflicts. The
conflict class is showcased by at least two applications that enforce their policies based on the
same invariant such as bandwidth. Furthermore, the conflict arises if a preceding application
influences the invariant of a subsequent, even if the implementation of the prior is oblivious
of the invariant. Although these are all implementations that contend on bandwidth or
influence bandwidths, depending on the given topology, the pattern can apply to other
invariants such as the maximum transmission unit. The shape of flow entries in the target
switches disclose no interdependence of the invariant. Consequently, only the presence of
each applications rules is detectable but not how app functions contradict. The flow and
port statistics do provide details on bandwidths and if input is given, we could check if any
packets travel on paths that are handled by both applications. As stated in the introduction
of this chapter, the effect can be intended or represents a conflict. The conflict is best
exemplified in the two following distinct edge cases.

5.2.1 Dispersion

The Path Load Balancer (PLB) and the Firewall (FW) application are both operating on
the basis of bandwidth on ports of their target switches and elicit a Dispersion conflict.

Property. A conditional change of rule deployment by one application leads to a dif-
ferent decision by another subsequent application. Match fields in the decision are the same
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across all conditions, but actions and egress ports can differ.

Effect. Failure to enforce application intent, e.g. packet filtering and failure to balance
loads on paths as expected.

Example. We consider the topology and applications depicted in Figure 5.1. The Destination
based Passive Path Load Balancer (PPLB4d) application is configured to balance traffic for
the destination endpoints 1-4. The Firewall application is deployed with varying configura-
tions for maximum port and flow bandwidths. The dashed line illustrates the single path
all flows take when running an experiment with the Firewall application only. The dotted
paths illustrate how bandwidth of the dashed path is dispersed when adding the Passive
Path Load Balancer with said configuration.
For one thing, this clearly shows why a bandwidth based filtering application is non-deterministic
at best and entirely unreliable in the worst case when being deployed with applications that
influence bandwidth. In effect, traffic that was blocked without the PPLB4d is not blocked
anymore, depending on port and flow threshold configuration in FW. The same conflict can
occur when deploying the PLB instead of FW, since PLB alternates its routing decisions
based on port bandwidth thresholds. Dispersion is also an issue when deploying the Path
Load Balancer with the Firewall, both of which make decisions depending on bandwidths.
Another scenario for this conflict class is an experiment with the Endpoint Load Bal-
ancer instead of Passive Path Load Balancer, depicted in Figure 5.2. Endpoint Load Bal-
ancer (EPLB) is oblivious of bandwidth but its decisions lead to a dispersion of it on two
links instead of one.

Figure 5.1: Example configuration for the Dispersion conflict class. The dashed path de-
picts the paths flows take when deploying the Firewall application in isolation.
The dotted paths are the result of a combined experiment with the destination
based Passive Path Load Balancer, where flow bandwidth gets distributed to all
available paths leading to the target switch of the Firewall app.

5.2.2 Focusing

A Focusing conflict occurs when deploying the PLB or FW in conjunction with the Path
Enforcer.

Property. A conditional change of rule deployment by one application leads to a dif-
ferent decision by another subsequent application. Match fields in the decision are the same
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Figure 5.2: Example configuration for the Dispersion conflict class. The dashed path depicts
the paths flows take when deploying the Firewall application in isolation. The
dotted paths are the result of a combined experiment with the PPLB4d config-
ured to balance traffic to endpoints 1-4, where traffic exits through two instead
of one port.

across all conditions, but actions and egress ports can differ.

Effect. Failure to correctly enforce application intent, e.g. by unexpected packet filter-
ing and balancing of loads on path multiple paths.

Example. This conflict class is caused by the opposite effect compared to dispersion. One
or several applications channel traffic to a single or small number of routes. Any bandwidth
oriented applications on the route are confronted with different conditions as compared to
isolated deployment. The configuration depicted in Figure 5.3 is chosen to serve two pur-
poses. The Path Enforcer directs any packets flowing from hosts 1-4 to hosts 6-9 to the
central path. This decreases bandwidth on alternate routes and reserves them for backward
flows to hosts 1-4. The bottleneck switch is suitable for e.g. a deployment of the Firewall or
the Path Load Balancer application. Since the dotted path leads to a concentrated band-
width in comparison to the dashed paths that are the default choice for any shortest path
routing, the applications on the bottleneck node alter their behavior.
Similar to the alternative scenario for the Dispersion conflict, Focusing can also occur due
to applications that influence the bandwidth of outgoing ports and any applications that are
deployed on the receiving end of respective links. Figure 5.4 illustrates a conflict between the
Host Shadower and the Path Load Balancer application. The Host Shadower is configured
to redirect traffic targeted at endpoint 8 to endpoint 6. This results in an increased band-
width on the dotted path, whereas the bandwidth is split equally on the dashed paths for
an isolated deployment of the Path Load Balancer. Both switches connected to the target
switch of the Host Shadower exert a different behavior in co-deployment of both apps.
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Figure 5.3: Figure illustrating a conflicting interest between the Path Enforcer and band-
width oriented applications, resulting in a Focusing conflict. The dashed paths
are the shortest routes from hosts 1-4 to hosts 6-9 and vice versa. The dot-
ted route shows how the Path Enforcer is deployed to offload the traffic going
out from endpoints 1-4 to the central path, which can inadvertently alter the
behavior of bandwidth based applications in the bottleneck switch.

Figure 5.4: Focusing conflict caused by the Host Shadower application that channels the
output bandwidth on its target host to one exit port to the dotted link. This
induces a behavior in bandwidth based applications such as the Path Load Bal-
ancer, which receives bandwidth on two dashed paths when deployed in isolation.
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5.3 Transformation Contention

This general conflict type relates to the transformation actions that can be performed in
switches on passing packets. The observed conflicts are based on transformations of address
based match fields of a flow entry and result due to multiple applications that claim interest
on the same hosts or an intersecting subset of such. Again, these conflicts can emerge due
to intended behavior. Input on application intent is needed to decide if these are relevant
conflicts. Nevertheless, the following two conflict classes as such are relevant, and we can
assume that they also apply to other transformations affecting e.g. layer 4 ports or even the
Type of Service field of IP packets.

5.3.1 Occlusion

Occlusion is displayed be the absence of a rule deployed by an application on a rule path
or a deviating decision, compared to an isolated deployment of said application, due to a
packet transformation on an earlier node in the rule path by a different application.

Property. A previous application on a rule path transforms packets such that a subse-
quent application fails to enfore a policy that is seen during isolated deployment. The
transformation adapts packet properties in such a way that the subsequent application fails
to register the match fields and does not enforce a policies based on the original match fields,
leading to a different or no decision.

Effect. Failure to enforce application intent, e.g. balance traffic on endpoints or links.

Example. Let us consider a deployment of both the Host Shadower and Endpoint Load
Balancer as depicted in Figure 5.5. Both applications transform MAC and IP addresses of a
packet. The Endpoint Load Balancer is configured to balance any traffic to host 2 between
the hosts 1-4, indicated by the dashed paths. This happens whenever hosts 5-7 direct traffic
at host 2. The Host Shadower redirects traffic destined to host 2 to host 1, indicated by the
dotted path. When deployed together, this results in complete inactivity of the Endpoint
Load Balancer were no flow entries get deployed or any existing entries are not applied any-
more, effectively voiding the dashed paths.
The second scenario in Figure 5.6 features the Endpoint Load Balancer and Host Shadower
app in reverse deployment, yet with the same configuration of endpoints-combinations. In
isolated deployment, all traffic directed at host 2 flows on the dashed path towards host 1.
In co-deployment, the Endpoint Load Balancer rewrites some packets of the traffic directed
at host 2 to target hosts 3 and 4 instead. This will not render the Host Shadower entirely
inactive, but it will deploy less flow entries than before in such a way that traffic will be
distributed to all dotted paths. The main issue of this conflict is the actual lack of any arti-
facts that let us detect it. It is not a dispute between existing flow entries in the data plane
but rather one between a present entry and a potential policy that is partially or completely
suppressed. This can also be seen as a distributed hidden conflict. Considering manually
engineered firewall policies in a switch, a packet transformation can disguise packets to pass
a firewall that would reject the unaltered packets.
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Figure 5.5: In this Occlusion conflict scenario, the EPLB application is configured to balance
traffic targeted at endpoint two to all endpoints depicted on the left side. If
the Host Shadower application is configured with endpoint 2 as frontend and
endpoint 1 as backend node, leading to the dotted path, the EPLB does not
deploy any flow entries for the dashed paths.

Figure 5.6: Example of Occlusion caused by the EPLB application. The Host Shadower
redirects all traffic targeted at endpoint 2, show by the dotted dashed path, to
endpoint one, indicated by the dashed path. The EPLB is deployed to balance
loads targeted at endpoint 2 to endpoints 3 and 4, shown by the dotted routes.
When co-deployed, the Host Shadowing app does not deploy any or a smaller
number of flow entries for the dotted path.
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5.3.2 General Multi-Transform

General Multi-Transform conflicts relate to Multi-Transform conflicts as defined by Hamed
and Al-Shaer [HA06], although in a broader scope and not limited to security transforma-
tions. This can include circumvention of filtering applications and unintended superposition
of packet transformations. The work on the tool FortNox describes such firewall circumven-
tion scenarios [PSY+12] that can be correlated to this conflict class.

Property. Multiple transformations of packets in a flow through several apps. It oc-
curs when the transformed output packet of one application is matched by a flow entry of a
second app in a subsequent target switch and packets are again transformed.

Effect. Superposition and violation of application intent and e.g. ambiguous routing to
endpoints.

Example. Figure 5.7 demonstrates such a conflicting configuration between the Endpoint
Load Balancer and Host Shadower. The EPLB app is configured to balance traffic between
hosts 2 and 3 if host 2 is targeted and between hosts 6 and 7 if host 5 is targeted. The
dashed paths illustrate the flows when the EPLB is deployed in isolation. When we add the
Host Shadower to the experiment and configure it to rewrite packets destined to hosts 3 and
7 to be sent to endpoints 2 and 6 respectively, indicated by the dotted paths, traffic flows as
if neither the Host Shadower (HS) and the EPLB app are active. Their conflict of interest
and multiple transformation reinstate the original state of the packets as sent out by the
source endpoints. The same applies to the reverse transformations back to the sources.
An alternative configuration is shown in Figure 5.8, where the interests of the Host Shadower
application is violated by a subsequent packet transformation of the EPLB app. The Host
Shadower is supposed to channel traffic for endpoints 6 and 7 to host 6 only. The EPLB
enforces a contradicting policy that balances all traffic directed at host 6 to all available
endpoints on the right side of the figure.
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Figure 5.7: Illustration of a General Multi-Transform conflict. The dashed paths illustrate
that the EPLB app transforms traffic directed at hosts 2 and 6 to be balanced
to hosts 3 and 7 respectively. The dotted paths indicate where the Host Shad-
ower adds an additional transformation, which negates the transformation by the
EPLB and result in traffic that is only directed at hosts 2 and 6.

Figure 5.8: This figure presents a conflict scenario for a General Multi-Transform conflict
that results from multiple packet transformations. The Host Shadower applica-
tion is configured to redirect any traffic targeted at host 7 towards endpoint 6,
shown by the dashed path. The EPLB is set to balance any traffic for host 6
between hosts 6-9, indicated by the dotted paths.
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5.4 Spuriousness

Inter-policy Spuriousness as mentioned by Hamed and Al-Shaer [HA06] is a conflict class in
SDN too. It is denoted by the following property.

Property. Packets entering a local network are filtered on an intermediate switch. A
policy on one switch forwards packets to another switch where packets are dropped.

Effect. The invalid packets are discarded but infiltrate part of the local network, which
affects security and unnecessarily increases network load.

Example. Figure 5.9 demonstrates two alternative configurations for deployment of the
Firewall application. Endpoints 6 and 7 are used to simulate traffic from a remote net-
work where the dashed paths indicate a connection of the target switch FW I to a public
network. In absence of FW I, the placement labeled with FW II exerts the Spuriousness
conflict pattern indicated by the dotted paths because it fails to prevent undesired packets
from intruding the local network. A drop action on a switch at the edge of a local topology
is not considered a conflict, as we have to assume that it is the intended behavior. However,
drop actions that lead to Spuriousness can be seen as conflict since it creates an unnec-
essary network load with unauthorized packets. While the pattern can help in optimizing
the deployment of a filtering app, incomprehensible bandwidth is only a symptom, and it
depends on the desired configuration if this is truly a conflict. We do not discern between
partial and complete Spuriousness as defined by Hamed and Al-Shaer [HA06] since there is
no apparent reason to discern between the security impact of the amount of unwanted traffic
that traverses a local network.

Figure 5.9: Demonstration of a Spuriousness conflict, indicated by a placement of the Fire-
wall application on the target switch FW II and the dotted paths. Endpoints 6
and 7 represent machines that connect through a public network on the dashed
paths in this experiment, and FW I is the deployment that prevents undesired
traffic from entering the local network.

5.5 Loops

The Loop conflict pattern is the standard problem in routing scenarios of trapped packets
between certain links. The loop is rather a symptom that emerges from an uncoordinated
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routing decision by multiple control applications. The central control instance represented
by the controller is the predestined mechanism of avoiding the loop, but due to the lack of
repeated packet-in messages this has to be a passive implementation based on a rule graph
6.1 or other methods.

Property. Any rule that appears twice in a rule path with a path that contains inter-
mediary rules between those appearances can be considered a loop. This also covers the
definition of a short loop between two adjacent nodes in the topology.

Effect. Packets fail to reach their intended destination and are trapped within the net-
work. Network load increases substantially.

Example. The current implementation for loop detection in the Detection Prototype suc-
cessfully exposed a weakness in the Path Enforcer application in the experiment depicted in
Figure 5.10. The Path Enforcer (PE) app was configured to route any TCP and UDP traffic
through the node 7 and then to the target switch of the PLB app. In a combined simulation
with the PLB app, this lead to a short loop between switch 7 and its target switch. This
again raises the issue that the Path Enforcer fails to insert any policies on the last jump
of its routes. Yet in this instance that would evoke a local conflict and depending on the
order of priorities between the apps, could produce the same result. Let us consider another
theoretical example involving the same applications, assuming that the Path Enforcer in-
serts policies on the last jump node from source to destination, as illustrated in Figure 5.11.
Firstly, we can note that three applications are actually part of forming the loop since the
Routing app is deployed and active on all switches, in particular on switch 7. The PLB app
deployed on the bottleneck switch will alternate its routing decisions between all paths on
the left side for traffic that targets host 2, and in combination with the Routing app, the
dashed path is a possible result. If the PE app is deployed as depicted in Figure 5.11 and
configured to route traffic over switches 5 and 7, including the only sensible choice of an
outgoing port from switch 7 to the target switch of the PLB app, the loop shown by the
dotted path is completed and the packets are trapped. The clearly visible loop emerges if the
PE inserts policies on its last jump and also if not, since the Routing app will then establish
a short loop between the PLB target switch and switch 7, as seen in the first example 5.10.
Consequently, that demonstrates that the remedy is not more control by the PE app on its
last jump but rather a better handling of such edge cases in the first place.
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Figure 5.10: Depiction of an occurrence of a short loop when deploying the Path Enforcer
and Path Load Balancer in a problematic configuration. The PE app routes
traffic over switch 7 and the target switch of the PLB. The PLB alternates
flows between a direct route to switch 3 and the routes over switches 7,6,4 and
then 3. For some traffic, that results in the loop depicted by the dotted and
dashed path going out of and back to switch 7.

Figure 5.11: Theoretical experiment configuration that highlights a previously unhandled
edge case in decision by the Path Enforcer. The traffic loop on the dotted path
is a result of a Path Enforcer implementation that inserts policies on the last
jump of its enforced route, here switch 7, in co-deployment with the PLB. The
dashed route is the decision by the PLB and the Routing app, without the PE.
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5.6 Path Ambiguity

Redundant nodes and links are part of any scalable network architecture addressing the
requirement for resilience and availability. This entails the use of shortest path algorithms
or other implementations to avoid loops in chosen routes. Control applications that are
based on differing algorithms or decisions that ignore optimal paths can interact towards
undesirable results in such topologies. In combination with applications that perform packet
transformation and possibly erroneous or unsolicitous configurations, the following conflicts
classes arise.

5.6.1 Incomplete Transformation

In case of multiple paths between endpoints and applications that perform packet transfor-
mations, packets on any reverse path need to be reverse transformed. For any action by
these applications, several associated flow entries need to be inserted in the target switches,
at least two if there is only one target switch.

Property. The Incomplete Transformation pattern arises if an application has target
switches on any given path from a source to a destination and performs packet transforma-
tions and back transformations on one path but fails to perform the back transformations
on all paths. When another application routes any packets on the returning flow over an
uncovered path, the returning packets are not transformed.

Effects. Returning packets fail to reach their destination or are discarded at the desti-
nation due to the missing back-transformation.

Example. Figure 5.12 presents a scenario of a missing back-transformation of packets
that are altered by the Host Shadower, where the forward rule for the dashed path gets
applied in the target switch. The returning packets are routed on an alternate path due to
the influence of the Path Enforcer and the backward rule by the HS is not applied. If the
flow entries are address based, it is easy to determine what the associated entry is. If we
expand this pattern to any form of transformation, it is questionable how a reverse entry
can be identified and how to avoid invalid associations.

5.6.2 Injection

Applications that route packets of the same flow on multiple paths, e.g. PLB or PPLB4d as
well as the PE that routes packets over a specific path, are prone to injecting said packets
to transformation policies on such a path. This can be intended behavior, but especially
in case of extreme routing decisions, e.g. very inefficient paths, and in combination with
unintended transformations, this can indicate a deficient configuration. While this conflict
class was exposed because of unintended transformations of packets it might not be limited
to such a scenario. We could image an application that routes packets over a path where
rate limiting or filtering is applied, too.

Property. The conflict occurs in the presence of alternating routing decisions of pack-
ets in the same flow over several possible rule paths and a transformation of these packets
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Figure 5.12: Configuration of an experiment that exerts the Injection and Incomplete Trans-
formation conflict patterns. The Host Shadower redirects packets targeted at
host 3 towards host 4 and needs to re-transform address based fields in packets
on the reverse path. The Path Enforcer deploys policies that circumvent the
HS on the reverse flow and induces an Incomplete Transformation. If the EPLB
app is added in with a configuration that overlaps with the interest of the HS,
the Path Enforcer evokes an Injection conflict in its target switch, resulting in
an incorrect transformation of packets.

on only part of these paths. Consequently packets are transformed on one route, but not on
the other.

Effect. Ambiguous application intents with packets possibly being dropped by the intended
destination.

Example. The example depicted in Figure 5.12 is chosen intentionally to include more
than two applications to highlight why an Injection conflict can occur in case of a deploy-
ment with all or only a subset of the applications. Let us consider an experiment without
the HS application. Endpoint 7 establishes connections with endpoints 3 and endpoints 2.
The flow for endpoint 3 will follow the dashed path, the flow to endpoint 2 passes the target
switch of the EPLB app, which, given enough connections, will deploy flow entries that send
part of the traffic targeted at endpoint 2 towards endpoint 3 and entries that rewrite the
source addresses of packets to appear as coming from endpoint 2 on the way back. The flows
on the dashed path towards endpoint 3 will be forced to the dotted path on the way back
to host 7 and are transformed by policies of the EPLB app. The returning packets will be
ignored and appear to be unsolicited as they now originate from endpoint 2. The scenario
that includes the HS app can result in the same result, but the root cause is the Injection
conflict by the PE app and not the overlapping interest of the two endpoint oriented appli-
cations. Furthermore, the same effects can be observed when adding the PLB on the target
switch 8 or substituting the PE app with the PLB app on its target switch.

5.6.3 Bypass

Another conflict pattern in a topology with ambiguous routing options is the complete cir-
cumvention of target switches of an application. Traffic stops to flow through a previously
used route or never actually traverses it. Applications that have inserted flow entries are
deprived of bandwidth and fail to enforce their interest. This pattern does not lead to a
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failure in connections, which makes it harder to detect and might be the intended behavior.

Property. Transformation actions of applications do not operate on at least one target
switch on every distinct path from source to destination endpoint and another application
routes matching packets over an uncovered path.

Effect. Deprivation of application intent.

Example. The experiment illustrated in Figure 5.13 exhibits a Bypass conflict. The PLB
routes traffic on the dotted paths around the target switches of the Host Shadower. Any
returning packets might traverse the Host Shadower’s switches, but the flows will appear to
be of no interest.

Figure 5.13: Experiment demonstrating a Bypass conflict with a deployment of the PLB
application that leads to a circumvention of the target switches and/or the
interests of the Host Shadower. Traffic flowing to host 3 or host 7 is transformed
on the dashed paths, but the PLB routes traffic on the dotted paths that avoid
such actions by the HS app.

77





6 Conflict Detection

Preemptive discovery of distributed conflicts is not possible without global knowledge of
application intent, and communication of application intent is subject to interpretation. De-
tection of most conflict classes require a delay until all flow entries from source to destination
have been inserted for unique flows. In case of general flow entries that are not unique to
a connection, preemptive discovery is feasible, and conflict resolution can be performed if
the interpretation problem of application intent is solved. Such policies include policies that
target a range or all addresses and specify generic match fields only. Memorization of data
plane state is necessary to determine if policies across target switches are connected, while
avoiding latency for repeated statistic queries of said state. Target switches and connections
imply a graph for tracking flows through a topology. Thus, a rule graph as devised by Tran
[Tra22] is the data structure of choice.
Detection methods will only be applied to conflict classes that are not based on application
intent, with the exception of the Occlusion class. This excludes any Invariant Contention
and Incomplete Transformation conflicts. Effects of Invariant Contention conflicts as of yet
are unclear and require detailed review. This review needs to include the correlations be-
tween divergence of data plane state and monitored metrics of respective invariants with
possible negative effects. Also, a sound concept for communicating application interest in
invariants is missing. This interest is obvious for the Firewall and path load balancing appli-
cations, however the Endpoint Load Balancer influences bandwidths too. Furthermore, in
a combined experiment of the Path Load Balancer and the Passive Path Load Balancer the
apps are still doing what they are supposed to do and connections are established success-
fully, yet data plane state and bandwidths are different for every run and every set of app
configurations. This results in relevant deviations, but application effectiveness is upheld.
The effects of Invariant Contention conflicts are not clear enough and a sensible interface
for determining application intent is missing. Application interest in endpoints is concise,
and the experiment model addresses the need for specifying endpoint interest, therefore
detection of Occlusion conflicts is feasible. To detect Incomplete Transformation conflicts
we also need to know application intent, since we can neither decide which direction is the
up- or downstream flow or if the missing back-transformation on a specific switch is the
intended implementation. Other conflict classes arising from ambiguous routing options are
not dependent on application intent, and detection methods stay oblivious of any specific
application.
In contrast to local conflicts, the immediate effects of distributed conflicts cannot be deter-
mined. This requires monitoring of and input by endpoints, which is not feasible in a pro-
duction network. Therefore detection is based on the properties of conflict classes described
in Section 5 without consideration of the effects. Most detected conflicts are interpretative,
as defined by Pisharody et al. [PCH16] because they arise due to faulty configuration or
desired inter-dependencies. Such desired inter-dependencies can only be validated by an
administrator. The detection algorithms aim at providing administrators with the necessary
information to discern desired effects from the unintended. The below thoughts for conflict
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detection feature pseudo-code for new implementations and a description of any additional
input for existing algorithms.

6.1 Prototype

The core element of the prototype is the rule graph devised by Tran [Tra22] and the following
detection algorithms extend the function of the existing implementation. The experiments
showed that a rule graph introduced significant latency to the process of flow entry modifi-
cations and insertions. Therefore detection is performed passively, and the prototype at this
stage forwards any Openflow messages 2.2 to control applications before detecting conflicts.
We choose OpenFlow [ONFb] for the implementation due to the maturity of the framework
and as a means to demonstrate the correctness of the presented conflict classes. Figure 1.3
illustrates the role of the detection prototype within the SDN control layer and Diagram 3.14
and depicts the modules used by control and application layer implementations to serve the
detection mechanism. The connective element for deferred detection of distributed conflicts
is the module utility detector.py. Next to providing methods that generate flow modification
messages sent to nodes in the infrastructure layer, it additionally produces custom events to
asynchronously notify the subscribing detector.py module. In this publish-subscribe design
pattern, the custom ModFlow message sent by the utility module and flow removal mes-
sages generated by switches represent the entry point for maintaining a rule graph. This
entails that a complete copy of data plane state is cached in the control layer. Diagram 6.1
illustrates an example rule graph for an infrastructure of four SDN switches. For any new
rule that is inserted to a flow table, the outgoing port is determined. The link connected to
the port indicates the next target switch for packets handled by the current flow entry. All
entries in the flow table of the next hop are iterated to determine which ones connects to
the current rule. Outgoing connections are limited to one target policy on each subsequent
switch, because only one flow entry is effective in case of a local conflict. Every entry is
mapped to a list of its properties, i.e. application cookie, priority, match fields and actions.
Subsequent entries are compared to the previous entry after packet transformation actions
are applied. Missing match fields are considered wildcard fields that match any packets. A
trivial example matching anything would be an entry with only an ingress and egress port
and no other match fields. Local conflict patterns described in Section 2 are computed from
relationships between all match fields. Although local conflicts exert no direct implications
for distributed conflicts, the outcome of the comparison is a prerequisite for determining
which rules are connected for new insertions. Furthermore, relationships or correlations be-
tween match fields from connected nodes in the rule graph are determined with the same
mechanism as local relations. Two nodes in a rule graph correlate, if their match fields are
equal, any one is the subset of the other or if there is a partial, bidirectional overlap. Please
refer to Table 2.1 for an example of match field relations.
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Figure 6.1: Showcase example of a rule graph for a topology with four switches maintained
by the detection prototype. The graph contains a loop between entries 1.3, 2.2
and 3.1 and an unconnected entry 3.2. without an input rule or originating from
packets due to an endpoint connected directly to switch 3.

6.2 Spuriousness

Policies that lead to dropping packets in general are already detected. This work makes a
distinction between filtering of incoming traffic at edge a topology and inter-policy Spurious-
ness as described by Hamed et al. [HA06]. Filtering on an edge switch prevents malicious
packets from entering the network. When packets are filtered after they have already tra-
versed nodes within the topology, the definition of the Spuriousness conflict class is fulfilled.
If any policy without actions is inserted to the rule graph there is effectively no output to a
subsequent connected node. The incoming port of the flow entry is checked to determine if
it is part of a link to another switch in the local network. Packets that are forwarded within
the topology and dropped at an intermediate or edge node represent unnecessary, possibly
harmful traffic. The current implementation by Tran [Tra22], which already detects flow
entries containing drop actions, is extended to check if the flow entry is already connected
to a rule in the rule graph.

6.3 Loops

Loop detection is based on the implementation by [TD20], complemented with the distinction
between a loop in the topology and one within the rule graph. This allows for loop-like routes
where packets pass through an already traversed switch, taking into consideration that it can
be handled by a different rule that leads out of the loop on the second pass. Consequently,
loops occur if a packets gets handled by a policy twice.
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6.4 General Multi-Transform

A flow entry that applies any form of packet transformation is a potential candidate for a
multi-transform conflict. The detection algorithm 2 is backwards oriented concerning the
rule graph. For any new policy containing packet transformation actions, we determine
any paths in the rule graph leading to this rule. The algorithm is applied recursively over
all vertices in all possible input paths. Every vertex is checked for the existence of packet
transformations and a warning for a General Multi-Transform conflict is raised for any
positive cases. Since the algorithm 2 is backward oriented, we can raise a warning once we
encounter two transformation actions on a packet flow. The starting vertex is passed to
every recursive call of the algorithm and it starts with a check of the current ingress vertex
and the root vertex. We need to break the recursion in case of a loop in the rule graph. Any
additional transformations on a predecessor vertex were already considered in a previous
call of the algorithm. A check for correlation of match fields in a flow entry is necessary to
assure that the transformations affect the same packet flow. The necessity is exemplified by
flow entry 2.1 in the sample rule graph 6.1. Let us consider flow entry 4.1 as the current rule
entry that contains packet transformations and flow entry 1.1 and 1.2 as performing packet
transformations, too. Flow entry 2.1 is the connective vertex, and both flow entries 1.2 and
1.1 are connected vertices. By applying the packet transformations of rule 1.1 and 1.2 on the
match fields of the rules, we can determine any correlation to the match fields of rule 4.1. We
want to avoid false positives for connected predecessor vertices that perform transformations
but are not correlated by their match fields and transformations to the current candidate
rule.

input: vertex in rule graph containing transformation actions, ingressVertex, app
if vertex == ingressVertex then

return;
end
rule← getRuleFromVertex(vertex);
match← getMatchFromRule(rule);
ingressV ertices← getIngressEdges(rulegraph, ingressV ertex);
foreach inVertex in ingressVertices do

inRule← getRuleFromVertex(inV ertex);
actions← getActionsFromRule(inRule);
inMatch← getMatchFromRule(inRule);
inApp← getAppFromRule(inRule);
foreach action in actions do

if action transforms match field and app 6= inApp and match correlated with
inMatch then

raise Multi-Transform conflict with vertex and inVertex data;
else

recurse with vertex, inV ertex, app;
end

end

end
Algorithm 2: Detection algorithm for General Multi-Transform conflicts.
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6.5 Injection

False positives for the Injection conflict class are guaranteed in a configuration with multiple
interdependent applications and without interpretation of application intent. The following
implementation is based on two heuristics to avoid false positives. Flow entries with out-
put actions only connected to policies by another application that transforms packet fields
are considered. The second criteria is met if there are multiple paths between source and
destination endpoint, and at least one path does not contain the switch that the considered
candidate rule resides in. An Injection conflict occurs if there is an application that inserts
policies on a target switch that is part of all paths and can therefore make ambiguous deci-
sions concerning the generated path, and the two above criteria are met. A version of the
algorithm is feasible, where no transformation actions are involved. This represents a general
Injection conflict between two applications, e.g. the Path Enforcer application injecting flows
into the Path Load Balancer. Since applications are intended to interact in SDN, this will
produce a high rate of false positives, therefore we examine transformation related Injection
conflicts only in the evaluation of this algorithm.
Below algorithm 3 illustrates that for any rule containing transformation actions, we traverse
back in the rule graph for any input path. As with the algorithm for General Multi-Transform
conflicts, we have to check if connected vertices correlate in their match fields. An actual
check for the presence of a path in the rule graph and active policies that can circumvent
the packet transformations is not performed, to avoid parsing of the entire data plane state
of such a path in the network and the added computational complexity. Another method
would be input by an application to determine if it would perform such an ambiguous rout-
ing decision. As with Multi-Transform conflicts, an early stop condition for any loops in
the rule graph is necessary to avoid indefinite recursions. The justification for generating
warnings for an Injection conflict without this check is given by the fact that ambiguous
routes containing different action sets are likely produced by a faulty configuration. In an
illustrative example, we consider flow entry 2.1 in the sample rule graph 6.1 and the con-
nected rule 1.1. The source endpoint resides before switch 1 and the destination endpoint
behind switch 4. If rule 2.1 contains packet transformations and there are no rules present
in switch 3 with the same transformations, an application on switch 1 could route packets
to the destination without the packets transformations being applied. The condition is that
the application that produces rule 2.1 is not present on all paths to the destination and the
injecting application is.
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input: vertex in rule graph containing transformation actions, ingressVertex, app
if vertex == ingressVertex then

return;
end
rule← getRuleFromVertex(vertex);
switch← getSwitchFromRule(rule);
match← getMatchFieldsFromRule(rule);
ingressV ertices← getIngressEdges(rulegraph, ingressV ertex);
foreach inVertex in ingressVertices do

inRule← getRuleFromVertex(inV ertex);
inSwitch← getSwitchFromRule(inRule);
inMatch← getMatchFieldsFromRule(inRule);
inActions← getActionsFromRule(inRule);
paths← getAllSimplePathsFromMatch(inMatch);
inSwitchInPaths← 0;
appInPaths← 0;
if inActions performs no packet transformations and match correlates with
inMatch then

foreach path in paths do
if inSwitch in path then

inSwitchInPaths++;
end
if app has target switch in path then

appInPaths++;
end

end

end
numberOfPaths← length of paths;
if numberOfPaths > 1 and numberOfPaths == inSwitchInPaths and
numberOfPaths > appInPaths then

raise Injection conflict with vertex and inVertex data;
end
recurse with vertex, inV ertex, app;

end
Algorithm 3: Detection algorithm for Injection conflicts.
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6.6 Bypass

Bypass conflicts can only occur if an application tries to enforce policies in a topology with
multiple paths from source to destination and fails to insert rules on switches on all possible
paths. Detection is limited to flow entries with actions other than direct output to a next
node. This allows for multiple routing options without raising a conflict, while considering
policies that aim at filtering, packet transformation or multi-table processing within a node.
Furthermore, actions of flow entries in switches other than the current target switch of a
packet-in message might look different while enforcing the same policy, limiting us to a
check if an application inserting respective flow entries covers all possible paths with its
target switches. For any flow entry containing transformation actions, we determine all
target switches of the producing application in Algorithm 4 and all routes to the destination
of affected packets. If all paths contain a target switch of the application, we assume that it
is able to enforce its interest. For any path without a target switch, a warning is generated.
We have to note that this will produce a warning for potential conflicts and does not ensure
that the actual conflict pattern, i.e. multiple paths in the rule graph for the same packet
flow, is present. The reasoning for this is that uncovered paths likely represent a faulty
configuration and pose a risk of bypassed packet transformations. Furthermore, checking
alternative paths and each individual set of data plane policies in all switches on the path
for a correlation to the packets match fields is computationally expensive.

input: flow entry inserted by application containing transformation actions
match, actions, switch, app← flow entry;
paths← getAllSimplePathsFromMatch(match);
targetSwitches← getTargetSwitches(app);
coveredPaths← 0;
numPaths← 0;
foreach path in paths do

numPaths++;
foreach switch in targetSwitches do

if switch in path then
coveredPaths++;
break;

end

end

end
if numPaths - coveredPaths > 0 then

raise Bypass conflict with rule and paths data;
end

Algorithm 4: Detection algorithm for Bypass conflicts.

6.7 Occlusion

The transformation of a packet flow by an application can lead to ineffectiveness of a subse-
quent application on the route to a destination. The experiment model is designed to allow
for determination of application interests in endpoints and permits detection of Occlusion
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conflicts. The detection algorithm 5 is applied to any rule insertion that involves transfor-
mation actions of destination addresses. Once such a rule is inserted in the rule graph, we
follow all possible paths to a destination and determine apps that specify a target switch on
such a route. Apps that adhere to this condition and claim interest on an endpoint address
that is affected by the packet transformation are possible candidates for Occlusion conflicts.
For address based interests, we need to compare not only for equality, but also if addresses
are within overlapping address spaces. Since this algorithm is forward oriented on a path in
a topology and any previous Occlusion conflicts on a switch prior to the current switch have
already been checked, we consider paths from the current switch to a packet destination
only.
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input: app of current rule, vertex in rule graph, actions of rule with transformation
actions, match fields of rule

currentSwitch← getSwitchFromVertex(vertex);
interests← empty list;
candidateApps← empty list;
allInterests← getAppInterests();
foreach action in actions do

if action transforms destination endpoint address then
address← getPropertyFromMatch(matchfields);
append address to interests;

end

end
if interests is empty then

return;
end
foreach appId, appInterests in allInterests do

foreach i in interests do
if i in appInterests and appId 6= app then

append appId to candidateApps;
end

end

end
if candidateApps is empty then

return;
end
paths← getAllSimplePathsFromMatch(matchfields, currentSwitch);
foreach appId in checkApps do

targetSwitches← getTargetSwitches();
foreach switch in targetSwitches do

foreach path in paths do
if switch in path then

raise Occlusion conflict with vertex and app data;
break;

end

end

end

end
Algorithm 5: Detection algorithm for Occlusion conflicts.
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A qualitative approach promotes understanding an interpretation of the observations in this
work and serves as a first stepping stone for exploring distributed conflicts in SDN. The
detection algorithms are tested in a controlled environment on designed and random topolo-
gies to examine their soundness and completeness. Since the rule graph represents the core
component of the detection mechanism, its properties are reviewed. We compare the exper-
imental infrastructure to similar projects in order to highlight the utility of this approach as
opposed to other work. Conflict classes and their impacts are evaluated concerning security
in SDN and put in context of known work. Lastly, the parameter space as defined by Tran
and Danciu [TD20] is reassessed in light of distributed conflicts.

7.1 Conflict Detection

Given the definitions of distributed conflicts in Chapter 5, there are some assumptions that
will impact the correctness of the detection results and methods. The detected classes can
be valid conflicts but can also be intended configurations that are chosen for optimization
purposes or any other intentional dependence between control applications. Consequently,
intentional inter-dependence between application configurations that lead to conflicts cannot
be discerned from conflicts arising from the erroneous or unintended. This circumstance
can also be observed in the ordering of filtering rules in traditional firewall applications or
even in the ordering of flow entries within a single target switch of an SDN application.
An intentional optimization appears to be a conflict in objective, analytical terms. The
in-explicit intentions of a network operator can therefore result in an undecidable, non-
deterministic problem.
Another important aspect is how many applications make decisions that form a conflict
class, concisely, if conflicts can occur between more than two applications. Let us assume
that all applications are deployed on different switches. This will firstly always lead to a
conflict between two applications on a route. The end product of that conflict will result
either in a broken route and no other application receives a packet-in event to process the
packets further, or drops which will have the same effect, or some form of structurally valid
flow entry by the second application. That flow again gets processed by the next application
in a third switch on the route, where any conflicts will arise between the policy of the second
application and the third. Inductively the same reasoning will apply for any number of
applications that make decisions on a path.n If there is no conflict between two directly
successive applications, any of the two can conflict with the next decision making process
on a path, but this again is the result of two competing applications respectively. So the
resulting decision due to a conflict between two applications can again lead to a conflict with
a following policy, but there is no reason to assume that there is any correlation between the
first and the last policy in a conflict from more than two policies. The only exception to this
reasoning is the loop conflict, which can be the result of an arbitrary number of applications.
No applications appear to compete with each other in a distributed sense, but the overall
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distributed decision is faulty.
Furthermore, we need to consider what happens if we have two applications deployed on
the same target switch and a conflict pattern that arises from a policy in a previous or
successive node. Due to the nature of the OpenFlow [ONFb] protocol, a packet is processed
by exactly one flow entry in a switch. A switch can have multiple flow tables, but these can
be seen as virtual switches when detecting distributed conflicts. This means that of the two
applications that are deployed on one target switch, both might install a flow entry yet only
one policy will process a matching packet. Therefore, any conflict will again be the product
of two conflicting applications. Which of the two possibly locally conflicting applications
wins in the decision making process, e.g. due to a higher priority, has no impact on the
number of applications that are part of the distributed conflict even if the outcome of the
local conflict can lead to a different result for the distributed conflict.

7.1.1 Evaluation Experiments

Conflict classes and conflict pattern in the detection algorithms have to be independent from
specific points in the input parameter space 2.5. We will assess their relevance in a set of
evaluation experiments. We will examine two designed and two random topologies. Each will
be subject to five experiment rounds on every conflict class. Each experiment on a topology
and for a given conflict class will be conducted with the same applications. The applications
are configured to elicit the conflict class under question. The qualitative insights we want to
gain from the evaluation runs comprise the following topics:

• revalidate the observed conflict classes on a set of untested topologies

• expose the conflict detector to the experimental procedure with unseen topology shapes
to assess the quality of the prototype for detection

• asses the quality of the detection algorithms

The random topologies in the evaluation set are 3.12, 3.10, and 3.7 and 3.5 the designed.
We define in total 120 experiment models and build the respective experiment with the
procedure described in Section 4.5. The results are then analyzed to assess the number of
occurred conflict patterns, the number and shapes of detected conflicts and the number of
valid cases. Tables 7.2, 7.1, 7.4 and 7.3 show the results of the evaluation runs with occur-
rences, detections and valid detections from left to right in each cell. Rows 1 to 5 represent
one experiment round for each individual conflict.
For loops and Spuriousness conflicts, the experiment results on data plane state failed to
expose the actual number of occurrences in data plane state and we resort to assessing the
number of valid cases based on the logged paths in the rule graph 6.1. Two experiment
rounds on loops on the two designed topologies 3.7 and 3.5 where unsuccessful in both cases
even after repeated attempts. Experiments on Spuriousness conflicts for the two designed
topologies failed in every run and after repeated attempts. Invalid experiments are marked
with an X.
The results show that detection based on a rule graph and the devised detection algorithms
are subject to high latency. This leads to only partial detection of conflicts before an exper-
iment run is stopped and experiment output is generated. Short flow entry timeouts entail
that the output on data plane state is incomplete. Flow entries are deleted from the data
plane before results can be generated. In order to improve experiment results, it is necessary
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to store data plane state at intermediate steps and ensure that the detection prototype is not
stopped before it can process all flow entry insertions to the data plane. While the automa-
tion process yields realistic circumstances in comparison to artificial or manual insertion of
flow entries to the data plane, it is less controllable and not yet suited for quantitative anal-
ysis. Artificial insertion of complete paths from source to target endpoints is controllable,
but it is unclear how that affects detection latency. Realistic data plane states for a given
topology and timings for flow entry insertions will improve the quality of the evaluation
process, but are not available.

Run Occlusion Bypass Loop Spuriousness Injection Multi-Transform

1 4/4/4 6/4/4 12/6 2/2 2/2/2 2/2/2

2 8/4/4 12/8/8 15/5 4/4 4/2/2 4/4/4

3 12/8/8 18/12/12 10/4 6/6 6/2/2 6/6/6

4 16/8/8 18/12/12 15/10 8/8 8/2/2 8/8/8

5 20/8/8 18/12/12 16/10 10/10 10/6/2 10/8/8

Table 7.1: Evaluation experiments on random topology 3.12 with 10 switches and 8 end-
points. Rows 1 to 5 represent one experiment run for each individual conflict.
Each cell shows the number of occurred conflict patterns, the number of detected
conflicts and the number of valid cases from left to right. For loops and Spuri-
ousness, the true number of occurrences could not be assessed and are omitted.

Run Occlusion Bypass Loop Spuriousness Injection Multi-Transform

1 4/4/4 6/4/4 6/3 2/2 2/2/2 3/3/3

2 8/4/4 12/10/10 13/11 4/4 4/2/2 4/4/4

3 12/8/8 18/16/16 4/2 8/8 6/2/2 8/8/8

4 16/8/8 24/21/21 4/2 10/10 8/4/2 12/12/12

5 20/8/8 24/19/19 11/9 12/12 10/4/3 12/12/12

Table 7.2: Evaluation experiments on random topology 3.10 with 20 switches and 12 end-
points. Rows 1 to 5 represent one experiment run for each individual conflict.
Each cell shows the number of occurred conflict patterns, the number of detected
conflicts and the number of valid cases from left to right. For loops and Spuri-
ousness, the true number of occurrences could not be assessed and are omitted.

Occlusion

Occlusion conflicts occur in all evaluated topologies 3.12, 3.10, 3.7 and 3.5. Tables 7.2,
7.1, 7.4 and 7.3 all show that the conflict pattern can be detected but that latency is an
issue. Not the size of a topology is the deciding factor for detection success, but the number
of occurrences. One consequence of the detection mechanism presented in Chapter 6 is
that we may detect multiple conflicts for one flow entry because we check the number of
target switches that are occluded and not the application itself. If an occluded application
is active on two switches on a path from source to destination, we cannot decide which of
the two will be occluded. Occlusion conflicts are interpretative, as defined by Pisharody et
al. [PNC+19]. While we can determine competing application intents with the approach in
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Run Occlusion Bypass Loop Spuriousness Injection Multi-Transform

1 2/2/2 4/2/2 24/12 X 2/4/1 2/1/1

2 2/2/2 4/2/2 94/47 X 4/4/1 2/1/1

3 4/4/4 4/3/3 X X 6/8/2 4/2/2

4 4/4/4 4/4/4 152/76 X 8/6/2 4/2/2

5 4/4/4 4/4/4 X X 10/8/2 2/2/2

Table 7.3: Evaluation experiments on random topology 3.7 with 26 switches and 14 end-
points. Rows 1 to 5 represent one experiment run for each individual conflict.
Each cell shows the number of occurred conflict patterns, the number of detected
conflicts and the number of valid cases from left to right. For loops, the true
number of occurrences could not be assessed and are omitted. Cells that contain
an X mark unsuccessful experiments.

Run Occlusion Bypass Loop Spuriousness Injection Multi-Transform

1 8/8/8 4/4/4 X X 2/3/2 2/2/2

2 8/8/8 8/2/2 38/19 X 4/4/1 5/5/5

3 12/8/8 12/2/2 46/22 X 6/10/2 6/6/6

4 16/8/8 16/4/4 X X 8/12/3 8/8/8

5 20/8/8 20/6/6 6/2 X 10/12/1 10/7/7

Table 7.4: Evaluation experiments on random topology 3.5 with 21 switches and 21 end-
points. Rows 1 to 5 represent one experiment run for each individual conflict.
Each cell shows the number of occurred conflict patterns, the number of detected
conflicts and the number of valid cases from left to right. For loops, the true
number of occurrences could not be assessed and are omitted. Cells that contain
an X mark unsuccessful experiments.
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this work, automated conflict resolution is not possible without information loss and entails
manual effort.

General Multi-Transform

The evaluation runs show that the conflict class is independent of the deployed topology.
Tables 7.2, 7.1, 7.4 and 7.3 all show that the conflict pattern can be detected, but the size
of a topology and latency can affect the success. This conflict is interpretative, as defined
by Pisharody et al. [PNC+19], and cannot be resolved automatically without information
loss and possible violation of application intent. It needs to be resolved or marked as valid
by an administrator.

Bypass

Bypass conflicts are detected on all evaluation topologies. While Tables 7.2, 7.1, 7.4 and 7.3
show that all detected cases are valid, they also highlight that not all cases are detected. This
is due to detection latency and the experimental process. It is hard to reason if this is an
intelligible or interpretative conflict [PNC+19] that can be resolved without information loss.
If we assume a faulty or incomplete configuration by an administrator, a simple resolution
method is the insertion of rules on uncovered paths. However, by making that assumption
we already try to infer the intent of the configuration.

Loops

Even with repeated tries, the experimental process did not produce any results on runs 3
and 5 shown in Table 7.3 as well as runs 1 and 4 in Table 7.4. This can either mean that
detection latency is too high or that the experiment is based on a configuration that leads
to its failure. Successful experiments showed that the prototype can detect loops, but valid
cases are substantially lower than the detected. An analysis of the detection output revealed
that the prototype produces duplicate detections for one loop. The duplicates differ in the
ordering of the rules in a loop and might contain vertices in the rule graph that are connected
to but not part of a loop. The prototype stores patterns for detected loops in memory, but
fails to address the fact that the start and end vertex in a loop is not significant since it is
the same closed structure. Also the rule graph can contain loops that are never traversed
by traffic. Policies can be inserted to the data plane that form loops, but they are never
activated and receive no bandwidth. Furthermore, loop detection with a rule graph has
the caveat of uncontrollable complexity with increasing size of a topology and increasing
complexity of the loop itself. The experiments on loop conflicts exhibited long runtimes,
although the input parameter space 2.5 contained only one active application and limited
complexity. As stated in formula 3.3, the time for an experimental run increases with the
complexity of the input parameter space. This may indicate that the increased bandwidth
on links and the computational complexity of loop detection impair network stability and
detection. This conflict is intelligible, as defined by Pisharody et al. [PNC+19], and can be
resolved automatically. We can break loops by inserting rules to destination endpoints with
a higher priority than the affected policies, but that would entail that the prototype has to
implement an efficient routing algorithm that does not produce loops itself.
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Injection

Injection conflicts are detected on all evaluated topologies. The results in Tables 7.2, 7.1,
7.4 show a number of invalid cases for detection of this conflict pattern. As with loops, the
detection method is prone to producing duplicates. The algorithm described in Chapter 6
fails to address the issue that an application may insert subsequent rules to the rule graph
and can cover all paths from a source to a destination endpoint on subsequent switches. This
is an interpretative conflict [PNC+19] and cannot be resolved without information loss.

Spuriousness

Since we deploy a filtering implementation based on bandwidth, TCP traffic generated by
the automation process fails to reach the defined thresholds. Evaluation runs on random
topologies show that all detected cases are valid but that detection suffers from latency. We
could resolve Spuriousness conflicts by migrating filtering policies to an appropriate edge
node in a network. However, security applications in SDN are subject to a number of re-
quirements, as discussed in Section 7.5, which suggests that a traditional firewall deployment
in SDN is insufficient.

7.2 Prototype

A rule graph as the key concept of the detection prototype has advantageous properties
in light of detectable conflict patterns but negative implications on runtime and memory
complexity. While other work [PCH16] [PNC+19] [LCL+18] [KZCG12] states the necessity
for an optimized representation of data plane state and the need for scalability to produce
real-time responses, they are limited in the domains and patterns for conflict detection. A
common approach is a trie data-structure [PCH16] [PNC+19] [LCL+18] [KZCG12], a tree-
like implementation where nodes from root to leaf store individual bits of IP addresses.
This allows for conflict detection and data plane maintenance in one pass of the trie. A
trie is based on destination addresses only and fails to comprise the scope of conflicts on
multiple address fields. Adaptions of the trie include additional match fields of flow entries,
but are still limited to destination addresses. The bit-wise comparison for rule insertion
and detection of address overlaps constitutes the efficiency of the algorithms and also its
limitations. The maintenance of links between rules and comparison of multiple address
fields entails exponential complexity. Rule graphs are the only thorough approach that
includes all match fields, the entire address space and links between rules. This defeats the
need to request any flow statistics from switches on demand and reduces control channel
bandwidth, but as said, adds memory and time complexity for the insertion and removal
of rules. Scalability becomes an issue in large-scale networks with a high number of unique
flows and control applications that enforce individual policies. While policies based on
solely destination addresses seem feasible, obliviousness of more general conflict patterns is
the result. The poor runtime performance of rule insertion and deletion with a rule graph
is a drawback concerning local conflicts. However, for detection of distributed conflicts,
two conditions render the entailed latency irrelevant. A distributed conflict can only be
detected once a packet traverses at least two nodes in a topology. This means that a policy
to forward a packet needs to be inserted to a switches data plane before the next decision
on a subsequent switch will be triggered. Flow entries become active before they can be
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processed for distributed conflicts. Furthermore, without a means to interpret application
intent, resolution of distributed conflicts as of yet is not feasible. Without a strategy for
automated resolution of distributed conflicts, it is not relevant if the detection is performed
in real-time since manual resolution cannot be performed in real-time either. Therefore, time
complexity is not a critical issue for detection of distributed conflicts since we potentially
need to wait for insertion of all rules of a flow from source to destination. Loop conflicts
support this argument most intuitively. Depending on the shape of a topology, loops can be
of arbitrary size. The loop is only verified once a packet traverses the next to last node in
the loop and an automated approach to break the loop can violate any application intent
involved in the loops emergence. Also, the control channel is not notified of a second pass of
packets through a node with a matching rule. An alternative solution is the use of historical
data on bandwidth to check if there is an extraordinary increase in a certain region of the
network.
Memory complexity in conflict detection based on a rule graph is an unresolved issue. Any
implementation of conflict detection suffers from maintaining any form of copied data plane
state, and controller nodes for large-scale SDN. This requires significant amounts of resources
in terms of processing power and memory even for smaller networks and a high volume of
flows.
The detection methods described in Chapter 6 respect the existence of ambiguous application
intents and the need to apply heuristics to avoid parsing the entire rule graph where possible.

7.3 Experiment Automation

The Mininet project [MPC] states several features that constitute the utility of network
testbeds that serve as a guideline for evaluating experiment automation in this work.

• Functional realism concerning fidelity to deployed hard- and software

• Realism and reproducability of any generated network traffic between experiments and
researchers based on a common specification of experiment input and results

• Topology customization with any topology shape and size

• Easy duplication of experiment setup and deployment

Mininet [MPC] is a network emulator based on Linux namespaces and follows two ad-
ditional characteristics, namely the criteria of low cost and timing realism. Emulab [Uta]
implements network testbeds based on hardware virtualization with Xen [TLF] domains,
both with dedicated physical resources for individual nodes and more scaleable topologies
on a single machine. A combination of desirable features of both projects is given by the
presented approach in this work, in addition to a configurable approach for conflict detection
and monitoring as well as a framework for pluggable applications.
Mininet [MPC] is based on Linux namespaces within a wrapper VM, while controllers can
be situated outside of the VM. The concept of using a wrapper VM to ease deployment
on any operating system compares to this work yet virtualization techniques are limited
to network emulation and resource allocation. The use of Xen [TLF] domains allows for
increased realism with separation of memory space and process execution as well as dedi-
cated shadow structures for kernel execution of guest domains. Emulab [Uta] also makes
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use of Xen [TLF] domains and external controller execution, while offering more flexibility
in terms of Linux kernel versions. However, Emulab [Uta] lacks specification and automa-
tion for traffic generation and monitoring, a key characteristic for repeatable experiments.
Emulab [Uta] requires the deployment of custom monitoring controllers to generate and
monitor traffic or manual command line interaction. Mininet [MPC] provides configurable
webservices such as HTTP servers and connectivity via iperf [Sofb]. It features topology
wide reachability tests and custom control over MAC and IP addresses. The approach in
this work completely automizes reachability tests and traffic generation of specified transport
types between endpoints, further improving reproducibility of results. Access to individual
endpoints and switches is given to add manual testability. Mininet [MPC] does not automate
network tests, but rather provides a set of commands to generate traffic or implement the
automation via custom scripts. Network bandwidth is advertised as large, but that is due to
direct use of one VM kernel, the absence of shadow structures for each individual host OS
and a lack in separation of processes execution. Para-virtualization as used in Emulab [Uta]
and this work creates more realistic testbeds in separation and virtualization of machine and
network state. Neither of the two implementations provide automated conflict detection and
analyzing of monitored state, namely comparison of data plane and deviations of generated
bandwidth. Emulab [Uta] and this work permit for individual control over host domains,
with the option of custom setup, where new features in Mininet [MPC] are introduced to all
nodes in the topology due to the shared application stack.
Both alternative implementations allow for deployment of custom controllers and more
switch types besides Openflow switches, with a strong emphasis on reproducible network
infrastructure experiments. This work provides a conflict detection mechanism and aims at
reproducible experiments with artifacts for determining new conflicts. With this approach,
performance isolation is a given. Mininet [MPC] does this artificially via control groups
and processor bandwidth limits. Mininet [MPC] is the best fit for experiments that are
limited by network properties such as bandwidth, latency, and queuing, as opposed to this
work which focuses on debugging of applications and a controllable environment for conflict
exposition. Scalability concerning topology size and setup time is optimized with Mininet
[MPC]. Functional realism and control is improved by para-virtualization, while the resource
constraints are given by disk space and memory. Disk space and memory are determined by
the number of nodes in the topology, while memory is adjustable.
Remaining issues in this work are the dependency of conflict classes on application intent
and instability on larger topologies. More application types are needed to really verify the
comprehensiveness of conflict patterns and detection. Another unsolved issue is the yet
unsolved problem of local conflicts. To enable easy integration of applications without the
need of adaptions to fit the experiment infrastructure, automated local conflict resolution
is required. Another topic is the choice of application configurations and positioning of
endpoints in a topology. For objective exploration of the parameter space, settings need to
be chosen randomly without intentional preconditions. A balance between exploitation of
conflict potential anticipated by researchers and exploration through randomness promotes
an aggregation of reproducible data for further analysis. Nevertheless, the experiment model
and technical implementation eases deployment and testing of infrastructure under realistic
conditions and with affordable resources. The utility of the experiment model can be further
improved towards an Infrastructure as Code service that facilitates shared, generic experi-
ments. As a result, configurations and applications can deployed in a cloud environment. The
adjustable threshold for monitoring and reporting bandwidth limits addresses the fact that
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individual topologies, configurations and the underlying hardware produce different results.
This affects any Invariant Contention conflicts, which are only exposed through repeated
experiments in the same environment and gradual adjustment by a researcher. Bandwidths
and timings for conflict detection are therefore not reproducible across machines.
Application intent, other than endpoints and switches, is not directly incorporated in the
experiment model. Current work incorporates application intent in mediation and resolving
mechanisms [SMR+14]. The proposition of viable network states by applications [AMB+14]
and distinction between resource control interests and general invariants [PNC+19] [AMB+14]
[SMR+14] is another form of application intent. The common denominator in the approaches
is that application intent is interpreted based on these inputs, yet we need a means to capture
application intent without interpretation. There is a key difference in utilizing application
intent for resolution tactics and for discovering conflict classes. Bandwidth is a first and
obvious interest that could be declared by applications. A sensible set of invariant flags can
be incorporated in the experiment model, and any applications that interact in a rule path
can be checked for intersecting interests, although that again only exposes a potential for
conflict, not the conflict class itself.
Comparison of expected and observed state is an objective method that can expose some
but not all conflict classes. Flow entry timeouts represent one caveat in this method. If flows
timeout too fast the implementation fails to respect them in comparison of data plane state.
Short timeouts and high algorithmic complexity leads to incomplete comparisons that can
distort the results.

7.4 Parameter Space

A choice of dimensions in the parameter space presented by Tran and Danciu [TD20] merit
reassessment in light of results of this work. These dimensions include app start order, target
switches and app configuration, transport type, topology design and app priority.
One insight is that priority is not a deciding factor for distributed conflicts. App priority
within flow tables decide which policy in a pool of matching flow entries is applied to packets,
which makes them inherent to local conflicts. The winning policy of a local conflict is the
prospective candidate for a distributed conflict, yet the outcome might as well inhibit po-
tential inter-policy conflicts. In absence of local conflicts, priority is a negligible experiment
dimension. Furthermore, there is no mechanism to restrain implementations from altering
their priority, resulting in increased complexity of the parameter space and convolution in
conflict resolution. The only feasible approach is role-based source authentication as pre-
sented by Porras et al. [PSY+12], effectively voiding any input priorities by applications and
basing precedence on application intent.
Network topologies showed to be relevant concerning characteristic shapes, such as bottle-
neck nodes, alternative routes provided by rings and meshes, as well as path lengths and
respective routing decisions. While we can argue that there is an infinite number of topolo-
gies, a simple bus or ring topology at some point will no exert more insights no matter how
many nodes are added. The deciding factor for emergence of conflict patterns is the utility an
application exerts for a given topology. Endpoint load balancing requires multiple endpoints
to work as expected and path load balancing multiple paths. Any deployment in absence
of such properties is defective. While randomization can and will produce relevant shapes,
an increasing number of applications and diversity between application implementations is
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correlated to a higher number of defective shapes. Input by application developers leads
to smaller entropy in the randomization process. Consequently, application intent appears
to be a necessary input for topology design, representing a bounding factor for improved
randomization and a limit to the extent of the topology dimension. Several experiments
for random topologies 3.8 and 3.10 that feature the same number of switches and endpoints
indicates this issue. Application configurations are devised for one topology and then used
for the second in an simple attempt to randomize the parameter space. The result is usually
a failed experiment run due to dysfunctional application configurations.
Transport types are another subject for evaluation, i.e. in this case IP protocols. For local
and distributed conflicts both, the deciding property for conflict emergence is a part-of re-
lationship, whereas disjunct types are irrelevant for any conflict patterns. Policies enforced
on TCP or UDP traffic specifically will never compete with each other. Application intents
aimed at disjunct protocols will also never be interdependent. Therefore, conflicts on trans-
port types emerge when a policy that is oblivious of transport type competes with a policy
that matches a specific type. A suggestion for a more comprehensive input parameter for
conflicts, is a distinction of within- and cross-layer conflicts on OSI layer protocols. Within-
layer conflicts are limited to the mentioned part-of relationship and cross-layer conflicts can
occur between any protocol types of two distinct OSI layers that are used in sensible com-
binations.
Start order of applications and its relevance for experiments is subject to two assumptions.
When implementations are added to the control layer, which is closely coupled to the con-
troller implementation, a restart of the controller is required. Controller restarts strongly
suggest a complete flushing of data plane state to avoid hidden conflicts [TD20] and uphold
correctness of data plane state. After a restart, all applications of the control layer start
at same time, receive the same set of subscribed messages and operate on the same, clean
view of the data plane. The only applications that can be added or removed safely to or
from a running system are loosely coupled implementations, e.g. integrated through REST
interfaces or another north-bound API to the application layer. As elaborated in Section
3.2, the increased latency of loosely coupled technical interfaces usually exempts packet-in
events from inclusion in such interfaces. Therefore, the only candidate applications for the
start order dimension are exempt from the messaging system and are advised to rely on
querying and maintaining data plane state.
Dependency between target switches of an application and application configuration is the
final point of discussion. A trivial example of such a dependency is an application deployed
on target switches and operating on switches as part of its application. Another example
are applications that receive configuration for individual target switches.

7.5 Security

A rule graph can serve as the core implementation of a security enforcement layer as defined
by Dixit et al. [DKZ+18]. The implemented conflict detector meets the requirement of
centralized policy enforcement and requirement of storing all forwarding graphs based on
data plane state, yet conflict detection between policies is performed offline. Concurrency
is handled by the inevitable delay for detecting distributed conflicts, but this leads to pos-
sibly invalid traffic already penetrating the network. Unmet requirements include tracking
of connection state and vulnerabilites concerning scalability, which is a general deficiency of
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the OpenFlow [ONFb] protocol. The concept of analyzing only the first packet of a flow and
installing flow entries for handling any subsequent packets deprives the control layer of any
further packet inspection. If rules are too general, this can lead to vulnerabilities to attacks
where benign packets are sent first. Once a too coarse policy is inserted, e.g. by failing
to limit valid IP protocols, malign packets can follow. To keep track of connection state,
controllers need to enforce the use of timeouts for rules or monitor bandwidths on ports and
flows as exemplified in the Firewall application. In addition, automated conflict resolution is
missing due to the interpretative nature of distributed conflicts. Several of the applications
involved in this work maintain a view on data plane state within the control layer. This
includes the Host Shadower, Endpoint Load Balancer and Firewall and, at a global level,
the detector. In light of a productive environment in a data centre, with very large numbers
of concurrent flows and high fluctuations, this can affect scalability.
Not all of the conflict classes described in Section 5 implicate security issues. Injection
relates most strongly to faulty configuration and conflicting interest to applications that
aim at distributing bandwidth between network links or hosts. Loops also affect efficiency
rather than security and are an exception. Other Transformation Contention conflicts, In-
variant Contention as well as Spuriousness and Path Ambiguity, can entail security issues
next to network deficiencies. Transformation implementations can be exploited in attacks by
adapting flows circumvent existing firewall rules, as mentioned by several works [HHAZ14]
[PNC+19] [LCL+18]. This concerns General Multi-Transform conflicts. However a reverse
approach can also lead to information leaks. Considering the security scheme of moving
target defense as mentioned by Hu et al. [HHAZ14], incomplete transformation and Bypass
conflicts can be exploited by attackers to explore and disable these efforts. The concept
of moving target defense aims at disguising resources for services by altering packet desti-
nations or reassigning addresses and relates to the implementation of the Endpoint Load
Balancer and Host Shadower applications. Attackers exploiting said conflict classes are able
to discover the resources hidden by the implementations and can employ reconnaissance and
penetration mechanics. Furthermore, penetration testing could reveal defects in the config-
uration by eliciting invariant contention conflicts. The issues concern both the location of
conflicts as well as missing transformations. Resolving placement issues can be performed
by automatically inserting any missing policies to cover all paths between traffic source and
destinations. Spuriousness and Occlusion arise due to improper deployment of applications
within a network. Undesired loads on endpoints and vulnerable network regions to port
scanning and other network reconnaissance techniques are the consequence. The location of
enforced policies or interests dictates the emergence of these conflict classes, which indicates
a resolving strategy. Spuriousness could be resolved by migrating a rule to an edge switch,
but global application intent can lead to new conflicts. An intrusion detection mechanism
could be occluded by the migration. Occlusion conflicts need to be analyzed and the rational
placement of involved applications reassessed. The implemented firewall shows how a control
application can request data plane state to check current rules and deploy it’s own policies
to override other policies with a higher priority. Therefore, role-based authentication is sug-
gested by Porras et al. [PSY+12]. The concept aims at preventing operations of unknown
actors and can also be a tools for resolving conflicts by adding a layer of authorization pri-
ority. However, distributed conflicts are unaffected by rule priorities.
The idea of an extra layer of dependencies by an administrator can help avoid false positives
in conflict detection and put the focus on true positives and possible security issues. We
propose the introduction of security alignments to declare any valid interactions between
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applications in order to avoid detection of intentional configuration as conflicts. Every ap-
plication is part of a set of security alignments and does not conflict with rules deployed by
the same alignment. Alignments are enforced in the controller implementation. Data plane
state is not allowed to store alignment information in order to avoid malign applications
from learning alignments by accessing data plane state through REST interfaces. Let us
consider an alignment set of [1,2] for the Endpoint Load Balancer, [2] for the Host Shadower
and [1] for the Firewall. Any conflicts arising from a rule path generated by the first two
applications or the last two would therefore be ignored in conflict detection as they intersect
in their alignment. Rules paths that involve conflicts between the Host Shadower and Fire-
wall in this scenario represent valid conflicts and possible security issues. Administrators
can even start from blank alignments in a specific configuration and gradually add to the
alignments to invalidate conflicts and discern problems that need to be addressed and inter-
preted manually. This implementation can eliminate the need for knowing application intent
by avoiding the necessity for resolving strategy for the validated interactions. As mentioned,
the discovered distributed conflicts are interpretative, and resolution requires application
input or heuristics. Nevertheless, any resolution strategy can entail indefinite evocation of
new conflicts and the impairment of valid, authorized traffic. Security alignments can reduce
the set of candidates and scale the need for automated resolution.
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This work shows that new distributed conflict classes are exposed and revalidated by an
experimental approach. Policy conflicts are examined on a diverse set of network topologies
and control applications. The experimental process still exerts technical and conceptual
weaknesses that need to be addressed by future work. We present several key points for
future improvements and provide a summary of this work.

8.1 Future Work

Several issues remain with the current detection prototype. Rule graphs as depicted in
Figure 6.1 entail a high runtime complexity and scalability issues. A naive approach to
improvement could be the discarding of unique flows once the complete forwarding path has
been checked since they are not relevant for other traffic. At the moment, the detector needs
to ignore errors for connectionless traffic because the added latency of the detection layer
is too high. The evaluation of the experimental process has show that the deployment of
control applications is not stable in large networks.
Exploration of new conflict classes and the objectivity of current classes could be further
accelerated by the randomization of endpoint placement and randomization of application
configuration. The presented approach includes random topologies concerning switch place-
ment but research on the dependencies between application configurations and their require-
ments on topologies are necessary.
The evaluation of the conflict detection prototype with automated experiments demonstrates
that a controllable and quantifiable approach is necessary to further assess the utility of de-
tection algorithms and a rule graph.
Introduction of resolving strategies can be based on security alignments 7.5 that mark ac-
ceptable dependencies between apps. Further methods include replacement strategies to
resolve Spuriousness and Occlusion conflicts and the automated insertion of missing trans-
formation policies.
The most ambiguous topic for future work concerns application intent. Is it sensible to de-
fine and continually grow a set of flags, keyword or properties that can be communicated by
apps? This will limit an applications independence in SDN. The possibilities and benefits
for conflict resolution or avoidance need to be researched and the implemented.

8.2 Summary

Software Defined Networks are a promising paradigm in computer networking and facilitate
network policy enforcement by multiple entities through a centralized interface. The concept
entails new possibilities for policy enforcement but also new problems. This work introduces
the concept of distributed conflicts based on the definitions by Hamed and Al-Shaer [HA06]
in the SDN context. Policies by two applications on multiple nodes in a network can con-
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8 Conclusion and Future Work

tradict and can result in connection failure or compromised security. The focus on local
conflicts by related work and missing insights on distributed conflicts are the motivation for
this thesis. The differences of SDN compared to traditional networks are a separation of
management plane where administration of network devices takes place, control plane where
network policies are generated and the data plane where policies reside. This separation
allows for centralized decisions through a controller as opposed to local decisions that need
to be propagated between nodes in a network.
Research questions include the exploration of distributed conflicts and their detection. Fur-
thermore, a technical infrastructure to enable and promote research on conflicts is desirable.
Applications with competing interests produce conflicts and are a necessary input for explo-
ration of new conflict classes. We examine existing work and tools in SDN and what the
existing definitions of policy conflicts are. Security in SDN depends on a global view of data
plane state on all network devices, real-time processing of policy insertions as well as conflict
detection and automated resolution [DKZ+18]. We evaluate the presented approach with
regard to these requirements.
Tran and Danciu [TD19][TD20] provide the basis for this work and define an input parameter
space for experiments on policy conflicts as well as a methodology for conflict exploration.
The parameter space comprises topology, application and network traffic characteristics.
Tran [Tra22] implements a policy rule graph that can be utilized for conflict detection.
The contributions of this work include new distributed conflict classes illustrated in Chap-
ter 5 and the validation of known conflict patterns in SDN. They are the product of 403
experiment rounds. Each experiment round comprises at least three experiments for two
applications and at most 541 for five applications with one configuration. The classes are
formalized and examples are given for each. Detection algorithms for the discovered conflict
classes are implemented and evaluated on a fresh set of topologies. Detection algorithms are
demonstrated in Chapter 6 and insights of the evaluation in Chapter 7. A software architec-
ture for reproducible experiments on SDN conflicts is devised and presented in Chapters 3.3
and 4. The devised software architecture is an automated and technical implementation for
the experimental methodology described by Tran and Danciu [TD20]. Topologies that are
used for conflict exploration and evaluation are presented. This includes designed topologies
as well as random networks based on three algorithms from research on network generation.
Three new control applications from this work and four existing ones by Tran [Tra22] facil-
itate the experiments. They include implementations for load balancing, traffic engineering
and filtering. The experiment automation process is compared to similar approaches in
Chapter 7 and evaluated in light of mentioned security requirements in SDN. The insights
show that firewall applications are subject to new challenges due to the novel properties
of SDN. The presented implementations are evaluated on their validity by a second set of
experiments and qualitative insights on the soundness of detection algorithms are explained.
The automated experimental infrastructure as well as a set of seven existing control applica-
tions support future work on network policy conflicts, lowering the threshold for performing
experiments and gaining further insights. While the implementations are based on Openflow
as a technical framework, the formal definitions for conflict classes and presented detection
algorithms apply to SDN in general. We show that experimental exploration of conflicts
yields results that increase understanding of policy conflicts and enables interpretation and
resolution.
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Repository File Structure of the Experimental
Infrastructure

The following directory tree serves as a reference for developers and researcher that follow
the example deployment of an experiment run 4.5. Files marked with an N are new imple-
mentations, those marked with an A are adapted in this work. Other files are unchanged or
auto generated.

+−− c o n t r o l
| +−− automating exper iment
| | +−− app cho ice
| | +−− app con f i g
| | +−− app cook ie . txt A
| | +−− choose app python35 . py
| | +−− co l l e c tdata checkAppAsse t s . bash N
| | +−− c o l l e c t d a t a c o n f i g . bash
| | +−− c o l l e c t d a t a c o n t r o l l e r . bash
| | +−− c o l l e c t d a t a d a t a p l a n e . bash A
| | +−− c o l l e c t d a t a d a t a p l a n e s i n g l e . bash
| | +−− c o l l e c t d a t a f u n c t i o n . bash
| | +−− co l l e c tdata getAppCook ie . bash N
| | +−− co l l e c tdata ge tAppHostAsse t s . bash N
| | +−− co l l e c tdata getAppRouterAsse t s . bash N
| | +−− co l l e c tdata getEPLBserver . bash
| | +−− c o l l e c t d a t a g e t H S s e r v e r . bash N
| | +−− co l l ec tdata getPEjumps . bash N
| | +−− c o l l e c t d a t a s t o p a n d c l e a n . bash A
| | +−− gene ra t e con f i g python35 . py
| | +−− i t e r a t e p a r a m e t e r s p a c e . bash N
| | +−− parameter space . bash
| | +−− read parameter space . bash A
| | +−− read parameter space v2 . bash A
| | +−− sw i t che s
| | +−− ca l cu l a t e max bw f rom netbps s c r ip t . bash
| | +−− dumpflows . sh
| | +−− dumpgroups . sh
| | +−− netbps
| | +−− tcpdump fromoutside bwgauge . sh
| +−− c o n f i g a n d s t a r t . bash N
| +−− c o n f i g o v s . bash A
| +−− c o n f i g p c . bash
| +−− c o n f i g t e s t b e d . bash A
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| +−− README
+−− c o n t r o l l e r
| +−− massive
| | +−− app cook ie A
| | +−− arpcache . py
| | +−− d e l e t e a l l f l o w a n d g r o u p t a b l e s v 2 0 . py
| | +−− de t e c t o r . py A
| | +−− eplb . py A
| | +−− f i r e w a l l . py N
| | +−− f l owmod c las s . py
| | +−− fw . py N
| | +−− g l o b a l c o n f i g . py N
| | +−− hs . py N
| | +−− http app . py N
| | +−− l og . py N
| | +−− p a c k e t i n c l a s s . py
| | +−− pe . py N
| | +−− plb . py A
| | +−− pplb4d . py A
| | +−− pplb4s . py A
| | +−− README
| | +−− r e s t f w . py N
| | +−− r e s t o f c t l . py A
| | +−− r o u t i n g e x c l u d e d i n f o
| | +−− rout ing . py A
| | +−− topo logy . py
| | +−− u t i l i t y d e t e c t o r . py A
| | +−− u t i l i t y . py A
| | +−− u t i l i t y r e s t . py
+−− README
+−− s d n r e s u l t s
| +−− sample topo logy
| +−− a l l c o n f i g
| +−− c o n f l i c t . txt
| +−− d e t e c t o r l o g
| +−− parameter space . j son
| +−− router10 dumpflows . ta r . gz
| +−− router11 dumpflows . ta r . gz
| +−− router12 dumpflows . ta r . gz
| +−− router13 dumpflows . ta r . gz
| +−− router14 dumpflows . ta r . gz
| +−− router15 dumpflows . ta r . gz
| +−− router1 dumpflows . ta r . gz
| +−− router2 dumpflows . ta r . gz
| +−− router3 dumpflows . ta r . gz
| +−− router4 dumpflows . ta r . gz
| +−− router5 dumpflows . ta r . gz
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| +−− router6 dumpflows . ta r . gz
| +−− router7 dumpflows . ta r . gz
| +−− router8 dumpflows . ta r . gz
| +−− router9 dumpflows . ta r . gz
+−− topogen

+−− autogen
| +−− a p p c o n f i g g e n e r a t o r . py N
| +−− c o n s t a n t s g e n e r a t e s p e c . py N
| +−− gene ra t e sdn spec . py N
| +−− paramete r space l oade r . py N
| +−− random topo . py N
| +−− s d n t e s t b e d s p e c . py N
| +−− s d n t e s t b e d s p e c v 2 . py N
| +−− s d n t e s t b e d s p e c v 2 . yang N
| +−− s d n t e s t b e d s p e c . yang N
| +−− setup pyang module N
| +−− setup pyang module v2 N
| +−− sample topo logy . py
+−− README.md
+−− README SDN.md
+−− s c r i p t s
| +−− b u i l d s d n c o n f l i c t s e x p e r i m e n t . sh N
| +−− common generate qcow image . sh A
| +−− common generate xen fs . sh
| +−− common generate xen image . sh
| +−− common generate xen topology . sh N
| +−− common network helpers . sh A
| +−− common qcow helpers . sh A
| +−− common tar helpers . sh
| +−− common xen helpers . sh
| +−− c o n s t a n t s b u i l d e n v . sh
| +−− constants qcow . sh
| +−− cons tant s xen . sh
| +−− d e p l o y s d n c o n f l i c t s e x p e r i m e n t . sh N
| +−− deploy vbox . sh N
+−− spec s
| +−− sample topo logy
| | +−− qcow . spec
| | +−− xen con0 . spec
| | +−− xen pc1 . spec
| | +−− xen pc2 . spec
| | +−− xen pc3 . spec
| | +−− xen pc4 . spec
| | +−− xen route r1 . spec
| | +−− xen route r2 . spec
| | +−− xen route r3 . spec
| | +−− xen route r4 . spec
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+−− t a r s
| +−− sdn
| +−− s amp l e topo l ogy sdn cont ro l . t a r
| +−− s d n s s h c o n f i g . ta r
| +−− s d n s t a r t x e n . ta r
+−− templates
| +−− template−c o n t r o l l e r . img A
| +−− template−kvm−debian9−ke rne l 4 .9.0−13−amd64 . qcow A
| +−− template−pc . img
| +−− template−switch . img
+−− topo logy

+−− sample topo logy . j son
+−− . . .
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Preliminary Proposition of Conflict patterns

This is a first attempt for a mathematical and formal definition of conflict patterns for the
conflict classes described in Chapter 5. There is no guarantee for correctness.

1 Occlusion

Let there be paths p, p′, application a, a′, action set T , target switch s and rules x1...xn, x
′
n,

where p = {x1, ..., xn}, p′ = {x1, ..., x′n}, xn is produced by app a and xn, x
′
n reside in switch

s, such that if there exists at least one xi ∈ p with i ∈ 2, n− 1, T are actions in rule xi and
|T | > 1, rule xn = x′n, and if no such rule xi exists, rule xn 6= x′n.

2 Bypass

Let there be paths p, p′, application a, action set T , rules x1...xn, x
′
1...x

′
n and switches si, sj

, where p1 = {x1, ..., xn}, p′ = {x′1, ..., x′n}, x1 = x′1, xn = x′n, for all n > i > 1 and for all
n′ > j > 1, si 6= sj , xi resides in switch si and x′i resides in switch sj . If there exists no sj
that is a target switch of application a and there exists at least one xi with xi is produced
by app a, with T are actions in rule xi and |T | > 1, the transformation action in T can by
circumvented on path p′.

3 Injection

Let there be paths p, p′, applications a, a′, action set T , packets P, P ′, rules x1...xn, x
′
1...x

′
n

and switches si, sj , where p1 = {x1, ..., xn}, p′ = {x′1, ..., x′n}, x1 = x′1, xn = x′n, a ∈ x1 and
for all n > i > 1 and for all n′ > j > 1, si 6= sj , xi ∈ si and x′i ∈ sj . An injection conflict
occurs, if there exists at least one rule x′i, with x′i is produced by app a′, T are actions in
rule x′i and |T | > 1 where both packets P, P ′ are intended for the same destination endpoint.

4 Loop

Let there be a path p, rules x1...xn, applications a, a′, where p = {x1, ..., xn}, and there exist
exactly two xi, xj ∈ p, where xi = xj , j > i and there exist at least two xk, xl ∈ p, where xk
is produced by app a, xl is produced by app a′ and a 6= a′.

5 Spuriousness

Let there be a path p, rules x1...xn, applications a, a′, action set T , where p = {x1, ..., xn},
x1 6= xn, a 6= a′, x1 is produced by app a, T are actions in xn and xn is produced by app
a′ and T = ∅. Due to the empty action set T , packets that are forwarded along the rule
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graph by applications preceding application a′, are dropped. Since rule xn is connected,
more precisely the tail end of, other rules in a path, packets that are rejected in a node
within the topology, still managed to enter the SDN topology and could be dropped on an
edge node.

6 General Multi-Transform

Let there be a path p and rules x1...xn, applications a, a′ and action sets T1, Tn, with
p = {x1, ..., xn}, x1 6= xn, a 6= a′, |T1|, |Tn| > 1, T1 are actions in rule x1 and x1 is produced
by app a, Tn are actions in rule xn and xn is produced by app a′.
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