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keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 30. September 2021

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift des Kandidaten)





Abstract

Quantum computing is a promising research field in modern computer science as quantum
computers have the potential to solve some computationally hard problems much faster than
classical computers. Instead of bits, quantum computers use two-state quantum mechanical
systems called qubits which have some useful properties such as entanglement and superpo-
sition that have no bit equivalent. Similar to classical computers where bits are modified
by Boolean gates on circuits, qubits can be modified by quantum-logical gates on quantum
circuits.
While in theory there are many applications for quantum computers from a variety of dif-
ferent research areas, in practice most them cannot yet be realized on up to date quantum
computers as the size of quantum circuits is strongly limited by hardware and physical con-
straints. Therefore, it is crucial to optimize quantum circuits as far as possible in terms of
size and complexity.
This work focuses on quantum circuit optimization using the ZX-calculus, a recently devel-
oped graphical language designed to simplify reasoning about quantum systems. Quantum
circuits can be optimized in an intuitive and efficient way by transforming them to equivalent
ZX-diagrams and using rules of the ZX-calculus for diagram simplification.
However, some rules can modify ZX-diagrams in such a way that the re-extraction of a
quantum circuit is no longer possible. Moreover, rules that simplify ZX-diagrams can still
increase the size of the underlying circuits. Due to these problems, most of the existing ZX-
calculus based optimization approaches become inefficient with increasing quantum circuit
complexity.
In our work we develop different strategies to improve those approaches. In particular, we
introduce heuristics to estimate the optimization benefit gained by certain ZX-rules. This
allows treating ZX-diagram simplification as a classical search problem where heuristics can
be applied to guide the sequence of rule applications towards minimal circuits. We imple-
ment different heuristic-based algorithms like greedy search, random search and simulated
annealing in the open-source library PyZX where we test them against existing strategies on
circuits of variant size. The results show that using heuristics in diagram simplification often
leads to better overall optimization results, especially when optimizing large and complex
quantum circuits. Our algorithms can be further improved in several aspects like runtime
or consideration of hardware topology.
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1 Introduction

Quantum computers have the potential to outperform classical computers since some prop-
erties of quantum systems like quantum entanglement can help solving hard problems in
computer science much faster. A well-known application for quantum computers is the fac-
torization of integers using Shor’s algorithm which solves the problem in polynomial instead
of superpolynomial time [27]. While this algorithm has achieved most public interest since it
provides an attack on the widely-used RSA cryptosystem, quantum computers are expected
to solve many other problems of different research fields more efficiently. In computer sci-
ence, quantum search algorithms like Grover’s algorithm can be used to speed up search
problems significantly [11], in physics, quantum computers can be used as a tool for simu-
lating quantum systems[6], and in chemistry, quantum computers are expected to calculate
energy spectrums of molecular systems much faster [17].
At its core, quantum computers use two-state quantum mechanical systems called qubits.
Compared to classical bits, qubits allow the exploitation of quantum effects like entangle-
ment and superposition which have no classical equivalent. We can modify qubits using
quantum gates on quantum circuits similar to classical computing where we can modify bits
with Boolean gates.
In practice, realizing a stable quantum system suitable for quantum computations turns out
to be very challenging as quantum gates are error-prone and qubits can interact with their
environment which destroys the computation. As of 2021, the maximum number of qubits
on a quantum computer is 651, so the computational power of quantum computers is still
very limited.
To make the most of the resources of quantum computers, it is crucial to develop quan-
tum circuits which are as efficient as possible. This has spawned a new field of research
called quantum circuit optimization which focuses on finding algorithms for reducing size
and complexity of quantum circuits. Optimizing quantum circuits in general is QMA-hard2,
which means most likely there exists no algorithm with polynomial runtime which returns an
optimal solution for arbitrary quantum circuits. Nonetheless, we can construct polynomial
algorithms which reduce the size of most circuits to some extent.
We focus on quantum circuit optimization using the ZX-calculus which is a recently devel-
oped graphical language designed to simplify reasoning about quantum systems. We can
transform any quantum circuit to an equivalent representation in ZX-calculus called ZX-
diagram and use rules of the ZX-calculus to simplify the diagram instead of the circuit as
follows:

1https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
2QMA is short for Quantum Merlin Arthur, a complexity class for quantum computers containing all

problems from NP.
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quantum circuit ZX-diagramtransformation

simplification

extraction quantum circuit

Since ZX-diagrams are not bound to the rigid structure of quantum circuits, there are opti-
mizations which have no circuit analogue and ZX-calculus has been considered a promising
tool for quantum circuit optimization [8].

Problem statement

While current ZX-calculus based approaches achieve very good results for a class of simple
quantum circuits named Clifford circuits, most approaches fail to optimize more complex
circuit classes effectively. This is often due to the fact that two-qubit quantum gates, i.e.,
quantum gates which act on two qubits at the same time, are not optimized very well. In
fact, their number sometimes even increases, which is a serious drawback as they are usually
one of the most expensive gates in terms of hardware cost.

Research question

Our research question regarding quantum circuit optimization in ZX-calculus is as follows:

Which strategies can be used to further improve ZX-calculus based quantum circuit
optimization?

As main aspect we introduce heuristics for some ZX-rule applications used during the dia-
gram simplification procedure which allow us to estimate the impact of those rules on the
underlying quantum circuit in terms of two-qubit gates. Using heuristics we turn ZX-diagram
simplification into a classical search problem where we can apply strategies like the greedy
algorithm or the simulated annealing algorithm in order to find minimal ZX-diagrams. We
develop heuristic-based algorithms and compare them to both the existing ZX-calculus based
approaches and an up-to-date optimization algorithm which does not use ZX-calculus.

Methodology

In Chapter 2, we give a short overview of quantum computing and ZX-calculus. We explain
the core mathematical foundations of qubits and quantum gates, how they can be composed
to quantum circuits and which basic optimization steps are possible. Furthermore, we intro-
duce the ZX-calculus and show how it can be used to represent quantum circuits. Chapter
3 focuses on the existing ZX-calculus based approaches for quantum circuit optimization.
We explain the different ZX-rules used for diagram simplification and show how quantum
circuits can be extracted from diagrams. Furthermore, we evaluate the existing algorithms
in terms of two-qubit gate reduction which serves as a motivation for our own strategies. In
Chapter 4 we develop some new simplification algorithms. We first show how the recently
developed Euler-rule in ZX-calculus can be used to reduce arbitrary gates in theory before
focusing on the main part of heuristic-based simplification algorithms. Chapter 5 evaluates
our strategies against existing quantum optimization algorithms and Chapter 6 summarizes
our results.
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2 Background

In this chapter, we provide a brief introduction to the research areas relevant for our thesis.
First, we outline the basic properties of quantum computing, then we explain quantum
circuits and their optimization, and finally we give a short overview of the ZX-calculus.

2.1 Basics of quantum computing

At its core, quantum computing is the controlled manipulation of quantum systems in order
to perform computations. While the details of quantum systems are outside the scope of this
work, modern physics has established some fundamental postulates providing the foundation
for a mathematical description of quantum systems. In the following section we discuss the
most essential postulates and how they define the basics of quantum computing. We then
focus on quantum circuits and how they are constructed from different quantum gates. A
more detailed introduction to quantum computing can be found in [23].

2.1.1 Single qubit systems

The state of an isolated quantum system can be completely described by a unit state vector
in a Hilbert space. State vectors are usually denoted as |ψ〉, where |.〉, the so called “ket”
in Dirac notation, represents a complex column vector. Together with the “bra”, denoted
as 〈ψ|, which is a complex row vector, and matrix multiplication as inner product, we have
a Hilbert space. A state space can have different spanning sets, which are sets of linear
independent vectors |φ1〉 .. |φn〉 such that every vector in the state space can be written as a
linear combination of these basis vectors. The most common representation of a qubit is as
a state vector in C2

|ψ〉 =

(
α
β

)
= α |0〉+ β |1〉 , α, β ∈ C, (2.1)

where α and β are called amplitudes and {|0〉 , |1〉} is the spanning set with

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
. (2.2)

This equation is also referred to as superposition, since |ψ〉 not only has two possible states
0 and 1, but infinitely many depending on its amplitudes. The only constraint, as |ψ〉 is a
unit vector, is that the sum of the squared amplitudes equals 1:

|α|2 + |β|2 = 1. (2.3)

For easier visualization, Equation 2.1 can be rewritten as

|ψ〉 = cos
θ

2
|0〉+ eiϕsin

θ

2
|1〉 , (2.4)

3



2 Background

which allows representing a qubit on the three dimensional Bloch sphere as a unit vector
defined by two rotations θ and ϕ around the X and Z axis (c.f. Figure 2.1). For consistency
we express rotation angles in radians, i.e. as fractions of π, instead of degrees throughout
the work, so θ, ϕ ∈ [0, 2π).

ϕ

θ

x |+〉

|−〉

y

z |0〉

|1〉

|ψ〉

Figure 2.1: Single qubit |ψ〉 as red unit vector on Bloch sphere

Although {|0〉 , |1〉} is the most common spanning set of C2, we sometimes also use the so
called Hadamard base:

|+〉 =
1√
2

(
1
1

)
, |−〉 =

1√
2

(
1
−1

)
. (2.5)

However, apart from the different basis vectors the qubit equation looks the same:

|ψ〉 =

(
α′

β′

)
= α′ |+〉+ β′ |−〉 . (2.6)

2.1.2 Single qubit gates

The evolution of an isolated quantum system is described by unitary transformations, which
means a state vector |ψ〉 can be modified by multiplication with some unitary matrix U :

|ψ′〉 = U |ψ〉 . (2.7)

An important property of unitary matrices is that they are invertible, and that the inverse
is equal to the conjugate transpose, which is denoted by a dagger† symbol. This means for
every unitary matrix U there exists an matrix U † such that UU † = I. In quantum computing
unitary transformations are interpreted as logical gates U acting on the qubit state |ψ〉, just
like in classical computing gates like XOR, AND, etc. modify bits. Since every unitary
matrix is invertible, every operation in quantum computing has to be reversible. In classical
computing some this is not always the case: take for instance an operation which sets a bit
to 1. Such non-invertible logical operations have no quantum gate equivalent.
The most basic gates are the so called Pauli gates, which correspond to the Pauli matrices:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. (2.8)

4



2.1 Basics of quantum computing

Apart from the identity gate I, these gates rotate a single qubit by an angle of π around the
corresponding axis on the Bloch sphere. For instance, if we apply an X gate to a qubit in
state |0〉 we get:

X |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉 . (2.9)

As can be seen in Figure 2.1, the transformation from |0〉 to |1〉 corresponds exactly to a
rotation of π around the X-axis.
Pauli matrices are self-inverse, therefore applying the same Pauli gate twice in a row has no
effect on the qubit state:

XX |0〉 = X |1〉 = |0〉 . (2.10)

On the Bloch sphere this is also clearly visible, since two identical Pauli gates correspond to
a full rotation of 2π.
Some other important single qubit gates are the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
(2.11)

and the Z-phase gate

Zα =

(
1 0
0 eiα

)
, α ∈ [0, 2π). (2.12)

The Hadamard gate is crucial for quantum computing as it transforms any qubit in basis
state to an equal superposition where both amplitudes are the same, e.g.

H |0〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
= |+〉 . (2.13)

As the Hadamard gate is again self-inverse, an equal superposition can also be transformed
back to a basis state:

H |+〉 =
1√
2

(
1 1
1 −1

)
1√
2

(
1
1

)
=

(
1
0

)
= |0〉 . (2.14)

On the Bloch sphere the Hadamard gate corresponds to a rotation of π around the Z-axis
followed by π/2 around the Y-axis.
The Z-phase gate is a generalization of the Pauli Z gate allowing arbitrary rotations around
the Z-axis parametrized by an angle α. Apart from the Pauli Z gate with α = π, the most
prominent are the S gate with α = π

2 and the T gate with α = π
4 :

S =

(
1 0
0 i

)
T =

(
1 0

0 eiπ/4

)
. (2.15)

Z-phase gates are in general not self-inverse, e.g.

S =

(
1 0
0 i

)
6=
(

1 0
0 −i

)
= S†. (2.16)

5



2 Background

2.1.3 Measurement

An essential problem in quantum computing is that in general we cannot observe a state
vector and determine its current amplitudes. The only way to get information about the
current state of a qubit is by performing a measurement relative to a specific basis. The
measurement, however, destroys the superposition of a qubit, which means we can only get
two mutually exclusive results depending on the measurement basis. If we measure a single
qubit |ψ〉 = α |0〉+ β |1〉 in basis |0〉 and |1〉, the probability of obtaining |0〉 is |α|2 and for
|1〉 it is |β|2.
For a qubit in equal superposition, e.g. H |0〉 in equation 2.13, measuring in the {|0〉 , |1〉}
basis returns either |0〉 or |1〉 with a probability of 50%. If we measure H |0〉 in Hadamard
base instead, the result is |+〉 with a probability of 100%. The measurement gate is denoted
as

(2.17)

and is the only non-unitary and non-reversible gate in quantum computing.

2.1.4 Multi qubit systems

The state vector of a composite quantum system is described by the tensor product ⊗ of
the individual state vectors. As we only deal with complex vectors, the tensor product is
effectively the Kronecker product. Applying the Kronecker product on two single qubits |a〉
and |b〉 produces:

|a〉 ⊗ |b〉 =

(
a1

a2

)
⊗
(
b1
b2

)
=


a1 ∗ b1
a1 ∗ b2
a2 ∗ b1
a2 ∗ b2

 . (2.18)

For simplification, |a〉 ⊗ |b〉 is often abbreviated as |ab〉. A two-qubit state space now has
four basis vectors, e.g.:

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 (2.19)

and we can represent the product |ab〉 as:

|ψ〉 = a1b1 |00〉+ a1b2 |01〉+ a2b1 |10〉+ a2b2 |11〉 . (2.20)

Each single qubit gate can also be extended to multiple qubits using the tensor product:

X2 =

(
0 1
1 0

)
⊗
(

0 1
1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (2.21)

Yet there are some special two-qubit gates which cannot be represented as a tensor product
of single qubit gates. The most important ones are the CNOT and the CZ gate:

CNOT =
•

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.22)

6



2.1 Basics of quantum computing

CZ = •
•

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.23)

For qubits in state |0〉 or |1〉, the CNOT gate performs a classical XOR operation. While
the upper qubit (control bit) remains unchanged, the lower qubit (target bit) gets flipped if
the control bit is set to |1〉 else it remains the same. CZ gates act equal on two qubits except
that the amplitude of the target bit gets flipped from positive to negative and vice versa if
the control qubit is |1〉. CNOT and CZ gates are also self-inverse: Flipping the target bit
twice is equal to not flipping the target bit at all.

2.1.5 Minimal and universal gate sets

In general we can decompose every unitary operation on multiple qubits into a combination
of CNOTs and single qubit unitary operations. Furthermore, for single qubits we can also
find universal gate sets from which we can generate every other unitary operation. An
important set in this context is the Clifford group. For n qubits the elements of the Clifford
group are defined as

Cn =
{
V ∈ U2n |V PV † = P ′

}
, (2.24)

where P, P ′ are arbitrary (negated) Pauli matrices with dimension 2n. Simply put, these
are all matrices where its product with any Pauli matrix combined with its inverse results
in a Pauli matrix again. For the single qubit case n = 1, the gates in the Clifford group
are {S,H, I,X, Y, Z} as well as their negatives {−S,−H, . . .}, their inverses

{
S†, H†, . . .

}
and their negative inverses

{
−S†,−H†, . . .

}
. However, the Clifford group is not universal.

By visualizing the possible operations in C1 on the Bloch sphere we can observe that every
state resulting from any Clifford operation on the state |0〉 is a rotation of π/2, π, 3π/2 or
2π, so we end up on one of the X,Y or Z axes each time. Moreover, an important theorem
by Gottesman and Knill shows that quantum circuits containing only Clifford gates can
be efficiently simulated on a classical computer, so we would lose the advantage of faster
calculations by restricting the possible gates to Clifford gates [1].
Yet it can be shown that we can approximate any single qubit unitary operation by using
only H and T gates. According to the Solovay-Kitaev theorem, this can be done in an
efficient way [16]. Therefore, the Clifford+T set, which we obtain by expanding C with the
T gate (for n = 1: C1∪

{
T,−T, T †,−T †

}
), is a universal single qubit gate set. Together with

the CNOT gate we then have a universal gate set for an arbitrary number of qubits. Note
that the S gate as well as the Pauli gates could be constructed from T and H gates, so a truly
minimal gate set would only need three gates {T,H,CNOT}. However, for convenience it is
common practice to take the complete Clifford+T+CNOT set as the basis for constructing
quantum circuits.

2.1.6 Quantum circuits

We can now build quantum circuits in order to describe quantum systems and the operations
applied on it. Each wire represents a qubit and gates on a wire are applied to the qubit from
left to right. Since all gates are unitary, quantum circuits are unitary as well and represent
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a 2n× 2n unitary matrix where n is the number of qubits. If not specified, the qubits on the
inputs are initialized with state |0〉. Figure 2.2 shows an implementation of the Toffoli gate
or CCNOT which flips a qubit (q3) depending on two control bits (q1, q2). The essential

q1 • • • T •

q2 • • T T †

q3 H T † T T † T H

Figure 2.2: Implementation of the Toffoli gate using Clifford+T+CNOT gate set

part in this circuit are the rotations on q3 by the CNOT, T and T † gates. Note that if both
upper wires are |0〉, q3 is never flipped by a CNOT and the T and T † gates have no effect on
q3 since together they correspond to two full rotations around the Z-axis. Also in the case
that only one control qubit is |0〉, the rotations around the Z-axis sum up to 0. However,
if both qubits are set the rotations sum up to π. Therefore, assuming the target qubit was
initially in state |0〉, if q1 and q2 are set q3 gets transformed to |+〉 via the first Hadamard
gate and rotated to |−〉, otherwise it remains in |+〉. The last Hadamard gate then maps
the final state of q3 to |0〉 or |1〉.
Since the Toffoli gate is universal for classical computing, i.e., every Boolean function can be
expressed as a combination of Toffoli gates, we can map any classical circuit to an equivalent
quantum circuit. As the size of the circuit increases only by a constant factor, we can
efficiently simulate every classical circuit on a quantum computer [12].

2.2 Quantum circuit optimization

As of 2021, quantum computers are still very limited in their power. The realization of
quantum computations in practice is a difficult and expensive task which is prone to several
errors. Moreover, there are severe restrictions on quantum circuits regarding their size.
Thus, it is important to optimize quantum circuits as much as possible. We first outline the
main hardware constraints of quantum computers and then show some basic strategies for
optimizing quantum circuits.

2.2.1 Hardware limits of quantum circuits

Actual quantum computers in the real world are extremely challenging to build. It is both
difficult to create an isolated quantum system that allows for qubit manipulation and mea-
surement, and to maintain the isolated state long enough to perform computations. For the
latter an essential metric is the decoherence time of a system which tells us how long we
can keep a system quantum-mechanically coherent until it collapses, i.e., interacts with the
environment. The decoherence time limits the total number of gates in a circuit since each
operation on qubits takes a certain amount of time. For most physical implementations of
quantum computers the decoherence time is in the range of micro- or nanoseconds and the
maximum number of operations is between 103 and 106 [23, Figure 7.1].
In addition, quantum gates are error-prone, i.e., they may not always have the desired effect
on the quantum system. Since different gates have different error probabilities, we can assign
costs to each gate. A simple estimation of the gate cost can be obtained by the minimum

8



2.2 Quantum circuit optimization

number of rotations necessary for its unitary operation. While Pauli gates only require a
single rotation around the X-,Y- or Z-axis, the Hadamard gate requires at least two and the
CNOT gate even five rotations [18]. In practice however, the cost of CNOT gates is even
higher. Figure 2.3 compares the average gate error rates of Pauli X and CNOT gates of a
state-of-the-art quantum computer. We can see that a CNOT gate is at least 10 times more
error-prone than single Pauli qubit gates.

Single Pauli X Gate CNOT Gate
Gates

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Er
ro

r r
at

es

Error rates X gate vs. CNOT

Figure 2.3: Average error rates of Pauli X and CNOT gate taken from the ibmq_montreal

quantum computer during 23-26th of July 20211

When estimating the overall cost of quantum circuits it makes sense to distinguish between
the single qubit gate count and the two-qubit gate count, where the latter is weighed with a
factor of 10 against the single qubit gate count.
However, this distinction neglects the fact that on hardware side non-Clifford gates are
usually much more difficult to implement than Clifford gates. The best known way to
implement non-Clifford gates requires a technique called magic state distillation[5]. For T
gates is has been shown that the cost overhead of magic state distillation is about a constant
factor higher than the cost overhead of CNOT gates ranging about 150 to 300 [24].
There are some mechanisms for automated error correction which can be built into a circuit.
As they usually require additional helper qubits, we distinguish between logical qubits, which
serve as a basis for operations on an abstract level, and physical qubits, which include all
qubits involved in the system. However, most of these error correcting mechanisms cannot yet
be implemented in practice. For instance, it is estimated that the surface code, an algorithm
for correcting Clifford operations, requires at least over a 1000 times more physical qubits
than logical ones [10]. As of 2021, the maximum number of qubits in a quantum computer is
65 2, so using the suface code even on small circuits seems to be out of reach at the moment.
For some hardware realizations topology puts another limit on quantum circuits as two-qubit
gates cannot be applied to any qubit pair. In Figure 2.4 an exemplary topology of an up to
date quantum computer is shown. Here the qubits can only interact with their immediate
neighbours and a CNOT gate from q0 to q2, for instance, is not possible. As shown in Figure
2.5, we could instead swap q0 and q1 using CNOT gates, apply a CNOT between q1 and q2,
and swap q0 and q1 back in place. This variant, however, is far more expensive as it requires
seven CNOT gates instead of just one.
All these points show that in quantum computing it is crucial to reduce circuit size as
much as possible. Circuit size not only determines runtime and performance like in classical
computing, but also whether a problem is executable at all and if we have a chance of

1https://quantum-computing.ibm.com/services?services=systems&system=ibmq montreal
2https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
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3

10 2

4

Figure 2.4: Topology of the ibm_quito quantum computer as of July 2021

q0 •
q1

q2

=

q0 • • • •
q1 • • •
q2

Figure 2.5: Decomposition of a CNOT gate from q0 to q2 into SWAP operations on q0 and
q1 and CNOT on q1 and q2

obtaining an error free computation. For Clifford+CNOT+T circuits, CNOT and T gates
play a special role during optimization, as compared to Clifford gates they are the major
contributors to the overall cost.

2.2.2 Optimization strategies

Quantum circuit optimization in general is QMA-hard, which means it is in a complexity class
for quantum algorithms including the NP complexity class. So unless P = NP we cannot find
a general algorithm which returns a quantum circuit with minimal cost in polynomial time
[22] [12]. Yet, we can use some strategies which reduce the total gate count in polynomial
time, but do not always yield a circuit with minimal cost.

Gate cancellation

The simplest form of circuit optimization is gate cancellation. As we have already seen in
the previous section, Pauli, Hadamard and CNOT gates are self-inverse and two of the same
gate placed in a row cancel each other out:

• •
= (2.25)

The same is possible for every gate where its inverse is placed directly after it

S S† = (2.26)

or, more generally put, every set of gates where the rotations sum up to 2π around an axis:

T S Z T = (2.27)

Here the rotations around the Z-axis sum up to π/4 +π/2 +π+π/4 = 2π and we can cancel
out all four gates.

10



2.2 Quantum circuit optimization

Gate commutation

A second method which often works in combination with gate cancellation is gate commu-
tation. For instance the CNOT gate commutes with itself:

•
• =

•
• (2.28)

• •
=

• •
(2.29)

Moreover, the CNOT gate commutes with Z phase gates on the control wire and with X
phase gates on the target wire:

Zα •
=

• Zα
(2.30)

•

Xα

=
•

Xα

(2.31)

By combining gate commutation with gate cancellation we can optimize circuits as well:

Z • Z
=

• Z Z
=

•
(2.32)

Advanced optimizations

Using gate commutation and cancellation we can already reduce circuits significantly, but
many optimization possibilities go far beyond these methods and may not be as intuitive.
For instance, the following circuits represent the same unitary matrix 3:

• Z • Z

• X

X

=

•

X • (2.33)

But apart from the two Z gates on the upper qubit which can be eliminated like in Equation
2.32, this requires more sophisticated optimization strategies. While this example also mo-
tivates using ZX-calculus for quantum circuit optimization we want two mention two more
advanced concepts of optimization without ZX-calculus:

Template-based and peephole optimizations. In template-based optimization we have a
known sets of gates called templates, which implement the identity operator. We then try
to construct as many template matches as possible in a circuit by using commutation rules
and eliminate them [20]. In peephole optimization, on the other hand, we have a set of
known circuit optimizations for small circuits and we traverse a large circuit by replacing
every occurrence of a known subcircuit by its optimized equivalent [25].

3This example was taken from a speech of Ross Duncan: https://www.youtube.com/watch?v=QbtSSqeYuFM#t=01h35m30s
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2.3 ZX-calculus

The ZX-calculus is a graphical language for expressing linear maps on qubits. It has been
invented as an alternative to the common Dirac-Notation to simplify reasoning about qubits.
Relations in multi-qubit systems are often difficult to understand in Dirac notation, since
the matrix size doubles per qubit and the complex number space quickly becomes confusing.
ZX-calculus provides a way to represent quantum systems as 2-dimensional diagrams where
nodes (spiders) and edges (wires) form an undirected graph. Since many important concepts
in quantum mechanics follow very intuitively from this representation, it has been considered
a promising tool for optimizing quantum circuits [8]. In the following section we give a short
introduction to ZX-calculus. A more in-depth coverage of the topic can be found in [7] and
[30].

2.3.1 Definitions

The basic elements of ZX-diagrams are spiders and wires. A spider can be either green
(Z-Spider) or red (X-Spider) and has arbitrary many input and output wires:

α

. . .

. . .n

m

Figure 2.6: Z-Spider

α

. . .

. . .n

m

Figure 2.7: X-Spider

The variable α denotes an angle as a fraction modulo 2π and the “. . .” notation is translated
as 0 or arbitrary many wires, so the number of incoming and outgoing wires n,m does
not have to be the same. We also distinguish between two types of wires: Normal and
Hadamard wires. As the Hadamard wire itself can be decomposed into three spiders of
phase π

2 connected by normal wires, the distinction is only for convenience.

Figure 2.8: Normal wire

= =

π
2

π
2

π
2

=

π
2

π
2

π
2

Figure 2.9: Hadamard wire

Furthermore, we have two types of compositions for any ZX-diagrams D1, D2:

• Spatial composition D1 ⊗D2 consists of placing D1 and D2 side-by-side; D2 to the
right of D1.

• Sequential composition D1 ◦D2 consists of placing D1 on top of D2 and connecting
the outputs of D1 to the inputs of D2. This is only possible if the number of outputs
of D1 is equal to the number of inputs of D2.
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2.3 ZX-calculus

The standard interpretation associates a linear map in a Hilbert space to each ZX-diagram
where the spatial composition corresponds to the Kronecker product and the sequential
composition to matrix multiplication. Since diagrams are allowed to have different numbers
of output and input wires, the standard interpretation of a diagram does not have to be
unitary like in quantum circuits. For the basic elements the standard interpretation is
defined as follows:

:=

(
1 0
0 1

)
:= 1√

2

(
1 1
1 −1

)

α

. . .

. . .n

m

:= 2m



2n︷ ︸︸ ︷
1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 eiα

 =

m︷ ︸︸ ︷
|0 . . . 0〉

n︷ ︸︸ ︷
〈0 . . . 0|+eiα

m︷ ︸︸ ︷
|1 . . . 1〉

n︷ ︸︸ ︷
〈1 . . . 1|

α

. . .

. . .n

m

:=

(
1√
2

(
1 1
1 −1

))⊗m
◦ 2m



2n︷ ︸︸ ︷
1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 eiα

 ◦
(

1√
2

(
1 1
1 −1

))⊗n

=

m︷ ︸︸ ︷
|+ . . .+〉

n︷ ︸︸ ︷
〈+ . . .+|+eiα

m︷ ︸︸ ︷
|− . . .−〉

n︷ ︸︸ ︷
〈− . . .−|

Two diagrams are considered equal if their standard interpretation is the same up to a
physically irrelevant global phase. For instance, the standard interpretation of the Hadamard
decomposition is not exactly the same as the standard interpretation of the Hadamard wire:

π
2

π
2

π
2 := 1+i

2

(
1 1
1 −1

)
6= 1√

2

(
1 1
1 −1

)
:=

However, since they only differ in the global phase, the measurement result remains the
same regardless of which diagram we use for the Hadamard operation and we can treat the
diagrams as equal.

2.3.2 Important spiders

The linear maps of Z and X spiders with only one input and output wire correspond to the
matrices of the Z and X phase gate:
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α :=

(
1 0
0 eiα

)
α := 1√

2

(
1 1
1 −1

)(
1 0
0 eiα

)
1√
2

(
1 1
1 −1

)
= 1

2

(
1 + eiα 1− eiα
1− eiα 1 + eiα

)
Although the X-Phase spider matrix may look unfamiliar, inserting π as angle α results
exactly in the Z and X Pauli matrices:

π :=

(
1 0
0 eiπ

)
=

(
1 0
0 −1

)
π := 1

2

(
1 + eiπ 1− eiπ
1− eiπ 1 + eiπ

)
= 1

2

(
0 2
2 0

)
=

(
0 1
1 0

)
We can also construct a CNOT from a Z and X spider with angle 0:

= ⊗ ◦ ⊗

:=

((
1 0
0 1

)
⊗ 1√

2

(
1 0 0 1
0 1 1 0

))
◦




1 0
0 0
0 0
0 1

⊗ (1 0
0 1

)

=
1√
2


1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

 ◦



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


=

1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.34)

Apart from the global phase 1√
2
, this matrix corresponds to the CNOT matrix from

Equation 2.22.

2.3.3 Universality

As mentioned in Section 2.1.5, we can decompose every unitary operation into a combination
of CNOTs and single qubit unitaries. Since we are able to represent CNOT and arbitrary
single qubit phase gates with Z and X spiders, the ZX-calculus is universal and we can build
any quantum circuit in ZX-calculus. Moreover, we can build every non-unitary linear map
on qubits as well, which makes ZX-diagrams a proper superset of quantum circuits. Similar
to classical quantum computing we can construct the universal Clifford+T+CNOT set from
the following spiders:

π
4 (2.35)

In general, we speak of Clifford diagrams/spiders if the phases of each spider are multiples
of π

2 and of Clifford+T diagrams/spiders if all phases are multiples of π
4 .
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2.3.4 Rules

The ZX-calculus comes with a series of rules allowing to transform ZX-diagrams. The rules
are sound, which means the underlying linear map of the standard interpretation is not
changed. All rules can be applied in both directions and also hold with inverted colors (i.e.
if the colors red and green are swapped). In addition for ZX-diagrams only connectivity
matters, which means it is neither important in which order the spiders are arranged nor
how the wires are formed as long as the order of inputs and outputs of a diagram is preserved.

Fusion rule (f)

One of the most important rules is the spider fusion rule:

=

β

α

α+ β. . .

. . .
. . .

. . .

. . .

. . .

This rule allows us to merge two connected spiders of the same color into a single spider
where the phases sum up. As α and β correspond to phases, we take the addition modulo
2π. The fusion rule also allows to split a spider into any number of other spiders of the same
color where the sum of the phases needs to be equal to the original phase (modulo 2π). In
Figure 2.10 some examples of the fusion rule are shown.

π
4

7π
4 =

(f)

; π = 3π
2

3π
2

(f)

; =
. . .

(f)

Figure 2.10: Examples of the spider fusion rule

Identity rules (i1, i2)

Furthermore, we can remove an empty spider with two connected wires, as well as two
Hadamard wires in a row:

==
(i1) (i2)

These rules are familiar from classical quantum computing, since a rotation around an axis
by zero has no effect on a qubit and two Hadamard gates cancel each other out.

Hadamard rule (h)

The Hadamard rule allows us to swap the color of any spider by adding Hadamard wires to
each input and output wire:
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α

. . .

. . .

:= α

. . .

. . .

This also corresponds to the definition of the red spider in Section 2.3.1. If an input or
output wire is already a Hadamard wire it gets flipped back to a normal wire due to (i2).

Π rule, Copy rule and Bialgebra rule

Further basic rules of the ZX-calculus are:

1. The π rule (π): =
...απ −α

...

π

π

(π)

2. The copy rule (c): =
...α

...

(c)

3. The bialgebra rule: =
(b)

With this basic set of rules we can derive other rules or simplify quantum circuits in a purely
graphical way. For instance, we can derive the antipode rule

=
(a)

from the basis set [9], which we can use to show the cancellation of two CNOTs in a row:

=
(f)

=
(f)

=
(a)

=
(f,id)

Other simplifications from the previous section, like the gate commutation and cancellation
from Equation 2.32, become very simple due to spider fusion:

π

=
(f)π

.

2.3.5 Completeness

In [3] it has been shown that this basic set of rules is sufficient to prove completeness for
Clifford diagrams. Using the rules we can transform any ZX-diagram into every other ZX-
diagram with the same standard interpretation. Since Clifford diagrams are not sufficient
to represent all quantum circuits, much effort has been put into finding a rule set which
is also complete for Clifford+T resp. all ZX-diagrams. However, all rule sets found so far
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are significantly more complicated, as the new rules either require many spiders in a special
arrangement, or have non-linear dependencies [13][29]. For instance, in [29] a complete rule
set for all ZX-diagrams is presented which only adds a single rule called Euler rule to our
basis rule set from the previous section:

=α1 α2 α3 β3β2β1

(EU)

Although this rule looks simple, the phases β1, β2, β3 are dependant on α1, α2, α3 in a non-
linear way and require complex calculations. Nevertheless, this rule has some interesting
characteristics which we will discuss in Section 4.1. For now, it is important to note that
the calculus is sound, complete and universal so everything provable in Hilbert space using
Dirac-Notation is also provable diagrammatically in ZX-calculus using spiders and wires.
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In the last years, ZX-calculus has been used for a variety of quantum circuit optimization
approaches [14][15][9]. Using ZX-diagrams for optimization has some great advantages:
First, ZX-diagrams are not limited to the classical circuit structure. As we will see in this
chapter, spiders and wires do not necessarily correspond to classical qubit gates and wires
anymore and using the ZX-rules we can build abstract spider constructs which have no direct
circuit equivalent.
Second, the ZX-rules allow simple reasoning about very complex circuit optimizations and
we can deduce rules which are not applicable to normal circuits in the same form.
Third, we can abstract a circuit to the point where we can describe it using only two different
generators: green and red spiders. As a consequence, in a ZX-diagram it does not matter
whether spiders belong to Z, Hadamard or CNOT gates anymore. The only relevant features
are color, angle and connectivity. Therefore, rules like the spider fusion or Hadamard rule
are extremely powerful, as they are applicable to any spider at any time.
The basic procedure for optimizing quantum circuits via ZX-calculus is always as follows:

1. Transform the quantum circuit to a ZX-diagram.

2. Simplify the ZX-diagram by applying ZX-rules.

3. Extract a quantum circuit from the ZX-diagram.

When using ZX-diagrams for circuit optimization we speak of simplification of ZX-diagrams
rather than optimization. While an optimization step reduces the number of gates in a quan-
tum circuit, a simplification step only reduces the number of spiders or wires in a ZX-diagram,
which does not always reduce the number of gates of the underlying quantum circuit.

Simplifying ZX-diagrams is by no means a trivial task. Rules can be applied in both
directions and there is no general way to tell which rule application at which position min-
imizes the circuit the most. In some cases it makes sense to apply a rule in one direction
or the other, sometimes it is better not to apply a rule at all even if we could. Finding
the optimial circuit by calculating all possible rule applications and their outcomes is not
feasible, since the unfusion of a single spider already has theoretically infinite possibilities.
Therefore, simplifying ZX-diagrams seems to be an optimization problem with an infinitely
large search space and in most cases we can only approximate the optimal solution.
In addition, it is also important to mention that step 3, i.e. the extraction of quantum
circuits from ZX-diagrams, is also a non-trivial task. ZX-rules can modify diagrams in such
a way that the circuit structure is lost. In theory, after step 2 we still have a unitary ZX-
diagram whose linear map can be represented in a quantum circuit. In practice, though,
as we will see in Section 3.3, there are some cases where we cannot extract such a circuit
from a given ZX-diagram. This also plays a major role in ZX-diagram simplification, since
we have to restrict the rule applications to those preserving the possibility of extraction.
In this chapter we will give a general overview of the existing approaches for optimizing

19



3 Related work on ZX-diagram simplification

quantum circuits using ZX-calculus. This field of research is very new, as the first paper on
this topic appeared in 2018 [8], and there are still few papers on this topic. Most approaches
presented in papers so far are already implemented in the PyZX library 1, an open source
library programmed in Python for creating, visualizing and rewriting ZX-diagrams [14]. In
this chapter we summarize and discuss the results of three papers [9][15][4]. First, we give an
overview of the core diagram simplification strategies, then we look at the circuit extraction
problem and last we discuss the actual PyZX implementation and analyze the effectivity of
the simplification strategies for quantum circuit optimization.

3.1 Graph-based simplifications

Instead of using ZX-rules in both directions, most simplification approaches only allow rules
that eliminate at least one spider. This way, each simplification step makes the diagram
smaller and the process is sure to terminate. Although the diagram may not be simplified
in the best possible way, extracting a circuit from a diagram which contains fewer spiders
usually results in fewer gates as well. The core of most simplification strategies are two rules
named local complementation and pivoting coming from graph theory. However, these rules
only work on diagrams which are in a normal form called graph-like. In this section we first
introduce the graph-like normal form before showing the two graph-theoretic rewrite rules
and their ZX-calculus equivalent. Last we present an algorithm for simplifying diagrams
based on these rules.

3.1.1 Graph-like diagrams

ZX-diagrams are graph-like when:

1. All spiders are Z-spiders.

2. All connections between spiders are Hadamard wires.

3. There are no parallel wires or loops.

4. Every input and output is connected to a spider and every spider is connected to at
most one input or output. These connections are the only non-Hadamard wires in a
graph-like diagram.

Every ZX-diagram can be transformed into an equal graph-like ZX-diagram using the rules
from Section 2.3.4. We demonstrate this by using the Toffoli circuit from Figure 2.2, which
has the following representation in ZX-calculus:

7π
4

π
4

7π
4

π
4

7π
4

π
4

π
4 (3.1)

1https://github.com/Quantomatic/pyzx
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First we turn every X-spider to a Z-spider using the Hadamard rule:

7π
4

π
4

7π
4

π
4

7π
4

π
4

π
4 (3.2)

Then we use the identity rules to remove two Hadamard wires in a row and, for convenience,
we switch to representing Hadamard wires as dashed blue lines:

7π
4

π
4

7π
4

π
4

7π
4

π
4

π
4 (3.3)

Last we maximally fuse every spider, thus eliminating every non-Hadamard wire between
spiders:

7π
4

π
4

7π
4

π
4

7π
4

π
4

π
4 (3.4)

Since there are no loops or parallel wires we are done, otherwise we could remove them using
additional rules as shown in [9, p.7].
The advantage of graph-like diagrams is that we can capture the structure of a diagram in
an open graph. An open graph is defined as the triple (G, I,O), where G = (V,E) is an
undirected graph with V as the set of vertices and E as the set of edges. The sets I,O ∈ V
represent the inputs and outputs of the graph. We distinguish between internal vertices
{v ∈ V |v /∈ {I ∪O}} and boundary vertices {v ∈ V |v ∈ {I ∪O}}. In the open graph of a
graph-like ZX-diagram, the spiders correspond to vertices and the Hadamard wires to edges.
I and O are the subset of spiders corresponding to the inputs and outputs of the diagram.
For instance, the open graph for 3.4 is:

∈O

∈O

∈I,O

∈ I

∈ I

(3.5)

3.1.2 Graph states

A special case of graph-like diagrams are graph-state diagrams where all spiders are required
to have an angle of zero. These diagrams correspond to arbitrary combinations of Hadamard
and CZ gates which have been studied in context of quantum error correction [28]. For
graph states an important property was discovered known as van Nest’s theorem which
states that two graph states are equal up to a unitary Clifford matrix if and only if we
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can transform the underlying graphs into another using sequences of local complementation
steps [28]. As a consequence for graph-state diagrams, local complementation followed by
updating the phases of some spiders according to the unitary Clifford matrix does not change
the standard interpretation. Since the unfusion rule allows us to convert any subgraph of
a graph-like diagram to a graph state, local complementation plays an important role in
diagram simplificiation. We will first show how these transformations work on an abstract
level before showing the corresponding rules in ZX-calculus.

3.1.3 Local complementation

The local complementation ? of an undirected graph G = (V,E) about a vertex u is defined
as follows:

G ? u := (V,E ∆ {(a, b) | (a, u) , (b, u) ∈ E, a 6= b}) , (3.6)

where ∆ is the symmetric set difference: A ∆ B := (A ∪B) \ (A ∩B). The resulting graph
G ? u is the same as G, except that for all neighbours N(u) of u holds:

1. If two vertices w,w′ ∈ N(u) are connected in G, i.e (w,w′) ∈ E, they are no longer
connected in G ? u, i.e (w,w′) /∈ E.

2. If two vertices w,w′ ∈ N(u) are not connected in G, i.e (w,w′) /∈ E, they are connected
in G ? u, i.e (w,w′) ∈ E.

So two neighbours of u are connected in G ? u if and only if they are not connected in G.
For instance, consider the graph

G = (V,E), V = {a, b, c, d} , E = {(a, b), (a, c), (a, d), (b, d)} . (3.7)

Applying local complementation on a results in

G ? a = (V ′, E′), V ′ = V,E′ = {(a, b), (a, c), (a, d), (b, c), (c, d)} , (3.8)

or graphically:

G = (G ? a) =

a b

c d

a b

c d

(3.9)

3.1.4 Pivoting

Pivoting is a rewrite around an edge (u, v) ∈ E and is built up from three applications of
local complementation:

G ∧ uv := G ? u ? v ? u (3.10)

For calculating the new connectivity of the graph we consider three disjoint sets:

• A := N(u) ∩N(v), i.e., all vertices connected to u and v.

• B := N(u)\N(v), i.e., all vertices connected to u and not to v.

• C := N(v)\N(u), i.e., all vertices connected to v and not to u.
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3.1 Graph-based simplifications

In a pivoted graph G ∧ uv, all vertices between those sets are connected if and only if they
are not connected in G. Connections between vertices of the same set are not modified. As
an example consider the following graph

a

d

u v

c

e

b
G :=

(3.11)

where we apply pivoting on the edge (u, v). The three sets as defined above are:

A := {b} , B := {a, d} , C := {c, e} (3.12)

In the pivoted graph G ∧ uv the connections between all three sets are flipped:

a

d

uv

c

e

b
G ∧ uv :=

(3.13)

So for instance a and b are not connected in G ∧ uv because they are connected in G and
are in different sets (a ∈ B, b ∈ A), whereas a and d are not connected in G ∧ uv because
even though they are not connected in G they are in the same set (a, d ∈ B).

3.1.5 Local complementation and pivoting in ZX-diagrams

In ZX-calculus the following holds:

±π
2

±π
2

±π
2

∓π
2

=
. . .. . .

u

N(u)

u

N(u)

(3.14)

This means for a spider u and its neighbours N(u), an adjacent red π/2 spider on u and
adjacent green π/2 spiders on all neighbouring spiders are equal to a local complementation
on u. As the “. . .” notation denotes 0 or arbitrary many wires, it is not relevant how many
neighbours there are. We can apply this rule to any spider in a graph-like diagram since
we can always pull the phases out of the spiders via the unfusion rule. However, for spiders
with phase ±π/2, the application is special, since we can remove the spider u subsequently:
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±π
2

α1

α2 αn−1

αn

. . .
=

±π
2

α1

α2 αn−1

αn

. . .

(f)
=
(1)

±π
2

α1

α2 αn−1

αn. . .
∓π

2

∓π
2

∓π
2

∓π
2

±π
2

∓π
2

α1

α2 αn−1

αn
. . .

∓π
2

∓π
2

∓π
2

∓π
2

±π
2

. . .

αn ∓ π
2

αn−1 ∓ π
2

α1 ∓ π
2

α2 ∓ π
2

=
(f)

. . .

αn ∓ π
2

αn−1 ∓ π
2

α1 ∓ π
2

α2 ∓ π
2

=
(c)

=
(2)

=

. . .

αn ∓ π
2

αn−1 ∓ π
2

α1 ∓ π
2

α2 ∓ π
2

(f)

. . .

αn ∓ π
2

αn−1 ∓ π
2

α1 ∓ π
2

α2 ∓ π
2

=
(h)

(3.15)

In (1) we use Equation 3.14 and in (2) the property that a π/2 spider with only one wire is
equal to a π/2 spider with inverted color and phase [9, p.29].
For pivoting a similar rule can be derived:

=

γn

γ1kπjπ

βn

β1

αn

α1

. . .

. . .

. . .

. . .. . .

. . .

...
...

γn + jπ

γ1 + jπ

βn + (j + k + 1)π

β1 + (j + k + 1)π

αn + kπ

α1 + kπ

. . .

. . .

. . .

. . .. . .

. . .

...
...

...

(p)

...

(3.16)

Here we can remove two adjacent spiders with a phase of 0 or π. So these two rules correspond
to the graph theoretic definition of G ? u and G ∧ uv with additionally removing the initial
spiders u resp. u, v.

3.1.6 Clifford simplification algorithm

As mentioned in Section 2.3.3, the spider types representing the Clifford subset of quantum
gates are exactly all spiders with a phase of k ∗π/2, i.e. those spiders which can be removed
using local complementation and pivoting. We can construct a simplification algorithm for
eliminating Clifford spiders in ZX-diagrams which works as follows:
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3.2 Advanced simplifications

1. Transform the diagram to a graph-like diagram.

2. Eliminate empty spiders with two wires using the identiy rule and subsequently fuse
the adjacent spiders in order to maintain a graph-like diagram.

3. Apply local complementation on every spider of phase ±π/2 and pivoting on every
pair of spiders of phase 0 or π as long as possible.

4. If step 3 modified the diagram go back to step 2, else we are done.

The simplified ZX-diagram then contains no interior spiders with phase ±π/2 and the only
interior Clifford spiders left are spiders with phase 0 or π which are either adjacent to bound-
ary or to non-Clifford spiders. As an example consider the following randomly generated
quantum circuit:

S† • • H • H • H S† •

S S H • • · · ·

H S† S† H S† S H S

• H • • • • • •

RZ (5π
4 ) H S†

S† H • S S • S† •

(3.17)

We can transform the circuit into a graph-like ZX-diagram

3π
2

π
2

π
2

3π
2

3π
2

3π
2

π
2

π
2

3π
2

3π
2

π
2

5π
4

3π
2

π
2

3π
2

(3.18)

and apply the algorithm as described, which results in a much simpler diagram:

3π
2

π
2

π
2

3π
4

π
2

3π
2 (3.19)

The algorithm indeed eliminated almost all Clifford spiders except those at the diagram
boundaries and the only interior spider left is a non-Clifford spider with phase 3π/4.

3.2 Advanced simplifications

Simplifying diagrams using the algorithm from 3.1.6 can already reduce diagrams drasti-
cally. However, there are two other strategies which can be applied additionally during
the simplification process which we want to mention. First, we discuss the pivot boundary
simplification, which aims to further reduce interior Clifford spiders with phase 0 or π, and
second, we discuss the phase gadget simplification, which aims to reduce non-Clifford spiders
as well.
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3.2.1 Pivot boundary simplification

The pivot rule can only be applied on two connected interior spiders with phase 0 or π. If
the two spiders have the correct phase, but one of them is at the boundary of the diagram,
i.e. has one non-Hadamard wire, the rule application is not possible. However, using the
identity rules we can replace the non-Hadamard wire with an empty spider surrounded by
two Hadamard wires:

jπ kπ =
(id1, id2)

jπ kπ

. . . . . . . . . . . .

(3.20)

Using this insertion which does not change standard interpretation, we transform the original
boundary spider to an interior spider where we can apply the pivot rule. This can be
generalized to remove a spider with phase 0 or π adjacent to a boundary spider with an
arbitrary phase:

jπ α =
(f, id1, id2)

jπ α

. . . . . . . . . . . .

(3.21)

The problem with this method is that it does not decrease the number of spiders, since
we add two spiders to the diagram and subsequently remove two spiders using the pivot
rule. Applying this procedure again on the two new spiders yields the same diagram as the
original, so we get stuck in an infinite loop and the simplification process does not terminate.
In Section 3.4 we will show how this issue is resolved in the PyZX library.

3.2.2 Phase gadget simplifications

A phase gadget is a parametrized spider with only one wire connected via Hadamard edge
to a phaseless spider:

α . . . (3.22)

Phase gadgets have been studied in the context of diagram simplification [15], since they
allow us to pull any “unwanted” phase of a spider into a phase gadget. For instance, if we
have a single spider with phase 0 or π which is only connected to non-Clifford spiders, we
modify one of these spiders as follows:

jπ α =
(f, id1, id2)

jπ

. . . . . . . . . . . .

α

(3.23)

The non-Clifford spider is now a spider with phase 0 connected to a phase gadget with phase
α and we can apply the pivot rule. Combining this step with the original pivoting rule we
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get two new rules:

=

γn

γ1
αjπ

βn

β1

αn

α1

. . .

. . .

. . .

. . .. . .

. . .

...
...

γn + jπ

γ1 + jπ

βn + (j + 1)π

β1 + (j + 1)π

αn + kπ

α1 + kπ

. . .

. . .

. . .

. . .. . .

. . .

...
...

...

(−1)jα

(p2)

...

(3.24)

and

=

γn

γ1
αjπ

βn

β1

αn

α1

. . .

. . .

. . .

. . .. . .

. . .

...
...

γn + jπ

γ1 + jπ

βn + (j + 1)π

β1 + (j + 1)π

αn + kπ

α1 + kπ

. . .

. . .

. . .

. . .. . .

. . .

...
...

...

(−1)jα

jπ

(p3)

...

(3.25)

where the former is used for interior spiders and the latter is used if one spider is a boundary
spider. Furthermore, two phase gadgets connected to the same set of spiders can be fused
using the gadget fusion rule:

α

β

α1

αn

α+ β

. . .

. . .

...

α1

αn

. . .

. . .

...
=

(GF )

(3.26)

Adding 3.24, 3.25 and 3.26 to the simplification algorithm we can both remove every remain-
ing interior Clifford spider and remove some non-Clifford spiders, since the gadget fusion may,
for instance, add two π/4 spiders up to a π/2 Clifford spider. We can either use gadget fusion
in the normal simplification algorithm, where phase gadgets are generated by the modified
pivoting rule, or use gadget fusion outside of the simplification procedure on circuit-like
diagrams. The latter is called phase teleportation and has the advantage that it eliminates
some non-Clifford spiders but does not change the original circuit structure of the diagram,
since no local complementation or pivoting is used in the procedure.
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3.3 Circuit extraction

Converting graph-like ZX-diagrams back to quantum circuits is not always possible, because
ZX-diagrams have a more open structure: While circuits always have a clear flow of time
and we can easily see which gates operate on which qubits, for an interior spider we usually
cannot distinguish whether it comes before or after another spider in the time flow and to
which qubit it belongs. However, there is an extraction algorithm introduced in [9] which
is able to extract a circuit provided the diagram meets some conditions. We first show how
the extraction algorithm works using the simplified diagram from 3.19 as an example. Then
we point out the limitations of this algorithm and show which conditions are required for a
diagram in order to be extractable.

3.3.1 Basic extraction algorithm

The basic approach for extracting a circuit from a diagram is to split the diagram into an
unextracted and an extracted part separated by a set of spiders named frontier. At the
beginning the extracted part is empty and we initialize the frontier set with the outputs, of
which we know each of them represents exactly one qubit. The process of extraction can
be thought of as pulling the spiders through the frontier to the extracted part. Since we
reconstruct time flow of a circuit, spiders left of the frontier are referred to as spiders in the
past of the frontier and extracted spiders on the right of the frontier are referred to as being
in the future. For spiders which only have two neighbours, i.e. one unextracted spider in the
past and one extracted spider in the future, we can simply extract green spiders as Rz gates
and Hadamard wires as Hadamard gates. Furthermore, we can extract connections between
two frontier spiders as CZ gates. For the simplified diagram from 3.19, applying these basic
extraction steps leads to the following diagram:

3π
2

π
2

3π
4

unextracted extracted

π
2

3π
2

π
2

(3.27)

The doubled vertical line denotes the separation of the extracted and unextracted part of
the diagram and the box around the rightmost unextracted spiders denotes the frontier set.
However, as soon as the frontier only has spiders which are connected to multiple spiders in
the past, we need to “add” rows using CNOT gates. In [9] it is shown that for two frontier
spiders w and w′, adding a CNOT with control wire w′ and target wire w to the extracted
part has the effect of adding the Hadamard wires to the past neighbours of w′ to those of
w. For instance:

3π
2

π
2

3π
4

unextracted extracted

π
2

3π
2

π
2

w1

w2

w3

v1

v2

v3

v4

3π
2

π
2

3π
4

unextracted extracted

π
2

3π
2

π
2

w1

w2

w3

v1

v2

v3

v4

= (3.28)
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3.3 Circuit extraction

Here we added the Hadamard wires to the past neighbours of w2 to those of w1 by adding
a CNOT to the extracted part from w1 to w2. Previously w1 was connected to v1 and v2,
and w2 was connected to v1 and v3. The new connections for w1 sum up as 2 ∗ v1, v2, v3.
Since the two Hadamard wires between w1 and v1 cancel each other out like in the Antipode
rule from Section 2.3.4, w1 is only connected to v2, v3 at the end. The crucial part of the
extraction procedure is to add rows via CNOTs until at least one spider in the frontier is
only connected to a single spider in the past, which we can again extract as Rz gate. For
this task it is useful to write the connections between frontier spiders and their unextracted
neighbours in a biadjacency matrix. When annotating the spiders of diagram 3.27 as follows:

3π
2

π
2

3π
4

unextracted extracted

π
2

3π
2

π
2

w1

w2

w3

v1

v2

v3

v4
(3.29)

the biadjacency matrix is:


v1 v2 v3 v4

w1 1 1 0 0
w2 1 0 1 0
w3 0 1 1 1

. (3.30)

By using matrix row operations we can eliminate connections until at least one row contains
only a single entry with 1:

w1 += w2 =


v1 v2 v3 v4

w1 0 1 1 0
w2 1 0 1 0
w3 0 1 1 1

⇒ w3 += w1 =


v1 v2 v3 v4

w1 0 1 1 0
w2 1 0 1 0
w3 0 0 0 1

 (3.31)

Applying these row operations on the ZX-diagram puts two new CNOTs on the extracted
circuit:

3π
2

π
2

3π
4

unextracted extracted

π
2

3π
2

π
2

w1

w2

w3

v1

v2

v3

v4

3π
2

π
2

3π
4

unextracted extracted

π
2

3π
2

π
2

w1

w2

w3

v1

v2

v3

v4

= (3.32)
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Now w3 has only one neighbour in the past, i.e. the interior spider with phase 3π/4, which
can be pulled through the frontier as an Rz gate:

3π
2

π
2

unextracted extracted

π
2

3π
2

π
2

w1

w2

w3

v1

v2

v3

3π
4

(3.33)

These steps are repeated until only input spiders are left in the frontier:

unextracted extracted

π
2

3π
2

π
2

w1

w2

w3

3π
4

3π
2

π
2 (3.34)

As a last step the input wires need to be swapped to match the correct output wires. This
can be done with two SWAP gates on the first and third wire and on the third and second
wire. The extracted part then is in a circuit like structure and corresponds to the following
classical quantum circuit:

• • • • H •
• • H • • S H · · ·
• • •

• • S H

• • • S† H

• S† H RZ (3π
4 ) H • • S H

(3.35)

Compared to the original circuit from 3.1.6 this circuit contains nine fewer single qubit gates
and two fewer two-qubit gates.

3.3.2 Extended algorithm with measurement planes

The basic algorithm works for all diagrams simplified with the algorithm from Section 3.1.6,
however, when using phase gadgets for simplification the algorithm sometimes fails. Consider
the following example:

7π
4

π
4

=
(f, id)

7π
4

π
4

=
(p)

7π
4

π
4

∗

∗

∗

∗ (3.36)
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Similar to Equation 3.23 we can “pull” the phases of the spiders marked with ∗ into phase
gadgets in order to apply the pivot rule on them. When we start extracting the diagram we
can still extract a CZ gate, but after that we are not able to proceed:

7π
4

π
4

w1

w2

v1

v2

v3

v4

(3.37)

Both spiders in the frontier have two neighbours in the past and the biadjacency matrix is

( v1 v2 v3 v4

w1 0 1 0 1
w2 1 0 1 0

)
. (3.38)

Finding a sequence of row operations after which one row contains only a single 1 is not
possible for this matrix and the algorithm from the previous section would fail.
In [4] an extended algorithm for extraction has been presented originating from measurement
based quantum computation or short MBQC. In MBQC, calculations are not performed with
unitary gates, but by measuring a set of entangled qubits in a certain order. Measurements
are usually parametrized by an angle between 0 and 2π and are restricted to either be done
in the XY,XZ or Y Z plane of the Bloch sphere. By measuring qubits in a specific order,
the remaining unmeasured qubits can be modified in a way similar to classical quantum
circuits [26]. In ZX-calculus the different measurement planes of MBQC-circuits correspond
to different spider types:

measurement plane XY XZ YZ

measurement effect α α π
2 α

(3.39)

For graph-like ZX-diagrams the authors distinguish between normal spiders measured in XY
plane, and phase gadgets measured in YZ plane. The unextractable graph from 3.37 would
be written as follows in MBQC:

7π
4

π
4

00

00

XYXY

XYXY

YZ

YZ

(3.40)

The spiders with phase 7π/4 and π/4 are now measurement effects and do not count as
individual spiders anymore. Instead, the MBQC graph only has six spiders left with an
empty phase: Four of them measured in XY plane and two in YZ plane. The authors of
[4] have developed an extraction algorithm which extracts a circuit containing spiders in
all three measurement planes which works just like the basic extraction algorithm, except
that spiders measured in XZ and YZ plane are treated differently. More precisely, a phase
gadget, i.e., a spider in YZ plane, can be converted into a spider in XY plane by applying
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3 Related work on ZX-diagram simplification

a pivot on the root of the phase gadget and an arbitrary connected frontier spider. This
converts the phase gadget back to a XY spider and the diagram can be extracted with the
basic extraction procedure:

7π
4

π
4

7π
4

π
4

=

∗
(p)

∗
∗

7π
4

π
4

=
(p)

∗
(3.41)

Similar, a spider in XZ plane can be converted into an XY spider by fusing the π/2 phase
with the root spider and applying local complementation on it.

3.3.3 The gflow property

So far we have explained that diagrams are extractable if the biadjacency matrix between
frontier spiders and their past neighbours can always be transformed via row operations into
a matrix with at least one row containing a single 1 and vice versa. At graph theory level,
there is another formulation equivalent to this property called generalized flow or gflow.
Each diagram with gflow is extractable with the extraction algorithm from 3.3.2[4].

Definition of gflow

The gflow property is defined on labelled open graphs, which are like open graphs from
Section 3.1.1 but extended with a function λ(v) ∈ {XY,XZ, Y Z} , v ∈ V , which assigns a
measurement plane to each vertex. A labelled open graph (G, I,O, λ) , G = (V,E) has gflow
if there exists a map g : O → P

(
I
)
, i.e. a map from all non-outputs to the power set of all

non-inputs, and a partial order ≺ such that for all v ∈ O:

(g1) If w ∈ g (v) and v 6= w, then v ≺ w.

(g2) If w ∈ Odd (g (v)) and v 6= w, then v ≺ w.

(g3) If λ (v) = XY , then v /∈ g (v) and v ∈ Odd (g (v)).

(g4) If λ (v) = XZ, then v ∈ g (v) and v ∈ Odd (g (v)).

(g5) If λ (v) = Y Z, then v ∈ g (v) and v /∈ Odd (g (v)).

Odd (g (K)) is defined as the odd neighbourhood of a set of vertices K ⊆ V :

Odd (K) = {u ∈ V : |N (u) ∩K| ≡ 1 mod 2} .

Simply put, the odd neighbourhood of a set of vertices K are all adjacent vertices which are
connected to an odd number of vertices in K.
For a diagram which admits gflow there are usually different maps and orderings, but as
long as we can find any, the diagram is extractable. For instance, the labelled open graph
for (3.41)

1 2 3

4 5 6

λ(1 . . . 6) = XY (3.42)
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admits gflow with the map

v 1 2 4 5

g(v) {2} {3} {5} {6}
Odd (g(v)) {1, 3, 5} {2, 6} {2, 4, 6} {3, 5}

and the ordering

1, 4 ≺ 2, 5 ≺ 3, 6.

However, the labelled open graph for (3.40) only admits gflow if the middle vertices are
measured in YZ plane:

1

4

2

5

3

6

λ(1, 3, 4, 6) = XY
λ(2, 5) = Y Z

(3.43)

Here the conditions are fulfilled with the following map:

v 1 2 4 5

g(v) {5} {2, 3} {2} {5, 6}
Odd (g(v)) {1, 2, 3} {} {4, 5, 6} {}

and the ordering

1, 4 ≺ 2, 5 ≺ 3, 6.

If all vertices were measured in XY plane instead, there would be no solution. This can be
proven by contradiction:

Proof. By looking at the odd neighbourhoods of the graph (3.43) one can observe that for
each possible combination of vertices, their odd neighbourhood is either {}, {1, 2, 3} , {4, 5, 6}
or {1, 2, 3, 4, 5, 6}. Since, by condition g3, XY vertices have to occur in their own odd
neighbourhood, we need to choose g(1) in a way where at least 2 and 3 are in the odd
neighbourhood of g(1). From condition g2 follows that 1 ≺ 2 and 1 ≺ 3. However, we also
need to choose g(2) in a way where at least 1 and 3 are in the odd neighbourhood of g(2).
From condition g2 follows that 2 ≺ 1, which contradicts 1 ≺ 2.

Gflow under rule application

Since having gflow is sufficient for successful circuit extraction, it is important to look at
which ZX-rules preserve the gflow property and which do not. The simplification algorithm
from Section 3.1.6 is based on five rules: fusion rule (f), Hadamard rule (h), the identity
rules (i1, i2), local complementation (lc) and pivoting (p). Hadamard and identity rules do
not modify any wire connections, so they do not change the underlying open graph and
preserve the gflow property. In [4] it has been shown that the special case of spider fusion
where two adjacent spiders are merged into one preserves the gflow property as well. It is
important to note that there is no such result about spider unfusion, but since the basic
algorithm does not use spider unfusion it does not matter here. Furthermore, it has been
shown that local complementation and pivoting preserve gflow but the measurement planes
of the neighbours can change. More precisely, applying local complementation on a vertex u
flips all measurement planes of neighbouring vertices N(u) from XZ to Y Z and vice versa.
Applying a pivot on two vertices u, v flips the measurement planes of XZ and Y Z vertices
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for all non-common neighbours of u and v, i.e. N(u) ∆ N(v). However, neighbouring
vertices in XY plane do not change their measurement plane in any case. The changing of
the measurement planes will be discussed in the next chapter. For now it is important that,
since the simplification algorithm preserves gflow, we can mathematically prove that every
resulting ZX-diagram is extractable with the algorithm from 3.3.2.

3.4 PyZX Implementation

This section provides a short overview of the simplification strategies in the PyZX library2.
PyZX is written in Python and is mainly designed to be used via Jupyter notebooks3,
although it also offers a command line interface. At its core, PyZX implements two basic
classes: Circuits for representing quantum circuits, and graphs for representing ZX-diagrams.
Circuits can be imported from various common Quantum circuit languages such as Open-
QASM4 and there are also algorithms implemented for optimizing circuits without using
ZX-calculus. For instance, the basic_optimization algorithm optimizes circuits by using
the techniques of Section 2.2.2. These algorithms are mostly used as a preprocessing step
before converting circuits to graphs and using the simplification algorithms of this chapter
as main optimization.

3.4.1 Simplification procedures

For graphs there are a variety of procedures based on ZX rewrite rules. Each procedure
is split into a matcher method which calculates all matches, i.e., suitable non-intersecting
spiders, and a rule application method which applies the rewrite rule on a list of matches,
usually without checking suitability. For instance, the procedure lcomp_simp consists of the
method match_lcomp which finds all spiders with phase ±π/2, and the method lcomp which
receives a list of those spiders and applies the local complementation rule on all of them.
On a higher level these procedures are grouped into terminating simplification algorithms.
There are three complete simplification algorithms, which are built on each other:

• interior_clifford_simp: This is an implementation of the algorithm from 3.1.6.
After transformation to a graph-like diagram, the procedures id_simp (i1, i2), spi-
der_simp (f), pivot_simp (p) and lcomp_simp (lc) are repeated until no changes have
been made during a complete iteration.

• clifford_simp: This adds the pivot boundary simplification from Section 3.2.1. Both
the interior_clifford_simp algorithm and the pivot boundary simplification are
repeated until no changes have been made during an iteration. However, instead of
using Equation 3.21, the pivot boundary simplification is implemented as a phase
gadget as in Equation 3.25.

• full_reduce: This algorithm additionally applies the phase gadget simplifications
3.24 and 3.26 and is usually the most powerful simplification algorithm.

2https://github.com/Quantomatic/pyzx
3https://jupyter.org/
4https://github.com/QISKit/openqasm
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Furthermore, there is also an algorithm named teleport_reduce, which works as described
at the end of Section 3.2.2.
The extraction algorithm works as described in Section 3.3. The step of finding row opera-
tions for transforming the biadjacency matrix until at least one row contains only a single
entry with 1 is done via Gaussian elimination. The gflow property ensures that by applying
a full Gaussian elimination on a biadjacency matrix we get at least one row with a single 1.

3.4.2 Termination

An important point is how termination of the process is ensured. All procedures from
interior_clifford_simp decrease the amount of spiders in every rule application. When
there is no match left for any procedure, the algorithm terminates. However, the other
two algorithms introduce phase gadgets via Equation 3.24 and 3.25. Since these rules do
not reduce the number of spiders, it is possible that the algorithm reaches the same graph
state multiple times and the algorithm does not terminate. PyZX prevents this by excluding
phase gadgets from the matching methods. Since the implementation of spiders does not
distinghuish between the three different measurement planes, this is done via counting the
neighbours of spiders: If a spider has only one neighbour, this neighbour is considered a
phase gadget and it is neither a candidate for local complementation nor pivoting.

3.5 Discussion of the PyZX simplifications

In order to test the effectivity of circuit optimization using the ZX-diagram simplification
algorithms we used a method implemented in PyZX which generates random circuits. We
can specify the number of qubits, the overall number of quantum gates, and the ratio of
T gates to Clifford gates. Setting the T gate ratio to 0 generates a circuit which contains
only Clifford gates and by increasing the ratio more and more non-Clifford gates with phase
kπ/4, k ∈ {1, 3, 5, 7} will be present in the generated circuit. In this section we will first
look at how the simplification strategies perform on pure Clifford circuits before looking at
Clifford+T circuits.

3.5.1 Optimizing Clifford circuits

For testing the effectivity of the simplification algorithms on Clifford circuits we generated 60
random circuits split into three sets of 20 circuits with 102, 103 and 104 gates. We compared
the original circuits to the results of the basic_optimization algorithm for circuits and the
clifford_simp algorithm for ZX-diagrams. Figure 3.1 shows the average gate count of the
optimized circuits against the original gate count. Here the clifford_simp algorithm clearly
outperforms the basic_optimization algorithm. Moreover, with increasing gate count the
resulting circuits from clifford_simp have more or less the same gate count, which is always
around 30 gates in total. We think this is because of the Gottesman-Knill theorem mentioned
in 2.1.5. Since the Clifford gate set is not universal, the set of unitary matrices which can
be represented by Clifford circuits is limited. Apparently each of these different matrices
can be constructed using only a few gates. The use of local complementation and pivoting
seems to be crucial for these good results, since the results for basic circuit optimization are
far worse and do not stay constant with increased gate count.
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Figure 3.2: Average gate counts of 20 optimized 4-qubit circuits with an original gate count
of 300 and increasing T gate probability pt

3.5.2 Optimizing Clifford+T circuits

For testing the effectivity of the simplification algorithms for non-Clifford circuits we used
four strategies: First, we optimized circuits without ZX-calculus by only applying the ba-

sic_optimization algorithm, then we optimized circuits by applying the basic_optimi-

zation algorithm followed by one of the interior_clifford_simp, clifford_simp or
full_reduce algorithms plus circuit extraction. We tested each strategy on circuits with a
fixed number of qubits and total gates for increasing T gate probabilities. For each T gate
probability we generated 20 different circuits and calculated the average gate count after the
optimization. As shown in Figure 3.2a, the methods using ZX-calculus outperform the basic
circuit optimization strategy for circuits containing only a few number of T gates. While
we get more or less the same results for interior_clifford_simp and clifford_simp,
full_reduce is usually a bit better in optimization.
However, with increasing T gates, the strategies using ZX-calculus become ineffective. As
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Figure 3.3: Average gate counts of 20 optimized 8-qubit circuits with an original gate count
of 300 and increasing T gate probability pt

shown in Figure 3.2b, when considering only the two-qubit gates, there are often even more
gates in the optimized circuit than in the original circuit. If there are more than about 20%
T gates in the original circuit, the basic_optimization algorithm without the ZX-diagram
simplifications already reduces more two-qubit gates than the other strategies. This metric
is especially important, since, as we mentioned in Section 2.2.1, two-qubit gates are more
expensive than single qubit gates by a factor of 10. Applying the strategies on circuits with
more qubits exacerbates the problem. Figure 3.3 shows the total and two-qubit gate count
of optimized circuits with 8 qubits and an original gate count of 300.

The circuits optimized using ZX-diagrams soon have twice as many two-qubit gates than
the original circuits and most of the time the basic_optimization algorithm performs
better even in terms of total gate count.

3.5.3 Factors for bad two-qubit gate reduction

The problem of bad two-qubit gate reduction seems to be essential for using ZX-calculus in
quantum circuit optimization. In order to understand why this problem arises, we need to
look at the extraction algorithm. Any unextracted simplified diagram for an m-qubit circuit
has 2 ∗ m boundary spiders and n interior spiders. The maximum number of Hadamard
wires between spiders is

(2m+ n)(2m+ n− 1)

2
(3.44)

The important point is to understand what happens to these wires during the extraction
algorithm: We know that m + n Hadamard wires connect spiders on the same qubit and
are extracted as Hadamard gates. However, the remaining wires are either extracted as CZ
gates or they get canceled out by using row operations on the biadjacency matrix which
puts CNOT gates on the extracted part. In the worst case each wire is extracted as CZ gate
otherwise the row operations can eliminate at least some wires. As far as we observed, the
row operations can reduce wires by 50 % in the optimal case but proving this conjecture is
outside the scope of this work.
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From these observations we can draw two conclusions for improving ZX-calculus based op-
timization: Either the extraction algorithm has to be modified such that Hadamard wires
are extracted more effective or the simplification algorithms optimize diagrams to contain
as few Hadamard wires as possible. For the former it could be interesting to focus the row
operations on biadjacency matrices not on finding any row with a single 1 but on finding
as many rows with a single 1 as possible. This could lead to more extracted CNOTs in the
first place but connections between frontier spiders, which always get extracted as CZ gates,
would decrease. We think the amount of saved CZ gates could be larger than the amount of
additional CNOT gates but we did not test this assumption. The main focus of our work is
on the latter option. The current simplification algorithms optimize diagrams towards the
lowest number of spiders no matter how many connections between the remaining spiders are
left. Eliminating every possible spider often leads to more expensive circuits than keeping
some spiders. Consider the following example where the last simplification step of a diagram
consists in applying the local complementation rule on the third middle spider:

π

π
2

3π
2

π
4

π
4

π

3π
2

π
4

=
(lc)

π

3π
2

π
4

π
4

π

3π
2

π
4

(3.45)

The first diagram has a total of 14 Hadamard wires, of which 4 + 4 = 8 are extracted as
Hadamard gates since they connect spiders on the same qubit. The remaining six wires
are extracted either via the row operations or as CZ gates and indeed the PyZX extraction
algorithm yields a circuit with a total gate count of 21 and two-qubit gate count of 6. The
second diagram, however, has 34 Hadamard wires, of which 4 + 3 = 7 are extracted as
Hadamard gates. Extracting the diagram yields a circuit with a total gate count of 45 and a
two-qubit gate count of 21 which is more than three times as many two-qubit gates than in
the first extraction. So even though we can apply local complementation here to eliminate
a spider it is not useful for circuit optimization.

3.5.4 Using local complementation and pivoting for reducing Hadamard wires

Since local complementation and pivoting are the only rules used in the simplification al-
gorithms which can increase connections between spiders, our main idea was to investigate
under which circumstances the application of these rules is useful. In a recent master thesis
5, genetic algorithms and simulated annealing are used to randomly apply local complemen-
tation and pivoting transformations after the full_reduce simplification. This approach
exploits the fact that these rules can be applied to spiders with arbitrary phase with the

5https://www.youtube.com/watch?v=tUIcqXKEFhk
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cost of introducing a new phase gadget, i.e.

αn

β

α1

α2 αn−1

. . .

. . .

. . . . . .

. . .
=

α1 ± π
2
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2
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2

αn ± π
2

. . . . . .

. . .. . .

. . .
αn

∓π
2

α1

α2 αn−1

. . .

. . .

. . . . . .

. . .
=

β ± π
2 β ± π

2

(3.46)
The basic algorithm applies the rules to any spider or pair of spiders and checks whether
the extraction algorithm yields a better result than before. Since the source code of this
approach is already available in PyZX, we tested it against the existing algorithms. In Figure
3.4 we show how the simulated annealing algorithm applied on diagrams simplified with the
full_reduce algorithm compares to the normal algorithms. The total gate count remains
more or less the same, but the two-qubit gate count is already reduced significantly.
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Figure 3.4: Average gate counts of 20 optimized 4-qubit circuits with an original gate count
of 300 and increasing T gate probability pt

However, this approach has some drawbacks: First, it can only be used as a post-processing
step since no spiders get eliminated and we always need to simplify the diagrams in the
first place using algorithms as full_reduce. As a consequence, all spiders with Clifford
phases are already eliminated before this approach can take place so rule applications as
in Equation 3.45 which drastically increase two-qubit count still occur. Second, depending
on the iterations the approach is very slow in terms of runtime. In general, the gaussian
elimination is the dominating part of all optimization algorithms, so the extraction algorithm
usually takes much longer than diagram simplification[4, p. p.45]. Since this approach needs
to extract a circuit after each rule application for scoring the result, the runtime increases
very quickly: On a laptop computer running the simulated annealing algorithm with 100
iterations on diagrams containing 100 vertices takes 30 seconds, whereas running it on
diagrams containing 300 vertices already takes more than 3 minutes.
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In this chapter we present some of our own strategies for optimizing quantum circuits using
ZX-calculus. Our strategies are drawn from the conclusions of the previous section: As soon
as there are non-Clifford gates present in circuits, diagram simplification and extraction
often lead to an increased CNOT and CZ count, which is particularly bad since they some
of the most expensive gates in quantum circuits. For improving diagram simplification we
can either try to reduce non-Clifford gates as much as possible or we can focus on two-qubit
gate reduction. In this chapter we will first present a theoretical approach for eliminating
non-Clifford gates using the Euler rule from Section 2.3.5. Since this approach is difficult to
implement in practice and leads to spider phases which cannot be represented as fractions
of π anymore, we decided not to focus on this approach but instead on reducing two-qubit
gates in the remaining part of the chapter.
So far all existing approaches eliminate spiders as much as possible without considering
how many wires are left. We place our focus on eliminating wires as much as possible while
keeping some spiders even though they could be removed. For this task we use cost functions
as a means of guiding the simplification process. Since local complementation and pivoting
are the only rules creating new wires, we introduce cost functions for these rules which
measure how many wires are being saved or newly generated.
However, we do not exactly know how the generation and elimination of Hadamard wires
affect circuit extraction since some Hadamard wires are canceled out during the extraction
algorithm. The two-qubit gate count of the extracted circuit either decreases by eliminating a
Hadamard wire or it stays the same. We could get an exact cost similar to the approach from
Section 3.5.4 by calculating the extracted circuit after each rule application but since this is
very costly we consider the extraction algorithm as a black box in our work. Therefore, we
only estimate how much two-qubit gates are saved or newly generated by a rule application
and we will refer to the cost functions as heuristics. These heuristics then serve as basis for
various simplification strategies.

In this chapter we first present the elimination strategy based on the Euler rule before
introducing the heuristic-based approaches. We then discuss some of the main issues we
encountered during the design of those approaches and how we circumvent them. Since
many issues arise from using phase gadgets, we then present an alternative method which
keeps the effect of pulling “unwanted” phases out of spiders but does not rely on phase
gadgets.

4.1 Reducing 2-ary spiders with the Euler rule

As first strategy, we will show how we can use the Euler rule to reduce 2-ary spiders,
i.e.,spiders with only two neighbours. We mentioned the Euler rule already in 2.3.5 since
it can be used to prove completeness of the ZX-calculus, but omitted the calculation of the
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phases. Here we show the complete rule as denoted in [29]:

=α1 α2 α3 β3β2β1

(EU)

x+ :=
α1 + α3

2
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)
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)
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(α2

2

)
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(
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(4.1)

β1 := arg(z) + arg(z′)

β2 := 2 arg
(
i+
∣∣∣ z
z′

∣∣∣)
β3 := arg(z)− arg(z′)

Although the graphical rule looks very simple, the calculation of the phases β1, β2, β3 is not
very intuitive. Nevertheless, the rule has some interesting properties.
First, this rule is related to the Euler angles: Every possible rotation in a three dimensional
space (i.e. like in the Bloch sphere) can be achieved by three rotations around two axes:
XYX, Y XY,XZX,ZXZ, Y ZY or ZY Z. The Euler rule in ZX-calculus transforms an XZX
rotation to its ZXZ equivalent and vice versa. So although the calculation of the angles is
not very straightforward, the rule expresses a very fundamental property of qubits.
Second, the rule seems to be related to the Hadamard rule 2.3.4 which allows us to change
the color of a spider by interchanging Hadamard wires and normal wires. Using the Euler
rule we can “tunnel” the phase of a spider to the other side of two π

2 spiders as follows:

=α1
π
2

π
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π
2

π
2

α1

(EU)

(4.2)

At least for spiders with two wires the Hadamard rule is entirely contained in the Euler rule:
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(4.3)

4.1.1 Simplification algorithm

For simplifying diagrams we focus on the property that every sequence of 2-ary XZX spiders
can be transformed to ZXZ spiders and vice versa. When transforming quantum circuits
to ZX-diagrams, the diagrams consist of sequences of 2-ary spiders separated by some 3-ary
spiders representing CNOTs or CZs. Using the Euler rule we can reduce these 2-ary spider
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sequences between 3-ary spiders to at most two spiders in a row. Consider the following
example, where we have five 2-ary spiders in a row:

π
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π 7π
4

π
2 (4.4)

We can now do the following to reduce the amount of 2-ary spiders on the topmost wire to
three:
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(4.5)

This can be done with every sequence of 2-ary spiders and corresponds to the well known
fact in classical quantum computing that every unitary operation on a single qubit can be
achieved using at most three rotation gates [23]. However, we can reduce the amount of
2-ary spiders between 3-ary spiders even more by using the Euler rule to change the color
of the rightmost or the leftmost spider to the color of the adjacent 3-ary spider and use the
fusion rule for pulling this spider to the other side as follows:

5π
4

π
4

π
2

=

5π
4

π
4

π
2 (4.6)

If we have more than two spiders at the other side of the CNOT after this step, we can
again use fusion and Euler rule to reduce the number of spiders to two. This process can be
repeated until we reach the end of the qubit wire.

4.1.2 Drawbacks of the Euler rule

For most input phases α1 − α3, the Euler rule returns quite complicated phases for β1 − β3,
for instance

α1 =
π

4
, α2 =

π

2
, α3 =

π

4
⇒ β1 = tan−1

(√
2
)
, β2 =

π

3
, β3 = tan−1

(√
2
)
. (4.7)

A large part of the simplicity of ZX-calculus is based on having only fractions of π as spider
phases which can be added or substracted very easily. Usually each rule application can be
calculated without the help of a calculator. However, when we use the Euler rule a lot of this
simplicity is lost since we can obtain phases which we can no longer represent as a fraction
of π. In order to avoid rounding errors when adding irrational phases we would need to
include a computer algebra system into PyZX. Moreover, while this approach could reduce
some non-Clifford gates, the two-qubit gates are not reduced at all. Therefore, we decided
to describe this approach only in theory and focus instead on improving the two-qubit count
which is covered in the remaining part of this chapter.
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4.2 Heuristics

In this section we introduce the basic heuristics for optimizing Hadamard wires with local
complementation and pivoting. The main idea is to calculate how many wires are created
by a rule application and compare them against the existing number of wires.

4.2.1 Local complementation heuristic

In order to find a suitable heuristic for local complementation, we first examine how the
edges behave in the graph theoretic case, before looking at the corresponding ZX-rules:

Proposition. Let G = (V,E) be an open graph and u ∈ V an arbitrary vertex with neigh-
bours N (u) ∈ V . Furthermore, let m = |N (u)| denote the number of neighbours, and n
the number of edges between the neighbours, i.e., n = |{(a, b) |a, b ∈ N (u)}|. For G ? u, m
remains the same, but n changes to n′ = 4m−1 − n, where 4m−1 is the triangular number
m(m−1)

2 .

For our purposes we choose the heuristic function LCH to return the number of saved
Hadamard wires, i.e., we substract the new number of wires from the original number of
wires. The resulting equation (m+ n)− (m+ (4m−1 − n)) can be simplified to 2n−4m−1.
In ZX-diagrams the application of local complementation on a spider u depends on its phase
ϕ (u):

• If ϕ (u) = ±π/2 we can remove it as shown in Equation 3.15. In this case we add m
to the heuristic, since all connections between u and N (u) are eliminated.

• If ϕ (u) is a non-Clifford phase we need to pull this phase in a phase gadget like in
3.46. Therefore, all connections between u and N (u) remain but we need to add one
additional wire for the gadget.

• If ϕ (u) is 0 or π, we discovered that a phase gadget is not needed. Using the steps
from 3.15 the π spider can be copied through the red spider in step 3:

k ∗ π
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2
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2
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2

∓π
2

(π, c)

(4.8)

Considering the three cases, our heuristic for local complementation LCH is as follows:

LCH (u) =


2n−4m−1 +m ϕ (u) = ±π

2

2n−4m−1 ϕ (u) = k ∗ π, k ∈ Z
2n−4m−1 − 1 otherwise

(4.9)
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As an example, in Equation 3.45 calculating LCH for the middle spider with phase π/2
results in

2 ∗ 0− 8 ∗ 7

2
+ 8 = −20,

so after applying local complementation the diagram has 20 more Hadamard wires than
before.

4.2.2 Pivot heuristic

In order to find a suitable heuristic for pivoting, we again first examine how the edges
behave in the graph theoretic case. When pivoting around two connected vertices u, v, the
connections are flipped between the disjoint sets

• A := N(u) ∩N(v)\ {u, v},

• B := N(u)\N(v)\ {v},

• C := N(v)\N(u)\ {u}

and not between every neighbour of u and v. So instead of triangular numbers, we use the
following sum to calculate the maximum number of new connections:

Cmax = |A| ∗ |B|+ |A| ∗ |C|+ |B| ∗ |C|.

Let mu and mv denote the number of neighbours of u and v, i.e.

mu = |{w ∈ V |w ∈ N(u)}| ,mv = |{w ∈ V |w ∈ N(v)}| ,

and n the number of edges between neighbours of different sets

n = |{(a, b)|a ∈ A, b ∈ B ∪ C ∨ a ∈ B, b ∈ A ∪ C ∨ a ∈ C, b ∈ A ∪B}| .

For G ∧ uv, the sum of mu and mv remains the same, but n changes to Cmax − n. Again
we choose the heuristic function to return the number of saved wires, which leads to the
following equation:

(mu +mv + n− 1)− (mu +mv + (Cmax − n)− 1) . (4.10)

Note that the −1 is necessary, because otherwise the wire between u and v would be counted
twice. We can simplify this equation to

2n− Cmax. (4.11)

In ZX-diagrams we distinguish three cases depending on the phases ϕ (u) , ϕ (v) of u and v:

• If both spiders have a phase of 0 or π, all connections between {u, v} and N (u)∪N (v)
are eliminated. Therefore, we add mu and mv to Equation 4.11:

2n− Cmax +mu +mv − 1.
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• If v becomes a phase gadget and u gets eliminated, all neighbours of u get connected
to v, i.e. mu− 1, and we have an additional wire for the phase gadget (c.f. 3.24). The
resulting equation is

2n− Cmax +mu +mv − 1− (mu − 1)− 1

= 2n− Cmax +mv − 1.

The same equation holds with interchanged u and v, i.e., if u becomes a phase gadget
and v gets eliminated.

• If both spiders become phase gadgets all neighbours of u get connected to v and all
neighbours of v get connected to u. Furthermore, u gets connected to v again and we
have two more wires for the phase gadgets:

2n− Cmax +mu +mv − 1− (mu − 1)− (mv − 1)− 1− 2

= 2n− Cmax − 2.

The complete pivoting heuristic PH then is as follows:

PH (u, v) =


2n− Cmax +mu +mv − 1 ϕ (u) = j ∗ π, ϕ (v) = k ∗ π, j, k ∈ Z
2n− Cmax +mv − 1 ϕ (u) = j ∗ π, ϕ (v) 6= k ∗ π, j, k ∈ Z
2n− Cmax +mu − 1 ϕ (u) 6= j ∗ π, ϕ (v) = k ∗ π, j, k ∈ Z
2n− Cmax − 2 otherwise

(4.12)

4.3 Basic strategies

Scoring rule applications with LCH and PH allows a variety of different simplification
strategies. In general we use the Clifford simplification algorithm from 3.1.6, but instead of
applying local complementation and pivoting as long as possible in step 3, we apply these
rules based on a matching and a selection function. The selection function first aggregates
all possible rule applications returned by the matching function and evaluates them using
the heuristics. Depending on the strategy, one or no rule application is then selected and
applied to the diagram. We repeat this step until no rule gets selected, then we go to step
4 and start a new iteration. In theory, when using phase gadgets, the matching function
can return every spider for local complementation and every pair of spiders for pivoting.
However, allowing every match can lead to non-termination of the simplification algorithm.
In this section we first discuss some basic selection functions, then we show how certain
matches can cause non-termination and how we circumvented this in our implementation.

4.3.1 Selection functions

The selection function receives all matches and calculates the gain for each rule application,
i.e., the number of saved Hadamard wires, using LCH and PH. For our selection functions
we can specify three parameters: First, we implemented the possibility to specify a lower
bound for the gain. For instance, setting the lower bound to −5 would result in only applying
those rules which do not increase the amount of Hadamard wires in the diagram by more
than five wires. Second, we can specify whether rule applications are allowed on boundary
spiders and third, whether rule applications are allowed which generate phase gadgets. In
PyZX we implemented three different selection functions:
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4.3 Basic strategies

• Random selection: This function randomly applies a rule with gain ≥ the lower
bound. If we do not specify a lower bound, this strategy corresponds to the current
PyZX simplification process.

• Greedy selection: This function always applies the best rule application, i.e., the
application which saves the most Hadamard wires, until we either reach the lower
bound, or no rule can be applied anymore.

• Metaheuristic selection: This function uses a metaheuristic to dynamically explore
the search space. In each step we randomly choose a rule application from the matching
set. If the gain is > 0, i.e. some Hadamard wires are saved, we apply the rule in any
case, otherwise we only apply the rule up to a certain probability.

As a metaheuristic selection function we implemented the simulated annealing algorithm.
For a given number of iterations n, a starting temperature t and a cooling factor α, this
algorithm chooses a random rule application n times. If the heuristic of the chosen rule
application ∆c is positive and Hadamard wires are saved, the rule is applied to the diagram
in any case. Otherwise the rule is only applied with a probability of e∆c/t. After each
iteration the temperature decreases by a factor of α, i.e. tn−1 = tn ∗ α. This has the
effect that rule applications which increase the amount of Hadamard wires are more likely
to be applied at the beginning of the simplification algorithm since e∆c/t will be closer to 1.
Towards the end e∆c/t becomes almost 0 and rules with a negative heuristic will most likely
not be applied anymore.

4.3.2 Termination

Each algorithm terminates when allowing only rule applications with a heuristic result > 0.
Since every step reduces at least one Hadamard wire, the algorithms terminate when there
is no rule left that decreases the amount of Hadamard wires. Furthermore, the algorithms
also terminate if we allow negative gains, but restrict the matches to interior spiders where
the rule application does not generate new spiders. This is the case for the standard local
complementation on a spider with phase ±π/2 and pivoting on a pair of spiders with phase
0 or π. Since every step eliminates at least one spider, the algorithm terminates when there
is no interior spider left with phase ±π/2 and no pair of interior spiders with phase 0 or π.
However, allowing rule applications on spiders of arbitrary phases with gain ≤ 0 may result
in a non-terminating algorithm. Consider the following example:

5π
4

π
4

=

5π
4

π
4

5π
4

π
4

=
(p) (p)

∗ ∗ ∗ ∗
(4.13)

Here, pivoting on the spiders marked with ∗ has a gain of −2 and generates two new phase
gadgets. As second step we apply pivoting again on the newly generated gadgets, which
has a gain of +2. As this results in the original diagram, the simplification algorithm could
repeat these two steps forever and would not terminate. We have implemented a way to
circumvent this problem by storing all spiders at the beginning of the simplification algorithm
and only allow rule applications with positive heuristic result except for rule applications on
those previously stored spiders which may also have a heuristic result of ≤ 0. Since each
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4 Enhancing ZX-diagram simplification

step then decreases either the amount of wires, spiders or original spiders, the algorithm
terminates as well. In our example from 4.13, the pivoting would be applied once on the
non-Clifford spiders, since they are present at the beginning of the simplification algorithm,
but after that, pivoting would not be applied again, since the non-Clifford spiders are now
newly generated spiders.

4.4 Measurement planes in PyZX

One of the main issues during the implementation of our strategies was that PyZX does not
distinguish between different measurement planes. Even though the normal simplification
algorithms use phase gadgets, i.e. spiders in Y Z plane, they are only distinguished from
other spiders by looking at the connectivity: If a spider u has only one neighbour v, v is
considered as the root of a phase gadget measured in Y Z plane and u is the corresponding
measurement effect (c.f. 3.39). So far, rule application on measurement effects is undefined,
so u is excluded from every matching function, i.e. even if such a spider has a phase of ±π/2,
no local complementation is applied to it during the simplification algorithm. During the
extraction algorithm all spiders v are removed using pivoting as shown in 3.41. However,
spiders in Y Z or XZ plane which do not look like a phase gadget cannot be recognized as
such in PyZX. In the existing simplification algorithms, this is no problem, as the only spiders
measured in a non XY plane are spiders in phase gadgets. Yet, our simplification algorithms
generate more diverse spider types, which cause problems when extracting diagrams. In
this section we show which spider types are generated and how we prevent diagrams from
becoming unextractable in PyZX.

4.4.1 XZ spiders in simplified diagrams

After a diagram has been simplified with one of the existing algorithms it contains only XY
spiders and Y Z spiders in the form of phase gadgets. Our algorithms generate diagrams with
spiders in all three measurement planes. Consider the following example, which is based on
the diagram from Section 3.3.2:

7π
4

π
2

π
4

=
(f, id)

7π
4

π
4

=
(p)

7π
4

π
4

π
2

π
2

π
2

π
2

=
(lc)

π
2

7π
4

π
4

π
2

(4.14)
In the last step we have created something which is neither a spider in XY nor in Y Z plane.
By unfusing the spider with phase π/2 and changing the color of the spider with phase π/4
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4.4 Measurement planes in PyZX

we can see that this construct corresponds to a measurement in XZ plane (cf. 3.39):

π
2

π
4

XZ
(4.15)

Although this spider type can also occur during the normal PyXZ simplification algorithms
clifford_simp and full_reduce, eventually all XZ spiders are removed via local comple-
mentation. However, since applying local complementation to every spider with phase ±π/2
may increase the number of Hadamard wires, our strategies do not apply local complemen-
tation on some spiders and the simplified diagram may contain spiders in XZ plane. The
extraction algorithm from [4] is able to extract XZ spiders via local complementation, but
this feature is missing in the PyZX extraction algorithm, because it is not necessary for the
normal algorithms. In order to extract spiders in XZ plane, we distinguish phase gadgets
by the phase of its root spider. If a spider has only one neighbour, this neighbour is in Y Z
plane if it has a phase of 0 or π and it is in XZ plane if it has a phase of ±π/2. We then
modified the extraction algorithm by inserting the following algorithm at the beginning:

1. Search a spider that is connected to exactly one neighbour whose phase is ±π/2.

2. If nothing is found we are done, else apply local complementation on this neighbour
and go back to step 1.

4.4.2 Rule application on XZ and YZ spiders

As shown in [4], local complementation and pivoting change the measurement plane of
the vertices they are applied on. More precisely, the planes change as follows for local
complementation on a vertex u:

λ′ (u) =


XY λ (u) = XZ

Y Z λ (u) = Y Z

XZ λ (u) = XY

, (4.16)

and for pivoting on two vertices u, v:

λ′ (w) =


XY λ (w) = Y Z

Y Z λ (w) = XY

XZ λ (w) = XZ

,w ∈ {u, v} . (4.17)

Usually, the changing of measurement planes causes no problems in PyZX, since spiders
in XY plane get either removed or transformed to a phase gadget when applying local
complementation or pivoting. However, allowing rule applications on spiders which are
already in XZ or Y Z plane may lead to spiders where we cannot determine the measurement

49



4 Enhancing ZX-diagram simplification

plane based on the connectivity. For instance:

π
4

π
4

=

∗ Y Z
(p2)

=
(lc) 3π

2

3π
2 3π

2

7π
4

3π
2

3π
2Y Z

∗ ∗

(4.18)

Here we applied Equation 3.24 on the two marked spiders, which generates a spider measured
in Y Z plane. Since the top spider with phase π/4 has only one neighbour, the extraction
algorithm can identify the Y Z spider and remove it. However, in the second step we applied
3.46 on the Y Z spider. According to 4.16, the remaining spider is still measured in Y Z plane.
However, it has a phase of −π/2, so PyZX recognizes this spider as being measured in XZ
plane. The extraction algorithm now tries to eliminate the spider with local complementation
instead of pivoting, which leads to an unextractable diagram. Unfortunately, this is also the
case for Equation 4.8, since the remaining spider is measured in Y Z plane, but cannot be
identified as such. To overcome those issues we choose to exclude all spiders which we can
identify as spiders in XZ and Y Z planes from our matching functions and apply Equation
3.46 instead of 4.8 on spiders with phase 0 or π. In theory, we do not need this restriction,
but rewriting the PyZX library for supporting measurement planes had been out of the scope
of this work.

4.5 Using neighbour unfusion instead of phase gadgets

It seems that allowing spiders of Y Z and XZ planes causes a lot of problems for our diagram
simplification algorithms. In addition to the restrictions of the previous section, spiders in
XZ and Y Z plane are modified via local complementation and pivoting during the extraction
algorithm, which affects the number of Hadamard wires after the simplification. These
rule applications are usually especially expensive, since the measurement effect spider gets
connected to every neighbour of the XZ resp. Y Z spider, i.e. in the worst case for XZ
spiders:

αn

±π
2

α1

α2 αn−1

. . .

. . .

. . . . . .

. . .
=

α1 ∓ π
2

α2 ∓ π
2

αn−1 ∓ π
2

αn ∓ π
2

. . . . . .

. . .. . .

. . .

β

β

(4.19)

Therefore, a simplified diagram containing some Y Z and XZ spiders may result in a more
expensive circuit than another simplified diagram with more Hadamard wires but fewer Y Z
and XZ spiders.
To overcome this obstacle, we came up with a different approach which keeps most advan-
tages of phase gadgets but does not generate any spider in XZ or Y Z plane. The basic
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concept looks as follows:

α β

. . . . . .

. . .. . .
= γ β

. . . . . .

. . .. . .
α− γ

(nu)

(4.20)

This rule, which we will refer to as neighbour unfusion, follows directly from the spider
fusion and identity rules. As long as a spider with a phase α is connected to a neighbour,
we can change its phase to an arbitrary phase γ by inserting an empty spider and a spider
with phase α− γ between the spider and its neighbour. We can use neighbour unfusion for
applying local complementation with spider removal to any spider with arbitrary phase since
we can always change the phase of the spider to ±π

2 as follows:

αn

β

α1

α2 αn−1

. . .
. . .

. . . . . .

. . .
=

∓π
2

α2 ∓ π
2

αn−1 ∓ π
2

αn ∓ π
2

. . .

. . .. . .

. . .
αn

±π
2

α1

α2 αn−1

. . .
. . .

. . . . . .

. . .
=

β ∓ π
2

. . .

β ∓ π
2

α1

(4.21)
So compared to Equation 3.46, we do not complement all neighbours a1−an but only a2−an,
but otherwise have the same effect without introducing a phase gadget. This also works for
pivoting, since each spider of u, v has at least one neighbour w /∈ {u, v} which can be used
for neighbour unfusion.

4.5.1 Gflow under neighbour unfusion

As mentioned in 3.3.3, there are no proofs on whether general spider unfusion preserves
the gflow property of a diagram yet. With our constraint to allow only spiders in XY
measurement plane, spider unfusion and thus neighbour unfusion destroys the gflow property
in some cases. Consider the following example:

7π
4

=

π
2

(nu)

5π
4

=
(lc)

5π
4

(4.22)

It can be proven in a way similar to 3.40 that we cannot construct a gflow map if all spiders
are measured in XY plane. On the other hand, the diagram admits gflow if some spiders
are measured in Y Z plane. We do not know whether there are some rule applications
of neighbour unfusion which break the gflow completely, but since our goal is to restrict
simplification to diagrams containing only XY spiders, we tried to find a function which
tells us whether neighbour unfusion preserves gflow if all spiders are measured in XY plane.
Our basic observation was that if two connected spiders are extracted on the same qubit, we
can insert as many XY spiders as we want between them, because they are all extracted as
Rz gates. If we insert spiders between two connected spiders which are extracted on different
qubits though, the diagram sometimes becomes unextractable, although we do not know yet
whether this is due to Y Z and XZ spiders or due to general violation of the gflow property.
So the question is if we can find a function which tells us whether two spiders are extracted
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4 Enhancing ZX-diagram simplification

on the same qubit, because then we can apply neighbour unfusion with XY spiders between
them. We think that this can be achieved using the gflow property itself, more precisely
the map g (v), which assigns a correction set to each non-output vertex v of a labelled open
graph. For any vertex v measured in XY plane v ∈ Odd (g (v)) by condition g (3), therefore
we can always find a vertex w ∈ g (v) which is connected to v. If furthermore w is the only
element in g (v), our hypothesis is that the extraction algorithm always extracts v and w to
the same qubit. On the basis of this hypothesis we built another simplification algorithm
which works like the basic strategies from Section 4.3, but using neighbour unfusion instead
of phase gadgets. When applying local complementation and pivoting on spiders with non-
Clifford phases, we unfuse the phase of a spider v to a neighbour w iff one of the following
two conditions is met:

1. w ∈ g (v) ∧ |g (v)| = 1

2. v ∈ g (w) ∧ |g (w)| = 1

4.5.2 Gflow calculation

In the normal simplification algorithms the gflow map does not need to be calculated. Since
all rule applications preserve gflow, the extraction algorithm works and it is sufficient to
know that the map exists in theory. However, in our neighbour unfusion algorithm we need
the gflow map in order to find suitable neighbours. PyZX implements an algorithm for
calculating gflow for XY spiders, which is taken from [21]. This algorithm calculates the
maximally delayed gflow for an open graph, which is minimal in the depth of the partial
ordering ≺. Like the extraction algorithm, the gflow algorithm in PyZX uses gaussian
elimination on biadjacency matrices which is computationally very expensive. Although we
were able to speed up the performance of the gflow algorithm significantly by moving the
gaussian elimination one step out of a for loop to a higher level, computing the gflow map
at each simplification step is too expensive. For large diagrams with ∼ 10000 spiders, even
a single gflow calculation takes 5 − 10 minutes on a laptop computer and recalculating it
after each simplification step soon leads to total runtimes of days or even months. Thus,
we came up with the idea of calculating the complete gflow map only at the beginning of
our simplification and modify the map of all vertices affected by the rule application after
each step. In [4, Chapter 3.1], it is shown how to calculate a gflow preserving map after
local complementation and pivoting. For neighbour unfusion between two vertices v1 and
v2, where v2 ∈ g (v1) we modify the gflow map as follows:

g′ (v1) = {u1}
g′ (u1) = {u2} (4.23)

g′ (u2) = {v2}

Here u1 and u2 are the inserted vertices between v1 and v2:

v2u2u1v1v2v1
⇒

Using these modifications after rule application we can speed up the simplification algorithm
a lot and we are able to simplify the aforementioned diagrams with ∼ 10000 spiders in less
than one hour.
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As we will see in the next chapter, modifying the gflow instead of recalculating it after each
step sometimes leads to unextractable diagrams. Since we could not find an error in our
implementation, we think that either our hypothesis of gflow preserving neighbour unfusion
is wrong, or that it only holds for maximally delayed gflows, because when recalculating
the gflow after each step the simplification algorithm never leads to unextractable diagrams.
However, an exact proof or refutation of our hypothesis is out of scope of this work. To
our knowledge, the evolution of gflow under spider unfusion is an area of research that is
currently being investigated as part of a PhD thesis.
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In this chapter we compare the algorithms from the last chapter to the existing algorithms
of the PyZX library and to an up to date quantum circuit optimization algorithm which
is not based on ZX-calculus. We run the algorithms with different parameters on both
randomly generated circuits and existing benchmark circuits and evaluate which algorithms
optimize circuits the most. We will first define the basic metrics for scoring circuits and
outline which strategies we used to evaluate the PyZX algorithms, then we show how our
algorithms perform on randomly generated circuits and last we compare the algorithms on
benchmark circuits.

5.1 Circuit metrics

As mentioned in 2.2.1, the real cost of quantum gates varies depending on hardware imple-
mentation. Usually in Clifford+T+CNOT circuits, T gates are considered the most expen-
sive gates followed by two-qubit gates and last Clifford gates [22]. Since the T gate it is the
most expensive gate, in recent years a lot of effort has been put into developing algorithms
for reducing T gate count [2][22][15]. Yet, our algorithms focus on two-qubit gate reduction
and while they may eliminate some Clifford gates, the amount of T gates stays the same.
Thus, while the T gate count remains an important factor for comparing circuits our main
metrics are the two-qubit gates count and the total gate count. In summary we use four
different metrics for evaluating circuit cost:

• The total gate count CQG which includes all gates of a quantum circuit.

• The two-qubit gate count C2QG which counts all two-qubit gates in a circuit.

• The T gate count CTG which counts all T gates.

• The weighed gate count Cw which counts all gates of a quantum circuit but weighs
two-qubit gates with a factor of 10 compared to single qubit gates.

5.2 PyZX-based algorithms

Throughout this chapter we use seven different algorithms from the PyZX library including
the four new algorithms from the last chapter. Although they were already discussed in
the previous chapter we consider it useful to list them here again. From the existing PyZX
library as of June 2021 we chose the following algorithms:

• basic_optimization

This algorithm does not use ZX-calculus but gate cancellation and commutation to
optimize circuits. While this is usually only a preprocessing step before optimizing
circuits with ZX-calculus, we will see that for some circuits it still performs better
than ZX-calculus based approaches which is why we include it in our evaluation.
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• full_reduce

This algorithm is the standard method for ZX-diagram simplification and uses the
algorithm from 3.1.6 and all rules listed in 3.2

• simulated_annealing_post

This algorithm uses the approach from Section 3.5.4, i.e., after running the full_reduce
algorithm, simulated annealing is used to find a minimal circuit using local comple-
mentation and pivoting on randomly selected spiders as a post-processing step.

These algorithms are compared against four heuristic-based new algorithms from the last
chapter:

• random_simplification

This algorithm uses a random selection function for selecting a rule and can be parame-
trized with a lower bound for the result of LCH and PH and whether rule applications
which generate phase gadgets are allowed.

• greedy_simplification

This algorithm always selects the best possible step in terms of Hadamard wire reduc-
tion, i.e., the rule application where LCH or PH are maximal. It can be parametrized
like the random_simplification.

• simulated_annealing

This algorithm uses simulated annealing to apply random rule applications where the
probability of applying rules which increase Hadamard wire count gets smaller during
runtime. It is parametrized by an initial temperature ts and a cooling factor α.

• neighbour_unfusion

This algorithm works like the greedy_simplification algorithm but includes the
neighbour unfusion from Section 4.5. Since no phase gadgets are created we can only
parametrize this algorithm with a lower bound for LCH and PH. As mentioned
in 4.5.2 in this algorithm we need to recalculate gflow after each simplification step
which leads to long runtimes. As we will discuss in Section 5.3.4 we cannot apply this
approach on very large circuits in practice since the total runtime would increase too
much.

Since our optimization algorithms do not eliminate T gates we always apply the tele-

port reduce algorithm before the actual diagram simplification. Since teleport reduce

only eliminates T gates and otherwise leaves the circuit structure unchanged, it serves as
a basis for comparing all ZX-calculus algorithms against each other because after this step
every algorithm only eliminates Clifford and CNOT gates. Furthermore, we use the ba-

sic_optimization as a preprocessing step. In summary, for evaluating ZX-calculus based
algorithm we use the following pipeline to compare the original circuits to the optimized
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ones:

basic_optimization

teleport_reduce

main algorithm

circuit extraction

original circuit

optimized circuit

5.3 Optimization of randomized circuits

As a first approach we evaluate all PyZX based algorithms on circuits using a random circuit
generator where we can specify the number of qubits, total gates, two-qubit gates and T
gates. Although these circuits do not implement a meaningful problem, this serves as a
theoretical test environment for evaluating how our algorithms perform on different circuit
types.

5.3.1 Framework

The random circuits were generated using a combination of the following parameters:

• A total gate count of either 500 or 1000 gates.

• A number of qubits of either 4 or 8.

• A T Gate probability of 10,20,30, or 40%.

• A two-qubit gate count of 30%.

We choose the different number of total gates and number of qubits for evaluating what
happens to our optimizations when doubling either one or both of the parameters but due to
the long runtime of the neighbour_unfusion algorithm we only generate small circuits. The
different T gate probabilities are motivated by real world circuits. From our observations
most quantum circuits do have at least some T-gates, but circuits with more than 50% T
gates are very unlikely. As we will see, the number of qubits and the T gate probability have
the most impact on the performance of the optimization algorithms so we choose to set the
two-qubit gate count to a fixed number in order to reduce the dimensionality of the different
parameters. Since the variable placement of gates in randomly generated circuits leads to
differing results of the simplification algorithms, we generate 10 circuits for each parameter
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combination and take the average gate count as a more expressive result. Furthermore, we
use the following parameters for the heuristic-based algorithms:

1. A lower bound for LCH and PH of either 1,−10,−20 or −30. Using the first bound
we allow only rule applications which decrease the amount of Hadamard wires, us-
ing the other bounds we allow also rules which increase the amount of Hadamard
wires up to the specified number. This bound can be applied to all strategies except
simulated_annealing.

2. A flag whether rules with phase gadget generation are allowed or not for random_simp
lification and greedy_simplification which is either False or True.

3. An initial temperature for simulated_annealing set to 0.5,1, or 2 times the amount
of gates before simplification

4. A cooling factor for simulated_annealing of either 0.9, 0.95, or 0.99.

5.3.2 Evaluating different strategy parameters

As a first step we evaluated which parameter settings are useful on which types of cir-
cuits. As it can be seen in Figure 5.1 we first compared the random_simplification,
greedy_simplification and neighbour_unfusion algorithms against various circuits us-
ing either 1,−10,−20 or −30 as lower bounds for the heuristic.

While allowing only rules which do not increase Hadamard wire count seems to be the
best strategy for circuits with 4 qubits and a low T gate count, for circuits with more T gates
or qubits it is better to allow some rule applications which increase Hadamard wire count.
However, results vary on which negative lower bound is optimal. While for the 4 qubit
circuits with high T gate probability and for 8 qubit circuits with low T gate probability it
seems best to set the lower bound to a number ≤ −20, the best lower bound for 8 qubit
circuits with high T gate probability is −10.
Another comparison can be made for the random and the greedy simplification on whether to
allow phase gadgets or not during optimization. For this task we collected the average of the
simplification algorithms using phase gadgets on different lower bounds and the average of the
simplification algorithms not using phase gadgets. As shown in Figure 5.2, disallowing phase
gadgets almost always leads to better results. This seems to support our hypothesis that the
resolving of phase gadgets during circuit extraction, like in Equation 4.19 increases the two-
qubit gate count significantly. Usually diagrams simplified with phase gadgets contain equal
or less Hadamard wires than their equivalent diagrams simplified without phase gadgets so
the only possible explanation is that the Hadamard wires increase during circuit extraction.
As last parameter we evaluate the choosing of the initial temperature ts for the simulated
annealing algorithm and the cooling factor α. For the evaluation we assumed that a static
initial temperature will not accomodate the different circuit sizes. Therefore, we set the
initial temperature to a multiple of the circuit size which is either 0.5, 1 or 2. As for α, the
higher the cooling factor is, the more iterations the algorithm will run through. We assumed
that the cooling factor should in general not be too low, because otherwise the algorithm
would soon behave like the random_simplification with lower bound 1 so we used 0.9, 0.95
and 0.99 as cooling factors. As it can be seen in Figure 5.3, the cooling factor is much more
important for good optimization results than the number of iterations. Moreover, while for
small circuits increasing the factor α seems to yield better optimization results, for larger
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greedy_s random_s

960

980

1000

1020

1040

1060

1080
m=4 n=500 pt=0.1

greedy_s random_s

1230

1240

1250

1260

1270

1280

m=4 n=500 pt=0.4

greedy_s random_s

1850

1875

1900

1925

1950

1975

2000

2025
m=4 n=1000 pt=0.1

greedy_s random_s
2250
2275
2300
2325
2350
2375
2400
2425

m=4 n=1000 pt=0.4

greedy_s random_s

1680

1700

1720

1740

m=8 n=500 pt=0.1

greedy_s random_s

1800

1820

1840

1860

1880

1900

1920
m=8 n=500 pt=0.4

greedy_s random_s
3250

3300

3350

3400

3450
m=8 n=1000 pt=0.1

greedy_s random_s

3400

3450

3500

3550

3600
m=8 n=1000 pt=0.4

disallowing phase gadgets allowing phase gadgets
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Figure 5.3: Weighed gate count for m qubit circuits with a gate depth of n and T gate prob-
ability pt optimized with simulated_annealing under varying starting temper-
atures and cooling factors α. The X-axis denotes the cooling factor, the Y-axis
the weighed gate count Cw.

circuits it is often best to have a low cooling factor with less iterations. Our first guess had
been that for larger circuits the number of iterations is far to little but testing the algorithm
with a factor of 5 or 10 more iterations than circuit depth showed no difference. Therefore,
we think that for large circuits a high factor α leads to a very slow annealing process and
many particularly “bad” rules in terms of Hadamard wire increase are applied before the
algorithm terminates, which subsequently leads to a high circuit cost.

5.3.3 Optimization results

Considering the parameter selection we can now both compare our algorithms against each
other and to the existing PyZX algorithms. For 4 qubit circuits we choose to disallow phase
gadgets and to set the lower heuristic bound to 1, for 8 qubit circuits we set the lower heuris-
tic bound to −10. For the simulated_annealing algorithm we set the initial temperature
to the number of gates in the circuit and the cooling factor α to 0.99. In Figure 5.4 we first
compare the new approaches against each other. We can see a clear ranking between the dif-
ferent algorithms regardless of circuit size and number of qubits: The neighbour_unfusion

algorithm optimizes circuits the best, followed by the greedy_simplification and the ran-
dom_simplification and last the simulated_annealing algorithm. With increasing T gate
count the algorithms do not optimize circuits as well as for a low T gate count. Increasing the
number of qubits has a similar effect: While for 4 qubit circuits the costs get nearly halved
by the neighbour_unfusion algorithm, for 8 qubit circuits the algorithms reduce the cost
only marginally. However, the total amount of gates does not seem to have an impact on
the effectivity of the algorithms. Compared to the other algorithms, the simulated annealing
algorithm does not perform very well. As mentioned, we suspect that this may be to the fact
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that the simulated annealing algorithm is the only algorithm which allows rule applications
with arbitrary negative results for LCH and PH. However, the performance may improve
when changing the number of iterations or the cooling factor.
Since the neighbour_unfusion algorithm outperforms the other algorithms in all cases, in
Figure 5.5 we only compare this algorithm against the existing PyZX algorithms for clarity.

While for circuits with low T gate count, the full_reduce and the simulated_annealing
post-processing algorithm sometimes yield better results, the neighbour_unfusion algo-
rithm performs significantly better on 8 qubit circuits with T gate probability > 10%. In
this setting it is the only ZX-calculus based algorithm which does not increase circuit cost
when compared to the original circuit. However, while the basic_optimization algorithm
is the worst algorithm for 4 qubit circuits, it is the best algorithm for 8 qubit circuits. This
suggests that also the new ZX-calculus based approaches perform worse when applied on
larger circuits.

5.3.4 Runtime Evaluation

For evaluating the runtime of our algorithms we ran them with the same settings as in the
previous section single threaded on a laptop computer with an Intel(R) Core(TM) M-5Y10c
CPU @ 0.80GHz CPU unit. As we can see in in Figure 5.6, our algorithms have very different
runtimes.

While the runtime of the greedy and the random algorithm is constantly in the range of a
few seconds, the runtime of the simulated_annealing algorithm increases up to a minute
and the runtime of the neighbour_unfusion algorithm increases up to almost an hour for
8 qubit circuits with 1000 gates. Moreover, while the runtime of the other algorithms seems
to be only determined by the number of gates and the number of qubits, the runtime of the
neighbour_unfusion algorithm also depends much on T gate probability. This is due to the
calculation of the maximally delayed gflow needed for neighbour unfusion. Since the runtime
of the gflow algorithm is dominated by the gaussian elimination on biadjacency matrices, the
runtime increases when there are more connections, i.e., Hadamard wires, in a diagram. This
is especially the case when we cannot remove many spiders with the local complementation
and pivoting rule, i.e., when there are many T gates in a circuit. As already mentioned in
Section 4.5.2 we can speed up this process by only modifying some relevant vertices after
rule application instead of recalculating gflow but then our criteria for choosing a neighbour
for unfusion sometimes fail and we end up in unextractable diagrams.

5.4 Evaluation on Benchmark circuits

In this section we test our algorithms against circuits that implement actual computing
problems. First we use the QASMBench library for evaluating the algorithms on quan-
tum circuits from various scientific research areas such as chemistry, machine learning and
cryptography [19]. This serves as a general test environment to show how the algorithms
behave on real quantum circuits. Then we compare our optimization algorithms to the Tpar
benchmark circuits from [2]. This is a set of benchmark circuits which have been used by
a number of papers in recent years to show the effectiveness of various quantum circuit op-
timization algorithms including a T gate reduction approach with ZX-calculus based phase
teleportation [15]. We compare the algorithms against this approach and another up to date
optimization algorithm presented in [22].
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5.4 Evaluation on Benchmark circuits

Circuit
Pre-Optimization basic optimization full reduce sim annealing post Our best Optimization
CQG C2QG Cw CQG C2QG Cw CQG C2QG Cw CQG C2QG Cw CQG C2QG Cw Algorithm

basis-trotter4 2598 582 7836 712 268 3124 574 190 2284 569 185 2234 641 183 2288 neighbour_unfusion

iswap2 9 2 27 7 4 43 9 4 45 9 4 45 7 4 43 random_simplification

qaoa3 15 6 69 21 6 75 21 4 57 21 4 57 21 4 57 simulated_annealing

variational4 54 16 198 40 12 148 70 38 412 66 32 354 62 14 188 random_simplification

adder4 23 10 113 22 10 112 49 21 238 49 21 238 41 15 176 random_simplification

dnn2 514 42 892 168 28 420 171 29 432 171 31 450 149 19 320 simulated_annealing

bell4 77 7 140 20 5 65 29 7 92 28 6 82 29 5 74 neighbour_unfusion

error-correctiond35 113 49 554 19 11 118 34 20 214 34 20 214 21 10 111 simulated_annealing

basis-test4 110 46 524 74 27 317 70 22 268 64 18 226 60 18 222 neighbour_unfusion

cat-state4 4 3 31 4 3 31 10 3 37 10 3 37 10 3 37 neighbour_unfusion

toffoli3 18 6 72 18 6 72 36 9 117 36 9 117 34 6 88 random_simplification

qec-en5 25 10 115 17 14 143 23 14 149 25 16 169 21 12 129 greedy_simplification

qrng4 4 0 4 4 0 4 4 0 4 - - - 4 0 4 simulated_annealing

teleportation3 8 2 26 8 2 26 10 2 28 10 2 28 10 2 28 simulated_annealing

wstate3 34 9 115 24 6 78 38 14 164 40 14 166 34 6 88 neighbour_unfusion

linearsolver3 27 4 63 14 4 50 17 4 53 17 4 53 17 4 53 random_simplification

basis-change3 125 10 215 86 10 176 80 30 350 76 26 310 93 10 183 neighbour_unfusion

hs44 28 4 64 12 8 84 17 6 71 17 6 71 10 8 82 greedy_simplification

vqe-uccsd4 332 88 1124 138 80 858 94 50 544 86 42 464 89 33 386 neighbour_unfusion

lpn5 11 2 29 3 2 21 7 2 25 7 2 25 7 2 25 simulated_annealing

deutsch2 5 1 14 4 1 13 6 1 15 6 1 15 6 1 15 simulated_annealing

grover2 16 2 34 6 4 42 10 4 46 10 4 46 8 4 44 neighbour_unfusion

fredkin3 19 8 91 19 8 91 42 17 195 41 14 167 38 9 119 neighbour_unfusion

quantumwalks2 43 3 70 30 3 57 36 8 108 36 6 90 35 3 62 neighbour_unfusion

Table 5.1: Comparison of the optimization results from the small circuit class of the QASM-
Bench library. The best results in their category are highlighted.

5.4.1 Results for the QASMBench circuits

The QASMBench circuit library is grouped into three circuit classes: small, medium and
large sized circuits. While circuit depths for small circuits are usually in the range of 10-
1000 gates, some circuits in the medium and especially in the large section contain more than
10000 gates. Due to the slow runtime of the neighbour_unfusion algorithm we excluded
those circuits from our evaluation. This benchmark serves as a comparison between all
PyZX algorithms. For each circuit we compare the basic_optimization, full_reduce and
simulated_annealing_post algorithm against the best result of one of our own heuristic-
based algorithms. Table 5.1 shows the results for the small circuit class and Table 5.2 shows
the results for the middle circuit class. Note that we did not include the CTG metric for
counting the T gates since all of the circuits had been put through the teleport_reduce

algorithm before the actual simplification and the T gate count remains the same. While for
small circuits the original circuit or the circuit resulting from the basic_optimization have
the best results in terms of weighed circuit cost, the circuits in the medium class are almost
all best optimized by the neighbour_unfusion algorithm. This is most likely because many
small sized circuits are already optimal in terms of gates and the optimization algorithms
cannot improve them. However, this is not the case for medium sized circuits where our
algorithms can improve the circuits a lot. Moreover, while the existing ZX-calculus based
algorithms full_reduce and simulated_annealing_post yield the best results for the vqe-
uccsd6 circuit, in all other cases they are outperformed by our heuristic-based algorithms
which indicates that the they are more suitable to optimize real world quantum circuits.

5.4.2 Tpar Benchmark

As a last step we compare our algorithms using the Tpar benchmark [2]. This set of circuits
consists mostly of arithmetical problems such as adders, multipliers or different applications
of the Toffoli gate. It first has been used to demonstrate the effectiveness of a T gate
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Circuit
Pre-Optimization basic optimization full reduce sim annealing post Our best Optimization

CQG C2QG Cw CQG C2QG Cw CQG C2QG Cw CQG C2QG Cw CQG C2QG Cw Algorithm

vqe-uccsd6 3362 1052 12830 1464 938 9906 420 202 2238 421 199 2212 579 239 2730 neighbour_unfusion

bv14 41 13 158 28 13 145 54 13 171 54 13 171 43 13 160 greedy_simplification

adder10 142 65 727 143 61 692 208 97 1081 199 82 937 196 51 655 neighbour_unfusion

multiplier15 574 246 2788 476 222 2474 470 247 2693 427 204 2263 426 131 1605 random_simplification

ising10 480 90 1290 340 90 1150 445 163 1912 409 125 1534 360 72 1008 neighbour_unfusion

dnn8 2320 192 4048 720 128 1872 752 152 2120 749 149 2090 717 101 1626 neighbour_unfusion

qft15 540 210 2430 449 210 2339 685 309 3466 656 280 3176 530 144 1826 neighbour_unfusion

seca11 182 84 938 138 61 687 215 112 1223 196 98 1078 185 50 635 neighbour_unfusion

qaoa6 594 54 1080 122 36 446 159 57 672 160 60 700 146 36 470 neighbour_unfusion

sat11 679 252 2947 580 252 2848 591 248 2823 585 242 2763 546 160 1986 neighbour_unfusion

multiply13 98 40 458 95 40 455 222 103 1149 209 94 1055 171 40 531 neighbour_unfusion

simon6 44 14 170 34 14 160 15 4 51 15 4 51 15 4 51 simulated_annealing

bb848 27 0 27 9 0 9 15 0 15 15 0 15 11 0 11 greedy_simplification

Table 5.2: Comparison of the optimization results from the medium circuit class of the
QASMBench library. The best results in their category are highlighted.

optimization algorithm named Tpar. Since then the benchmark has been used to evaluate
several other T gate optimization algorithms against each other including a ZX-calculus
based approach using a combination of the basic_optimization and teleport_reduce

algorithms [15]. We compare our algorithms to this ZX-calculus based approach and an
optimization algorithm presented in [22] which outperforms the original Tpar algorithm
and, to our knowledge, is one of the best up-to-date algorithms for reducing both two-qubit
gate count and T gate count. It is worth mentioning that the results of the T gate counts
in [15] were further reduced using the TODD algorithm. However, we observed that this
algorithm increases two-qubit gate count significantly in most cases. Since we especially
want to evaluate two-qubit gate count, we compare our results against the results from [15]
without the application of the TODD algorithm. Table 5.3 compares our algorithms to
the results from [22] and [15]. For each circuit we only compare the best result from any
of the PyZX algorithms defined in 5.2 against the two benchmark results. While the T
gates are optimized approximately the same, in most cases the optimization algorithm from
[22] outperforms the ZX-calculus based algorithms in terms of total gate count and two-
qubit gate count. Still, there are two circuits where our optimization algorithms generates
the best result: the VBE-Adder3 and the Mod-Mult55 circuit. Moreover, the simulated
annealing post-processing algorithm generates the best result for the Mod 54 circuit. For
all other circuits the algorithm from [22] generates the best results but most of the time
our algorithms come close those results especially for the two-qubit gate count. Compared
to the best known ZX-calculus strategy from [15] the results the heuristic-based algorithms
almost always have a lower total and two-qubit gate count. This indicates that while there
is still room for improvement for ZX-calculus based approaches to reach the optimization
degree of the leading optimization algorithms, our initial idea of using heuristics for reducing
Hadmard wires instead of spiders seems to be a promising approach for ZX-calculus based
quantum circuit optimization.
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5.4 Evaluation on Benchmark circuits

Circuit
Pre-Optimization Ref [22] Post-Optimization Ref [15] Post-Optimization Best PyZX Post-Optimization
CQG C2QG CTG CQG C2QG CTG CQG C2QG CTG CQG C2QG CTG Algorithm

Mod 54 63 28 28 51 28 16 46 27 8 29 15 8 simulated_annealing_post

VBE-Adder3 150 70 70 89 50 24 101 54 24 87 42 24 neighbour_unfusion

CSLA-MUX3 170 80 70 155 70 64 156 75 62 155 74 62 neighbour_unfusion

CSUM-MUX3 420 168 196 266 140 84 308 168 84 303 150 84 neighbour_unfusion

QCLA-Com7 443 186 203 284 132 95 316 146 95 297 140 95 random_simplification

QCLA-Mod7 884 382 413 624 292 235 717 324 237 709 312 237 neighbour_unfusion

QCLA-Adder10 521 233 238 399 183 162 437 201 162 433 200 162 neighbour_unfusion

Adder8 900 409 399 606 291 215 690 351 173 592 300 173 neighbour_unfusion

RC-Adder6 200 93 77 140 71 47 155 71 47 159 71 47 simulated_annealing

Mod-Red21 278 105 119 180 77 73 217 93 73 196 85 73 neighbour_unfusion

Mod-Mult55 119 48 49 91 40 35 91 42 35 90 40 35 greedy_simplification

Toff-Barenco3 58 24 28 40 18 16 50 22 16 53 20 16 simulated_annealing_post

Toff-NC3 45 18 21 35 14 15 40 16 15 36 15 15 neighbour_unfusion

Toff-Barenco4 114 48 56 72 34 28 95 44 28 90 39 28 simulated_annealing_post

Toff-NC4 75 30 35 55 22 23 65 26 23 57 24 23 neighbour_unfusion

Toff-Barenco5 170 72 84 104 50 40 140 66 40 121 54 40 simulated_annealing_post

Toff-NC5 105 42 49 75 30 31 90 36 31 78 33 31 neighbour_unfusion

Toff-Barenco10 450 192 224 264 130 100 365 176 100 333 156 100 neighbour_unfusion

Toff-NC10 255 102 119 175 70 71 215 86 71 183 78 71 neighbour_unfusion

GF(24)-Mult 225 99 112 187 99 68 193 99 68 195 101 68 random_simplification

GF(25)-Mult 347 154 175 296 154 115 304 154 115 306 156 115 greedy_simplification

GF(26)-Mult 495 221 252 403 221 150 422 221 150 422 221 150 neighbour_unfusion

GF(27)-Mult 669 300 343 555 300 217 573 300 217 573 300 217 neighbour_unfusion

GF(28)-Mult 883 405 448 712 405 264 745 405 264 745 405 264 neighbour_unfusion

Table 5.3: Comparison of the optimization results from [22] against the PyZX based strat-
egy from [15] and the best result from any PyZX strategy including our own
approaches. The best results in each of the categories Total gate count, two-qubit
gate count and T gate count are highlighted.
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6 Conclusion and Future work

Optimizing quantum circuits is a main challenge in quantum computing as hardware and
physical constraints of quantum computers put severe limits on the size of quantum circuits.
ZX-calculus offers a graphical approach to optimize quantum circuits using ZX-diagrams
which, due to their more open structure, allow optimizations that have no equivalent in
quantum circuits. Since existing ZX-calculus based approaches have several drawbacks like
not reducing two-qubit gates significantly in many cases, we focus on the following research
question:

Which strategies can be used to further improve ZX-calculus based quantum circuit
optimization?

As main idea we introduced heuristics in the ZX-diagram simplification algorithms which
allow to estimate how rule applications change the number of two-qubit gates of the underly-
ing quantum circuit changes by counting the so called Hadamard wires in ZX-diagrams. This
turns ZX-diagram simplification into a classical search problem and we design various search
algorithms which use the heuristics for guiding the simplification process towards minimal
circuits. As a first step we implement algorithms for greedy search, random search and a
search algorithm based on simulated annealing. While the simulated annealing algorithm
shows no significant improvement, the other two simplification algorithms outperform the
existing ZX-calculus algorithms most of the time, especially for larger non-Clifford circuits.
The main obstacle for our simplification algorithms are the use of phase gadgets, i.e. spi-
ders in YZ plane, in combination with the extraction algorithm necessary for converting
ZX-diagrams back into quantum circuits. Although phase gadgets extend the possibilities
of diagram simplification, we have to introduce restrictions on rule applications in order to
keep diagrams extractable. Moreover, as the resolving of YZ spiders during the extraction
algorithm generates new Hadamard wires, our heuristic-based approaches are not able to
develop their full power because these new Hadamard wires cannot be taken into account
during the simplification process.
Therefore, we develop a new simplification rule called neighbour unfusion as an alternative to
phase gadgets which keeps all the extended simplification possibilities from using phase gad-
gets but does not generate spiders in other measurement planes. As a consequence we neither
have to restrict rule applications nor does the extraction algorithm generate new Hadamard
wires. The greedy algorithm based on neighbour unfusion shows the most promising results
in terms of circuit optimization so far. For most quantum circuits this algorithm yields the
best results of all ZX-calculus based approaches and although most of the time the current
state-of-the-art algorithms not based on the ZX-calculus still outperform the neighbour un-
fusion algorithm, the results for two-qubit gates do not differ much.
However, a major drawback of the neighbour unfusion algorithm is its high runtime. This
is due to the fact that before each optimization step the maximally delayed gflow has to be
calculated which is necessary to find pairs of connected spiders operating on the same qubit.
The complete source code of our heuristic-based algorithms can be found in the following
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repository https://github.com/mnm-team/pyzx-heuristics which is based on a fork from the
PyZX library as of June 2021.

Future work

In the following we want to mention some aspects which we consider promising topics for
future work on our approaches and on general quantum circuit optimization using ZX-
calculus. It can be further explored if and how far the Euler-rule is suitable for diagram
simplification and the heuristic-based algorithms allow a variety of improvements such as
lookahead simplification, topology-aware simplification and finding more applications of the
neighbour unfusion rule.

Further evaluation of the Euler-rule

Although using the Euler-rule in order to eliminate 2-ary spiders may lead to spiders with
complicated phases, it could serve as a means of eliminating non-Clifford spiders in some
cases. For this task a mathematical library has to be included in the PyZX library to effi-
ciently calculate the resulting angles of the Euler-rule. It would also be interesting if we can
derive further simple rules from the Euler-rule which can be used for different simplification
approches.

Lookahead simplification

As a general improvement for the greedy algorithms some lookahead strategy could be im-
plemented which does not only evaluate which single rule application is best for optimizing
the underlying quantum circuit but which combinations of rules up to a specified depth are
best for optimization. We observed that rule applications which increase Hadamard wire
count often lead to new possible applications which decrease Hadamard wire count even
more. Therefore, it would be useful to rank the first rule application better which could be
covered to some extent by lookahead strategies.

Using gflow for topology optimization

Our hypothesis for the neighbour unfusion algorithm states that using the maximally delayed
gflow we can find pairs of connected spiders which get extracted to the same qubit. We
think it is worth investigating if there is a general way to determine the qubit on which a
spider operates using the gflow. If this is possible in an efficient way, we can optimize ZX-
diagrams in terms of quantum circuit topology which means we can construct algorithms
for quantum circuits where two-qubit gates are not allowed on any pair of qubits. We can
either prohibit rule applications which generate connections between spiders whose qubits
cannot be connected directly or weigh them with a negative factor making it unlikely for
these rules to get selected.

Improvement of the neighbour unfusion algorithm

Using neighbour unfusion for diagram simplification shows the best results so far but there
are possible improvements regarding runtime and effectivity. First, it can be investigated
whether neighbour unfusion between connected spiders which do not get extracted to the
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same qubit also preserves gflow. So far we see that in many cases the diagram becomes
unextractable using the PyZX library but it remains unclear whether this is due to the
missing support for spiders in XZ and YZ plane in PyZX or whether neighbour unfusion
does break the gflow property in some cases. In both cases it is worth investigating on
which other neighbour types spiders can be unfused while staying in XY plane as this leads
to more possibilities for diagram simplification and therefore most likely to better overall
results in quantum circuit optimization. Second, the runtime of the algorithm would be
improved if there is another way of finding spider pairs corresponding to the same qubits
without calculating the maximally delayed gflow.
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