
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s thesis in computer science

Privileged User Password Management in
Shared Environments

Manuel Söhner

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s thesis in computer science

Privileged User Password Management in Shared
Environments

Privileged User Password Management in verteilten
Umgebungen

Author: Manuel Söhner
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisors: Benjamin Hof, M.Sc

Daniela Pöhn, Felix von Eye (LRZ)
Dr.-Ing. Ingo Pansa (iC Consult GmbH)

Submission date: April 15, 2014

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Munich, April 15, 2014 Manuel Söhner

Acknowledgments

I would like to thank the advisors Benjamin Hof from the Chair for Network Architectures
and Services, Daniela Pöhn and Felix von Eye from the Leibniz Supercomputing Centre,
and Ingo Pansa from iC Consult for their good advice, support, and feedback during the
writing of this thesis.

I would also like to thank Prof. Dr.-Ing. Georg Carle for supervising this thesis and for the
advice after the first presentation.

vii

Abstract

Administrators often require access to privileged and shared accounts to manage systems,
services, and applications. Subsequently, the unlimited power gives them unrestricted
access to sensitive data and to important components of the network infrastructure.

In order to prevent from insider and outsider threats, the privileged user accounts need
to be securely shared between authorized administrators and the access to these accounts
needs to be monitored and audited.

This thesis analysis the threats that arise from privileged user accounts in shared environ-
ments and brings up countermeasures that need to be taken into account in a privileged
user password management solution.

Besides the security aspects, generic as well as specific requirements of two organizations
are presented. For that purpose, the status quo of the current password management as
well as use cases at the Leibniz Supercomputing Centre (LRZ) and iC Consult GmbH,
which is a system integrator specialized in identity and access management, were ana-
lyzed.

Based on that requirements catalog, three software products are evaluated and compared
to each other. Moreover, the suitability of these products for the purpose of the LRZ and
iC Consult is examined.

The thesis then proposes a generic architecture that addresses the management of privi-
leged user passwords as well as the fine-grained control of access rights that administra-
tors require to perform actions as privileged user. After that, a demonstrator illustrates
some of the use cases that have been brought up during the requirements research by im-
plementing the essential parts of the proposed architecture.

In conclusion, the thesis shows that the management of privileged user passwords not only
requires a centralized component that securely controls which administrator is authorized
to access what privileged user passwords. Moreover, it is necessary to consider special use
cases that normal password managers do not have to consider, for example, an emergency
access that allows administrators to use a privileged account which they usually are not
authorized to use. Additionally, the auditing of shared privileged accounts needs to be
addressed and the unrestricted access rights need to be taken into account.

ix

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Identity and Access Management . 2
1.3 Definitions and Notation . 3

1.3.1 Terms and Definitions . 3
1.3.2 Notation for XML Namespaces . 5

1.4 Approach and Structure of This Thesis . 6

2 Related Work 9
2.1 eXtensible Access Control Markup Language 9
2.2 Distributed Enforcement of XACML Policies With pam xacml 15
2.3 Security Assertion Markup Language . 16
2.4 OpenID . 17
2.5 OAuth . 18
2.6 Shibboleth . 19

3 Threat Model 21
3.1 Basic Terms . 21
3.2 Scenarios Concerning Privileged User Password Management 23
3.3 Threat Targets, Threats and Attacks . 25

3.3.1 Hardware . 26
3.3.2 Network . 27
3.3.3 Account . 28

4 Requirements 33
4.1 Operational and Business Requirements . 33

4.1.1 Security Regulations . 34
4.1.2 Information Distribution . 35
4.1.3 Separation of Duties . 36
4.1.4 Auditing and Reporting . 36

4.2 Practicability Requirements . 36
4.3 Non-Functional Requirements . 37

4.3.1 Availability . 37
4.3.2 Systems Integration . 38
4.3.3 Security . 38

4.4 Use Cases and Requirements at the Leibniz Supercomputing Centre 39
4.4.1 Infrastructure of the LRZ . 39
4.4.2 Status Quo and Requirements . 39

xi

Contents

4.5 Use Cases and Requirements of iC Consult 42
4.5.1 Infrastructure of iC Consult . 42
4.5.2 Status Quo and Requirements . 42

4.6 Requirements Catalog . 43

5 Analysis of Established Solutions 47
5.1 CA ControlMinder . 47

5.1.1 System Architecture . 48
5.1.2 Test Environment . 50
5.1.3 Analysis Based on the Requirements Catalog 52

5.2 Netwrix Privileged Account Manager . 55
5.2.1 System Architecture . 55
5.2.2 Test Environment . 57
5.2.3 Analysis Based on the Requirements Catalog 58

5.3 Soffid Identity and Access Management . 61
5.3.1 System Architecture . 62
5.3.2 Test Environment . 63
5.3.3 Analysis Based on the Requirements Catalog 63

5.4 Summary of Software Analysis . 67

6 Architecture 69
6.1 Components . 70

6.1.1 Policy Administration Point . 71
6.1.2 Policy Decision Point . 71
6.1.3 Policy Enforcement Point . 72
6.1.4 Password Manager . 76
6.1.5 Audit Logging System . 77

6.2 Security Considerations . 78
6.2.1 Encryption of Credentials . 78
6.2.2 Secure Audit Logs . 79

6.3 Analysis Based on the Requirements Catalog 81
6.4 Summary . 84

7 Specification and Implementation of a Demonstrator 89
7.1 Authorization for PAM-Enabled Applications 91
7.2 Policy Decision Point . 92
7.3 Jump Server . 93
7.4 Web Interface and Password Database . 94

8 Evaluation 95
8.1 iC Consult Compared to the Leibniz Supercomputing Centre 95
8.2 Applicability Analysis for the Leibniz Supercomputing Centre 97

8.2.1 Applicability of the Architecture . 97
8.2.2 Applicability of the Analyzed Software 97

8.3 Applicability Analysis for iC Consult . 98
8.3.1 Applicability of the Architecture . 98

xii

Contents

8.3.2 Applicability of the Analyzed Software 98

9 Conclusion and Future Work 101
9.1 Summary . 101
9.2 Future Work . 102

9.2.1 Attribute-Based Encryption For Sensitive Data 103
9.2.2 Transformation of High-Level Policies to Low-Level Policies 104
9.2.3 Expansion to Other Operating Systems 104
9.2.4 Virtual Environments . 105

Bibliography 107

xiii

List of Figures

3.1 The Source of Greatest Risk to Sensitive Data 22

4.1 Organization Structure of the LRZ . 40

5.1 Screenshot of PuTTY Demonstrating Non-Repudiation in CA ControlMinder 49
5.2 Screenshot of PuTTY Demonstrating Fine-Grained Access Control in CA

ControlMinder . 50
5.3 Netwrix Privileged Account Manager . 56
5.4 Architecture of Soffid Identity and Access Management 62
5.5 Revealing a Password in the Soffid Self-Service Portal 63

6.1 IETF Policy Framework Architecture . 70
6.2 Jump Server . 75
6.3 Full Architecture . 86

7.1 Architecture of the Demonstrator . 89

xv

List of Tables

2.1 Attributes in the XACML Request Message 10
2.2 Attributes in the XACML Response Message 11

4.1 Use Cases at iC Consult . 43

5.1 Environment Specification for CA ControlMinder (Windows Server) 51
5.2 Environment Specification for CA ControlMinder (Linux Server) 51
5.3 Environment Specification for Windows Domain Controller 58
5.4 Environment Specification for Netwrix Privileged Account Manager 58
5.5 Environment Specification for Soffid Identity and Access Management . . . 64
5.6 Summary of the Software Analysis Based on the Requirements Catalog . . . 68

6.1 Summary of the Architecture Based on the Requirements Catalog 87

7.1 Environment Specification for the Policy Decision Point 90
7.2 Environment Specification for the Jump Server 90
7.3 Environment Specification for the Web Server 91

8.1 Requirements of the Leibniz Supercomputing Centre Compared to iC Consult 96

xvii

Listings

2.1 Example for a Separation of Duties in XACML 12
2.2 Excerpt of a Break-Glass Policy in XACML 13
2.3 Example for a Policy that Allows the Delegation of Rights 14

7.1 PAM Configuration for sudo . 91
7.2 Example Request Message for sudo . 92
7.3 Example Response Message That Permits the use of sudo 93
7.4 ProxyCommand in authorized keys File . 93
7.5 Command to Reach a Target System via the Jump Server 94

xix

1 Introduction

The recent disclosure of global surveillance, which was uncovered by Edward Snowden,
a former contractor of the U.S. National Security Agency (NSA), showed that the unre-
stricted access of administrators to sensitive data is a crucial aspect in computer networks.

Often, privileged user accounts are shared between different administrators and thereby
the abuse by an insider is hard to impute to a specific person. In order to reduce the secu-
rity risk for an organization, the access to privileged user passwords needs to be controlled
and the privileged access rights need to be managed.

This chapter gives an overview on the problem that is addressed by this thesis and clas-
sifies the privileged user password management into the context of identity and access
management.

1.1 Problem Statement

Many organizations employ at least one administrator that manages the IT infrastructure
with its corresponding business-critical resources. In order to do their job, the adminis-
trators are equipped with rights that give them access to operating systems, applications,
databases and other data storage. Because of that, they are privileged users which have ex-
tensive authority on each system they administrate – and often beyond that. In some cases,
those privileged users do not operate with personal accounts but share dedicated supe-
ruser accounts. This raises a problem in the area of accountability, since actions cannot be
attributed to a specific person once a granted permission got abused [9]. Furthermore, the
user accounts with elevated access rights present a target for external as well as internal
attackers and therefore provoke a high security risk.

Moreover, privileged user accounts are also included in many network devices and soft-
ware products that are shipped with a default username and password combination. Some-
times, the credentials are not changed by the IT administrators, which makes it easier for
attackers to break into a system and manipulate or steal sensitive data [73].

Besides the employees that use privileged identities, there are also applications and ser-
vices that run under privileged user accounts, which therefore represent a security risk as
well [15]. Once a central component (e.g., a directory service or database) is compromised,
it is easy to sabotage other network components or steal identities and data.

The problem becomes more complicated in distributed environments, like it is the case
with outsourced departments. Here, different stakeholders are connected in a heteroge-

1

1 Introduction

neous environment and need to have access to the systems and data. Another example is
the growing sector of cloud computing, where administrators of a service provider have
access to the hardware they are managing in order to provide the infrastructure. Those
could also gain access to the sensitive data or manipulate the system.

For that reason, the system administrators need to establish a solution that protects the
data and restricts the access of privileged user accounts, based on the identity’s authoriza-
tion level. In addition, an organization might also have an interest in reducing the access
of their administrators to a minimum in order to lower the possibility of getting attacked
from inside the company.

In order to solve the above mentioned problems, the organization needs to introduce a
dedicated security architecture that takes care of the authentication and authorization of
users and applications. For that purpose, the organization has to manage all stakeholders
as identities and define the access permissions and policies that guard the data. Basis
for that are the business processes inside the institution, as they define the resources a
stakeholder requires to accomplish a task. That is where another problem could arise since
the processes have to be analyzed and sometimes changed in order to extend the existing
infrastructure.

1.2 Identity and Access Management

In most organizations people work with different kinds of sensitive data while fulfilling
their tasks. In order to control which person has access to which data, the IT administrators
need to provide a system that enforces access control policies. In most of the cases these
policies are derived from the business processes inside the organization. The essential
goal is to give each person the minimum amount of access in order to secure the data
and protect from faults and malicious actions. In computer science, this idea is generally
referred to as the principle of least privilege [64]. The simplest approach of achieving that goal
is to give each person an individual and thus unique identity (e.g., a personal account) that
represents it on every system in the infrastructure.

In order to authenticate a user and authorize the resource access, the systems utilize the
predefined information that is part of the individual identity. Controlling all that infor-
mation is the purpose of the Identity Management (IdM). Besides creating, deleting, and
modifying the identities throughout their existence as part of the identity lifecycle man-
agement, the identities need to be monitored. For that purpose, the IdM software often
provides a logging component that fulfills the auditing requirements of the organization.
Controlling the identities becomes even more important when external users can access
internal systems or when users have access to external systems. For that purpose, the ap-
proach of a Federated Identity Management (FIdM) has been established, where autonomous
security domains are interconnected and share identities with uniform standards [6].

On the other hand, there is the data that needs to be protected. This can be done by defin-
ing roles, access permissions, and policies that determine the necessary rights an identity

2

1.3 Definitions and Notation

has to have in order to get access to a resource or object. This task is part of the access
management and complements the identity management. The most important aspect of
the access management is to apply the principle of least privilege to reduce the risk of peo-
ple accessing sensitive data they should not have access to. Hence, these tasks are often
combined to the term Identity and Access Management (IAM).

A subarea of IAM is the Privileged Identity Management (PIM), which mostly deals with
non-personal accounts that are used by humans and software. As mentioned in chapter
1.1, users with privileged accounts are a security risk and can cause a huge damage to
the organization. This is because privileged accounts have access to sensitive data and
are able to change the configuration of hardware and software, most of the time without
being tracked. Thus, these identities have to be managed and monitored accurately. For
that purpose, the organization firstly defines who is allowed to perform specific actions.
Then, the PIM has to monitor each identity and log the actions that have been performed in
a session. Furthermore, a partial aspect of that is the Privileged User Password Management
(PUPM) and the Shared Account Password Management (SAPM) [40].

1.3 Definitions and Notation

This section introduces basic definitions and XML notations that are used throughout the
remainder of this thesis.

1.3.1 Terms and Definitions

The following terms are defined for the context of this thesis and are based on the sugges-
tions of RFC 4949 [28].

Attributes provide information that identify a person or system entity. Before the system
can utilize them, for example, for the authorization process, an authority needs to prede-
fine and assign the attributes to the identities.

An identity represents and describes a person or other entity (e.g., a service or application)
inside a system with various attributes. These attributes mainly focus on the personal data
that make an identity unique.

A (system) user is defined as a person that uses and accesses resources that are provided
by the system. In addition, also services and applications are referred to as “user”, since
application-to-application scenarios are almost equal to the human-computer interaction.

Policies are the basis of access control since they render the decision which user-assigned
attributes grant access.

A role represents a job function inside the organization to which users get assigned. Policies
may define that a role is allowed to perform a specific action in the system.

3

1 Introduction

An object or resource is a system component that contains or receives information. Because
of that, objects are sensitive resources which need to be protected by an access control.
Subjects can perform actions on them and modify their state if the permissions are valid.

Subjects are system entities that perform actions on objects, for example, change system
states or the content of objects. For such actions, they require access rights which need to
be assigned to each subject. Subjects might be human beings as well as applications (e.g.,
services or scripts). A subject itself can also be an object, depending on the situation and
interaction. Users are a concrete example of a subject.

Assets are system resources that need to be protected since they contain critical or sensitive
information of an organization. They are used and managed by the subjects of a system.

Accounts are system entities that are mostly assigned uniquely to an identity and used to
authenticate and authorize a user. There are different types of accounts that need to be
differentiated:

• Accounts of applications or services

• Shared, non-personal accounts (e.g., admin and root)

• Personal accounts with permanently enhanced permissions

• Break-glass accounts (users can elevate their permissions (e.g., in emergency cases)
although they do not have these rights assigned permanently for their day-to-day
tasks)

In the process of authentication, the identity of a user is confirmed, based on the given
information (e.g., credentials such as a username/password combination or certificates).

Authorization presupposes authentication and ensures that a user is granted or denied ac-
cess to a protected resource. Moreover, it is the process of specifying access rights and the
assignment to the resources that should be protected. The permissions or rights of a user
depend on the assigned attributes, which are evaluated as part of the policy enforcement
process. The enforcement is fulfilled by an access control.

Accounting is the process of logging and tracking the activity of a user. The collected in-
formation (e.g., a session with every command that has been executed) can be used for
auditing purpose.

Privileged User and Shared Account

First and foremost the role of a privileged user is associated with employees that have
enhanced rights allocated to their identity, including system administrators, operators,
and users with high-risk access to resources. Besides the personal accounts, a system also
consists of pre-existing non-personal accounts that are shared by different people, such as
the superuser on Windows computers (“administrator”), UNIX systems (“root”), routers,
and switches. Moreover, there are privileged accounts in applications, such as a database

4

1.3 Definitions and Notation

administration account [18]. Additionally, external partners can also have accounts in the
system that are privileged and thus are a potential security risk. Furthermore, applications
and services might use or run as privileged processes that can perform security-relevant
functions in contrast to other processes that are not authorized to execute such actions [28].

On the other hand, there are persons that might have access to privileged accounts even
though they are not authorized to use the elevated access rights that are connected with
these accounts. One example are employees that still have privileges assigned to their
identity, even though these should have been revoked, for example, because they have
finished a project for which they required enhanced rights. In addition, a user might still
have valid credentials of shared accounts which cannot be easily revoked [14]. Another
example are alumni that have left the company but can still use their account because it
has not been deleted yet.

The most dangerous owners of a privileged account are malicious users. They can be
separated into two groups: On the one hand, the external attackers that do not know
anything or very little about the system architecture and try to get access to some sensitive
data and privileged accounts. On the other hand, there are the insiders, that were former
employees or still work for a company and thus know things about the systems they can
use to exploit loopholes in order to get access to the desired information or sabotage the
infrastructure [69].

1.3.2 Notation for XML Namespaces

In order to improve readability, the XML examples in this thesis assume use of the follow-
ing XML Internal Entity Declarations:

<!ENTITY xacml ”urn : o a s i s : names : t c : xacml : 1 . 0 : ” >
<!ENTITY xml ” http ://www. w3 . org /2001/XMLSchema#”>
<!ENTITY rule−combine

”urn : o a s i s : names : t c : xacml : 1 . 0 : rule−combining−algorithm :”>
<!ENTITY pol icy−combine

”urn : o a s i s : names : t c : xacml : 1 . 0 : pol icy−combining−algorithm :”>
<!ENTITY a t t r i b u t e−category

”urn : o a s i s : names : t c : xacml : 3 . 0 : a t t r i b u t e−category :”>
<!ENTITY s u b j e c t−category

”urn : o a s i s : names : t c : xacml : 3 . 0 : s u b j e c t−category :”>
<!ENTITY funct ion ”urn : o a s i s : names : t c : xacml : 1 . 0 : func t ion :”>
<!ENTITY s u b j e c t ”urn : o a s i s : names : t c : xacml : 1 . 0 : s u b j e c t :”>
<!ENTITY resource ”urn : o a s i s : names : t c : xacml : 1 . 0 : resource :”>
<!ENTITY a c t i o n ”urn : o a s i s : names : t c : xacml : 1 . 0 : a c t i o n :”>
<!ENTITY s t a t u s ”urn : o a s i s : names : t c : xacml : 1 . 0 : s t a t u s :”>

For example, &xml;#string is the same as
http://www.w3.org/2001/XMLSchema#string.

5

1 Introduction

1.4 Approach and Structure of This Thesis

Managing (privileged) user passwords with software is a common approach. Besides
maintaining password lists with Excel spreadsheets that are shared via email or saved on a
network storage, there are password manager tools which can provide several advantages
over the lists approach.

However, these software solutions have some limitations when it comes to security goals
like authorization and accounting. Once a user has access to credentials in the password
manager, he can log in to the system and perform all actions that are possible with the
assigned permissions. This critical problem is especially related to shared accounts (e.g.,
“root” on UNIX-like operating systems) since usually there is no information about the
person that used the account. The password manager might provide some kind of log
with information about who accessed a password at a given time but that is not enough
to ensure accountability. Moreover, the management of privileged user passwords only
controls who has access to the credentials but it does not offer any control about what a
malicious user can do once he has gained access to a privileged account [49].

That problem could be solved by reducing the need for shared accounts and only keeping
them for emergency cases. Instead, the permissions a user requires to fulfill the day-to-
day tasks could be assigned to the personal account. This provides accountability and
traceability because every user performs the actions with his unique identity [21].

This thesis develops a centralized authorization architecture that provides a fine-grained
access control to operating-system components like the file system and to applications.
However, there are situations where devices (e.g., routers and switches) cannot be inte-
grated into the architecture because they do not provide the necessary interfaces or cannot
be adjusted. For these, another solution is outlined, as well as for situations where only a
password manager is capable.

The structure is as follows: Chapter 2 outlines established solutions that (partly) solve
a similar problem in other environments or serve as a basis for the architecture that is
developed in this thesis.

Following up on this, Chapter 3 explains which threats and challenges need to be taken
into account in order to design a secure architecture for the management of privileged
user passwords. Moreover, the chapter outlines typical scenarios that occur inside organi-
zations.

After that, Chapter 4 describes the generic requirements for a privileged user password
management as well as specific requirements that exist at the Leibniz Supercomputing
Centre and iC Consult GmbH, which is a system integrator specialized in identity and
access management.

Then, Chapter 5 analyzes established products of companies that aim to provide a solution
for the management of privileged user passwords. The products are then compared to the
challenges and requirements that have been outlined in the preceding chapters.

6

1.4 Approach and Structure of This Thesis

Following, Chapter 6 illustrates the components and security aspects of an architecture
that provides authorization decisions, auditing, and the management of passwords. For
that purpose, open standards are used, so that the generic architecture can be adapted and
extended.

After that, Chapter 7 specifies a demonstrator that implements the essential parts of the
architecture to show some of the scenarios of a privileged user password management.

In Chapter 8, the requirements of the Leibniz Supercomputing Centre and iC Consult are
compared and the evaluated software products are analyzed regarding the suitability for
these organizations.

At the end, Chapter 9 summarizes the findings and proposes topics and approaches for
future work.

7

2 Related Work

In order to implement the idea of reducing the need for shared privileged accounts, it
requires a way to model access rights and enforce them when a subject accesses an object.
This chapter outlines established standards and solutions that serve as an example for or
will be the basis of the architecture that is developed in Chapter 6.

There are different solutions available for web environments that solve the problem of au-
thorization in distributed environments. The established standards are OpenID, OAuth,
the Security Assertion Markup Language (SAML), and the eXtensible Access Control Mark-
up Language (XACML). Besides that, Shibboleth is an open-source architecture that pro-
vides authentication and authorization to web applications and web services.

2.1 eXtensible Access Control Markup Language

The eXtensible Access Control Markup Language (XACML) is an XML-based open stan-
dard that specifies a format for access control policies as well as a processing model which
describes the evaluation process of access requests. The response to these requests then
describes who has access to what resources on which conditions. That decision is then
enforced by the system that protects the access to the resource.

XACML is an Attribute Based Access Control (ABAC) and will be used in Chapter 6 to realize
the authorization process that determines which subject is allowed to perform what action
on which resource. In contrast to a Role Based Access Control (RBAC), XACML provides a
more fine-grained way to model access rights since the flexible attributes are attached to
the identity and evaluated by the rules of a policy. Instead, the RBAC approach requires
to combine permissions in a role and assign it to the users. This implies that unique roles
are engineered for each scenario that a user might perform and that requires different
permissions. This results in more roles and a complex management of access rights [81].

The main components of the authorization decision process are

• the subject (user) that requests access to a protected resource,

• the resource, which can be data in a file, a command, an application or service as well
as a system component,

• the Policy Enforcement Point (PEP), which performs the access control by enforcing an
authorization decision on the protected resource,

9

2 Related Work

• the Policy Decision Point (PDP), which evaluates a request and then renders an autho-
rization decision after determining the appropriate authorization to grant,

• the Policy Information Point (PIP), which is a source of attribute values that retrieves
attributes for the PDP if they are missing in the request message of the PEP,

• and the Policy Administration Point (PAP), where policies are created, managed, and
deployed so that the PDP can use them [54].

The communication between the PEP and the PDP is based on a standardized request-
response protocol. When the PEP recognizes the access attempt of a subject to a resource,
it sends a description of the attempted resource access to a PDP in the form of an autho-
rization decision request [56]. The request message contains attributes from a set of four
different attribute types, which are listed in Table 2.1.

Table 2.1: Attributes in the XACML Request Message

Attribute Description
Subject Represents the entity that initiated the request and requires access

to a resource.
Action Gives information about the action that the subject wants to per-

form on the object/resource (e.g., read or write).
Resource Specifies the object that a subject wants to access (e.g., the data or

system component).
Environment Contains additional information that is not related to the subject,

action, or resource but is required by the PDP to evaluate the de-
cision (e.g., the time of day or the IP address of the client from
which the access request came from).

On the other hand, the response message contains information about the decision and
status which represent the result of the evaluation process of the PDP. The attributes of the
response message are listed in Table 2.2.

The PDP uses the request message as input in order to evaluate the appropriate Policy.
Such policies are created by the PAP and are made up of information about the target to
which the policy applies and a Rule-Combining Algorithm which specifies how the rules
should be combined when more than one rule applies (e.g., “deny-overrides” or “allow-
overrides”).

A policy contains at least one Rule that specifies a target to which it applies, an optional
Condition that satisfies the rule, and the Effect of the rule (e.g., Permit or Deny). In the
evaluation process the PDP matches the target of the policy and rule against the target that
was submitted with the request message, in order to check if they are applicable.

With conditions it is possible to formulate rules that can check environment and system
variables, such as the current time or the location of the device that sent the request [29].

10

2.1 eXtensible Access Control Markup Language

Table 2.2: Attributes in the XACML Response Message

Attribute Description
Decision Contains Permit, Deny, Indeterminate or NotApplicable.
Status Returns a status code to the PEP to inform it whether the

request was correct, if attributes were missing or if the re-
quest contained a syntax error. Besides the status code, it
can also contain a status message that gives more informa-
tion.

Obligations or Advice Informs the PEP that it must (obligation) or should (advice)
perform an operation before or after the authorization de-
cision is enforced.

This makes it possible to bind authorization decisions to additional requirements that have
to be satisfied for a valid access but are non-static (like a permission that is assigned to the
account).

Another optional part of a policy are Obligations, which can be used to communicate to
a PEP which actions it must perform before and after the authorization decision is made.
Thereby, it is possible to attach additional constraints to a decision, like triggering an event
that sends a notification or writes a log entry which includes all necessary information
about the request (e.g., which user wanted to access what resource and if the access was
granted or denied) [29]. This feature allows the organization to ensure non-repudiation on
the requests a user generates while accessing a resource.

Advanced Use Cases

With XACML it is possible to model business processes on a fine-grained level by combin-
ing attributes in an appropriate way. The following paragraphs will outline some example
processes that might be required in an architecture that aims to reduce the power of privi-
leged users.

Separation of Duties (SoD). This is an important security control feature when it comes to
critical actions that should not be performed by one person only. The four-eye-principle or
two-man rule is a common form of such control which aims to prevent fraud and errors. It
requires that tasks and privileges are split into activities which are performed by individ-
uals if the fulfillment by one person rises potential conflicts of interest. This ensures that
privileged users cannot perform actions without being detected because another person is
able to monitor all actions. Usually, these regulations are also part of the business process
and formulated as business rules [5].

With XACML, such SoD rules can be formulated as policies in order to ensures data con-
fidentiality and integrity. The basic idea is to build policies for the same target and define

11

2 Related Work

critical actions that need to be performed by different subjects. An example scenario is
depicted in Listing 2.1, which shows a policy that denies the access to the database audit
log to any user that holds both the administrator and auditor roles [53].

Listing 2.1: Example for a Separation of Duties in XACML
<Policy PolicyId=” adminis t ra tor :AND: audi tor : disal lowed ”

RuleCombiningAlgId=”&rule−combine ; deny−overr ides ”>
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId=”&funct ion ; s t r i n g−equal ”>
<AttributeValue

DataType=”&xml ; s t r i n g ”>adminis t ra tor</AttributeValue>
<SubjectAttributeDesignator

Attr ibuteId=”urn : mynamespace : a t t r i b u t e s : r o l e ”
DataType=”&xml ; s t r i n g ”/>

</SubjectMatch>
<SubjectMatch MatchId=”&funct ion ; s t r i n g−equal ”>

<AttributeValue
DataType=”&xml ; s t r i n g ”>audi tor</AttributeValue>

<SubjectAttributeDesignator
Attr ibuteId=”urn : mynamespace : a t t r i b u t e s : r o l e ”
DataType=”&xml ; s t r i n g ”/>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId=”&funct ion ; s t r i n g−equal ”>

<AttributeValue>database−audit−log</AttributeValue>
<ResourceAttributeDesignator

Attr ibuteId=”&resource ; resource−id ”/>
</ResourceMatch>

</Resource>
</Resources>
<Actions><AnyAction/></Actions>

</Target>
<Rule RuleId=”Deny : t a r g e t : r o l e : combination ” E f f e c t =”Deny”/>

</Policy>

The listing starts with a Policy element that consists of two attributes: a unique policy
identifier and the declaration of the rule-combining algorithm, which ensures that in a
case where more than one policy matches, the deny decision has priority. This is important
because the separation of duties must ensure that even though the user has the permissions
to perform the actions independently, the policy that denies the subsequent completion
takes precedence. The resulting effect (“Deny”) can be seen in the Rule element at the

12

2.1 eXtensible Access Control Markup Language

bottom of the policy. The Target element comprises two subjects, which need to be given
for a match. If the subject has the administrator and auditor attributes assigned and if the
subject performs an arbitrary action on the database-audit-log resource, the policy matches
and the access will be denied.

Break-Glass Situations. In a break-glass scenario a user who usually does not have access
to a resource but has the right to “break the glass” in an emergency situation, will be
granted access to the requested resource immediately but temporarily.

In [11] Chadwick and Lievens suggest a break-glass approach for XACML which works as
follows:

1. Based on a subject’s access to a resource, the PEP sends a request to the PDP which
evaluates the request and might return the decision that the access is denied. How-
ever, if the policy contains the information that the subject is allowed to break the
glass, the response additionally contains an obligation that informs the PEP about
that.

2. The PEP can then either prompt the user for the decision or decide on its own if
the break-glass action should be performed. If yes, the PEP sends another request
message to the PDP which contains the action that the subject wants to perform and
that it is a break-glass request.

3. The PDP then searches for a policy that contains the original action as well as the
break-glass action and returns the authorization decision to the PEP. The relevant
excerpt of the policy that is evaluated in this step is shown in Listing 2.2.

4. If the second response message included obligations, the PEP must take care that all
are fulfilled, otherwise the break-glass has to be denied. At this point, an audit log
might be created or a supervisor might be informed about the success or failure of
the break-glass request.

Listing 2.2: Excerpt of a Break-Glass Policy in XACML

<Action>
<Attr ibute Attr ibuteId=”&a c t i o n ; act ion−id ”

DataType=”&xml ; # s t r i n g ”>
<AttributeValue>BreakTheGlass</AttributeValue>

</Attr ibute>
<Attr ibute Attr ibuteId=”&a c t i o n ; or ig inalUserAct ion−id ”

DataType=”&xml ; # s t r i n g ”>
<AttributeValue>o r i g i n a l A c t i o n</AttributeValue>

</Attr ibute>
</Action>

Delegation of Permissions. Since XACML v3.0 the delegation of permissions is sup-
ported, which allows an authorized person (the delegator) to delegate the whole policy
or parts of it to another user (the delegate). Thereby, it is possible to create temporary rules
that allow a user to do something on behalf of another user [57]. The example in Listing

13

2 Related Work

2.3 allows Alice to delegate the permission of performing the backup action on a database
resource to any user of the network-admin group. This might be necessary because Alice
is on vacation and Bob, who is a member of the network administrators group, should
perform the backup tasks until Alice is back.

Listing 2.3: Example for a Policy that Allows the Delegation of Rights

<Policy PolicyId=” Al ice : Delegat ion : allowed ” Version=” 1 . 0 ”
RuleCombiningAlgId=”&rule−combining ; permit−overr ides ”>

<Target>
<AnyOf>

<AllOf>
<Match MatchId=”&funct ion ; s t r i n g−equal ”>

<AttributeValue DataType=”&xml ; # s t r i n g ”>
network−admin

</AttributeValue>
<AttributeDesignator

Category=”&a t t r i b u t e−category ; delegated :
&s u b j e c t−category ; access−s u b j e c t ” Attr ibuteId=”group”
MustBePresent=” f a l s e ” DataType=”&xml ; # s t r i n g ”/>

</Match>
</AllOf>

</AnyOf>
<AnyOf>

<AllOf>
<Match MatchId=”&funct ion ; s t r i n g−equal ”>

<AttributeValue
DataType=”&xml ; # s t r i n g ”>database</AttributeValue>

<AttributeDesignator
Category=”&a t t r i b u t e−category ; delegated :
&a t t r i b u t e−category ; resource ”
Attr ibuteId=”&resource ; resource−id ”
MustBePresent=” f a l s e ” DataType=”&xml ; # s t r i n g ”/>

</Match>
</AllOf>

</AnyOf>
<AnyOf>

<AllOf>
<Match MatchId=”&funct ion ; s t r i n g−equal ”>

<AttributeValue
DataType=”&xml ; # s t r i n g ”>backup</AttributeValue>

<AttributeDesignator
Category=”&a t t r i b u t e−category ; delegated :
&a t t r i b u t e−category ; a c t i o n ”
Attr ibuteId=”&a c t i o n ; act ion−id ” MustBePresent=” f a l s e ”
DataType=”&xml ; # s t r i n g ”/>

</Match>

14

2.2 Distributed Enforcement of XACML Policies With pam xacml

</AllOf>
</AnyOf>
<AnyOf>

<AllOf>
<Match MatchId=”&funct ion ; s t r i n g−equal ”>

<AttributeValue
DataType=”&xml ; # s t r i n g ”>Alice</AttributeValue>

<AttributeDesignator
Category=”&a t t r i b u t e−category ; de legate ”
Attr ibuteId=”&s u b j e c t ; s u b j e c t−id ”
MustBePresent=” f a l s e ” DataType=”&xml ; # s t r i n g ”/>

</Match>
</AllOf>

</AnyOf>
</Target>

<Rule RuleId=” Permit : Delegat ion ” E f f e c t =” Permit ”/>
</Policy>

The first AllOf defines the attribute a subject (the delegate) must have (in that case network-
admin) so that Alice can delegate the permission. The second AllOf defines the resource
and the third AllOf defines the action that Alice is allowed to delegate to a user of the
network-admin group. The last AllOf specifies the subject that is allowed to delegate the
permission, which is Alice.

In order to allow users to delegate permissions, the policy administration point or a similar
component needs to provide some kind of self-service interface for administrators so that
they can establish such temporary policies without being able to manipulate other rules
that have been created by an authority.

2.2 Distributed Enforcement of XACML Policies With pam xacml

The benefits of using a policy language like XACML can only be used if the applications
support the standard. Since most of the applications do not have an integration for such
policy languages, there is no way to provide centralized security policies for them directly.

However, in UNIX-like operating systems there is a level of abstraction which can be
used by applications to integrate an independent authentication mechanism. This can
be achieved with the Pluggable Authentication Module (PAM), which provides support for
authentication, account management, session management and password management [22].

Research has shown that PAM can also be used for authorization schemes. One paper in-
troduced pam xacml, a PAM module that enables every application that implements PAM
to support XACML authorization. It was developed as a prototype in the paper Pluggable
Authorization and Distributed Enforcement with pam xacml by A. Klenk et al. [43]. The ap-

15

2 Related Work

proach allows developers to connect every PAM-enabled application to a PDP and thereby
unify the authorization policies.

The PAM module can operate in a legacy mode that does not require changes to the ap-
plications and another mode that provides a more powerful authorization but therefore
requires changes to the application. The module is activated like any other PAM module
and can be configured with settings regarding the connection to the PDP and the path to a
template that is used for authorization requests [32].

2.3 Security Assertion Markup Language

The Security Assertion Markup Language (SAML) is an XML-based open standard that
specifies a format for exchanging authentication and authorization messages between an
Identity Provider (IP) and a Service Provider (SP). The messages that are exchanged between
the providers are called Assertions, which are separated into authentication, authorization,
and attribute assertions. The exchange of an assertion is realized by a request-response
protocol and triggered by the service provider [45].

The identity provider acts as an Asserting Party (AP) and is the central component that
hosts, authenticates, and authorizes an identity. The service provider instead is the Relying
Party (RP) that requests all required information from the identity provider [55].

In the area of federated identity management in web environments, SAML is often used to
implement single sign-on between different organizations and websites. It enables admin-
istrators to centrally manage the identities and privileges [8]. Since the authentication is
performed on a dedicated system (the identity provider), the threats, auditing, and control
are located in one place. Hence, a service provider is never passed sensitive data like user
credentials.

With SAML, one entity (e.g., a website) can pass information about a subject in the form
of attributes to another party that utilizes them for an attribute-based access control [77].
However, one downside in contrast to XACML is that SAML does not define a processing
model that describes how to express and interpret policies.

Certainly, SAML supports extensions which provides a mechanism to extend it with a fine-
grained access control by combining it with XACML [45]. On the other hand, by adding
SAML to XACML, it is possible to protect integrity and authenticity by signing access
request and response messages [56]. If this is applied to the communication between the
PDP and PEP, which were introduced in Section 2.1, the correctness of the messages can be
verified and manipulations can be detected, which is a gain in security because attackers
cannot tamper with the authorization messages and thereby exploit the access control.

16

2.4 OpenID

2.4 OpenID

OpenID is an open standard that implements a federated authentication mechanism in
order to build a decentralized security architecture for web-based services.

The architecture of OpenID consists of three components:

• the end user that wants to use a specific service and for this purpose has a unique
OpenID identity,

• the OpenID Provider (OP) that hosts the OpenID identities and authenticates users,

• the Relying Party (RP), for example, an application or website that wants to use the
OpenID information and thereto delegates the authentication to an OpenID provider.

The authentication process works as follows:

1. The end user authenticates on a website (the relying party) that provides a login
with an OpenID identity by entering the previously registered identity, for example,
alice.example.com.

2. The RP normalizes the supplied identifier and requests a document from the discov-
ered OpenID provider.

3. The RP interprets the document and extracts necessary information to construct a
new URL to which the user agent is redirected. The URL includes a URL to which
the user agent should return to in case the authentication was successful and another
URL to which the user is redirected in the case of a failure.

4. After the end user has been redirected to the OpenID provider that hosts the identity,
the user is presented a login form. There, he enters the login identity and a password,
which are evaluated by the OP after the user submitted the form.

5. The OP performs an authentication and redirects the user agent to the appropriate
URL (see step 3).

6. The RP might now verify the information that has been passed by the OP and the
user can use the services provided by OP since he is now authenticated [41].

Like SAML, the OpenID framework provides a single sign-on mechanism but it does not
have a single sign-out mechanism. In order to authenticate a user, the OP can consult a
database or directory (e.g., MySQL or LDAP) [39].

In contrast to SAML, which usually enforces that the identity provider and service provider
trust each other, OpenID is used between websites that are unknown to each other. This
allows a developer or administrator to establish an authorization for external parties that
are not known in advance. With SAML, it is necessary to establish a trusted link between
the parties first [50].

Certainly, because of the untrustworthy relationship in OpenID, the RP can only trust

17

2 Related Work

the OpenID identity, which is represented by a unique Uniform Resource Locator (URL).
All the other information, for example, an email address or the person’s name cannot be
trusted because there is no guarantee that the OP validated the information.

2.5 OAuth

OAuth is an open standard for authorization that enables third-party clients to access pro-
tected resources on behalf of a user. In contrast to SAML and OpenID it does not provide
an authentication mechanism.

The advantage of OAuth is that the access to resources can be protected by the end user in
a fine-grained way. It allows the user to define which application is authorized to access
which data. Moreover, the user can revoke granted permissions so that an application
cannot access the data beyond that revocation. In other solutions, a user would have to
change the password to lock out the application.

With OAuth, the application does not require the credentials of the user to access the pro-
tected resource, which makes the credentials more secure [41]. In order to access the data
on behalf of the user, the application needs to request a token, which is only issued if the
user granted the necessary access rights to the application.

The three main components of OAuth are:

• the Resource Owner (mainly represented by a user agent (e.g., a web browser)) that
wants to use a specific service,

• the Resource Server that hosts the user’s resources which can be accessed by a Client,

• the Authorization Server that issues access tokens after authenticating the end user,

• the Client that requires access to protected resources (which are stored on the service
provider) in order to fulfill the Resource Owner’s request. This could be, for example,
a website, desktop application, or mobile application.

The authorization process works as follows:

1. The Resource Owner wants the Consumer to access a resource that is hosted on the
Service Provider.

2. The Client requests authorization either directly from the Resource Owner or trans-
parently via the Authorization Server.

3. The Client receives a credential that represents the authorization grant from the Re-
source Owner.

4. The Client requests an access token from the Authorization Server, which requires
an authentication first.

5. After the authentication was successful, the Client presents the authorization grant

18

2.6 Shibboleth

which is validated by the Authorization Server.

6. In the case the authorization grant was valid, the Client receives the access token and
connects to the Resource Server.

7. The Client authenticates at the Resource Server and presents the access token, which
is validated before the access to the requested resource is granted [30].

With OAuth, it is not possible to implement complex policies based on subjects, resources,
and actions. For web-based scenarios the approach of OAuth usually suffices but in net-
work infrastructures with privileged user accounts the XACML standard offers more flex-
ibility and functionality.

2.6 Shibboleth

Shibboleth is an implementation for a federated identity-based authentication and autho-
rization infrastructure. It uses the Security Assertion Markup Language (SAML) standard
for the exchange of messages between the Service Provider (SP) and the Identity Provider
(IP). In contrast to OpenID, in a Shibboleth architecture the service provider can trust the
information that it receives from the identity provider because it asserts that the user is
who he pretends to be.

The main components of the Shibboleth architecture are:

• the user that wants to access a resource,

• the resource that is protected,

• the Identity Provider (IP) which authenticates the user,

• the Service Provider (SP) which performs the single sign-on process [13].

Although Shibboleth supports Attribute Release Policies (ARPs), the format has some down-
sides. For example, it does not allow to group attributes and it only supports simple con-
ditions. Moreover, there are no obligations which is an important functionality in the area
of access rights of privileged user accounts. Thus, replacing the ARPs of Shibboleth with
a more flexible access control policy language like XACML is suitable for some organiza-
tions [33].

19

3 Threat Model

In the last couple of years the infrastructures of many organizations changed significantly.
Not only the trend towards heterogeneous networks with different systems and the in-
creasing amount of users with different access rights create a challenge. Also the dis-
tributed and dynamic environments that are comprised of systems that come and go need
to be taken into account. Furthermore, the accompanying connection of systems over the
Internet increases the security risks and attack vectors. Subsequently, the growing market
of cloud computing and the outsourcing of departments as well as the remote administra-
tion brings up more challenging aspects.

For that reason, it is important to isolate the most critical data of the system and protected
it from insiders and external attackers with contemporary security mechanisms [51]. Most
notably, this applies to systems that are managed by a lot of people which have privileged
access rights and use shared accounts to maintain the infrastructure. This is because the
abuse of privileged user accounts is a growing threat.

In a recent study, Ponemon Institute and IBM surveyed 265 C-level executives. One result
of the survey was that “ninety percent of senior executives surveyed say their company
has had a data breach and almost half (forty-eight percent) expect more data breaches
to occur” [36]. The chart in Figure 3.1 shows that they identify negligent insiders as
the greatest threat to sensitive data, followed by lost or stolen devices. Twelve percent
identified malicious insider attacks as a risk to sensitive data.

3.1 Basic Terms

In information security, there are three core goals: the confidentiality, integrity and availabil-
ity of information and information systems. These terms are also referred to as the CIA
triad or information security triad [12].

Confidentiality “[...] means preserving authorized restrictions on access and disclosure,
including means for protecting personal privacy and proprietary information” [44 U.S.C.,
Sec. 3542].
In the area of privileged user password management a breach of confidentiality is, for ex-
ample, that an unauthorized person gains access to a password (e.g., by stealing a device
that contains a list of passwords or by handing a password to someone that is not autho-
rized to know it). The consideration of confidentiality of privileged user passwords can be
extended to the data that are only accessible with elevated access rights. If the confiden-
tiality of privileged user credentials is not given, the confidentiality of the data cannot be

21

3 Threat Model

Figure 3.1: The Source of Greatest Risk to Sensitive Data
Source: Ponemon Institute and IBM survey of 265 c-level executives, February
2012

guaranteed as well.

Integrity “[...] means guarding against improper information modification or destruc-
tion, and includes ensuring information nonrepudiation and authenticity” [44 U.S.C., Sec.
3542].
If the integrity is not guaranteed, unauthorized modifications and destruction can happen
without noticing, which leads to untrustworthy information and systems. This especially
applies to privileged accounts since administrators can perform malicious or accidental
actions that cause a breach of integrity. Moreover, if the access control cannot guarantee
a separation of duties, the violation of integrity cannot be detected if the privileged user
covers the tracks by manipulating audit logs.

Availability “[...] means ensuring timely and reliable access to and use of information” [44
U.S.C., Sec. 3542].
If the availability goal is not met, it will lead to a disruption of service or information will
be unaccessible. Thus, the security mechanisms that protect and monitor the availability
of systems need to be made accessible only to authorized administrators. If a privileged
user can lock down important network components, it can cause a huge damage to the
business of an organization.

Beyond that, there are other principles of information security that are used in this thesis:

Threat. “A potential for violation of security, which exists when there is an entity, circum-
stance, capability, action, or event that could cause harm” [28].

22

3.2 Scenarios Concerning Privileged User Password Management

Attack. “An intentional act by which an entity attempts to evade security services and
violate the security policy of a system. That is, an actual assault on system security that
derives from an intelligent threat” [28].

Non-repudiation. “Assurance the sender of data is provided with proof of delivery and
the recipient is provided with proof of the senderâs identity, so neither can later deny hav-
ing processed the data” [2].
In the area of shared privileged user passwords it is important that a person cannot dis-
claim actions that have been performed with a shared account.

3.2 Scenarios Concerning Privileged User Password Management

Example Corporation is a fictitious organization that is representative in having an hetero-
geneous IT infrastructure like many other companies in the world.

The network consists of different types of servers which host or serve different types of
services. There are database servers that run the Solaris operating system and serve Or-
acle databases that are used by various applications. Furthermore, there is a Linux web
server that hosts the company’s website besides several web-based applications that allow
employees, partners, and customers access to Internet and Intranet services. In order to
manage the authentication and authorization of users and computers they are using a di-
rectory service that runs on a Microsoft Windows server. Last but not least there are file
servers and backup servers that also host sensitive data.

The employees use desktop computers as well as mobile devices like notebooks and smart-
phones, which run different operating systems.

Alice, Bob, and Charlie are employees at Example Corporation but they are working in
different areas. Alice is a database administrator while Bob is responsible for managing
all the UNIX servers in the network. Charlie is also a server administrator but he mainly
takes care of the Windows machines. Both, Bob and Charlie also administrate the routers
and switches in the infrastructure. Peter is the boss of the server department while Paul is
head of database department.

Scenario 1: Shared Accounts

Bob and Charlie both have access to the Windows as well as the Linux servers. For that
purpose they share the privileged accounts (“root” on Linux and “Administrator” on Win-
dows). However, they also have personal accounts which they mainly use to perform their
day-to-day tasks and only in situations where a privilege elevation (e.g., with “sudo” on
UNIX-like systems or the User Account Control (UAC) on Windows) cannot be applied,
they use the privileged account.

23

3 Threat Model

Scenario 2: Password Changes

Because of the password policies, the administrators have to change the passwords on a
regular basis. This requires a lot of time and effort, because of the high amount of systems
they have. Since they cannot remember all the passwords, they are writing them down
every time they have changed them on the target system.

Scenario 3: Simple Access Control

Moreover, Bob and Charlie are authorized to access the routers and switches and to per-
form the actions that are required to keep the infrastructure running. However, because
of the simple access control the network components only support one privileged account
that needs to be shared by Bob and Charlie. Here, they cannot use their personal account
and require access to the privileged user password.

Scenario 4: Emergency Access

Bob is on vacation and one system that usually is taken care of him has an urgent problem.
Since it is a critical component the problem needs to get fixed promptly. Charlie is skilled
enough to find and solve the problem, but he has no credentials nor is authorized to log in
on the system.

Scenario 5: Hard-Coded Credentials

Bob needs to set up a backup task on the database server that exports and transfers all the
databases to the backup server. For that, he needs to insert the credentials (username and
password) of a privileged database user into the backup script.

Scenario 6: Separation of Duties

Because of her day-to-day tasks, Alice is only interested in the configuration on the servers
that is related to the database infrastructure. Everything else is not her business and thus
she does not know how to manage the other services (e.g., the directory service) in the
network. Since Bob is the server administrator, he knows about every configuration on the
server-side but he is not informed about the things that are going on inside the services.
So his job is to provide a working infrastructure for the services (e.g., manage the firewall
and update the systems) but it is up to Alice to manage the databases. Once Alice needs
some server-related changes, she has to ask Bob to take care of them.

In order to fulfill all the database-related tasks, she uses the privileged superuser account
(e.g., “root” or “sysdba”).

24

3.3 Threat Targets, Threats and Attacks

Scenario 7: External Accounts

Since Bob and Charlie also administrate systems from customer projects, they need to
manage the credentials of those systems as well. For that purpose, they use a password
list that is saved on a network storage.

Scenario 8: Auditing and Reporting

Peter and Paul have an interest that each of their employees have access to all resources
they require to fulfill their tasks. On the other hand, they want to make sure that the system
is as secure as possible and that no one interferes with someone else’s work. To prevent
from attacks, no administrator should have the privileges to access all systems and data in
the infrastructure. Furthermore, they want to be notified at every suspicious action and to
be able to see which changes have been made by which person. Additionally, Peter and
Paul want to assure that unauthorized persons do not have access to systems, including
former employees and partners.

Scenario 9: Fine-Grained Access Assignment

As part of a new project Alice joins the webmaster group to help them with the database
layout. During that time she needs the same permissions as the webmaster group.

Scenario 10: Platform-Independent Access

In emergency cases, the administrators sometimes use their smartphone or a private com-
puter to access the list of privileged user passwords.

Scenario 11: Access of External Administrators

The financial application is hosted on the Solaris system. Because of the application’s
complexity, the software is administrated by the software producer and not by the orga-
nization’s administrators. For that purpose, external persons require access to the server
and sufficient access rights.

3.3 Threat Targets, Threats and Attacks

An attacker might try to find vulnerabilities at the network, host, or application level [47].
Many networks use the distributed client-server architecture with separate machines for
clients and servers. Here, a client communicates with services that run on one or many

25

3 Threat Model

servers (e.g., web or database servers). In order to represent the different components of
the network in a logical way, the threat targets are grouped into three areas: hardware,
network, and account.

3.3.1 Hardware

An attacker could try to get access to the hardware by breaking into the computing center,
but it is more likely that he steals a client (e.g., a laptop or smartphone) that belongs to the
organization and is authorized to connect to the infrastructure [37].

Thus, the consideration of threats to the hardware is divided into the server and client as
threat targets.

Threats to the Server

An insider might be authorized to enter the server room and could steal disks with sensi-
tive data directly without using an end device or the credentials of privileged users to gain
access.

The same applies to backup devices (e.g., tapes, CDs, and hard disks) which contain sen-
sitive data that usually is only accessible by authorized users but the backups often are
less secure. In such cases, for an attacker (usually an insider) it is not necessary to possess
a privileged user password since the data is not protected by an authentication and au-
thorization mechanism. A countermeasure is to encrypt the backups and keep them in a
secure place (e.g., a safe to which only managers have access to).

After stealing the hardware or copying sensitive data, an attacker could crack passwords
or search for configuration files and scripts that contain hard-coded passwords in cleartext.

Threats to the Client

A common attack to spy on passwords is to compromise an end device with viruses and
keyloggers, to get access to credentials.

As already mentioned, an attacker could steal an end device (e.g., a laptop or smartphone)
that contains credentials. This could be cleartext password lists or application-specific
password vaults that save the credentials for a user-friendly authentication.

Once the attacker has access to the privileged user passwords, he can break into the sys-
tems to which the credentials belong to. A countermeasure against that attack is to encrypt
the password lists or avoid saving them on end devices. Instead, the privileged user pass-
words should be kept on a dedicated system so that they can be secured and centrally
managed.

26

3.3 Threat Targets, Threats and Attacks

3.3.2 Network

Besides attacking the clients and servers, an attacker can cause security breaches to net-
work components like routers, switches, bridges, gateways, and firewalls.

Sniffing

Instead of stealing the data from the server or capturing the traffic that is sent and retrieved
directly on the host, an attacker might aim to get access to network components or directly
capture the network traffic [37]. This allows the attacker to read and manipulate the data
that is transmitted between the components.

Hereby, the attacker could collect more credentials of privileged accounts that allow him to
access other systems. Moreover, the attacker could tamper with data, for example, manip-
ulate an authorization decision that would deny the access but because it was tampered
now grants it to the attacker.

Thus, a countermeasure is to encrypt and sign sensitive messages before they are trans-
mitted, so that the confidentiality and integrity of the data can be guaranteed [37].

Denial of Service

Since routers and switches are important for the functionality of a network, the availabil-
ity goal needs to be considered. In order to manage the network devices, administrators
mostly use privileged accounts because these devices often have no or only a simple access
control. This implies that they have to share the password for the privileged account and
it is often not possible to log the actions an administrator performed on the device.

The knowledge of privileged user passwords allows a malicious insider to sabotage the
network by misconfiguring the core network components, which results in a denial of
service.

A countermeasure is to block the direct access to the target system and use a gateway that
authenticates and authorizes an administrator. If the access is allowed, the gateway will
establish a connection to the target system without requiring that the administrator knows
the password. In addition, the gateway can log the actions that have been performed and
account them to a specific person. An example for such gateway is the Shell Control Box
sold by the company BalaBit1.

In order to diminish the vulnerability of external attacks, the administrators could estab-
lish a firewall that blocks the direct access to servers from the Internet and only allows
connections from trustworthy clients [59]. Moreover, external attacks can be reduced by
limiting the authorized connections (e.g., by only allowing the access from trusted clients
or over a Virtual Private Network (VPN)) [37].

1http://www.balabit.com

27

http://www.balabit.com

3 Threat Model

The VPN approach comes in handy for infrastructures with systems that are administrated
by outsourced departments, too. Referring to Scenario 11 (Access of External Administra-
tors) in Section 3.2, the remote access of the external administrators could be restricted to
the Solaris machine.

3.3.3 Account

The most threats come from privileged accounts, once they are abused by an attacker or
insider.

Credential Theft

Besides the above mentioned theft of hardware that contains sensitive data, including the
credentials of privileged accounts, an attacker might have physical access to password lists
that are written down on paper and can be read by any person that has access to the office.
Another critical threat is that an attacker gains access to an unencrypted password file that
resides on an unprotected storage [68]. Additionally, if a privileged user forgets to log off
from a shared end device, other users can exploit sensitive data, too.

A countermeasure to this threat is to establish a multi-factor authentication. Often, it de-
pends on the system if an advanced authentication is feasible and necessary. For critical
components it is a noteworthy countermeasure to protect from stolen privileged user cre-
dentials and from unauthorized insiders. Moreover, the access time could be limited so
that a user is logged off automatically after a specific period of time.

Social Engineering

The technique of social engineering is an attack that tries to divulge confidential informa-
tion of a person. In the case of privileged user passwords this could be the sharing with a
colleague who might not be authorized to know the password. This attack is likely to hap-
pen inside the organization but also outsiders might use the attack to find out credentials
[46].

A countermeasure to this threat are one-time passwords that are generated for each access
to a target system.

Lack of Individual Accountability

Often, it is not possible to account the actions that have been performed by an administra-
tor to a specific person. This is because the privileged accounts are shared, either for the
ease of use or because the target system does not support an access control and personal
accounts.

28

3.3 Threat Targets, Threats and Attacks

This causes repudiation threats which are associated with users that performed actions
with a shared account but later on deny having performed these actions [48]. Thus, if pos-
sible, each administrator should be able to login to the network device with his personal
account so that repudiation attacks can be avoided. For all other situations, a gateway like
the Shell Control Box can help to reduce the threat.

Password Cracking

Certainly, weak passwords are easy to crack and thus are a vulnerability that needs to
be taken into account, too. In order to increase the password security, the organization
could define password policies that ensure strong passwords and force a user to change
the password on a regular basis (e.g., every six months) [31]. However, if the infrastructure
contains a lot of systems and privileged accounts, the regular password change requires
quite some time and human resources. This process could be automated, for example, with
a password manager but it increases the risk that the process fails and systems become
inaccessible.

As mentioned before, a multi-factor authentication could be established to increase the
safety. This avoids that attackers can log in to systems with stolen credentials because they
additionally need to provide another factor for authentication. This could be a biomet-
ric information (like a fingerprint) or something else only the user has (e.g., a token that
generates one-time passwords) [15].

Moreover, the passwords should be kept secure on a centralized system and only a few
authorized administrators should have access to the passwords they need to fulfill their
ever day tasks.

Brute-Force Attacks

Besides stealing the credentials with keylogging or by scanning the disk of a client or
server, a very common attack against the authentication mechanism of an application is
the brute-force approach that is used to find valid credentials. Here, pre-existing supe-
ruser accounts (like “administrator” or “sysdba”) have a high security risk since they are
always named equally and publicly known. Because of that, an attacker is able to use a
brute-force approach to find the password. This attack is more complicated when it comes
to personal accounts, because the attacker also has to guess the username. There are differ-
ent countermeasures against such attacks, including strong password policies and lockout
strategies that block a user after a few unsuccessful trials [63].

In order to mitigate successful attacks, the server administrators should also identify un-
used accounts, services, and open ports that can be shut down. Moreover, it is important
that administrators change default passwords or keys and monitor all log files as well as
services in order to recognize abnormal activities on the servers. Often, unneeded services
(e.g., Telnet or DNS) are a potential pathway for attackers into the system since they are not
monitored or still configured with default settings, which are not as secure as they should

29

3 Threat Model

be. Furthermore, unpatched services are a high danger and thus the systems should be
kept up-to-date in order to reduce vulnerabilities [31]. This also applies to the underlying
operating system because exploits can be used by an attacker to get unauthorized access
to the system or lead to data corruption [68].

Retrieval of Plaintext Configuration Secrets

Moreover, the file systems and the data they contain (e.g., configuration files that include
credentials) are threat targets as well as applications that host data (e.g., databases) or
provide authentication and authorization information (e.g., directory services).

Often, reoccurring tasks that are executed automatically (e.g., cron jobs on UNIX systems
that run shell scripts) communicate with services (e.g., a database) which only grant access
after the client has been authorized. For that, the client has to read the credentials from a
predefined place in order to transmit them to the service or application. This place is often
nearby the client, for example, a shell script that includes the username and password. In-
stead of a username/password combination, the application-to-application authorization
could be handled with cryptographic keys or other authentication factors. However, if the
credentials or keys are not protected in a secure way, attackers could steal them and mas-
querade as the application. The same applies to configuration files that include passwords,
which should only be readable by those accounts that really require access.

A good mitigation against that threat is to remove hard-coded credentials with a password
management solution that reveals privileged passwords on demand [74]. Moreover, the
access rights of privileged users could be restricted so that an administrator cannot read
and modify files that he is not authorized to access.

Abuse of Privileged Accounts

The above mentioned negligent users cause a security threat and thus the privileged user
password management solution also needs to address human error. The risk can be re-
duced by following the principle of least privilege and separation of duties. Besides busi-
ness processes and workflows which can enforce these regulations, a technical solution is
a fine-grained access control that even restricts the privileges of superusers, depending on
the identity that uses the account. Moreover, logon hours can ensure that the access is only
granted during predefined time intervals.

Besides administrators that act negligent, the malicious insiders which have the knowl-
edge about the infrastructure and passwords to privileged accounts cause a security breach,
too [67]. These privileges can be abused to get access to systems and data they are not
authorized to or sabotage core components of the infrastructure which causes an unavail-
ability of important systems.

An attacker that has access to privileged accounts can also compromise the system (e.g.,
by installing malicious software) and manipulate the data that is sent or retrieved. Once

30

3.3 Threat Targets, Threats and Attacks

a legitimate user or an attacker is authenticated, it might happen that he tries to elevate
the privileges to get more access rights and take control over the system or singular ap-
plications. In order to guard against such privilege escalation attacks, processes should be
configured to run under least privileged accounts [48].

In order to prevent a privilege abuse, the administrators should apply a fine-grained access
control for each user. In a database scenario this can be realized with a query-level access
control. Moreover, a software vulnerability could be used to escalate the access rights of an
account to those of a highly privileged account. Such a vulnerability can be prevented by
using the above mentioned fine-grained access control and intrusion prevention systems
[68].

Another approach is to deny the login for privileged accounts (e.g., “Administrator” on
Windows or “root” on UNIX-like operating systems) and let administrators authenticate
with their unique identity. In order to perform their tasks, they need to be assigned the
necessary permissions or have the right for privilege elevation (e.g., by using “sudo” on
UNIX-like systems). However, there are situations where devices (e.g., routers) only sup-
port one privileged user or where the assignment of access rights to the identities is not
possible.

Unauthorized Access to the File System

A user that has all privileges in the file system can view, edit, and delete files that contain
sensitive information. This not only applies to files that belong to the operating system
(e.g., configuration files and logs) but also to user-generated and application-generated
data.

A countermeasure is to encrypt the data if possible or restrict the access for each individ-
ual administrator with access control lists. However, the approach of a fine-grained access
control requires that permissions can be assigned to a personal account that is used by a
unique identity. This often is not possible with a shared superuser account because such
privileged accounts cannot and should not have access limitations. In such cases, the priv-
ileged superuser accounts could be reserved for emergency situations only, and separate
accounts with the least required privileges could be created instead. One example is the
creation of an account for database administrators, that only has assigned the privileges to
perform actions related to the database.

Moreover, administrators often have access to directory services, databases, and audit ser-
vices. This allows an attacker to spoof an identity or assign more rights to another identity
without having the authorization to do so. Besides that, an attacker can steal, manipu-
late, or corrupt the information inside databases, which can cause unforeseen problems to
the organization. Furthermore, if an attacker gains access to the audit logs, he can cover
his tracks by deleting all actions that he performed. Thus, the principle of least privilege
needs to be applied to the privileged accounts and only authorized administrators should
have access to these accounts. The separation-of-duties approach should be used to sep-
arate privileged accounts and assign only those rights that are necessary to perform the

31

3 Threat Model

tasks (e.g., a router administrator should not have the privileged user password for the
database that hosts the audit logs).

The principle of least privilege and separation of duties also helps to address the threats
that arise from the access of external administrators, like depicted in Scenario 11 (see Sec-
tion 3.2). If the privileged user account that the outsourced administration uses only has
the rights to access files and databases as well as to execute specific commands they re-
quire for the support of the financial application, the other systems in the network as well
as other sensitive data that is hosted on that system are more secure.

32

4 Requirements

The major goal of a privileged user password management solution is to increase the secu-
rity by reducing the risk that comes with privileged accounts. In order to reach the goal, it
might be of interest to formulate different restrictions. One example is a rule that enforces
logon hours and only allows access during a given time of day, to restrict the access dur-
ing non-working hours. Another example for environmental restrictions is the physical
location of the client, that issued a password request. Furthermore, the organization might
want so set up rules that deny the access to specific services or resources based on the IP
address, once the user is logged in on the system. Other restrictions could be a rule that
only allows access for one user at a time or a policy that denies multiple accesses of the
same identity.

The following sections will categorize the different requirements which resulted from the
scenarios in Section 3.2 and the threats in Section 3.3.

4.1 Operational and Business Requirements

Some of the business requirements for the privileged user password management solution
can be derived from regulations that the organization has to address.

For example, if an organization in the United States deals with health data, it has to ensure
the security and privacy of that data. The security standard is regulated in the “Health
Insurance Portability and Accountability Act” (HIPAA), which prescribes that employees
that have access to protected data need to be identified and that the privileges must be
restricted to those that are required to fulfill the tasks [58].

In order to obey the regulations, many organizations have prepared business processes
that define activities which are performed by the employees to achieve a certain goal and
that regulate the responsibilities and privileges of each person. To realize the security reg-
ulations, business leaders require that the IT infrastructure provides the necessary support
and that business processes are implemented there as well.

Thus, administrators need to be able to have access to the systems they are in charge of
to fulfill their day-to-day tasks and keep the infrastructure running. This not only applies
to the organization’s infrastructure but even more to infrastructures that are supported or
operated by the organization (e.g., customer projects of a consulting firm).

The operational and business requirements are related to Scenario 8 in Section 3.2. Here,
the heads of department have an interest that the employees conduct to processes and

33

4 Requirements

regulations to secure the sensitive data they operate with.

4.1.1 Security Regulations

In these situations it is important that administrators have the privileges they require but
it is also important that security constraints are met so that attackers or insiders cannot
sabotage the infrastructure or steal sensitive data. This would endanger business associate
contracts and the reputation of the organization. Thus, companies must formulate security
processes and mechanisms as well as a security awareness of the employees [79].

Regarding the passwords, the organization might want to formulate special password
policies for privileged identities, to make them more secure. Including the change fre-
quency and a stronger password as for identities without elevated permissions. This could
comprise the requirement for automatic password changes, too.

With a centralized password management tool, passwords could directly be changed on
the target system periodically as well as after the usage of a particular account. The result
is that administrators need to check out the account they want to use and that the system
provides them a one-time password. Additionally, the system might block other users
from accessing the account as long as it is in use (checked out) by an administrator. After
the task has been finished, the user checks in the account so that others can use it. At
this point, the system should change the password so that the administrator cannot re-
login with the previously revealed password. An advantage of the lock-out feature is
that the “check out” and “check in” actions provide information about who had access
to the account at a particular time, which ensures accountability and thereby addresses
the “lack of individual accountability” threat in Section 3.3. Moreover, the centralized
management of passwords addresses the threat that administrators manage the passwords
on their devices or in password lists.

For situations where an administrator needs to perform critical actions or requires access
to sensitive data, the organization should have control mechanisms. For that purpose, the
organization might prescribe a four-eye-principle which ensures that an employee can-
not perform a special task without the agreement of a supervisor. An example for that
is the temporary elevation of permissions which needs to be requested and approved by
the supervisor or a delegate. However, there are situations which require an urgent and
unplannable access. For these cases, there might be exceptional regulations that grant spe-
cial privileges without having an explicit approval from a superior in advance. In access
control models, the approach of flexible policies is often referred to as a break-glass strategy
[7]. Indeed, the requirement arises that a supervisor is informed automatically so that the
action can be legitimated afterwards and that the action is logged.

Subsequently, another requirement is that the solution should provide some kind of access
control that allows to represent the duties and responsibilities of every stakeholder that is
involved in the process of managing the privileged accounts. On the one hand there are
the stakeholders that can use the passwords and on the other hand there might be a group
of managers who are the only stakeholders that are authorized to view the audit logs and

34

4.1 Operational and Business Requirements

reports.

4.1.2 Information Distribution

In Section 3.2, Scenario 4 (Emergency Access) showed a problem of shared accounts that is
not only security-related but also has an operational aspect. For an efficient IT department
it is important that the access to a system and thus the knowledge of credentials to privi-
leged accounts are not reserved for only one person, because that would cause problems
when the employee leaves the company or is on vacation.

Moreover, in emergency situations an administrator should be able to solve a problem on
behalf of a colleague, although the person usually is not authorized to work on such tasks.
The organization might therefore prescribe rules which regulate who is authorized in what
situation to perform which actions.

One solution is that the credentials of privileged accounts are put into a safe and only au-
thorized persons (e.g., managers) can open the safe. However, the amount of credentials in
huge infrastructures is hard to handle, especially when password policies define periodic
changes. Moreover, the physical approach has the downside that administrators cannot
fulfill an urgent task if no authorized person is available to open the safe. In a software ap-
proach, such a process can be modeled with an emergency access request that is submitted
by the administrator and then approved by an authorized person.

However, such regulations usually cause a delay and prevent the administrator from solv-
ing the problem promptly. For such cases, the business processes need to be laid out and
exceptions need to be defined. This requires a fine-grained description of what adminis-
trators are allowed to do and which privileged accounts they are authorized to use. The
software solution should then implement an urgent access feature that allows access with-
out having an approval by an authorized person.

Usually, this is part of the identity and access management lifecycle and is an ongoing
process. Because of the time-consuming administration costs the fine-grained rules are
often not applied to each identity but rules prescribe the exposure to shared privileged
accounts.

Scenario 9 (Fine-Grained Access Assignment) showed another situation where fine-grained
policies can help. If Alice requires additional rights that are equal to the ones of the web-
master group, the rights to access systems, services, and data could be granted to her
identity. The access to privileged user passwords should be regulated by the policies, too.
After she leaves the project, the policies and access rights need to be revoked and pass-
words should be changed.

Thus, the privileged user password management solution needs to provide mechanisms
to make the information available to more than one identity and to allow access for other
users that normally do not have access. However, it also must ensure that the principle of
least privilege is applied when a user gets access to privileged accounts.

35

4 Requirements

4.1.3 Separation of Duties

Scenario 8 (Auditing and Reporting) showed up that one requirement should be that ad-
ministrators cannot perform actions that rise conflicts of interest. The separation of duties
ensures that security-relevant actions are performed by at least two persons. This ensures
security because administrators cannot perform actions and cover the tracks in the audit
log if the separation ensures that no administrator has the manager role that is required to
access the logs.

Thereby, the requirement addresses the threat “abuse of privileged accounts” and the
unauthorized access to sensitive data because the four-eye-principle as well as the sep-
aration of duties provide a control mechanism.

4.1.4 Auditing and Reporting

Scenario 8 outlined that the managers want to be able to see what administrator has access
to what system and what person is accountable for performing an action.

Thus, accounting and auditing are crucial requirements when it comes to the management
of privileged accounts and passwords. It is important that every action is logged and ac-
counted to a unique identity, so that non-repudiation is guaranteed. An authorized mem-
ber of the organization should have the ability to review the reports or recorded sessions,
in order to find abnormal activities or to understand an attack that has happened. The
required security goals for the audit log are confidentiality and integrity. It is important to
ensure that only authorized persons have access to the log and that an attacker must not
be able to modify or forge the log entries after compromising a system.

From a business perspective, the product should provide secure audit trails and the pos-
sibility to reconstruct the actions that preceded an attack or malicious access. Hence, the
principle of least privilege should be applied to the managed accounts as well as to the
identities that have access to these privileged accounts, which requires a fine-grained ac-
cess control. Moreover, the solution should allow to map operational workflows to the
software so that requirements like a four-eye principle or urgent access needs can be real-
ized.

4.2 Practicability Requirements

From a user perspective, the solution should be a time saver that supports the daily work
and does not add another component that complicates each task. Therefore, if the product
requires an authentication, it should be usable with the personal credentials. This could
be achieved by adding single sign-on which ensures that the user does not have to re-
authenticate for the management tool that gives him access to the privileged accounts.

Furthermore, the password management tool should allow to copy and paste passwords

36

4.3 Non-Functional Requirements

to reduce the time that is required to log in to a system and it will also avoid typing errors.

Another requirement is that the system should be easy to use and – like stated in Scenario
10 – it should be platform-independent, so that an administrator can access the tool from
every client. This could be achieved by a web-based user interface that can be accessed
with a web browser from every device that is authorized.

Additionally, in the password manager the credentials should be organized and grouped
in a way, that allows users to manage a lot of entries in a well-arranged way. Moreover,
the grouping could be used to assign access rights not only on singular entries but also on
groups of credentials (e.g., a group “routers” or “Linux servers”).

Another requirement that can reduce the work for an administrator is the login capability
with the personal account which is then used to perform the actions that require elevated
rights. On UNIX-like systems, this can be realized with sudo and on machines with Win-
dows as operating system the User Account Control (UAC) can be used. This can reduce the
need for shared privileged accounts but it requires a fine-grained access control that allows
to assign rights to each identity. However, since this is not possible on each target system
(e.g., routers and switches that do not offer an access control) and it is a time-consuming
task to set up the policies, the infrastructure might provide a transparent approach for such
logins. The administrator would then log in to a middlebox with his personal account and
the middlebox might then perform the mapping to the privileged account on the target
system.

4.3 Non-Functional Requirements

Besides the business requirements and the ones concerning practicability, there are com-
mon non-functional requirements that need to be considered in the analysis for a privi-
leged user password management solution.

4.3.1 Availability

The availability of core components in the network is important for almost all systems.
Thus, a system like the Policy Decision Point needs to be fail-safe because authorization
requests depend on that component. If the PDP is unavailable, the access management of
all connected systems stops working, too. Hence, for all critical systems there need to be
backup systems that take over when the primary system fails or is not reachable due to the
failure of another network component.

The above mentioned approach of using a middlebox requires a high availability of the
component because once the middlebox is not functioning, an administrator could not
log in on the target system if the middlebox is the only authority that has access to the
privileged user password.

37

4 Requirements

4.3.2 Systems Integration

In order to reduce the complexity of having to maintain separate identities and access
rights in different places (e.g., if each product requires its own user and access manage-
ment), the integration into the existing infrastructure is desirable. This could be the usage
of a directory or database which already provides standardized access to identities and
access rights.

Moreover, the management tool should provide some kind of import feature that allows to
import privileged accounts and passwords. This could be achieved manually by importing
text files or by scanning systems for relevant accounts and importing them. That require-
ment is a time saver in the introduction phase but also when new systems are added or
removed. In dynamic environments where, for example, many virtual machines are man-
aged, this reduces the time of keeping credentials up to date.

Another point is the interaction of components in a heterogeneous network for which a
solution to privileged user password management should have some kind of support.
This is a requirement in many networks which have Microsoft Windows and UNIX-like
servers, routers, and bridges that run different operating systems.

4.3.3 Security

An important aspect is the security and confidentiality of the components and the data
they handle. The solution should ensure that only authenticated and authorized persons
have access to the data and that manipulation is impossible or at least detectable. This
includes that audit trails are only accessible by authorized persons and that unauthorized
administrators cannot manipulate the logs directly in the file system or database.

Besides the above mentioned approach of setting one-time passwords by the password
management system, another requirement might be to hide a password. This is similar to
the transparent approach that a user can log in with the personal account and the system
performs the mapping to the privileged account on the target system. Here, passwords
would not be visible to the user and the password management system might take care of
opening a connection and handling the authentication in the background. However, this
approach requires that the client application can be used non-interactively.

The database which hosts the credentials and the machine in which the password man-
agement tool is running on need to be made secure, so that an attacker cannot gain access
to the database and retrieve all passwords. Additionally, the administrators that manage
the system need to be trusted.

Referring to the “check-out” and “check-in” feature which was already mentioned as a
business requirement, the access time might be limited by the management system, so that
an administrator cannot block the account for weeks but only for a few hours. This limits
the time range in which the abuse of a privileged account can cause a threat like the one
mentioned above in Chapter 3 where a user forgets to log off from a system.

38

4.4 Use Cases and Requirements at the Leibniz Supercomputing Centre

4.4 Use Cases and Requirements at the Leibniz Supercomputing
Centre

The Leibniz Supercomputing Centre (LRZ) provides supercomputer resources for research
to the main universities in Munich as well as access to the Munich Scientific Network
(MWN). Moreover, they operate systems where decentralized operations are inappropri-
ate (e.g., data servers, high performance systems, and archive systems).

Besides the supercomputing resources, they also provide

• central services like email, web, name, and directory servers,

• central archive systems, including a Storage Area Network (SAN), distributed file
systems, and robot-supported storage systems,

• workplace systems for various kinds of requirements (e.g., multimedia and CAD),
and

• the MWN which connects the central infrastructure with the decentralized systems
of over 60 locations [10].

4.4.1 Infrastructure of the LRZ

Most of the systems that are administrated by the employees of the LRZ are part of the
MWN, which consists of over 103,000 decentralized systems, including hundreds of servers
(with Linux and Windows as operating system), about 50 routers, over 1,300 switches, and
over 2,000 access points [17]. Additionally, the administrators have access to external hard-
ware that sometimes requires support but does not belong to the daily business.

In order to manage all the systems, the organization of the LRZ is divided into different
departments. The organization structure is depicted in Figure 4.1 and shows the responsi-
bilities of the technical departments. Although the responsibilities are theoretically sepa-
rated, many projects require that different departments work together and share privileged
accounts.

4.4.2 Status Quo and Requirements

The identity and access management at the LRZ is implemented with directory services
like LDAP and Active Directory. The infrastructure of LRZ-SIM (Secure Identity Man-
agement) provides authentication and authorization for internal accounts as well as for
projects and facilities that are supported by the LRZ.

Besides the internal accounts of LRZ employees, there are also external stakeholders that
have access to some of the services, including accounts from IBM for managing the super-
computer and temporary accounts that are not personal ones.

39

4 Requirements

Board of directors

Administration

General services
and systems

Supercomputing
systems

Communication
networks

Central services

· Directories and email
· Internet services and

databases
· Graphics, visualization

and multimedia
· Desktop management

· IT infrastructure server
and services

· HPC server and services
· Application support
· Distributed resources
· File and storage

systems

· Operation
· Planning
· Service

Figure 4.1: Organization Structure of the LRZ

At the moment, the management and sharing of privileged user accounts is realized by

• personal password lists which are managed by each employee individually

• and in a commercial password management system called Password Safe Enterprise
Edition (PSE) which is sold by MATESO GmbH 1.

Emergency Access

The LRZ has the requirement that the access to systems is allowed to every authorized
person so that in emergency situations the access to privileged accounts is always guaran-
teed.

The requirement of a break-glass feature is already realized with the password manage-
ment system. It provides a seal feature that allows authorized users to break the seal and
gain access to the password if necessary. An auditor is then notified about the situation.

However, even for less urgent situations where an administrator can request an access to
a privileged user password he currently does not have access to, the LRZ does not require
an approval system. This is because the waiting time would be too long and thus the
employees would not be able to continue their work.

1https://www.passwordsafe.de

40

https://www.passwordsafe.de

4.4 Use Cases and Requirements at the Leibniz Supercomputing Centre

Auditing and Reporting

The data protection regulations of the LRZ require that no audit trails and no session
recording is implemented. Thus, the requirement of having audit logs is not given.

However, the LRZ has the requirement for a report that shows which user has potentially
access to which (privileged) accounts.

Automatic Password Change

The password policy at the LRZ requires that passwords are changed on a regular basis
(at most every six months). This requires that the passwords are changed manually on
the target systems as well as in the password management system and the personal pass-
word lists. The requirement for setting and changing passwords automatically is not given
because the loss of control and the amount of work in the case of a failure is too high.

The requirement for keeping a password secure from colleagues is not feasible at the LRZ
because responsibilities and projects overlap which requires that staff of different depart-
ments have access to the same privileged user password. This is due to the fact that the
LRZ is part of the public service and thus different departments are working together
which requires a password sharing.

Although the employees are encouraged to act responsibly, an insider attack would not
cause the same consequences as for companies that are profit-oriented. Certainly, the LRZ
needs to protect against attacks from within the MWN and keep their systems secure.

Fine-Grained Access Control

At the moment, the LRZ uses a role-based access control which does not provide any
constraints to privileged accounts. Thus, a fine-grained access control in the operating
system of the servers is a requirement that would be nice to have, but the implementation
is contradictory to keeping the complexity of and the time for managing the identities and
access privileges low. Another reason against restricting the access of privileged users is
that no employee should be prevented from working freely and doing research in the field.
Additionally, it is important that access is guaranteed at any time which requires that the
centralized authentication and authorization infrastructure is failsafe.

Information Distribution

The solution needs to provide access to privileged user passwords to more than one person
so that others can perform actions in the case the person who is mainly responsible is
absent.

For the administrators the solution should be easy to use and not require much effort to

41

4 Requirements

look up the credentials before they can connect to the target system. Thus, the LRZ prefers
an integration into the existing infrastructure so that administrators can use single sign-on
to get access to the password manager with their own account.

4.5 Use Cases and Requirements of iC Consult

iC Consult GmbH is a vendor-independent system integrator specialized in identity and
access management solutions. Their portfolio includes solutions for social media and mo-
bile login, the Internet of Things, and managed services for IAM [34].

4.5.1 Infrastructure of iC Consult

iC Consult is involved in various customer projects where they use and administrate ex-
ternal systems that are accessed with credentials that have to be known to everyone who is
involved. Additionally, they have credentials which are required to access other external
infrastructures (e.g., partner or supplier websites). Besides the shared privileged accounts
in the external infrastructures, there are internal accounts that belong to the company’s
network.

For this reason, iC Consult requires a privileged user password management solution that
allows an employee to distribute the passwords between authorized users by setting fine-
grained access rights on the credentials.

4.5.2 Status Quo and Requirements

At the moment, the credentials are either stored in an encrypted file on a network storage
or in a web-based wiki system. The downside of this approach is the lack of a fine-grained
access control, because once a person can decrypt the file which contains all credentials or
has access to the wiki, all passwords are revealed. Moreover, in order to lock someone out,
all passwords need to be changed and the access to the location where the credentials are
saved needs to be revoked from the identity.

Auditing and Reporting

Additionally, the requirement for accountability has been raised, which means that a priv-
ileged user password management solution should offer a reporting functionality that lists
the credentials to which a specific person has access to. This allows to only change those
passwords that a particular user had access to, when the person left the company. More-
over, the other users can be informed about the password change.

Another requirement is the elevated privilege request, which provides a mechanism for users

42

4.6 Requirements Catalog

that are not authorized to access a specific credential to request the authorization. A su-
pervisor can then prove the request and grant the access or deny it.

The privileged user password management solution should be a web-based user interface, so
that credentials can be managed and obtained platform-independently. The authorization
if a user is allowed to access a particular password should be integrated with the existing
Active Directory. Moreover, it should be possible to control which user or group has access
to a credential.

As permissions model two levels have been brought up:

• the right to view and use credentials, which includes the right to share, too

• the right to edit entries, which also allows to control which user has access.

The typical use cases are listed in Table 4.1.

Table 4.1: Use Cases at iC Consult

Use Case Description
List entries A user requests a list of all entries that a particular user has access

to.
List permissions A user requests a list of all users that have a read and/or edit per-

mission for an entry.
Add entry A user creates a new entry for a password, PIN, license key or

other privilege-related data.
Edit entry An authorized user modifies an existing entry and all users that

also have access to the entry get notified about the change.
Share information An authorized user can access an entry and share it with others

by copy and paste.
Revoke access An authorized user can revoke the permission to read and/or

edit an entry.
Embed entry A user can embed an entry into another website on the Intranet.

Before the entry is shown, an authorization check is performed
and when it permits the client side include of the entry.

4.6 Requirements Catalog

The above mentioned scenarios and requirements can be summarized in a list of essential
features that a privileged user password management solution must have as well as desir-
able but not essential ones that would be nice to have. Based on the MoSCoW technique by
Dai Clegg, requirements labeled as MUST are critical for the functionality of a privileged
user password management solution, while requirements labeled as COULD are nice to

43

4 Requirements

have. Requirements labeled as SHOULD provide some benefits for the solution but are
not critical for the functionality of the software [44].

Systems Integration

• Support for heterogeneous networks [COULD]
The software supports different operating systems (especially Windows and UNIX-
like systems).

• Centralized authentication [COULD]
The system can be integrated into the single sign-on infrastructure so that the au-
thentication is based on the unique identity that already exists in a directory (e.g.,
LDAP or Active Directory).

• Centralized authorization [COULD]
The access rights can be retrieved from the directory and are not stored separately in
the database of the management tool.

• Account discovery/synchronization [COULD]
The software is able to scan a specific system for relevant accounts and import them.
This applies to privileged accounts like root and Administrator but also to service
accounts that are executed with elevated rights. Since they are only locally available
and not managed in a central directory, they need to be detected on each system
individually.
Alternatively, the software could provide a bulk import feature (e.g., with CSV files)
that allows administrators to manually synchronize the data set.

Access Control

• Fine-grained access control on passwords [MUST]
The software provides different access rights that allow different levels of authoriza-
tion (e.g., “read”, “write”, and “is allowed to break the glass”).

• Emergency access [MUST]
The system provides some kind of break-glass or seal feature that allows administra-
tors to access privileged user passwords in emergency situations.

• Separation of duties [MUST]
The system offers different roles that, for example, separate a user from an auditor, so
that an administrator cannot view or manipulate the audit logs or session recordings.

• Support for standardized policy language [SHOULD]
The software supports an open standard for defining access control policies (e.g.,
XACML).

• Policy transformation mechanism from high-level policy language to [SHOULD]

44

4.6 Requirements Catalog

low-level MAC policies
The software transforms policies from a standardized high-level policy language
(e.g., XACML) to concrete low-level mandatory access control policies (e.g., SELinux
or firewall rules). This makes it possible to have a standardized process of how poli-
cies are defined and applications without support for a standardized policy language
can be integrated into the concept, too.

• Fine-grained access control on operating-system level [COULD]
The software is able to enforce access rights in the operating system, so that even
users that are logged in as privileged user can only perform actions that are assigned
to their identity.

Password Management

• Password security [MUST]
The system stores the passwords securely so that administrators cannot bypass the
management system and reveal them in the database.

• Account check-out [SHOULD]
The system can check-out and check-in accounts which ensures that only one user at
a time can use the account and each of the two actions is logged.

• Account check-in and one-time password [SHOULD]
The system changes the password to a random one-time password after the account
is checked in, so that a re-login with the previously known password is not possible.

• Copy and paste a password [SHOULD]
The system provides a user-friendly approach to copy and paste the password from
the management tool.

• Platform-independent access [SHOULD]
The software can be accessed easily from a device and does not require a special
client.

• Limited access time [SHOULD]
The system limits the time a user can check-out a privileged account so that it is not
blocked for a very long time.

• Hide password from the user [COULD]
The software provides a way to open a connection to the target system without re-
vealing the password to the user.

• Support for applications [COULD]
The system provides a feature that allows applications and scripts to retrieve a pass-
word. This renders hard-coded passwords unnecessary.

• Automatic password change [COULD]
The system is able to set new passwords and change them on the target system.

45

4 Requirements

• Password policies [COULD]
The system can be configured to follow the organization’s password policy and cre-
ate secure passwords or periodically change the password.

• Request/confirm access to privileged account [COULD]
The system provides a way for administrators to request an access to a privileged
account that is confirmed by an authorized person. This feature is different from the
break-glass feature since it is used in non-emergency situations.

• Password organization [COULD]
Users can organize the passwords in groups or folders to have them well-arranged.

Auditing and Reporting

• Audit logs [MUST]
The system provides information about who accessed a privileged account or per-
formed an action on it (e.g., changed password, broke the glass, etc.).

• Security of audit trails [MUST]
The system stores the audit logs and recorded sessions in a way that privileged users
(e.g., database administrators) cannot manipulate them.

• Notifications [SHOULD]
The system informs authorized persons about noteworthy situations (e.g., a break-
glass access or the request for privilege expansion).

• Account matrix [COULD]
The systems shows a report that lists the accounts to which a specific user has access
to.

• Session recording [COULD]
The system can record the entered commands or a Remote Desktop Protocol (RDP)
session on the target system.

46

5 Analysis of Established Solutions

Several companies have discovered that shared and privileged accounts are a security risk
and that it requires a sophisticated password management solution to securely manage
and share the passwords between administrators.

This chapter analyzes three software products that differentiate in their product range and
software licenses. Hence, one commercial product of a leading software corporation, one
closed-source freeware solution, and an open-source software is evaluated.

Choosing the CA ControlMinder as the commercial software was based on the certainty that
a demo environment was available. However, there are several other companies that offer
commercial PUPM software, for example,

• “Privileged Password Manager” by Dell (former Quest),

• “Security Privileged Identity Manager” by IBM,

• “Enterprise Random Password Manager” by Lieberman Software, or

• “Privileged User Manager” by Novell.

The selection of Netwrix Privileged Account Manager was based on the feature list as well as
the certainty that it is offered as a commercial as well as free version.

The product choice of the open-source product Soffid Identity and Access Management was
determined by the reason that there is no other open-source identity and access manage-
ment suite that additionally features a privileged user password management.

In the following sections, the important product features are outlined and compared to the
requirements catalog from Section 4.6.

5.1 CA ControlMinder

CA Technologies, Inc. is an American company that offers a commercial solution for priv-
ileged identity management in physical and virtual environments. The product family is
called CA ControlMinder and includes features like privileged user password manage-
ment, shared account management, fine-grained access control, and user activity report-
ing. The following information is based on the CA ControlMinder solution brief [75] and
the analysis of the demo of the formerly called CA Access Control.

47

5 Analysis of Established Solutions

5.1.1 System Architecture

This subsection will outline the important aspects of the system architecture.

Systems Integration

The CA ControlMinder product is comprised of several agents that need to be installed
on the servers and integrate natively with the operating system. This integration is nec-
essary to enforce and audit the fine-grained policies. The software provides agents for all
major operating systems, including Windows, Linux, and other UNIX-like systems. How-
ever, the CA ControlMinder Management Server, which is the main component, requires
a Microsoft Windows Server operating system. From there, all the agents on the different
end-points are controlled.

Furthermore, the software can utilize an existing directory service with users and groups.
It primarily supports Active Directory and the LDAP server of Sun ONE, but it is also
possible to use the UNIX Authentication Bridge (UNAB), which maps UNIX attributes
to non-standard active directory attributes. The downside of this approach is that it is
less integrated and may lack some features. Hence, the best results can be expected in a
heterogeneous network that consists of Windows and UNIX servers.

Shared Account Management

CA ControlMinder stores critical application and system passwords in a protected data
store. Once a user requires access to an account that is part of the shared account manage-
ment (SAM), he needs to check-out the particular password first. This can be achieved by
using a web-based user interface that enforces policies to make sure only authorized users
can use a shared account.

Another SAM feature is that CA ControlMinder generates temporary one-time passwords
that are changed on the end-point system (e.g., a server or database). For that, the admin-
istrators can define password policies that need to be taken into account for automatically
generated passwords. It is also possible to define time intervals in which new passwords
should be created.

The communication between CA ControlMinder and the end-point system is based on
established protocols, like JDBC for databases, SSH for UNIX-like systems, and Windows
Management Instrumentation (WMI) for the communication between Windows systems.

Furthermore, the product supports the auditing and reporting of privileged accesses. For
that purpose, the product can track every activity on an end-point system and correlate the
various native logs that are created by the operating system and applications. The collected
data is centrally saved and securely managed, so that only authorized users are allowed
to access or modify the data. Moreover, the auditing daemons and logs are protected from
attacks, shutdowns and tampering, which ensures integrity and availability. Additionally,

48

5.1 CA ControlMinder

sessions can be recorded and viewed in a playback.

In order to ensure accountability, the SAM component provides an “exclusive check-out”
that ensures that only one user has access to a shared account at a given time. Because of
the check-out feature, the tracked actions can be assigned to the original user, which initi-
ated the check-out. It also ensures that only authorized users can enhance their privileges
(e.g., by limiting the use of the su command) and that the audit logs include the original
account of the user that used the surrogate account.

The situation where an administrator is logged in with a shared account can be seen in
Figure 5.1. The screenshot shows that user andje01 is logged in as oracle operator but the
sewhoami command reveals that the actions are performed by andje01.

Figure 5.1: Screenshot of PuTTY Demonstrating Non-Repudiation in CA ControlMinder

To achieve that, the CA ControlMinder inspects all relevant system calls and enforces the
appropriate authorization policies. This level of control cannot be bypassed by anyone,
not even by the superuser (e.g., root on UNIX-like systems or Administrator on Windows).

The additional layer that CA ControlMinder adds to the operating system provides an
enhanced and fine-grained access control on Windows and UNIX-like systems. This can be
seen in Figure 5.2 which shows that even though user andje01 has elevated the privileges to
those of root, he cannot perform all actions. Thereby, it is also possible to regulate the access
based on environment attributes, like the time of day or network attributes. Furthermore,
it offers the ability to assign specific administration rights to personal accounts, which
usually are reserved for superusers only. This policy-based approach can be compared to

49

5 Analysis of Established Solutions

the one in Chapter 6 which is based on XACML.

Figure 5.2: Screenshot of PuTTY Demonstrating Fine-Grained Access Control in CA
ControlMinder

To protected from shoulder-surfing attacks, CA ControlMinder offers an automatic login
feature that requests a password and utilizes it to log in the user to the target system as the
privileged user.

For accesses to privileged accounts that are not part of the user’s role, the SAM component
offers a four-eye-principle workflow that ensures that a person can use a specific privileged
user but only for a short period of time. In order to use the account, the user has to submit
a request via the web-baser user interface. A superior then decides whether he wants to
grant or deny the request. Since this workflow requires the intervention of a second person
and adds a delay, a problem arises in an emergency case. Hence, there is a feature called
“break glass check-out” which allows the immediate access to a privileged account. In this
case, the superior receives a notification message that informs about the emergency access.

Another aspect of shared account management is the communication between applica-
tions that use passwords to perform actions. CA ControlMinder manages the passwords
of accounts like the Windows services and the Windows scheduled tasks. The shared ac-
count management can also be integrated into the run-as mechanism of Windows, which
enables an application to retrieve the password from the secured data store.

A specific case of application-to-application communication is the interaction between an
application (e.g., a web application) and a database. CA ControlMinder can intercept
ODBC and JDBC connections and replace them with ones that include the current cre-
dentials of a privileged account. For that purpose, the administrators need to install an
agent on the end-point system.

A further case are scripts and batch files that include hard-coded passwords. These can be
replaced with calls to the Shared Account Management agent that checks out the password
on behalf of the script.

5.1.2 Test Environment

The demo environment was provided as two pre-configured virtual machines that were
executed with a VMware Player on a Linux host. The specification of the Windows server
is given in Table 5.1 and the ones for the Linux server in Table 5.2.

50

5.1 CA ControlMinder

Table 5.1: Environment Specification for CA ControlMinder (Windows Server)

Operating system Windows Server 2003 R2 SP2
Memory 1,5 GB
Disk capacity 10 GB (C:) + 20 GB (D:)
Installed CA components

• CA Access Control Premium Edition R12.5 SP3

• CA Access Control R12.5 SP3 Report Portal

• Enterprise Management Server

• ObserveIT 5.1.0

Other software

• Active Directory 2013

• Active Directory Identity Management for Unix

• IIS 6.0

• JBoss 4.2.3

• JDK 1.5.0 update 18

• Microsoft SQL Server 2005

• Oracle 10g Express

Table 5.2: Environment Specification for CA ControlMinder (Linux Server)

Operating system Red Hat Enterprise Linux AS release 4
Memory 512 MB
Disk capacity 15 GB
Installed CA components

• CA Access Control Premium Edition for Unix
R12.5 SP3

• CA Access Control Unix Authentication Broker
R12.5 SP3

51

5 Analysis of Established Solutions

5.1.3 Analysis Based on the Requirements Catalog

This section evaluates the requirements based on the catalog from Section 4.6. A Xspecifies
that the requirement is fulfilled while an X signalizes that the requirement is not fulfilled.
A ♦ declares that the requirement is partly fulfilled.

Systems Integration

Support for heterogeneous networks X

CA ControlMinder supports Windows, UNIX, Linux, and virtualized environments.

Centralized authentication X

The solution supports UNIX to Active Directory authentication bridging which provides
a centralized authentication.

Centralized authorization ♦

The basic assignment of groups is saved in the Active Directory but all the specific roles
and access rights which are configured in the web interface are stored in the database and
deployed to the target system if necessary.

Account discovery/synchronization X

The software provides a feature called “Account Discovery” which searches for accounts
on a given end-point (e.g., a MS SQL server or a server that hosts an Oracle database).
The detected accounts can then be imported and a password policy can be configured .
Moreover, it can be configured if the password should be changed on “check out” and
“check in” actions.

Access Control

Fine-grained access control on passwords X

Privileged accounts can be assigned to a person individually.

Emergency access X

CA ControlMinder allows to specify accounts as break-glass accounts that a user can op-
tionally display in the overview page of available privileged accounts. The user then can
perform the break-glass action and has to provide a description for the reason of why the
access is required. After the action has been submitted, the account is checked out for the
user and the account can be used like any other account that the user is authorized to use.

Separation of duties X

The software separates the audit capability so that unauthorized users cannot view the

52

5.1 CA ControlMinder

audit logs. Furthermore, the request for an access to a new account needs to be approved
by another person and cannot be performed by the same administrator.

Support for standardized policy language X

The fine-grained access control of CA ControlMinder does not use an open standard for
defining the policies.

Policy transformation mechanism from high-level policy language to low-level MAC policies X

CA ControlMinder does not transform policies to application-specific MAC policies.

Fine-grained access control on operating-system level X

With CA ControlMinder one can restrict privileged accounts based on the administrator
that uses it. If, for example, Alice becomes root on a system, she might have other access
rights than Bob when he is logged in as root. For that purpose, the product leaves the
UNIX system of permissions intact but adds a layer of enhanced access control to it.

A special kernel module intercepts the file access operations and verifies that the user has
authorization for the specific operation before returning control to UNIX. This allows an
authorized person to give one person the right to view and modify a file like /etc/hosts and
deny it for another user, even though both persons use the same shared account.

Password Management

Password security X

CA ControlMinder encrypts all passwords with the symmetric-key block cipher RC2.

Account check-out X

Accounts need to be checked out before they can be used. A password policy can define if
the account is then exclusively locked for the administrator or if others can login as well.

Account check-in and one-time password X

For each account it can be configured if the password should be changed after checking
the account in. The password is then generated by on the configured password policy and
changed on the target system.

Copy and paste a password X

The web interface allows a user to view a password as well as copy it to the clipboard.

Platform-independent access X

The management is realized with a web-based user interface that can be accessed from
every device that runs a web browser.

Limited access time X

53

5 Analysis of Established Solutions

For each account a check out expiration time can be configured. This ensures that an
administrator can use an account only for a given time.

Hide password from the user X

The web interface provides a way to launch login applications like PuTTY and RDP, which
are started without the requirement for a password, but it is not possible to hide the options
for showing the password and copying it to the clipboard. However, the approach of
launching the application prevents from over-the-shoulder password theft and speeds up
the login process.

Support for applications X

CA ControlMinder supports login applications like PuTTY and RDP that are passed the
password as a parameter. Moreover, applications and scripts (e.g., batch files or shell
scripts) can run on behalf of another account if executed by an authorized user. For exam-
ple, Alice executes a database backup script that uses a client to contact the CA Control-
Minder. The request contains the account name that should be used (e.g., “sql backup”)
and the client will authenticate the currently logged in user. After that, CA ControlMin-
der returns the password for the requested account if the user is authorized to access the
account.

Automatic password change X

The automatic password change is part of the password policy. The system allows admin-
istrators to configure a password expiration interval which then forces CA ControlMinder
to automatically change the password.

Password policies X

The product supports the management of different password policies that can be applied
individually to the privileged accounts. A policy can prescribe the minimum and maxi-
mum password length, the maximum repeating characters as well as the amount of upper
and lower case letters, digits, and puncations. It also supports a custom pattern and pro-
hibited characters.

Request/confirm access to privileged account X

An administrator can view a list of available systems and accounts and send a request
with a justification and the date until the access to the account should be granted. An
authorized user can review the task and assign the requested account to the user or reject
the request.

Password organization X

The web interface displays all accounts that a user is allowed to use in a list. This list
can be filtered by an end-point (e.g., a host) or account name. Additionally, accounts can
be grouped into “containers” (e.g., one container for SSH accounts and another one for
Windows accounts). However, this grouping is defined by the person who manages the
accounts, a normal user cannot re-arrange the grouping in custom containers.

54

5.2 Netwrix Privileged Account Manager

Auditing and Reporting

Audit logs X

The logs contain detailed information about which user checked out/in an account, who
broke the glass, and who approved an account request.

Security of audit trails X

The logs are saved as cleartext in the database and can be viewed and modified by the
database administrators.

Notifications X

The software allows to configure an email notification for specific events (e.g., when a
break-glass action is performed or when a new request is available). Moreover, it displays
notifications in the web interface (e.g., directly after the user logged in) to inform the user
about new tasks.

Account matrix X

The web interface can list all accounts that are assigned to a specific user.

Session recording X

CA ControlMinder supports the recording of session which is realized by the integrated
software from the company ObserveIT1. It allows to record SSH, Telnet and Console ses-
sions on UNIX-based systems as well as Windows sessions, which meet the compliance
requirements of PCI, HIPAA, ISO 27001 and SOX.

5.2 Netwrix Privileged Account Manager

Founded in 2006, Netwrix offers solutions for change auditing in Microsoft Windows en-
vironments. One of their products is the Netwrix Privileged Account Manager, which is
available as a closed-source freeware. It features the centralized management of generic
identities (e.g., “enable” on Cisco or “root” on UNIX) as well as local and domain accounts.
Additionally, it provides different roles and the auditing of all managed accounts. More-
over, it can be integrated with an Active Directory and automatically update the passwords
of local Windows and domain accounts on a regular basis or after each usage.

5.2.1 System Architecture

The Management Server component of the product can be installed on any Microsoft op-
erating system since Windows XP. It requires Microsoft SQL Server as a back-end and the

1http://www.observeit.com

55

http://www.observeit.com

5 Analysis of Established Solutions

installation of Microsoft Internet Information Services (IIS), because the web-based user-
interface of the Privileged Account Manager is based on ASP.NET [16].

On the client-side it requires a web browser and the Microsoft Silverlight plugin, from
where the web-based management interface is used. The authentication of the web in-
terface supports the login of domain accounts which are centrally managed in the Active
Directory. However, the role assignment needs to be managed in the product which means
that they are stored in the Microsoft SQL database and cannot be retrieved from the direc-
tory.

The web interface is depicted in Figure 5.3 and shows the account management page of
a user that has full permissions. A user that has been assigned one of the roles System
Administrator, Account Manager or Account Operator can access a privileged account and
check it out. This action locks the account for other users and creates an entry in the audit
log, which can only be viewed by a user that has the role System Administrator or Report
Viewer. Once a privileged account is checked out, the software enables the button to reveal
the password.

Figure 5.3: Netwrix Privileged Account Manager

The product supports three types of managed accounts:

• Generic accounts that are added by entering a username and password,

• Windows local accounts that are added by entering a username of an account that
exists on the same system where the Privileged Account Manager is installed on, and

• Windows domain accounts that are added by providing a username of a domain

56

5.2 Netwrix Privileged Account Manager

account which is centrally managed in an Active Directory.

The generic accounts are static and only reveal the password that has been entered. The
other two account types can be configured with advanced settings. These enable that
the software changes the password on the target system after the used account has been
checked in. Furthermore, a task can be configured that changes the password after a given
time periodically (e.g., every day at 4 a.m.). This increases the security because admin-
istrators cannot log in to a system without using the Privileged Account Manager which
gives them a temporary password.

The audit reports are based on the SQL Server Reporting Services which are part of the
Microsoft SQL Server and allow users to analyze special databases and generate reports.
However, the audit logs and thus the information of who used what account at which time
are stored in plaintext in the database. This allows every database administrator to view
and manipulate the audit data.

Certainly, there are some other drawbacks:

• Although it is possible to create folders and organize passwords in groups (e.g.,
group them by projects or system types), it is not possible to assign folders to users
or only grant access to singular entries.

• The feature that changes the password on the target system only works on Microsoft
Windows operating systems. Despite the software is targeted for homogeneous net-
works, the credentials of other operating systems can be managed with the Generic
Account type.

• There is no session audit or recording for target systems, which means that in case
of an attack, only the information is given which user had checkout the account in a
specific time range. So it is not possible to see which actions the user performed on
the system. This requires separate products or system features in order to establish
an audit trail on each target system which allows traceability.

• In contrast to CA ControlMinder, the Netwrix Privileged Account Manager cannot
bypass the password and open a program like PuTTY.

5.2.2 Test Environment

The environment was realized with two virtual machines in Oracle VirtualBox on a Linux
host. The first virtual machine is a Windows domain controller that provides an Active
Directory for the Netwrix Privileged Account Manager which is installed in the second
virtual machine. The domain controller provides the domain “netwrix.lo” which is joined
by the host on which the Netwrix Manager runs on. Thus, users that are managed in the
Active Directory can log on to the Windows system in the second virtual machine as well
as log in to the web-based interface that Netwrix provides.

The specification of the Windows domain controller is given in Table 5.3 and the one for

57

5 Analysis of Established Solutions

the Netwrix Manager in Table 5.4.

Table 5.3: Environment Specification for Windows Domain Controller

Operating system Windows Server 2008 R2 SP1
Memory 1 GB
Disk capacity 20 GB
Installed software

• .NET Framework 3.5.1

• Active Directory

• DNS server

Table 5.4: Environment Specification for Netwrix Privileged Account Manager

Operating system Windows Server 2008 R2 SP1
Memory 1 GB
Disk capacity 25 GB
Installed software

• .NET Framework 3.5.1

• APS.NET

• IIS 6.0

• Microsoft Silverlight

• Microsoft SQL Server 2008

• Netwrix Privileged Account Manager 4.1.145

5.2.3 Analysis Based on the Requirements Catalog

This section evaluates the requirements based on the catalog from Section 4.6. A Xspecifies
that the requirement is fulfilled while an X signalizes that the requirement is not fulfilled.
A ♦ declares that the requirement is partly fulfilled.

58

5.2 Netwrix Privileged Account Manager

Systems Integration

Support for heterogeneous networks X

The software only supports Windows operating systems and cannot manage accounts on
other target systems that run other operating systems.

Centralized authentication X

The solution supports Active Directory authentication for domain logins to the web-based
interface.

Centralized authorization ♦

The assignment of roles to identities is saved in a SQL database and needs to be performed
via the web interface.

Account discovery/synchronization ♦

The software can discover local Windows and domain accounts on request or with sched-
uled tasks.

Access Control

Fine-grained access control on passwords X

There is no possibility to assign passwords or folders to specific identities.

Emergency access X

The software does not offer a break-glass nor a seal feature.

Separation of duties X

The software separates the audit capability so that unauthorized users cannot view the
audit logs. This is realized through roles that need to be assigned to the users.

Support for standardized policy language X

Netwrix does not provide a fine-grained access control nor does it use an open standard
for defining policies.

Policy transformation mechanism from high-level policy language to low-level MAC policies X

Netwrix does not provide a support for a high-level policy language.

Fine-grained access control on operating-system level X

The NetWrix Privileged Account Manager does not offer an integration into the operating
system, it only manages accounts and the passwords.

59

5 Analysis of Established Solutions

Password Management

Password security X

Passwords are saved as ciphertext in the database.

Account check-out ♦

Accounts need to be checked out before the password can be revealed. The configured
password setting defines if the password is automatically changed after checkout. It does
not provide a feature to restrict the usage to one user at a time.

Account check-in and one-time password X

The product does not set one-time passwords when the account is released.

Copy and paste a password X

The web interface allows to view a password as well as copy it to the clipboard.

Platform-independent access X

The management is realized with a web-based user interface that can be accessed from
every device that runs a web browser.

Limited access time X

The password settings can define a maximum checkout time, which ensures that an ad-
ministrator cannot use an account as long as he wants. This only works for managed local
and domain accounts where the password can be changed by the tool.

Hide password from the user X

There is no way to hide the password from the user.

Support for applications X

There is no support for applications or scripts.

Automatic password change X

The automatic password change is part of the password policy. The system allows to
configure an interval in which the password has to be changed by the system. However,
this only works for managed local and domain accounts. All other accounts have to be
managed manually.

Password policies ♦

The product provides one password policy that applies to all passwords. It is not possible
to define more than one policy or apply a policy to specific accounts. One can set the
password length, the minimum number of upper and lower case characters as well as the
number of digits and non-alphanumeric characters.

60

5.3 Soffid Identity and Access Management

Request/confirm access to privileged account X

It is not possible to request access to accounts that have not been assigned to a user in
advance.

Password organization X

The web interface allows to organize the passwords in virtual folders, which can have
different password settings. However, it is not possible to assign different users to folders
or passwords.

Auditing and Reporting

Audit logs X

The log contains information about which user checked out a privileged account and who
revealed or changed the password.

Security of audit trails X

The logs are saved as plaintext in the database, so that every database administrator could
manipulate them.

Notifications X

The software does not generate notifications about events.

Account matrix X

Since all administrators that are authorized to access the account manager can view all
entries, there is only the list of available managed accounts and role assignments.

Session recording X

There is no session recording feature available.

5.3 Soffid Identity and Access Management

Soffid is a Spanish company that was founded in 2013. Their product portfolio includes
an identity and access management solution as well as enterprise single sign-on and iden-
tity federation. To date, their solutions are the only open-source products on the market.
Although the source code of the products is published as open source under the GNU Gen-
eral Public License (GPL), they offer commercial versions with support for enterprises, too.

61

5 Analysis of Established Solutions

5.3.1 System Architecture

Like any other IAM software, the product manages users, hosts, applications, and the
like. Additionally, it features the control of privileged user accounts as well as an auditing
feature that logs, which user requested access to the account’s password [71].

The server components of the product support the Microsoft Windows Server operating
system as well as Linux, whereas the enterprise single sign-on component can be installed
on all recent Windows and Linux systems. As a back-end it supports the major databases
(Oracle, MySQL, and SqlServer).

In addition it is possible to extended the product with different kinds of addons. Thereby,
it is possible to add a connector for Active Directory or LDAP servers, which allows to
manage the users, groups, and roles in a directory instead of a relational database.

The architecture with the core components is depicted in Figure 5.4.

Soffid Console

Workstations with Soffid
Enterprise Single Sign-On

Soffid
Repository

Servers with Soffid Sync
Server

User

Figure 5.4: Architecture of Soffid Identity and Access Management

Besides the back-end, which Soffid calls Repository, there are two more components which
belong to the core of the architecture: the Soffid Console and the Soffid Sync Server. Both re-
quire a recent Java Runtime Environment (JRE) since the web services depend on the JBoss
Application Server. The console component represents the front-end by which the system
is managed. It provides a web-based user interface for administrators and a self-service
portal for all users. The self-service portal allows authorized users to list all privileged ac-
counts they have access to. Moreover, it is possible to view the password of an account if
the password policy permits that action. An example of how the self-service portal looks
like when a user clicked on “query password” to display the password of a privileged

62

5.3 Soffid Identity and Access Management

account is shown in Figure 5.5.

Figure 5.5: Revealing a Password in the Soffid Self-Service Portal

The Sync Server is installed on every system that needs to be integrated into the IAM in-
frastructure, as it connects to the repository and acts as a (web) interface for other services.
It polls the repository for changes and enforces them on the system, including the man-
agement of users, groups, and passwords. The Soffid IAM solution supports two different
password policy types: user-provided passwords and automatically generated passwords.
In the latter case, the Sync server changes passwords of privileged accounts in the config-
ured interval.

Each user login to the web interface is logged and the change action of a privileged pass-
word in the self-service portal is also visible in the audit log. Although the audit log can
only be accessed through the web interface by authorized people, the data is saved un-
protected in the repository. Thereby, every database administrator can view, delete, and
manipulate the audit trails.

The default access control can be extended with an XACML addon, which allows adminis-
trators to formulate more complex authorization rules [70]. Thereby it is possible to restrict
the access to privileged accounts of a certain user in a fine-grained way and bind it to en-
vironment conditions (e.g., a time interval in which the user has access).

5.3.2 Test Environment

The environment was realized with one virtual machine in Oracle VirtualBox on a Linux
host. The specification is given in Table 5.5.

5.3.3 Analysis Based on the Requirements Catalog

This section evaluates the requirements based on the catalog from Section 4.6. A Xspecifies
that the requirement is fulfilled while an X signalizes that the requirement is not fulfilled.
A ♦ declares that the requirement is partly fulfilled.

63

5 Analysis of Established Solutions

Table 5.5: Environment Specification for Soffid Identity and Access Management

Operating system Ubuntu 12.04.4 LTS
Memory 1 GB
Disk capacity 8 GB
Installed software

• MySQL Server 5.5.35

• OpenJDK 7

• Soffid IAM console 1.3

• Soffid Sync server 1.3

Systems Integration

Support for heterogeneous networks X

The software supports Windows as well as UNIX-like systems and can manage accounts
on those systems.

Centralized authentication X

The software can be integrated with Active Directory and LDAP. A single sign-on feature
can be additionally installed but is only supported on Windows. Moreover, Soffid can
be extended with addons and provides an integration with additional identity providers
(e.g., Shibboleth).

Centralized authorization ♦

The group assignments and authorization are saved in the database. However, with the
XACML addon it is possible to have a centralized generic authorization mechanism that
can be used in the web interface.

Account discovery/synchronization X

The software does not provide an account discovery feature.

Access Control

Fine-grained access control on passwords X

Privileged accounts can be assigned to a person individually.

Emergency access X

64

5.3 Soffid Identity and Access Management

The software does not provide a break-glass nor a seal feature.

Separation of duties X

The software separates the audit capability so that unauthorized users cannot view the
audit logs.

Support for standardized policy language X

Soffid IAM can be extended with an XACML addon that implements the capability of
defining fine-grained access control policies based on an open standard.

Policy transformation mechanism from high-level policy language to low-level MAC policies X

The solution does not offer a transformation mechanism for the XACML policies.

Fine-grained access control on operating-system level X

Soffid does not provide an operating-system layer that enforces access rights.

Password Management

Password security X

The passwords are saved as ciphertext in the database.

Account check-out X

An administrator can view all passwords of the assigned accounts without having to check
them out.

Account check-in and one-time password X

There is no check-out and check-in feature and also no one-time password mechanism. If
the user wants to change the password of a privileged account, he can do so if the pass-
word policy allows it.

Copy and paste a password X

The web interface allows an authorized user to view a password as well as copy it to the
clipboard.

Platform-independent access X

The management is realized with a web-based user interface that can be accessed from
every device that runs a web browser. With an addon it is also possible to implement a
web-based single sign-on mechanism.

Limited access time X

Soffid cannot limit the access time of an account, which is due to the fact that there is no
check-out and check-in feature.

65

5 Analysis of Established Solutions

Hide password from the user X

There is no way to hide the password from the user.

Support for applications X

Soffid does not offer a support for applications.

Automatic password change X

The automatic password renewal is part of the password policy. The system allows ad-
ministrators to configure a password expiration interval which then forces Soffid to auto-
matically change the password.

Password policies X

The product supports the management of different password policies that can be applied
individually to the privileged accounts. A policy can prescribe the minimum and maxi-
mum password length, the amount of upper and lower case letters, numbers, and symbols.
It also supports a custom regular expression and prohibited characters.

Request/confirm access to privileged account X

There is no feature that allows users to request an access to accounts that have not been
assigned to the administrator.

Password organization X

The web interface displays all accounts that a user is allowed to use in a list. The list cannot
be filtered or grouped.

Auditing and Reporting

Audit logs X

Soffid provides audit logs for actions that are performed in the identity and access portal
but it does not log when an administrator reveals the password of a privileged account or
changes it.

Security of audit trails ♦

The logs are saved in cleartext and could be modified by any database administrator. Since
Soffid does not create audit logs that are related to the privileged account usage, it is not a
security issue.

Notifications X

The software does not send any notifications.

Account matrix ♦

66

5.4 Summary of Software Analysis

The web interface can list all groups that are assigned to a specific privileged account but
it cannot show the users. So one needs to list all users that belong to the group in order to
find the users that have access to the account.

Session recording X

Soffid does not provide a session recording feature.

5.4 Summary of Software Analysis

The summary in Table 5.6 shows that CA ControlMinder fully supports 22 of the 27 re-
quirements that have been developed in Section 4.6, while Netwrix Privileged Account
Manager fulfills nine and Soffid Identity and Access Management ten of the requirements.

CA ControlMinder is a complex software solution that is suited for organizations that
require a password management solution that is integrated into the infrastructure and
thereby provide a fine-grained access control on the operating-system level of the servers.
From all requirements that are labeled as MUST, the product does not satisfy the “security
of audit trails”. This disadvantage can be compensated by ensuring that only authorized
administrators have access to the database that hosts the logs.

The Netwrix Privileged Account Manager fulfills three out of six “must have” require-
ments. This applies to the “fine-grained access control on passwords”, the “emergency
access”, and “security of audit trails”. The absence of an emergency access is compensated
with the missing control of who is authorized to access which password. Since all ad-
ministrators have access to all passwords in the manager, it is always guaranteed that all
passwords are accessible. However, the missing access control is a downside that makes
the software only suitable for organizations that want to manage the privileged user pass-
words in a central store where all administrators have access to.

Although Soffid Identity and Access Management first and foremost is an open source
IAM product, it provides a privileged user password management component that fulfills
three out of six “must have” requirements. The missing emergency access and audit logs
for revealed passwords are two downsides that could be removed by an organization by
implementing it in the open-source code.

Both of the last mentioned products do not provide a fine-grained access control in the file
system or operating system. However, the expandability of the open-source software with
the standardized policy language XACML provides a basic approach for a transformation
of high-level access policies to low-level policies. This, for example, can be utilized to
implement operating system specific agents that convert the policies to access control lists
of the file system or to policies of SELinux so that privileged user accounts have restricted
access rights.

67

5 Analysis of Established Solutions

Table 5.6: Summary of the Software Analysis Based on the Requirements Catalog

Requirement CA Netwrix Soffid

Systems Integration
Support for heterogeneous networks X X X
Centralized authentication X X X
Centralized authorization ♦ ♦ ♦
Account discovery/synchronization X ♦ X

Access Control
Fine-grained access control on passwords X X X
Emergency access X X X
Separation of duties X X X
Support for standardized policy language X X X
Policy transformation mechanism from high-level policy
language to low-level MAC policies

X X X

Fine-grained access control on operating-system level X X X

Password Management
Password security X X X
Account check-out X ♦ X
Account check-in and one-time password X X X
Copy and paste a password X X X
Platform-independent access X X X
Limited access time X X X
Hide password from the user X X X
Support for applications X X X
Automatic password change X X X
Password policies X ♦ X
Request/confirm access to privileged account X X X
Password organization X X X

Auditing and Reporting
Audit logs X X X
Security of audit trails X X ♦
Notifications X X X
Account matrix X X ♦
Session recording X X X

68

6 Architecture

The fundamental components for a secure architecture are authentication, authorization,
accounting and auditing. The first three are commonly referred to as AAA and can be seen
as a framework for providing the necessary information in order to control and audit the
access to resources as well as enforcing policies [60]. The generic architecture has been
proposed as “AAA Authorization Framework” by the Network Working Group [27].

An approach to solve the shared account problem is to deny the (direct) use of such iden-
tities. Once every user has its own account on a system that he is allowed to work on, the
accounting is assured, since every action is assigned to a unique identity that is not shared
between several administrators. To implement this, there has to be an architecture that
allows a fine-grained access control which is centralized and easy to handle. Thereby it is
possible to assign each identity the appropriate permissions that are necessary to fulfill the
work assignments.

However, this approach only works for systems that can be integrated into the existing
identity and access management infrastructure because the users have to be maintained
on the systems and the system itself has to be adjusted to make use of the security infras-
tructure. Certainly, this is not the case for some network devices, like routers or switches.
These devices often only support one privileged account which has to be shared. More-
over, these devices cannot be integrated into the infrastructure if they do not support the
required protocols out of the box. For them, the idea of having a unique identity per user
will not work.

Moreover, in many infrastructures that use virtualization and environments in different
locations (e.g., customer projects), the number of individual accounts that would need to
be maintained usually is not manageable. However, with an attribute-based access con-
trol, the complexity can be reduced and can serve as an approach for individual accounts
that are assigned the necessary privileges. In situations where this is not possible, priv-
ileged shared accounts can only be reduced and need to be monitored in order to detect
anomalies.

This chapter will propose a way to establish a centralized access control by using a stan-
dardized policy language like XACML and an approach to solve the problem of shared
accounts on devices that cannot be integrated into the access control infrastructure directly.

69

6 Architecture

6.1 Components

In order to build an architecture that solves the problem, there need to be several com-
ponents that are responsible for different tasks in the authorization process. The overall
architecture, which will be discussed in more detail in this section, is depicted in Figure
6.1. The idea for this architecture is based on the policy framework architecture of the In-
ternet Engineering Task Force (IETF) [24]. The upper half of the figure shows the process
of defining policies (at the Policy Administration Point (PAP)) and deploying them to the
components that host them. The lower half shows the enforcement process that is trig-
gered by a subject which requests an access to a protected resource. Thus, the component
which enforces the access rights (the Policy Enforcement Point (PEP)) needs to retrieve the
policy decision from a dedicated server (the Policy Decision Point (PDP)).

Policy administration point Policy retrieval point and
policy information point

RepositoryAuthorative
entity

Policy decision pointPolicy enforcement point

Subject

Request

Response

Define
policy

Resource
request

Policy
deployment

Retrieve
policies and
attributes

Policy
deployment

Figure 6.1: IETF Policy Framework Architecture

The reason for choosing such architecture is based on the following key requirements,
which have been outlined in Section 4.6:

• Centralized authorization,

• Fine-grained access control on operating-system level,

• Fine-grained access control on passwords, and

• Support for standardized policy language.

The next subsections will describe the necessary components in more detail.

70

6.1 Components

6.1.1 Policy Administration Point

The policy administration point (PAP) is an abstract component inside the network. It
represents the initial place where authorization policies are created and maintained by an
authoritative entity (e.g., a manager or system administrator). Without that starting point,
the other components, including the PDP and PEP, could not protect the resources. Since
policies are defined in XML, the PAP can be any piece of software that provides an interface
to build the policies [52].

These policies are based on business-level requirements and prescribe the actions an iden-
tity is allowed to perform as part of their daily work. Before the policies can be created,
the business process needs to be analyzed and modeled in a way, that allows to transform
the business needs into technology-level counterparts. One way to achieve that transfor-
mation has been described in [80] by Wolter et al..

The management software should store the policies in a repository, like in a database or
the file system. In the XACML terminology, the policy repository is called policy retrieval
point (PRP) [26]. Furthermore, the software should be able to distribute the policies to
one or more known policy decision point(s). The process depends on the capability of the
target device and it might be necessary to transform the policies into a specific format [78].

A clever policy management tool might support the discovery of resources by analyzing
the network topology and collecting the devices and actors inside the network (e.g., users
and applications) [78].

In its most simplistic form, the authoritative entity could use a text editor to maintain the
policies in an XML file. The result would then be transferred to the repository and the
target devices that enforce the policies.

6.1.2 Policy Decision Point

The policy decision point (PDP) has already been introduced in Section 2.1 as part of the
eXtensible Access Control Markup Language (XACML). It uses the policies which have
been created at the policy administration point to answer the incoming authorization re-
quests.

The PDP might be implemented at a network node alongside the policy enforcement point
or located on a central remote server. While evaluating the appropriate policy decision, the
PDP may use additional protocols (e.g., LDAP or SNMP) to retrieve additional information
from different back-ends or achieve functionality such as user authentication or accounting
[25]. Moreover, it may contact the policy retrieval point (PRP) in order to retrieve the re-
quired policies as well as the policy information point (PIP) to obtain additional attributes.

The PDP fulfills the requirement for a centralized authorization because it represents a
dedicated and central component that provides authorization decisions to other decen-
tralized systems.

71

6 Architecture

6.1.3 Policy Enforcement Point

Like the PDP, the policy enforcement point (PEP) was already mentioned in Section 2.1.
This component handles the user’s resource request and generates an authorization re-
quest based on the user’s action. The authorization request is then sent to the PDP which
either returns a permit or deny response. Based on that, the PEP will enforce the autho-
rization decision by granting or denying the user’s resource request.

In order to provide the adequate information to the PDP, so that it can evaluate the ap-
plicable policy, the PEP often has to be specific to the application. That is why the PEP
is usually located at a network node [25]. One example are accesses to the resources of a
database, that consists of tables, records, and attributes. In order to model a fine-grained
access control, the PEP needs to transmit all the necessary information to the PDP, for ex-
ample, which user gains access to which column of a record. These policy attributes are
very specific to that kind of service and they cannot be reused for another type of service
that needs to transmit different attributes as part of the authorization request.

The PEP is the entity that protects different kinds of resources, which are summarized in
the following subsections.

File System Protection

The requirement for a fine-grained access control in the operating system includes the
access to the data that resides in the file system. There, not only sensitive business or
customer-related data is saved but also configuration files that control the behavior of the
operating system, services, and applications. Thus, the access rights of privileged users
need to be controlled so that negligent administrators and insider attacks can be contained.

Almost every file system and operating system supports its own access control to provide
a security mechanism for the data. The traditional file permissions in UNIX-like operating
systems only allow a simplistic security concept, based on the three classes user, group and
others. These classes might have attached none or a combination of these permissions:

• read: grants the permission to read a file or – if it is a directory – read the names of
the files inside the directory

• write: grants the permission to modify a file or – if it is a directory – modify the entries
inside the directory (create/edit/rename a file)

• execute: grants the permission to execute a file or – if it is a directory – access a file’s
content and meta information

Since the three classes are very limiting when it comes to a fine-grained access control
that needs to support many users and groups that require different permissions on an
object, the UNIX-like operating systems support access control lists (ACLs). These ACLs
provide a more flexible way to define which objects a subject is allowed to access. Since
the traditional permissions and the ACLs are discretionary access control mechanisms, the

72

6.1 Components

task of setting up the access rights for a lot of users is a very time-consuming task.

On the other hand, a mandatory access control mechanism is more flexible and secure as
it not only uses the subject and object information, but also takes additionally rules into
account.

Two possible approaches for solving the access control problem on a Linux operating sys-
tem are Security-Enhanced Linux (SELinux) and AppArmor. Both are Linux kernel security
modules that allow administrators to set up security policies for users and programs. It
is also possible to construct a mapping between files and security contexts to establish a
protection for the file system.

Like stated in Section 6.1.1, the policy manager software that represents the policy admin-
istration point might transform the high-level policies to low-level SELinux or AppArmor
policies, if the security module itself does not have the ability to contact a policy server.
Thus, the PAP needs to transform and deploy the policy rules to the PEP.

The concrete implementation of a transformation mechanism is beyond this thesis and
thus mentioned as a topic for a future work in Section 9.2.2.

Protecting Applications

In order to use authorization policies inside an application, the software either has to im-
plement an interface that utilizes the policies directly from the policy decision point, or the
software needs to support a high-level application programming interface that acts as a
broker between the policy server and the application.

One example is the pluggable authentication module (PAM) mechanism in UNIX-like operat-
ing systems. This can be used by applications to implement an independent and high-level
authentication scheme.

Like stated in Section 2.2, the pam xacml module adds support for XACML authoriza-
tion to every application that is PAM-enabled. If the application does not utilize PAM nor
does it offer an interface for a direct use of the policy server, the approach will not work.
Alternatively, if the application provides an access control that can be managed program-
matically, the policy administration point might transform the high-level policies into the
application’s low-level format. The approach is equal to the one mentioned in the previous
subsection.

Protecting Data Stores

A special kind of applications are databases, which provide a collection of data that is or-
ganized in some kind of schema. In relational database management systems like MySQL,
there are tables which consist of columns and rows which can be managed by using SQL.

The access to tables, rows and columns can be protected by using the built-in access control

73

6 Architecture

lists. However, the high-level approach of modeling attribute-based access control policies
with XACML provides a more expressive and manageable way of controlling the access
rights. In [38] Jahid et al. showed an approach how high-level XACML policies can be
compiled into low-level access control lists which are supported by the database system.
Especially on UNIX-like operating systems, the control of who is authorized to log in to
the database can be integrated with XACML by using the pam xacml module, since major
database systems provide PAM authentication modules.

Besides managing the access rights, the sensitive data might additionally be encrypted
before it is stored in the database. This not only protects the data from unauthorized access
by the database administrator which has elevated privileges to access all the data. It also
increases the security in the network if only the encrypted data is transferred.

Sensitive data like passwords, PINs, product or license keys can then only be decrypted by
designated applications that reside on trusted systems. These applications are in charge
of revealing the decrypted information only to authorized users. This can be achieved by
using asymmetric cryptography, like outlined in more detail in Section 6.2.1.

Protecting a database like that comes in handy when privileged user passwords are saved,
so that password manager tools can access them. The database management system could
then enforce the policy decision which it received via the PAM module from the policy
decision point. The policies contain which administrator is authorized to access which
rows and columns.

Protecting Network Devices

The usage of pam xacml is easy for applications that support PAM, but in almost every
network there are also devices that only support one privileged account. This might be a
root account on a router or switch, which can only be accessed over a few protocols (e.g.,
SSH or Telnet).

Since those devices normally do not support the use of a PDP and cannot be extended
to use a centralized security infrastructure, one has to find a way to solve the problem
of users that share the privileged account. One approach is to deny the direct access to
the device and force all users to connect through a jump server. This jump server can be
compared to a bastion host, which is located on the public side of the demilitarized zone
(DMZ) and thus is unprotected by a firewall. In order to connect to the local area network
from the Internet, one has to connect through the bastion host [19].

The architecture is depicted in Figure 6.2 and shows the interaction with the PDP. The
administrator who wants to connect from the client device to the target system (e.g., a
router) cannot establish a direct connection, because the authentication mechanism might
deny it or the user is not allowed to know the privileged user password that is required to
log in to the device. Instead, he has to connect to the jump server and authenticate with
the personal account and request a forwarding connection that is established by the middle
box on behalf of the user. By this, the jumper server can check if the subject is authorized

74

6.1 Components

to connect to the target system.

Target system

Policy decision point

Jump server

Request
Response

Client

Figure 6.2: Jump Server

This authorization is realized by contacting the PDP and enforcing the authorization de-
cision that it returns. If the PDP returns a permit, the jump server can open a connection
on behalf of the subject. Since the jump server establishes the connection, the user will
not see any credentials (e.g., the username/password combination of the target system’s
privileged account). Making the shared account transparent and hiding the sensitive cre-
dentials is one important security aspect and might be a requirement of the organization,
too.

For auditing purpose, the jump server could monitor the commands that have been en-
tered or record the whole session. It is also possible to only allow one user at a time to
be connected to the target system, so that it is always clear which actions have been per-
formed by which user. This ensures accountability since no one uses the privileged account
directly but has to authenticate at the jump server with the personal account.

Certainly, this approach has some drawbacks. One is the security problem that a user
might be authorized to connect to the target system and then establish a reverse tunnel
from the target system back to the client. This would produce a second connection that
does not use the jump server and the user would be able to circumvent the auditing mech-
anism and other security features that the jump server would have provided.

Another aspect is that the jump server should support different protocols and many target
systems. For smaller networks, an approach like port address translation (PAT) might
work. Here, one would assign separate ports to each supported protocol on a server and
other ports for the same protocols on another server. However, the number of available
ports is limited and thus larger networks would require several jump servers, which not
only forces a user to remember the port but also the responsible jump server.

75

6 Architecture

As an alternative to PAT, one could think of a transparent approach that utilizes the fire-
wall, which filters the packages and changes the destination IP address if necessary, so
that the package is sent to the jump server. Additionally, the original destination IP ad-
dress needs to be placed somewhere, so that the jump server can extract it and use it to
establish the connection to the target system.

As mentioned before, the jump server needs to support several protocols, for example,
SSH, Telnet, SNMP, and so on. This can be achieved on a per-service basis or a software
that provides an interface for each supported protocol and acts as an intermediary. In the
first case each service needs to support mechanisms for authentication and authorization
that can be integrated with an PDP or can utilize established APIs like PAM, so that a fine-
grained access control can be applied for each service individually. On the other hand,
the services need to support a forwarding mechanism to the target system and security
features like an audit trail and session recording to guarantee accountability. These re-
quirements could be implemented directly into the service, for example, into the Telnet
server. Whereas in the case of an intermediary software it is necessary that it behaves like
a man-in-the-middle and arbitrates between the client and the target system. For that pur-
pose, the software needs to understand each protocol, in order to handle the data stream,
provide authentication, and audit trails.

However, the man-in-the-middle approach of a jump server might be against the business
law and regulations of the organization. Certainly, the aspect of hiding the passwords
from the user cannot be realized without a man-in-the-middle box that takes care of the
authentication on the target system. Consequently, the persons in charge need to decide
whether they can trust their administrators and give them access to the passwords so they
can log in to the target system directly. On the other hand they might decide that they
cannot trust their employees and go with the man-in-the-middle system.

6.1.4 Password Manager

Sometimes, the approach of having a jump server in between the client and a target system
is not feasible. This could be the case when the target system only supports an interactive
authentication, for example, partner websites that require a login in order to access a pro-
tected area. Another reason are credentials that are associated with a project which need to
be made known to different team members or personal identification numbers (PINs) that
are shared between several administrators. In this case, there are shared accounts to which
authorized users need full access to. This problem can be solved with password managers
which not only store credentials but also product or license keys and other access-related
sensitive data that needs to be protected. Comprehensive software permits the integration
into the organization’s infrastructure in order to use the existing identities and access poli-
cies. This allows users to authenticate against a directory (e.g., LDAP or Active Directory)
with their centrally managed identity.

However, to provide a fine-grained access control, the application needs to implement
an appropriate interface. This could be the support of XACML, which then fits into the
architecture mentioned above. Certainly, the password manager can also be web-based

76

6.1 Components

and integrated into an existing web access management solution, which would handle
the authentication (e.g., with a single sign-on) and authorization. This could also be re-
alized with XACML by implementing the request-response protocol or by using one of
the libraries which exist for various programming languages (e.g., Java, PHP, Ruby, and
Python).

In order to fulfill the requirement for an emergency access and the demand for a separation
of duties, the password manager can utilize the XACML-integrated mechanisms. This also
applies to the delegation of privileges which makes it possible to give someone the right
to access a privileged user password for a given time period (e.g., if Alice is on vacation
she can assign all or some of her privileges to Bob if the policies allow it). This guarantees
that in emergency situations other administrators have access to the passwords.

The requirement for accountability can be realized by logging who accessed and revealed
the password of a privileged account. If everyone authenticates at the password manager
with the personal account, the necessary information is available. Moreover, by imple-
menting a “check-out” and “check-in” mechanism it is possible to ensure that only one
administrator has access to a privileged user password. Thereby, all actions between a
check-out and check-in can be accounted to a specific identity.

The requirement for automatically changing a password on the target system requires an
interface so that the password can be changed programmatically. On UNIX-like operating
systems this could be realized by using an SSH connection that authenticates with the
privileged user’s credentials (e.g., “root” and the current password) and executing the
passwd command. This could be implemented by a task that resides on the same machine
as the password manager and is authorized to query the password database for accounts
including the corresponding passwords that need to be changed. After that, the automated
task would generate a new password based on some predefined password policy and
change it on the target system as well as in the password database.

6.1.5 Audit Logging System

To ensure non-repudiation, each action should be logged with the information of who per-
formed the action on what resource at which point in time. For ease of maintainability and
security reasons, there should be a centralized component in the network that is dedicated
for logging.

There, the log entries of all relevant network components, including servers, applications,
firewalls, routers and switches, and databases should be accumulated. Moreover, the au-
thorization decisions should be logged, too. For later forensics, not only the response of
the PDP is important but also the request and obligation handling needs to be protocolled,
so that a full audit trail is given and a security issue can be detected.

Therefore, the PDP and PEP need to implement a logging facility. In all major operating
systems, there is a logging mechanism to which the messages can be sent. This allows
to configure the built-in logging mechanism to forward all messages to a central server,

77

6 Architecture

without having to configure each application individually.

On UNIX-like operating systems, the de-facto standard for logging system events is the
Syslog Protocol [35]. With the PAM module pam xacml, which was introduced in Section
2.2, it is possible to log the request as well as the authorization decision to the system log
of the PEP. If the logging daemon is configured to use a centralized logging server, the data
will be stored on the dedicated system.

The logging requirement also applies to the jump server, which not only should log the
authentication and authorization process but also the information about when it retrieved
a particular entry from the password database.

Besides logging all read accesses to the privileged user passwords in the database, all
modifications and deletions should be audited as well, to ensure a consistent audit trail
throughout the lifetime of a resource. Thus, it should be possible for an auditor to check
who had access to a password or who initiated a password change.

Furthermore, all performed actions (e.g., privilege elevation, typed-in commands, etc.)
should be recorded to the logging system, too.

6.2 Security Considerations

The security of privileged user passwords is an important aspect but also the security of
the systems on which administrators perform actions with privileged accounts needs to
be considered. This can be achieved by integrating an intrusion detection system (IDS) that
monitors the network and systems for malicious activities and reporting the incidents to
dedicated persons [62]. One example for such an IDS is the open-source software Samhain,
which can detect the tampering of databases and configuration files as well as the manipu-
lation of log files.

6.2.1 Encryption of Credentials

One approach for protecting sensitive information is to use cryptography. An established
variant is the public-key cryptography (PKC), which uses two separate keys, one of which
is placed in a public file and another one that has to be kept secret (the private key).

In order to save sensitive data like shared passwords of privileged accounts, license keys
and the like securely, one might want to use cryptography, too. This requires the establish-
ment of a public-key infrastructure (PKI) in the network.

In the case of the aforementioned password manager, the application would use the public
key to encrypt the password and transfer the ciphertext to the database, where it is saved
securely. At the time when the jump server requires a particular password to establish the
connection to the target system on behalf of the user, it would query the database and re-
trieve the credentials including the encrypted password. The ciphertext then is decrypted

78

6.2 Security Considerations

on the jump server by using the private key and the plaintext password can then be used
for the authentication process.

Disadvantages of the traditional public-key cryptography are that it involves a complex
infrastructure and that – in the case of a password database – all assets are encrypted with
the same public key. This means that an attacker gains access to all passwords if he can
steal the private key. In order to prevent the theft and reduce the security issue, the servers
that require the private key to decrypt the ciphertext need to be trusted systems.

Another solution to the problem is to not encrypt all passwords with the same key. Instead,
only those passwords are encrypted with the same key which can be access by the same
identity. All the other passwords that the identity must not have access to are encrypted
with another key. However, this approach requires to encrypt the same password with
different keys if different users are authorized to know the password. So if Alice and Bob
are allowed to use the root password and both have different key pairs, the database needs
to contain the ciphertext two times: once it was encrypted with the public key of Alice and
the second time it was encrypted with Bob’s key.

Since this approach is hard to maintain, the demonstrator in Chapter 7 will use the first
idea which encrypts all data with the same key. However, there are more complex solu-
tions to this problem, like the attribute-based encryption which is discussed as a future
work in Section 9.2.1.

6.2.2 Secure Audit Logs

All major operating systems provide some sort of system logs which are important for the
security of a system. The logged data should provide helpful information for the analysis
after a break-in and give hints about failed attack attempts. Usually, the general activity of
users and programs is logged, as well as the system resource usage and program crashes
or errors.

Audit trails are used for accountability, intrusion detection, problem identification, and recon-
struction of events [72]. Because of that, an attacker will try to cover the tracks and erase all
actions that have been recorded in logs and might potentially whistle-blow him. Hence,
the audit logs need to be made secure in order to prevent an attacker from accessing and
manipulating them.

This not only applies to external attackers but also to insiders. Thus, the organization
should have rules for the separation of duties, which regulate that employees who ad-
ministrate the access control mechanisms are not the same as those who administrate and
monitor the audit trail [72].

For investigations of security violations, not only the actions of an attacker are relevant.
Additionally, the circumstances that allowed the attack are of importance, too. This in-
cludes the authorization decisions that were made by other systems (e.g., the PDP), which
also have to be saved in a secure audit log.

79

6 Architecture

The log management infrastructure should be implemented by using centralized log servers
and log data storage [42]. This reduces the administration time and increases the security
as audit logs are not saved decentralized on each device which might get compromised by
an attacker.

The first step to secure logging is using a separate logging server instead of having the
logs on the same device on which the user operates on. In the case of an attack, the logs
on the compromised system would not be secure anymore. However, if the logs reside on
a special system that does not offer much possibilities for a break-in (e.g., services without
security holes), the logs are more secure from tampering.

Although the central logging server is a security improvement, it is still necessary to es-
tablish more properties which meet the important security goals, including the integrity,
confidentiality, and availability of log files [42].

The integrity requirement of log files can be fulfilled with the forward-secure stream in-
tegrity approach. Bellare and Yee were the first who combined message authentication
codes (MACs) with log entries. Their approach generates a MAC for every single log en-
try by using a different MAC key for each entry. The key Ki for log entry i is obtained
from key Ki−1 of the previous epoch. After the MAC for the new log entry has been gen-
erated, the key Ki−1 is deleted, so that an attacker can get the key Ki but does not get any
knowledge about Kj with j < i. However, the initial key K0 needs to be kept secure and
should only be known to auditors since this key can verify all log entries [3].

This approach allows auditors to detect the tampering (e.g., the modification or deletion
of log entries) but does not securely store the entries, so that only authorized people have
access to the log entries. The confidentiality of log files can be guaranteed by restricting
the access to a small group of authorized auditors. This could be realized by formulating
fine-grained XACML policies that control the access on a per-file basis or, for example, if
a database is used, on a per-entry level. Moreover, the confidentiality and security can be
increased by encrypting the log entries and only allowing auditors to decrypt the cipher-
text.

In [65] Schneier and Kelsey presented an approach that uses per-record encryption keys
and permission mask that allow a selective disclosure of log entries. Furthermore, their ap-
proach ensures that users that possess a decryption key cannot make undetectable changes.

The availability of log files can be ensured by keeping multiple copies and backups of the
data in different locations so that a damage or deletion of one copy does not cause a loss of
data [42]. Moreover, the log infrastructure itself, especially the server which hosts the log
service, should be fail-safe, for example, by having standby facilities that take over in the
case of a system or network failure.

80

6.3 Analysis Based on the Requirements Catalog

6.3 Analysis Based on the Requirements Catalog

This section evaluates the requirements based on the catalog from Section 4.6. A Xspecifies
that the requirement is fulfilled while an X signalizes that the requirement is not fulfilled.
A ♦ declares that the requirement is partly fulfilled.

Systems Integration

Support for heterogeneous networks ♦

The architecture and components from Section 6.1 are suitable for heterogeneous net-
works. Certainly, the operating system specific additions which have been exemplified
for UNIX-like systems need to be ported to other operating systems, for example, Win-
dows. This especially applies to the enforcement of policy decisions and the PAM mecha-
nism that is not available on Windows. An proposal on how this can be implemented in a
future work is outlined in Section 9.2.3.

Centralized authentication X

The above mentioned architecture does not require a specific authentication infrastructure.
The fine-grained access control and password manager can be based on a directory (e.g.,
Active Directory or LDAP) as well as the integrated user management of the operating
system (e.g., /etc/passwd on UNIX-like systems).

Centralized authorization X

The authorization is realized with XACML policies and a centralized policy decision point
that evaluates the policy decision requests from different policy enforcement points, in-
cluding servers, routers, and applications.

Account discovery/synchronization ♦

The goal of the proposed architecture in this thesis was to reduce the need for shared priv-
ileged accounts that are not maintained in a central user repository (e.g., with an identity
and access management solution). Because of that, the account synchronization might
only be required for the password manager that has been addressed in Section 6.1.4. How-
ever, the password manager was intended to be used for accounts that reside on systems
or in networks which are not part of the organization’s network. In such cases, an account
discovery feature usually cannot scan the systems and extract the privileged accounts.

Access Control

Fine-grained access control on passwords X

The access to passwords can be controlled by defining fine-grained policies that are en-
forced by a password manager which then only displays accounts and reveals passwords

81

6 Architecture

to authorized users.

Emergency access X

The architecture ensures that every administrator that is authorized to access a system can
do so with the personal account. Moreover, XACML policies can define break-glass rules
that allow administrators to perform actions they are usually not authorized to (see Section
2.1).

Separation of duties X

The fine-grained access control of XACML allows to define policies that separate actions
from each other that rise potential conflicts of interest (see Section 2.1).

Support for standardized policy language X

XACML, the policy language which has been used for the architecture, is an open stan-
dard.

Policy transformation mechanism from high-level policy language to low-level MAC policies ♦

The transformation from XACML policies to, for example, SELinux policies is possible and
can be analyzed in more depth as a future work, like addressed in Section 9.2.2.

Fine-grained access control on operating-system level X

The proposed approaches in Section 6.1 showed that a fine-grained access control on an
operating-system level is possible. There are established solutions to protect the file sys-
tem as well as PAM modules to connect services and applications. This ensures that access
rights can be set on a fine-grained basis and unauthorized users (e.g., external administra-
tors) do not have unrestricted access rights.

Password Management

Password security X

The passwords are saved as ciphertext in the database and only trusted systems have the
private key to decrypt the passwords.

Account check-out X

The password manager can implement an account check-out feature which logs that an
administrator started to use the privileged account. Moreover, it can ensure that only one
user at a time can reveal the password.

Account check-in and one-time password X

The feature of changing a password automatically can be combined with an action that
deallocates a privileged user password in the password manager. The tool would then
perform a password change on the target system and save it in the password database.

82

6.3 Analysis Based on the Requirements Catalog

Copy and paste a password X

The password manager can reveal a password that has been retrieved from the database
so that a user can use it as well as copy it to the clipboard.

Platform-independent access X

If the password manager is implemented as a web-based application it can be accessed by
every device that provides a web browser.

Limited access time X

In XACML a policy might have a limited access time specified as obligation. The policy
enforcement point then has to ensure that once the time is exceeded, the user is discon-
nected. In that case it might inform a service which is part of the password manager that
it must perform a check-in action on that account so that other administrators can use it.

Hide password from the user X

The jump server provides a way to hide the password from the user and establish a con-
nection after authenticating and authorizing a user.

Support for applications X

Applications can utilize the fine-grained access control by implementing PAM. Moreover,
trusted applications can query the password database and decrypt the ciphertext in order
to use the credentials to perform an action. The limitation of having one public/private key
pair for all passwords can be overcome with an attribute-based encryption that allows to
encrypt singular passwords individually. This approach is discussed as part of the future
work in Section 9.2.1.

Automatic password change X

The automatic password renewal functionality can be part of the password manager but
requires operating-system specific interfaces that can be used to change the password (e.g.,
SSH on UNIX-like systems).

Password policies X

The password policies can be part of the password manager and ensure that user-defined
passwords as well as automatically changed passwords follow the policies.

Request/confirm access to privileged account ♦

This feature can be implemented as part of the password manager or it can be realized with
an external tool, for example, in an issue tracking system that allows any administrator to
request additional privileges. An authorized user might then decide if he wants to grant
the access rights by creating a new XACML policy for that specific user.

Password organization X

The password manager might offer some kind of organization in groups and folders.

83

6 Architecture

Auditing and Reporting

Audit logs X

The architecture can use the integrated logging daemon that might be configured to pro-
tocol the action as well as the policy decision on a central server.

Security of audit trails X

The logs might be saved on a central server as well as encrypted and protected from tam-
pering. On UNIX-like systems, there are logging daemons like syslog-ng1 which offer a
cryptographic signature feature.

Notifications X

Notifications can be sent as part of an obligation or at the time when an action is performed
in the password manager (e.g., when a request to a privileged user password is generated).

Account matrix X

The authorization decision is based on the policies that define which administrator is au-
thorized to access a specific password or perform an action as a privileged user. Thus, the
policy administration point can give the information.

Session recording ♦

The above mentioned architecture does not record sessions but this can be realized by
installing a software like ObserveIT2 on the servers.

6.4 Summary

The architecture proposed in this chapter is an approach for an infrastructure that uses
open standards. The policy-based authorization with the XACML standard can be utilized
to establish a fine-grained access control on the operating-system level of the servers as
well as in applications and web-interfaces. Thereby, privileged user passwords that are
managed in a central and secure database can be accessed by administrators as well as
applications. The access control on the policy enforcement points guarantees that only
authorized users have access to privileged user credentials.

The approach of a jump server provides accountability and authorizes administrators that
want to connect to network devices. With access control security policies like SELinux it is
possible to reduce the power of privileged accounts in the file system and protect sensitive
data from unauthorized access.

A centralized logging system that provides integrity and confidentiality of the audit trails

1http://www.balabit.com/de/network-security/syslog-ng
2http://www.observeit.com

84

http://www.balabit.com/de/network-security/syslog-ng
http://www.observeit.com

6.4 Summary

ensures that malicious actions can be detected and only authorized persons have access to
the logs.

The full architecture is depicted in Figure 6.3 and shows the basic XACML infrastructure,
the jump server, and password manager component. Moreover, the central audit logging
system is included but for clearness the links to all the systems that send the log informa-
tion have been omitted.

The summary of the architecture requirements and the comparison to the three analyzed
software products of Chapter 5 is given in Table 6.1.

85

6 Architecture

P
assw

o
rd

 d
atab

ase
P

o
licy ad

m
in

istratio
n

 p
o

in
t

P
o

licy retrieval p
o

in
t an

d
p

o
licy in

fo
rm

atio
n

 p
o

in
t

R
ep

o
sito

ry
A

u
th

o
rative

en
tity

P
o

licy d
ecisio

n
 p

o
in

t
P

o
licy en

fo
rcem

en
t p

o
in

t

Su
b

ject

R
eq

u
est

R
esp

o
n

se

D
efin

e
p

o
licy

R
eso

u
rce

req
u

est

P
o

licy
d

ep
lo

ym
en

t

R
etrieve

p
o

licies an
d

attrib

u
tes

P
o

licy
d

ep
lo

ym
en

t

Target system

Ju
m

p
 server

R
eq

u
est

R
esp

o
n

se

C
lien

t

C
lien

t

P
assw

o
rd

 m
an

ager

R
esp

o
n

se

R
eq

u
est

R
etrieve

p
assw

o
rd

s

Ju
m

p
 server

P
assw

o
rd

 m
an

ager
X

A
C

M
L in

frastru
ctu

re

A
u

d
it Lo

ggin
g System

Lo
g server

Figure
6.3:FullA

rchitecture

86

6.4 Summary

Table 6.1: Summary of the Architecture Based on the Requirements Catalog

Requirement Architecture CA Netwrix Soffid

Systems Integration
Support for heterogeneous networks ♦ X X X
Centralized authentication X X X X
Centralized authorization X ♦ ♦ ♦
Account discovery/synchronization ♦ X ♦ X

Access Control
Fine-grained access control on passwords X X X X
Emergency access X X X X
Separation of duties X X X X
Support for standardized policy language X X X X
Policy transformation mechanism from high-
level policy language to low-level MAC poli-
cies

♦ X X X

Fine-grained access control on operating-
system level

X X X X

Password Management
Password security X X X X
Account check-out X X ♦ X
Account check-in and one-time password X X X X
Copy and paste a password X X X X
Platform-independent access X X X X
Limited access time X X X X
Hide password from the user X X X X
Support for applications X X X X
Automatic password change X X X X
Password policies X X ♦ X
Request/confirm access to privileged account ♦ X X X
Password organization X X X X

Auditing and Reporting
Audit logs X X X X
Security of audit trails X X X ♦
Notifications X X X X
Account matrix X X X ♦
Session recording ♦ X X X

87

7 Specification and Implementation of a
Demonstrator

This chapter describes a demonstrator that implements parts of the architecture that has
been proposed in Chapter 6. Figure 7.1 shows the system architecture, which consists of a
client, a jump server that connects to a target system, and a policy decision point that performs
the authorization evaluation. Moreover, the architecture includes a password database that
contains encrypted passwords which are used by the jump server to perform the authen-
tication on the the target system.

Target system

Policy decision point

Policy enforcement point

Web interface

Jump server

Password
database

Client

Figure 7.1: Architecture of the Demonstrator

89

7 Specification and Implementation of a Demonstrator

The environment was realized with two virtual machines in Oracle VirtualBox on a Linux
host. The first virtual machine represents the policy decision point, a second one provides
the jump server, and a third machine contains the password database and a simplified web
interface.

The specification of the first virtual machine is given in Table 7.1, the one for the jump
server in Table 7.2, and the specification of the password database and web interface is
summarized in Table 7.3.

Table 7.1: Environment Specification for the Policy Decision Point

Operating system Debian 6.0.8
Memory 384 MB
Disk capacity 8 GB
Installed software

• Apache Xerces 2.9.1

• gSOAP 2.7.10

• OpenJDK Runtime Environment 1.6.0 build 27

• pam xacml 0.2-alpha

• SimplePDP

• Sunxacml 1.2

Table 7.2: Environment Specification for the Jump Server

Operating system Debian 6.0.8
Memory 384 MB
Disk capacity 8 GB
Installed software

• MySQL client

• sshpass 1.04

90

7.1 Authorization for PAM-Enabled Applications

Table 7.3: Environment Specification for the Web Server

Operating system Debian 7.4
Memory 1 GB
Disk capacity 8 GB
Installed software

• Apache 2.2.2

• MySQL Server 5.5

• PHP 5.4.4

7.1 Authorization for PAM-Enabled Applications

The setup uses the pam xacml module which was introduced in Section 2.2. In order to
force a PAM-enabled program like sudo to use the PAM module, one has to add a similar
line like the one in Listing 7.1 to the configuration file (e.g., /etc/pam.d/sudo).

Listing 7.1: PAM Configuration for sudo
account required pam xacml . so reques tBui lder=INTERNAL
requestTemplate=/ e t c /pamxacml/sudo template . xml
pdpRequester=SIMPLE pdpEndpoint=PDP−server :1234

This configuration forces PAM to call the “pam xacml.so” module with some parameters.
One of them is “pdpEndpoint”, which tells the pam xacml module to which host and on
which port it has to connect to reach the PDP service. The other important parameter
is “requestTemplate”, which specifies the path to the XML template that makes up the
request message.

The request message transmits the information that is necessary for the PDP to evaluate
the request and find the appropriate policy. The simplest request template submits

• the subject that invoked the request (e.g., the username) and

• the resource that the subject wants to access (e.g., the name of the service or applica-
tion)

The template furthermore could send information about the environment (e.g., the name
of the host from which the request came from) or the action that a subject wants to per-
form on a resource. An example for a request message is shown in Listing 7.2. Here,
the user alice wants to access the resource sudo. Thus, the Subject attribute contains the
username and the Resource attribute provides the name of the command. Moreover, the
Environment attribute contains the hostname, which is my-hostname in this example. The
Action attribute is a static string that was not used but other applications could insert in-

91

7 Specification and Implementation of a Demonstrator

formation like “read”, “write”, or “delete”, so that rules can be built that evaluate concrete
actions.

Listing 7.2: Example Request Message for sudo

<Request xmlns=”urn : o a s i s : names : t c : xacml : 2 . 0 : contex t : schema : os ”
xmlns : x s i =” http ://www. w3 . org /2001/XMLSchema−i n s t a n c e ”
x s i : schemaLocation=” . . . ”>

<Subject>
<Attr ibute Attr ibuteId=”&s u b j e c t ; s u b j e c t−id ”

DataType=”&xml ; # s t r i n g ”>
<AttributeValue>a l i c e</AttributeValue>

</Attr ibute>
</Subject>
<Resource>

<Attr ibute Attr ibuteId=”&resource ; resource−id ”
DataType=”&xml ; # s t r i n g ”>

<AttributeValue>sudo</AttributeValue>
</Attr ibute>

</Resource>
<Action>

<Attr ibute Attr ibuteId=”&a c t i o n ; act ion−id ”
DataType=”&xml ; # s t r i n g ”>

<AttributeValue>PamXacml Authorizat ion</AttributeValue>
</Attr ibute>

</Action>
<Environment>

<Attr ibute Attr ibuteId=”urn : pamxacml : hostname”
DataType=”&xml ; # s t r i n g ”>

<AttributeValue>my−hostname</AttributeValue>
</Attr ibute>

</Environment>
</Request>

7.2 Policy Decision Point

The authors of pam xacml used the sunxacml implementation with a simple Java-based web
service as a policy decision point. Although the pam xacml module also supports other
PDPs as well, it was the best to choose an equal setup, which is why the demonstrator uses
the same PDP (“SimplePDP”) that was shipped with the pam xacml module.

The PDP is configured to listen on a TCP port to allow other machines to connect to the
centralized PDP server. Once the PDP web service receives a request, it uses the sunxacml
library to evaluate it. Thereto, it checks the policies which have been provided as a text file
that holds the XACML policies in XML syntax. Based on that, the PDP builds a response

92

7.3 Jump Server

message that includes the authorization decision. An example for a response is depicted in
Listing 7.3. The Decision attribute contains the decision that has been evaluated, which
is “Permit” in this example. Hence, the PEP is allowed to grant the access to resource
“sudo” to the user. Moreover, the Status attribute contains a status code that informs the
PEP that no errors occurred.

Listing 7.3: Example Response Message That Permits the use of sudo

<Response>
<Result ResourceID=”sudo”>

<Decision>Permit</Decision>
<Status>

<StatusCode Value=”&s t a t u s ; ok”/>
</Status>

</Result>
</Response>

7.3 Jump Server

A jump server for the SSH protocol can be realized with established software and a few
configuration changes. One approach is to use the ProxyCommand setting of OpenSSH and
only allow logins with public key authentication.

At first, the public key of each user that is allowed to connect to the jump server is added
to the authorized keys file of a dedicated user (e.g., “proxy”). In front of the key, the Proxy-
Command is added, which always executes a script after the user has successfully been au-
thenticated. An example for an authorized keys file that executes the script /usr/local/
bin/authorize_user is shown in Listing 7.4.

Listing 7.4: ProxyCommand in authorized keys File

command=”/usr/ l o c a l /bin/a u t h o r i z e u s e r a l i c e ” ssh−rsa AAAAB3 . . .
command=”/usr/ l o c a l /bin/a u t h o r i z e u s e r bob” ssh−rsa AAAAB3 . . .

For each user, there is a public key and the ProxyCommand that executes the “autho-
rize user” script with the username as a parameter. The script is the only command a user
is able to execute and it will be called automatically. This ensures that a user can only use
the jump server to connect to another server but cannot run any other command on the
jump server. Thereby, the server can be protected from attacks. The approach allows to
check the username of the connecting user in the script and to perform an authorization
check. Thereto, the script can use the central PDP and check if the user is authorized to
connect to the target system, which is transmitted by the SSH client as a command and
used as a variable in the script.

The user connects to the target system via the jump server by using the local SSH client
and executing the command shown in Listing 7.5.

93

7 Specification and Implementation of a Demonstrator

Listing 7.5: Command to Reach a Target System via the Jump Server
$ ssh −t proxy@jump−server t a r g e t−system

The command will connect to the jump server as user “proxy” and transmits the hostname
(e.g., “target-system”) of the machine to which the administrator wants to connect to as the
command. Instead of treating the command as the real hostname, it could also be a unique
identifier that is used to get the real hostname from a database.

Once the script has sent a request message to the PDP and received a positive authorization
response, it can establish the connection to the target system. For that purpose, it needs
to collect the username (e.g., “root”) and password for the given target system from a
database.

The password is saved as ciphertext in the database and is decrypted with a private key
on the jump server. With these credentials the script then connects to the target system
and appends the SSH session to the client’s session. The administrator can then work on
the target system as if he connected directly to the machine. As the script established the
second part of the connection, the user never gets in touch with the credentials.

7.4 Web Interface and Password Database

The web-based user interface demonstrates a management platform for passwords like the
password manager proposed in Chapter 6. A user can create new entries, modify existing
ones or delete an entry. Each password is encrypted with a public key whereas the reveal
function for a password is realized by using the private key to decrypt the ciphertext.

Besides revealing a password in the web interface, the jump server can retrieve the en-
crypted password and decrypt it with the private key. After that, the password can be
used to establish a connection to the target system.

Concluding, the jump server and the web server are the only components that deal with
cryptographic keys. The database only contains encrypted passwords and the server on
which the database is hosted does not have access to the public or private key.

94

8 Evaluation

At first, this chapter will analyze the differences between the requirements of the Leib-
niz Supercomputing Centre and iC Consult. After that, the applicability of the proposed
architecture from Chapter 6 and the analyzed software products from Chapter 5 will be
evaluated.

8.1 iC Consult Compared to the Leibniz Supercomputing Centre

The requirements of iC Consult and the LRZ, which have been discussed in Chapter 4,
are summarized in Table 8.1. A Xdeclares that the organization has the requirement while
an X signalizes that the requirement is unwanted or not given. A ♦ specifies that the
organization classifies the requirement as “nice to have”.

The requirements analysis in Chapter 4 showed that the main difference between the LRZ
and iC Consult is that most of the systems that the administrators of the LRZ operate,
belong to their organization, while employees of iC Consult not only need to manage
privileged user accounts of their internal infrastructure but also those of their customer’s
infrastructures. This implicates that the privileged user password management at the LRZ
can be more integrated into the infrastructure than at iC Consult. However, at both orga-
nizations the management solution has to be capable of being integrated into the existing
authentication infrastructure and the authorization should be centralized as well.

The requirement for a support of heterogeneous networks is given at the LRZ but at iC
Consult the requirement only applies to the internal infrastructure. Moreover, because of
the external systems that iC Consult is in charge of, the fine-grained access control on the
operating-system level can only be implemented in each infrastructure separately and if
the particular customer wants it. At the LRZ, the integration can be accomplished easier
because of the coherent infrastructure.

The fine-grained access control on passwords is important for both organizations, as well
as the emergency access and separation of duties. Thus, the privileged user password
management needs to provide an access control that at least supports a role-based autho-
rization schema but an attribute-based access control might be more flexible.

Another difference between the organizations can be seen at the “request/confirm access
to privileged account” requirement. In contrast to the LRZ, iC Consult requires a request
process for new privileged accounts that are approved by an authorized person.

The auditing and reporting section shows that the LRZ has the business regulation to not

95

8 Evaluation

Table 8.1: Requirements of the Leibniz Supercomputing Centre Compared to iC Consult

Requirement LRZ iC Consult

Systems Integration
Support for heterogeneous networks X X
Centralized authentication X X
Centralized authorization X X
Account discovery/synchronization X ♦

Access Control
Fine-grained access control on passwords X X
Emergency access X X
Separation of duties X X
Support for standardized policy language ♦ ♦
Policy transformation mechanism from high-level policy
language to low-level MAC policies

♦ ♦

Fine-grained access control on operating-system level X ♦

Password Management
Password security X X
Account check-out ♦ ♦
Account check-in and one-time password X ♦
Copy and paste a password X X
Platform-independent access X X
Limited access time X X
Hide password from the user X ♦
Support for applications X X
Automatic password change X ♦
Password policies X X
Request/confirm access to privileged account X X
Password organization X X

Auditing and Reporting
Audit logs X X
Security of audit trails - X
Notifications X X
Account matrix X X
Session recording X X

96

8.2 Applicability Analysis for the Leibniz Supercomputing Centre

track the actions that are performed by administrators. This includes audit logs and ses-
sion recording. On the other hand, iC Consult operates various external infrastructures
with several stakeholders that have access to the systems. Thus, audit trails are necessary
to ensure accountability.

8.2 Applicability Analysis for the Leibniz Supercomputing
Centre

This section analyzes the applicability of the architecture that was proposed in Chapter 6
and the software that was analyzed in Chapter 5, based on the requirements from Section
4.4.

8.2.1 Applicability of the Architecture

The centralized approach of the architecture as well as the policy-based authorization lan-
guage XACML can provide the basis for a privileged user password management at the
LRZ. XACML fulfills the requirements for a separation of duties and the definition of rules
that allow an emergency access. With the transformation of high-level policies to low-level
policies a fine-grained access control can be realized so that privileged users do not have
unrestricted access on all systems.

Certainly, the LRZ noted that managing the access rights for every single administrator is
too time consuming and complex in their infrastructure. An alternative is to combine the
administrative tasks into generic groups that have the attributes assigned, so that database
administrators have other access permissions than operating system administrator, even
if they share the same privileged account. This reduces the complexity of the access man-
agement but still gives a security improvement.

Besides that, the architecture adds another authorization concept to the infrastructure.
Thus, the organization might need to manage a PDP besides the existing Active Directory
and LDAP servers.

The approach of having a jump server to connect to target systems (e.g., routers and
switches) is already fulfilled with the BalaBit Shell Control Box.

8.2.2 Applicability of the Analyzed Software

The CA ControlMinder provides a lot of features and fulfills most of the requirements that
where outlined in the requirements catalog of Section 4.6. Thus, it would be suitable for
the LRZ because features such as the auditing and session recording can be deactivated so
that the product adheres to the business regulations.

The Netwrix Privileged Account Manager misses some of the requirements that the LRZ

97

8 Evaluation

has, for example, a fine-grained access control on passwords as well as notifications and a
seal functionality.

The Soffid Identity and Access Management software suits a bit better than the Netwrix
product but it also misses some requirements, including the seal functionality. However,
because of the open-source approach and the LRZ’s close integration in research, the soft-
ware could be extended to the needs of the organization.

8.3 Applicability Analysis for iC Consult

This section analyzes the applicability of the architecture that was proposed in Chapter 6
and the software that was analyzed in Chapter 5, based on the requirements from Section
4.5.

8.3.1 Applicability of the Architecture

The attribute-based approach of the architecture provides a more flexible access control
than a role-based access control. Once the central components like the policy decision
point, policy administration point, and policy repository are established, other systems
and applications can utilize the centralized authorization.

However, most of the existing business applications cannot be integrated into the proposed
architecture until they provide adequate interfaces or directly implement the support for a
standard like XACML. Thus, a component like the password manager can be implemented
by using standardized interfaces but it would be an in-house development.

In order to leverage the proposed architecture not only for the internal infrastructure but
also for external infrastructures, the architecture might be extended to a federated privi-
leged user password management so that policies could be deployed to different systems.

8.3.2 Applicability of the Analyzed Software

For iC Consult, a product like the CA ControlMinder suite seems to be applicable as it ful-
fills almost all requirements that have been analyzed in this thesis. The software could be
integrated into the internal infrastructure as well as into the external infrastructure of their
customers. However, for the centralized privileged user password management that iC
Consult requires for their customer projects, a less extensive product might be applicable
as well.

In contrast, the Netwrix Privileged Account Manager misses several features and is thus
not suitable for the needs of the organization. One example is the absence of an access
control that provides an assignment of passwords to groups or singular administrators.

98

8.3 Applicability Analysis for iC Consult

The open-source software from Soffid has an integrated identity and access management
but misses some important features, like the emergency access and audit logs. Such fea-
tures could be integrated but it requires time and effort and would not come close to the
marketability of a commercial product.

99

9 Conclusion and Future Work

This chapter will summarize the thesis and outline possible topics for future work that can
be based on the findings of this thesis.

9.1 Summary

This thesis showed that administrators use privileged accounts to perform day-to-day
tasks and that they often have unrestricted access to business-critical systems and data. In
consequence, the unlimited access rights of such privileged accounts can lead to negligent
actions and insider attacks that are difficult to prevent. Moreover, the sharing of privileged
accounts between several employees increases the security risk because the accountability
and non-repudiation is violated.

However, the requirements analysis has shown that shared privileged accounts are re-
quired for emergency situations and that the utilization of personal accounts often is not
feasible or cannot be implemented on some systems because they only provide a simple
access control with one privileged account.

For that purpose, a privileged user password management solution needs to consider
more special use cases than a normal password manager that manages non-privileged
credentials. Certainly, usual password managers can help sharing the credentials and can
provide a fine-grained access control to prevent that unauthorized users have access to
passwords. Moreover, extensive software products can increase the security with frequent
password changes and one-time passwords that are automatically changed on the target
systems.

However, the threat model has shown that not only the privileged user passwords need
to be protected from attacks but also the threats that arise from administrators using priv-
ileged accounts need to be considered. The analysis showed that in order to ensure ac-
countability on shared accounts, the password manager needs to log every access to a
privileged user password. Besides that, it might also provide a check-out and check-in
feature for passwords to restrict the access to one user at a time and use the action as an
indication which administrator was logged in to the system at a given time.

Although it requires a lot of effort to define the access rights of each administrator, it is an
improvement to the security to reduce the privileges to a minimum with centrally man-
aged policies that are enforced on the target systems and in applications. Thereby, admin-
istrators can use their own personal account that has all privileges attached to fulfill the

101

9 Conclusion and Future Work

every job. For situation where administrators require urgent access to privileges they are
usually not authorized to use, the architecture also needs to provide business processes
that are implemented in security policies. Besides that, there need to be password vaults
for exceptional cases where a shared privileged account is required, including components
that cannot be integrated in a central access control infrastructure, for example, routers or
systems in foreign networks.

Besides following the principle of least privilege by establishing a fine-grained access con-
trol, the architecture should provide a secure audit trail in order to ensure non-repudiation
and review the actions that were performed during an attack. This requires the authentic-
ity and integrity of logs as well as a separation of duties that ensures that only authorized
persons have access to the audit logs and that an attacker cannot cover his tracks by ma-
nipulating the logs.

The proposed architecture showed that business processes can be modeled with an ac-
cess control policy language like XACML and that applications can utilize a centralized
component to enforce the authorization decisions. With XACML, the separation of du-
ties, the delegation of permissions, the principle of least privilege, and emergency accesses
can be realized directly in the authorization policies. A jump server can help to protect
from unauthorized accesses to target systems as well as ensure accountability and non-
repudiation.

The analysis of three software solutions showed that the functional range differs widely
and that it depends on the organization’s requirements what product suits best. Some of
them only provide a password manager that allows administrators to access the creden-
tials of privileged accounts while extensive products also considered the requirements that
exist beyond the access to the privileged user password. For example the emergency access
or the enforcement of the principle of least privileges in the operating system of the man-
aged systems. As mentioned before, the management of fine-grained access rights on the
operating-system level becomes more complex than the management of who is authorized
to access what password.

However, for some organizations the establishment of a more complex privileged user
password management infrastructure might be suitable. Especially for those that have
outsourced the administration of their network and want to ensure that privileged users
cannot perform actions beyond their area of responsibility. Moreover, audit trails can help
to detect malicious actions and theft of business secrets.

9.2 Future Work

This thesis mainly covered basic approaches that can be improved in future work. This
includes security enhancements as well as improvements to the proposed architecture.
Some of them have already been addressed in the previous chapters and reference to the
subsequent sections which will outline proposals for future research.

102

9.2 Future Work

9.2.1 Attribute-Based Encryption For Sensitive Data

In the area of asymmetric cryptography, the attribute-based encryption provides a solution
to the problem where different people with different key pairs want to have access to the
same encrypted data. In this case, the traditional encryption scheme requires to encrypt the
same data (e.g., a password) for every known public key of a subject that might demand
access to it. This is because it is necessary to have the public key of the receiver that will
decrypt the message before being able to encrypt the data for the receiving subject [20].

Hence, an alternative encryption scheme has been proposed by Adi Shamir in 1984 [66].
The idea behind the Identity-Based Encryption (IBE) was to replace the digital certificates
with an identifier, like the user’s email or IP address. Certainly, this approach also requires
to encrypt the data with different public keys when more than one person has to be able
to decrypt the data.

Based on the identity-based cryptosystem, Sahai and Waters proposed the Fuzzy Identity-
Based Encryption [61] in combination with the Attribute-Based Encryption (ABE) [23], which
aimed to overcome the limitations of having to encrypt the data with multiple public keys.
The idea behind their approach was to define attributes that make up the identity of a
subject. An encrypted message can be decrypted if and only if the receiver’s attributes ω
are close to the attributes ω′ ⊂ ω that are part of the public key that was used to encrypt the
message. They invented a “set overlap” distance metric which compared the two attribute
sets and determined, if the subject is allowed to encrypt the data or not.

As a follow up work of the attribute-based encryption scheme, Bethencourt et al. pro-
posed the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [4], which attaches an ac-
cess structure to the ciphertext and attributes to the private key. The access structure of the
ciphertext is formulated as a boolean expression over the attributes, which ensures that
only a user can decrypt the ciphertext, whose attributes pass through the access structure.

In contrast to an approach that uses secret sharing, the CP-ABE provides collusion-resistance.
This is because it makes it impossible that two or more users collude their attributes and
thereby can decrypt the ciphertext which they could not have accomplished individually.

This approach can be used for a database that hosts sensitive data like passwords. The data
is encrypted and includes an access structure that defines which attribute combination is
allowed to decrypt the ciphertext. On the other hand, each subject has attributes attached
to its private key, which are used to determine if the decryption is allowed.

In the case of the jump server, it is imaginable that the PEP or the PDP collect the encrypted
password for the requested target system from the database and use the user’s private key
to decrypt it if possible. Thereby, an attacker that obtains access to the private key on the
PDP could not decrypt all privileged user passwords. Instead, the attacker needs to collect
several user-specific keys and combine them to be able to access all passwords.

103

9 Conclusion and Future Work

9.2.2 Transformation of High-Level Policies to Low-Level Policies

Since not all operating system components and applications support an interface for a cen-
tralized authentication component like the policy decision point, it is necessary to establish
a mechanism that transforms high-level policies (which are defined, e.g., with XACML) to
application-specific low-level policies.

One example is the system-level transformation of XACML policies to SELinux policies
which allows to map a policy like “Bob is authorized to view and edit the file /etc/hosts” to
a concrete mandatory access control rule that SELinux can enforce.

In [1] Alam et al. have proposed an architecture and a transformation mechanism for
XACML policies to SELinux policies. In future work, other transformation mechanisms
need to be considered, for example, network-level policies that allow to transform XACML
policies to firewall rules [76].

9.2.3 Expansion to Other Operating Systems

Although the software analysis in Chapter 5 included Windows as well as Linux operating
systems, the architecture in Chapter 6 mainly focused on open standards and UNIX-like
operating systems.

Thus, the transfer of the XACML architecture to Windows servers can be examined in a
future work. For that purpose, a replacement for the PAM approach needs to be found, so
that applications can utilize XACML through a standard interface. There already exist im-
plementations of policy decision point servers that run on Windows. Moreover, there are
libraries for different programming languages that can be used in applications to imple-
ment a policy-based authorization with XACML directly. One example is the open-source
library XACML.NET1 for applications that are based on the Microsoft .NET Framework.

Furthermore, the fine-grained access control on the operating-system level is an open topic
that can be researched. An approach for enforcing the policy decisions in the file system
of Windows are File System Filter Drivers, which can intercept the system calls and provide
authorization checks based on the decision of a policy decision point.

Another aspect is the automatic password change that requires an appropriate mechanism
for Windows systems. This could be realized with a dedicated service that is installed
on the server and that performs the local password change. Instead of using a custom
implementation, the architecture could utilize Microsoft’s Cusrmgr.exe tool2 or PsPasswd3

by Mark Russinovich which can be used to remotely change the password of an account.

1http://mvpos.sourceforge.net
2http://support.microsoft.com/kb/272530/en-us
3http://technet.microsoft.com/en-us/sysinternals/bb897543.aspx

104

http://mvpos.sourceforge.net
http://support.microsoft.com/kb/272530/en-us
http://technet.microsoft.com/en-us/sysinternals/bb897543.aspx

9.2 Future Work

9.2.4 Virtual Environments

The virtualization technique provides a lot of advantages, including the reduction of costs
and increase of availability, but it also creates new security challenges regarding the priv-
ileged user password management. This is because administrators that have access to the
host machine can often access all guest machines that are virtualized by the hypervisor.

Moreover, virtual machines can be created and moved easier than physical machines which
increases the amount of privileged accounts as well as the effort to monitor the network
for malicious actions. This requires that the access rights of privileged users comply with
the principle of least privilege and that administrative tasks are conformable with the sep-
aration of duties.

In a future work, the proposed architecture could be enhanced with a concept that ad-
dresses the hypervisor and secures the virtualized environments.

105

Bibliography

[1] Masoom Alam, Jean-Pierre Seifert, Qi Li, and Xinwen Zhang. Usage Control Plat-
formization via Trustworthy SELinux. In Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security, ASIACCS ’08, pages 245–248,
2008.

[2] William C. Barker. Information Security. Recommendations of the National Institute of
Standards and Technology, August 2003.

[3] Mihir Bellare and Bennet Yee. Forward Integrity For Secure Audit Logs. In Technical
Report, Computer Science and Engineering Department, University of San Diego, Novem-
ber 1997.

[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-Policy Attribute-Based
Encryption. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP ’07,
pages 321–334. IEEE Computer Society, 2007.

[5] R.A. Botha and J.H.P. Eloff. Separation of duties for access control enforcement in
workflow environments. IBM Systems Journal, 40:666–682, 2001.

[6] Daan Broeder, Bob Jones, David Kelsey, Philip Kershaw, Stefan Lüders, Andrew Lyall,
Tommi Nyrönen, Romain Wartel, and Heinz J Weyer. Federated Identity Management
for Research Collaborations. Technical report, CERN, April 2012.

[7] Achim D. Brucker and Helmut Petritsch. Extending Access Control Models with
Break-glass. In Proceedings of the 14th ACM Symposium on Access Control Models and
Technologies, SACMAT ’09, pages 197–206. ACM, 2009.

[8] Axel Buecker, Paul Ashley, and Neil Readshaw. Federated Identity and Trust Man-
agement. Technical report, Tivoli Software, May 2008. http://www.redbooks.
ibm.com/redpapers/pdfs/redp3678.pdf.

[9] Axel Buecker, Barry Evans, and Dirk Rahnenfuehrer. Centrally Managing and
Auditing Privileged User Identities by Using the IBM Integration Services for
Privileged Identity Management, May 2010. http://www.redbooks.ibm.com/
redpapers/pdfs/redp4660.pdf.

[10] Leibniz Supercomputing Centre. The LRZ in a nutshell. https://www.lrz.de/
wir/lrz-flyer/lrz-flyer.pdf, July 2012. [Accessed March 20, 2014].

[11] David Chadwick and Stijn Lievens. Break the Glass Profile For XACML v2.0 and v3.0.
February 2011. https://lists.oasis-open.org/archives/xacml/201011/

107

http://www.redbooks.ibm.com/redpapers/pdfs/redp3678.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp3678.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4660.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4660.pdf
https://www.lrz.de/wir/lrz-flyer/lrz-flyer.pdf
https://www.lrz.de/wir/lrz-flyer/lrz-flyer.pdf
https://lists.oasis-open.org/archives/xacml/201011/doc00000.doc
https://lists.oasis-open.org/archives/xacml/201011/doc00000.doc
https://lists.oasis-open.org/archives/xacml/201011/doc00000.doc

Bibliography

doc00000.doc.

[12] John Chirillo and Edgar Danielyan. Sun Certified Security Administrator for Solaris 9 &
10 Study Guide. McGraw-Hill Professional Publishing, June 2005.

[13] Shibboleth Consortium. How Shibboleth Works: Basic Concepts. http://
shibboleth.net/about/basic.html. [Accessed December 26, 2013].

[14] IBM Corporation. Avoiding insider threats to enterprise security. http://public.
dhe.ibm.com/common/ssi/ecm/en/wgw03016usen/WGW03016USEN.PDF,
October 2012. [Accessed February 20, 2014].

[15] Lieberman Software Corporation. Privileged Identity Management. 2010.

[16] NetWrix Corporation. NetWrix Privileged Account Manager, Datasheet.
http://www.netwrix.com/download/Datasheets/Privileged_Account_
Manager_Datasheet.pdf. [Accessed February 28, 2014].

[17] Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften. Jahres-
bericht 2012. https://www.lrz.de/wir/berichte/JB/JBer2012.pdf, July
2013. [Accessed March 20, 2014].

[18] IBM developerWorks. IBM Security Privileged Identity Manager Technical White Pa-
per. https://www.ibm.com/developerworks/community/wikis/home?
lang=en#!/wiki/Wc42dcb83bbad_485d_a112_1d03408e24c0/page/
IBM%20Security%20Privileged%20Identity%20Manager%20Technical%
20White%20Paper, February 2013. [Accessed November 5, 2013].

[19] Kurt Dillard. Intrusion Detection FAQ: What is a bastion host? http://www.sans.
org/security-resources/idfaq/bastion.php. [Accessed February 11, 2014].

[20] Nishant Doshi and Devesh Jinwala. Updating Attribute in CP-ABE: A New Ap-
proach. IJCA Proceedings on International Conference in Distributed Computing and In-
ternet Technology, ICDCIT:23–28, January 2013.

[21] Garo Doudian. Generic Accounts and Non-Repudiation. http://www.giac.org/
paper/gsec/3940/generic-accounts-non-repudiation/106335, June
2004. [Accessed November 29, 2013].

[22] Open Software Foundation. Unified login with pluggable authentication modules
(PAM). http://www.opengroup.org/rfc/rfc86.0.html, October 1995. [Ac-
cessed February 11, 2014].

[23] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based En-
cryption for Fine-grained Access Control of Encrypted Data. In Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS ’06. ACM, 2006.

[24] Network Working Group. Policy Framework Architecture. http://tools.ietf.
org/html/draft-ietf-policy-arch-00, August 1999. [Accessed February 11,
2014].

108

https://lists.oasis-open.org/archives/xacml/201011/doc00000.doc
https://lists.oasis-open.org/archives/xacml/201011/doc00000.doc
https://lists.oasis-open.org/archives/xacml/201011/doc00000.doc
http://shibboleth.net/about/basic.html
http://shibboleth.net/about/basic.html
http://public.dhe.ibm.com/common/ssi/ecm/en/wgw03016usen/WGW03016USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/wgw03016usen/WGW03016USEN.PDF
http://www.netwrix.com/download/Datasheets/Privileged_Account_Manager_Datasheet.pdf
http://www.netwrix.com/download/Datasheets/Privileged_Account_Manager_Datasheet.pdf
https://www.lrz.de/wir/berichte/JB/JBer2012.pdf
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Wc42dcb83bbad_485d_a112_1d03408e24c0/page/IBM%20Security%20Privileged%20Identity%20Manager%20Technical%20White%20Paper
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Wc42dcb83bbad_485d_a112_1d03408e24c0/page/IBM%20Security%20Privileged%20Identity%20Manager%20Technical%20White%20Paper
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Wc42dcb83bbad_485d_a112_1d03408e24c0/page/IBM%20Security%20Privileged%20Identity%20Manager%20Technical%20White%20Paper
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Wc42dcb83bbad_485d_a112_1d03408e24c0/page/IBM%20Security%20Privileged%20Identity%20Manager%20Technical%20White%20Paper
http://www.sans.org/security-resources/idfaq/bastion.php
http://www.sans.org/security-resources/idfaq/bastion.php
http://www.giac.org/paper/gsec/3940/generic-accounts-non-repudiation/106335
http://www.giac.org/paper/gsec/3940/generic-accounts-non-repudiation/106335
http://www.opengroup.org/rfc/rfc86.0.html
http://tools.ietf.org/html/draft-ietf-policy-arch-00
http://tools.ietf.org/html/draft-ietf-policy-arch-00

Bibliography

[25] Network Working Group. A Framework for Policy-based Admission Control. http:
//tools.ietf.org/html/rfc2753, January 2000. [Accessed February 10, 2014].

[26] Network Working Group. AAA Authorization Framework. http://tools.ietf.
org/html/rfc2904, August 2000. [Accessed February 9, 2014].

[27] Network Working Group. Generic AAA Architecture. http://tools.ietf.org/
html/rfc2903, August 2000. [Accessed January 17, 2014].

[28] Network Working Group. Internet Security Glossary, Version 2. http://tools.
ietf.org/html/rfc4949, August 2007. [Accessed October 23, 2013].

[29] Michael Hafner, Mukhtiar Memon, and Muhammad Alam. Modeling and Enforcing
Advanced Access Control Policies in Healthcare Systems with SECTET. September
2007.

[30] Dick Hardt. The OAuth 2.0 Authorization Framework. http://tools.ietf.org/
html/rfc6749, October 2012. [Accessed April 5, 2014].

[31] Red Hat. Red Hat Enterprise Linux 6 Security Guide. https://access.redhat.
com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/
Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-
US.pdf, 2013. [Accessed January 7, 2014].

[32] Tobias Heide. Introduction to pam xacml. http://pamxacml.sourceforge.
net/Documents/pam_xacml.htm. [Accessed December 26, 2013].

[33] Wolfgang Hommel. Using XACML for Privacy Control in SAML-based Identity Fed-
erations. In In Proceedings of the 9th Conference on Communications and Multimedia Se-
curity (CMS 2005), September 2005.

[34] iC Consult. Independent Consulting leads to intelligent solutions. http://www.ic-
consult.com/en-US/portfolio.html. [Accessed January 17, 2014].

[35] IETF. The Syslog Protocol. http://tools.ietf.org/html/rfc5424, 2009. [Ac-
cessed March 16, 2014].

[36] Ponemon Institute. The Business Case for Data Protection: What Senior Execu-
tives Think about Data Protection. http://www.ponemon.org/local/upload/
file/Business_Case_for_Data_Protection_WP.pdf, February 2012. [Ac-
cessed February 1, 2014].

[37] SANS Institute. A Layered Security Model: OSI and Information Security.
http://www.giac.org/paper/gsec/3908/layered-security-model-
osi-information-security/106272, June 2004. [Accessed February 3, 2014].

[38] Sonia Jahid, Carl A. Gunter, Imranul Hoque, and Hamed Okhravi. MyABDAC: Com-
piling XACML Policies for Attribute-based Database Access Control. In Proceedings of
the First ACM Conference on Data and Application Security and Privacy, CODASPY ’11,
pages 97–108, 2011.

109

http://tools.ietf.org/html/rfc2753
http://tools.ietf.org/html/rfc2753
http://tools.ietf.org/html/rfc2904
http://tools.ietf.org/html/rfc2904
http://tools.ietf.org/html/rfc2903
http://tools.ietf.org/html/rfc2903
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-US.pdf
http://pamxacml.sourceforge.net/Documents/pam_xacml.htm
http://pamxacml.sourceforge.net/Documents/pam_xacml.htm
http://www.ic-consult.com/en-US/portfolio.html
http://www.ic-consult.com/en-US/portfolio.html
http://tools.ietf.org/html/rfc5424
http://www.ponemon.org/local/upload/file/Business_Case_for_Data_Protection_WP.pdf
http://www.ponemon.org/local/upload/file/Business_Case_for_Data_Protection_WP.pdf
http://www.giac.org/paper/gsec/3908/layered-security-model-osi-information-security/106272
http://www.giac.org/paper/gsec/3908/layered-security-model-osi-information-security/106272

Bibliography

[39] Yu-Lin Jeng. An OpenID Based Authentication Mechanism in a Distributed Sys-
tem Environment. International Journal of Computer and Communication Engineering,
September 2012.

[40] Köhler. Jochen. Privileged Identity Management. Administrative Zugriffe auch
in der Wolke unter Kontrolle. http://www.securitymanager.de/magazin/
privileged_identity_management.html, November 2012. [Accessed October
18, 2013].

[41] Pauli Kaila. OAuth and OpenID 2.0. Proceedings of the seminar on network security,
December 2008.

[42] Karen Kent and Murugiah Souppaya. Guide to Computer Security Log Management.
Recommendations of the National Institute of Standards and Technology, September 2006.

[43] Andreas Klenk, Tobias Heide, Benoit Radier, Mikaël Salaün, and Georg Carle. Plug-
gable Authorization and Distributed Enforcement with pam xacml. Informatik Ak-
tuell, pages 253–264. Springer, 2009.

[44] Janet Kuhn. Decrypting the MoSCoW Analysis. http://www.itsmsolutions.
com/newsletters/DITYvol5iss44.pdf, November 2009. [Accessed March 20,
2014].

[45] Rebekah Lepro. Cardea: Dynamic Access Control in Distributed Systems. Novem-
ber 2003. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.140.8932&rep=rep1&type=pdf.

[46] Sophos Ltd. Security Threat Report 2013. http://www.sophos.com/de-
de/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf,
2013. [Accessed November 2, 2014].

[47] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla, and
Anandha Murukan. Improving Web Application Security: Threat Modeling. http:
//msdn.microsoft.com/en-us/library/ff648644.aspx, June 2003. [Ac-
cessed December 3, 2013].

[48] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla, and
Anandha Murukan. Improving Web Application Security: Threats and Countermea-
sures. http://msdn.microsoft.com/en-us/library/ff648641.aspx, Jan-
uary 2006. [Accessed November 5, 2013].

[49] Russell Miller. Beyond Passwords: a fine-grained approach to Privileged Identity
Management. Privileged Identity Management and Virtualization Security, January 2013.
http://transform.ca.com/rs/catech/images/beyond-passwords-
a-fine-grained-approach-to-privileged-identity-management-
wp.pdf.

[50] Alan Nagelberg. Identity Federation Concepts. http://assets1.csc.com/
cybersecurity/downloads/FIM_White_Paper_Identity_Federation_
Concepts.pdf, July 2010. [Accessed December 26, 2013].

110

http://www.securitymanager.de/magazin/privileged_identity_management.html
http://www.securitymanager.de/magazin/privileged_identity_management.html
http://www.itsmsolutions.com/newsletters/DITYvol5iss44.pdf
http://www.itsmsolutions.com/newsletters/DITYvol5iss44.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.8932&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.8932&rep=rep1&type=pdf
http://www.sophos.com/de-de/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
http://www.sophos.com/de-de/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
http://msdn.microsoft.com/en-us/library/ff648644.aspx
http://msdn.microsoft.com/en-us/library/ff648644.aspx
http://msdn.microsoft.com/en-us/library/ff648641.aspx
http://transform.ca.com/rs/catech/images/beyond-passwords-a-fine-grained-approach-to-privileged-identity-management-wp.pdf
http://transform.ca.com/rs/catech/images/beyond-passwords-a-fine-grained-approach-to-privileged-identity-management-wp.pdf
http://transform.ca.com/rs/catech/images/beyond-passwords-a-fine-grained-approach-to-privileged-identity-management-wp.pdf
http://assets1.csc.com/cybersecurity/downloads/FIM_White_Paper_Identity_Federation_Concepts.pdf
http://assets1.csc.com/cybersecurity/downloads/FIM_White_Paper_Identity_Federation_Concepts.pdf
http://assets1.csc.com/cybersecurity/downloads/FIM_White_Paper_Identity_Federation_Concepts.pdf

Bibliography

[51] AEP Networks. How to Protect Your Critical Resources with Identity-based Access
Control. 2008.

[52] OASIS. Architecture of Policy Administration Point (PAP) and related components.
https://wiki.oasis-open.org/xacml/Policy%20Administration%
20Point%20Architecture. [Accessed February 9, 2014].

[53] OASIS. XACML Profile for Role Based Access Control (RBAC). http://docs.
oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf, February 2004.
[Accessed February 25, 2014].

[54] OASIS. OASIS eXtensible Access Control Markup Language (XACML) Version
2.0. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-
2.0-core-spec-os.pdf, February 2005. [Accessed February 26, 2014].

[55] OASIS. Security Assertion Markup Language (SAML) V2.0 Technical Overview.
https://www.oasis-open.org/committees/download.php/20645/sstc-
saml-tech-overview-2%200-draft-10.pdf, March 2008. [Accessed February
25, 2014].

[56] OASIS. SAML 2.0 Profile of XACML. http://docs.oasis-open.org/xacml/
3.0/xacml-profile-saml2.0-v2-spec-cs-01-en.pdf, August 2010. [Ac-
cessed February 25, 2014].

[57] OASIS. XACML v3.0 Administration and Delegation Profile Version 1.0.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-
v1-spec-cd-1-en.html, August 2010. [Accessed February 9, 2014].

[58] U.S. Department of Health & Human Services. Security Standards: Administrative
Safeguards. http://www.hhs.gov/ocr/privacy/hipaa/administrative/
securityrule/adminsafeguards.pdf, September 2007. [Accessed March 20,
2014].

[59] California Department of Technology. Network Architecture Standard.
http://www.servicecatalog.dts.ca.gov/services/professional/
security/docs/3117_Network_Architecture_Standard.pdf, July 2013.
[Accessed March 1, 2014].

[60] N. Papatheodoulou and N. Sklavos. Architecture & system design of Authentication,
Authorization, & Accounting services. EUROCON 2009, IEEE:1831–1837, May 2009.

[61] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In Advances in Cryp-
tology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, May 2005.

[62] Karen Scarfone and Peter Mell. Guide to Intrusion Detection and Prevention Systems
(IDPS). Recommendations of the National Institute of Standards and Technology, February
2007.

[63] Karen Scarfone and Murugiah Souppaya. Guide to Enterprise Password Manage-

111

https://wiki.oasis-open.org/xacml/Policy%20Administration%20Point%20Architecture
https://wiki.oasis-open.org/xacml/Policy%20Administration%20Point%20Architecture
http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf
http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
https://www.oasis-open.org/committees/download.php/20645/sstc-saml-tech-overview-2%200-draft-10.pdf
https://www.oasis-open.org/committees/download.php/20645/sstc-saml-tech-overview-2%200-draft-10.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-profile-saml2.0-v2-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-profile-saml2.0-v2-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-1-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-1-en.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/adminsafeguards.pdf
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/adminsafeguards.pdf
http://www.servicecatalog.dts.ca.gov/services/professional/security/docs/3117_Network_Architecture_Standard.pdf
http://www.servicecatalog.dts.ca.gov/services/professional/security/docs/3117_Network_Architecture_Standard.pdf

Bibliography

ment. Recommendations of the National Institute of Standards and Technology, April 2009.

[64] Fred B. Schneider. Least Privilege and More. IEEE Security & Privacy, pages 55–59,
2003.

[65] Bruce Schneier and John Kelsey. Secure Audit Logs to Support Computer Forensics.
ACM Trans. Inf. Syst. Secur., pages 159–176, May 1999.

[66] Adi Shamir. Identity-based Cryptosystems and Signature Schemes. In Proceedings of
CRYPTO 84 on Advances in Cryptology, pages 47–53. Springer-Verlag New York, Inc.,
1985.

[67] Adam Shostack. Experiences Threat Modeling at Microsoft. http://blogs.
msdn.com/cfs-file.ashx/__key/communityserver-components-
postattachments/00-08-99-18-06/Shostack_2D00_ModSec08_2D00_
Experiences_2D00_Threat_2D00_Modeling_2D00_At_2D00_Microsoft.
pdf, 2008. [Accessed February 11, 2014].

[68] Amichai Shulman. Top Ten Database Security Threats. http://www.schell.com/
Top_Ten_Database_Threats.pdf, 2006. [Accessed November 20, 2013].

[69] George Silowash, Dawn Cappelli, Andrew Moore, Randall Trzeciak, Timo-
thy J. Shimeall, and Lori Flynn. Common Sense Guide to Mitigating Insider
Threats, 4th Edition. Technical report, Carnegie Mellon University, Decem-
ber 2012. http://www.ncix.gov/issues/ithreat/docs/Common_Sense_
Guide_to_Mitigating_Insider_Threats.pdf.

[70] Soffid. XACML. http://confluence.soffid.org/display/SOF/XACML. [Ac-
cessed February 25, 2014].

[71] Soffid. Identity and Access Management, Data Sheet. http://soffid.com/
wp-content/uploads/2013/04/Soffid-Product-Sheet_v0.11.pdf, April
2013. [Accessed January 17, 2014].

[72] Marianne Swanson and Barbara Guttman. Generally Accepted Principles and Prac-
tices for Securing Information Technology Systems. http://csrc.nist.gov/
publications/nistpubs/800-14/800-14.pdf, September 1996. [Accessed
February 11, 2014].

[73] Bob Tarzey, Cleve Longbottom, and Mariateresa Faregna. Privileged user
management. http://www.ca.com/Files/SupportingPieces/quocirca_
priviledgd_usr_mgmt_oct_19_09_219925.pdf, 2009. [Accessed October 18,
2013].

[74] CA Technologies. CA ControlMinder Shared Account Management. http:
//www.ca.com/us/˜/media/Files/DataSheets/ca-controlminder-
shared-account-management.PDF, 2013. [Accessed January 16, 2014].

[75] CA Technologies. Privileged Identity Management with CA ControlMin-
der. http://www.ca.com/au/˜/media/Files/SolutionBriefs/ca-

112

http://blogs.msdn.com/cfs-file.ashx/__key/communityserver-components-postattachments/00-08-99-18-06/Shostack_2D00_ModSec08_2D00_Experiences_2D00_Threat_2D00_Modeling_2D00_At_2D00_Microsoft.pdf
http://blogs.msdn.com/cfs-file.ashx/__key/communityserver-components-postattachments/00-08-99-18-06/Shostack_2D00_ModSec08_2D00_Experiences_2D00_Threat_2D00_Modeling_2D00_At_2D00_Microsoft.pdf
http://blogs.msdn.com/cfs-file.ashx/__key/communityserver-components-postattachments/00-08-99-18-06/Shostack_2D00_ModSec08_2D00_Experiences_2D00_Threat_2D00_Modeling_2D00_At_2D00_Microsoft.pdf
http://blogs.msdn.com/cfs-file.ashx/__key/communityserver-components-postattachments/00-08-99-18-06/Shostack_2D00_ModSec08_2D00_Experiences_2D00_Threat_2D00_Modeling_2D00_At_2D00_Microsoft.pdf
http://blogs.msdn.com/cfs-file.ashx/__key/communityserver-components-postattachments/00-08-99-18-06/Shostack_2D00_ModSec08_2D00_Experiences_2D00_Threat_2D00_Modeling_2D00_At_2D00_Microsoft.pdf
http://www.schell.com/Top_Ten_Database_Threats.pdf
http://www.schell.com/Top_Ten_Database_Threats.pdf
http://www.ncix.gov/issues/ithreat/docs/Common_Sense_Guide_to_Mitigating_Insider_Threats.pdf
http://www.ncix.gov/issues/ithreat/docs/Common_Sense_Guide_to_Mitigating_Insider_Threats.pdf
http://confluence.soffid.org/display/SOF/XACML
http://soffid.com/wp-content/uploads/2013/04/Soffid-Product-Sheet_v0.11.pdf
http://soffid.com/wp-content/uploads/2013/04/Soffid-Product-Sheet_v0.11.pdf
http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf
http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf
http://www.ca.com/Files/SupportingPieces/quocirca_priviledgd_usr_mgmt_oct_19_09_219925.pdf
http://www.ca.com/Files/SupportingPieces/quocirca_priviledgd_usr_mgmt_oct_19_09_219925.pdf
http://www.ca.com/us/~/media/Files/DataSheets/ca-controlminder-shared-account-management.PDF
http://www.ca.com/us/~/media/Files/DataSheets/ca-controlminder-shared-account-management.PDF
http://www.ca.com/us/~/media/Files/DataSheets/ca-controlminder-shared-account-management.PDF
http://www.ca.com/au/~/media/Files/SolutionBriefs/ca-controlminder-solution-brief.pdf
http://www.ca.com/au/~/media/Files/SolutionBriefs/ca-controlminder-solution-brief.pdf
http://www.ca.com/au/~/media/Files/SolutionBriefs/ca-controlminder-solution-brief.pdf

Bibliography

controlminder-solution-brief.pdf, 2013.

[76] Tugkan Tuglular. Firewall Configuration Management Using XACML Policies. In
Telecommunications Network Strategy and Planning Symposium, 2008. Networks 2008. The
13th International, pages 1 – 29, 2008.

[77] Valerio Venturi, Tom Scavo, and David Chadwick. Use of SAML to retrieve Autho-
rization Credentials. http://www.ogf.org/documents/GFD.158.pdf, Novem-
ber 2009. [Accessed February 25, 2014].

[78] Dinesh C. Verma. Simplifying Network Administration Using Policy-based Manage-
ment. Netwrk. Mag. of Global Internetwkg., 16(2):20–26, March 2002.

[79] Harry L. Waldron. Security Is a Business Requirement. http://technet.
microsoft.com/en-us/library/cc512684.aspx, July 2007. [Accessed Febru-
ary 20, 2014].

[80] Christian Wolter, Andreas Schaad, and Christoph Meinel. Deriving XACML Policies
from Business Process Models. In Proceedings of the 2007 International Conference on
Web Information Systems Engineering, WISE’07, pages 142–153, 2007.

[81] Eric Yuan and Jin Tong. Attributed Based Access Control (ABAC) for Web Services.
In Proceedings of the IEEE International Conference on Web Services, ICWS ’05, pages 561–
569, 2005.

113

http://www.ca.com/au/~/media/Files/SolutionBriefs/ca-controlminder-solution-brief.pdf
http://www.ca.com/au/~/media/Files/SolutionBriefs/ca-controlminder-solution-brief.pdf
http://www.ca.com/au/~/media/Files/SolutionBriefs/ca-controlminder-solution-brief.pdf
http://www.ogf.org/documents/GFD.158.pdf
http://technet.microsoft.com/en-us/library/cc512684.aspx
http://technet.microsoft.com/en-us/library/cc512684.aspx

	1 Introduction
	1.1 Problem Statement
	1.2 Identity and Access Management
	1.3 Definitions and Notation
	1.3.1 Terms and Definitions
	1.3.2 Notation for XML Namespaces

	1.4 Approach and Structure of This Thesis

	2 Related Work
	2.1 eXtensible Access Control Markup Language
	2.2 Distributed Enforcement of XACML Policies With pam_xacml
	2.3 Security Assertion Markup Language
	2.4 OpenID
	2.5 OAuth
	2.6 Shibboleth

	3 Threat Model
	3.1 Basic Terms
	3.2 Scenarios Concerning Privileged User Password Management
	3.3 Threat Targets, Threats and Attacks
	3.3.1 Hardware
	3.3.2 Network
	3.3.3 Account

	4 Requirements
	4.1 Operational and Business Requirements
	4.1.1 Security Regulations
	4.1.2 Information Distribution
	4.1.3 Separation of Duties
	4.1.4 Auditing and Reporting

	4.2 Practicability Requirements
	4.3 Non-Functional Requirements
	4.3.1 Availability
	4.3.2 Systems Integration
	4.3.3 Security

	4.4 Use Cases and Requirements at the Leibniz Supercomputing Centre
	4.4.1 Infrastructure of the LRZ
	4.4.2 Status Quo and Requirements

	4.5 Use Cases and Requirements of iC Consult
	4.5.1 Infrastructure of iC Consult
	4.5.2 Status Quo and Requirements

	4.6 Requirements Catalog

	5 Analysis of Established Solutions
	5.1 CA ControlMinder
	5.1.1 System Architecture
	5.1.2 Test Environment
	5.1.3 Analysis Based on the Requirements Catalog

	5.2 Netwrix Privileged Account Manager
	5.2.1 System Architecture
	5.2.2 Test Environment
	5.2.3 Analysis Based on the Requirements Catalog

	5.3 Soffid Identity and Access Management
	5.3.1 System Architecture
	5.3.2 Test Environment
	5.3.3 Analysis Based on the Requirements Catalog

	5.4 Summary of Software Analysis

	6 Architecture
	6.1 Components
	6.1.1 Policy Administration Point
	6.1.2 Policy Decision Point
	6.1.3 Policy Enforcement Point
	6.1.4 Password Manager
	6.1.5 Audit Logging System

	6.2 Security Considerations
	6.2.1 Encryption of Credentials
	6.2.2 Secure Audit Logs

	6.3 Analysis Based on the Requirements Catalog
	6.4 Summary

	7 Specification and Implementation of a Demonstrator
	7.1 Authorization for PAM-Enabled Applications
	7.2 Policy Decision Point
	7.3 Jump Server
	7.4 Web Interface and Password Database

	8 Evaluation
	8.1 iC Consult Compared to the Leibniz Supercomputing Centre
	8.2 Applicability Analysis for the Leibniz Supercomputing Centre
	8.2.1 Applicability of the Architecture
	8.2.2 Applicability of the Analyzed Software

	8.3 Applicability Analysis for iC Consult
	8.3.1 Applicability of the Architecture
	8.3.2 Applicability of the Analyzed Software

	9 Conclusion and Future Work
	9.1 Summary
	9.2 Future Work
	9.2.1 Attribute-Based Encryption For Sensitive Data
	9.2.2 Transformation of High-Level Policies to Low-Level Policies
	9.2.3 Expansion to Other Operating Systems
	9.2.4 Virtual Environments

	Bibliography

