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Abstract

Grid computing refers to coordinated resource sharing and problem solving in dynamic
multi-institutional virtual organizations (VOs). As grid users (i.e., the members of the vir-
tual organizations) organizations) are basing their work more and more on grid technology,
grid systems must exhibit a high degree of dependability, i.e., they must be able to deliver
service that can justifiably be trusted.
Although there have been several research efforts established to address dependability is-
sues in distributed systems, most of the characteristics inherent to grids are considered only
recently. One such characteristic is the large-scaleness of grids which presents a major chal-
lenge in understanding dependability.
In this thesis we simulate large-scale grids in order to enable a systematic study of their
inherent dynamics (VOs, applications, middleware, resources, and networks).
The goal is to obtain the scenarios where we can get the description of the behavior of its
components on a large scale.
In this thesis we propose the use of modeling and simulation, because various grid scenarios
need to be evaluated and repeated. Hence, this thesis describes the development of Grid-
Sim, a discrete-event grid simulation tool, which allows modeling and simulation of various
properties. The simulation is based on the GridSim tools provided by the University of
Melbourne.
The tool provide a virtual grid infrastructure that enables experimentation with dynamic re-
source management techniques and adaptive services by supporting controllable, repeatable,
observable experiments.
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Sommario

Il Grid computing è una tecnologia che si riferisce alla condivisione di risorse coordinate e al
problem solving in organizzazioni multi-istituzionale virtuali e dinamiche. Poichè gli utenti
della rete (ovvero, i membri delle organizzazioni virtuali) basano sempre più il loro lavoro
sulla tecnologia grid, i sistemi di grid devono presentare un grado elevato di affidabilità,
ovvero, devono essere in grado di fornire un servizio che può essere giustamente considerato
attendibile.
Nonostante siano state stabilite diverse attività di ricerca per affrontare i problemi di af-
fidabilità nei sistemi distribuiti, la maggior parte delle caratteristiche inerenti al grid com-
puting sono state prese in considerazione solo di recente. Una di queste caratteristiche è
la grande scalabilità delle reti grid, che presenta una sfida importante nella comprensione
dell‘affidabilità.
In questo progetto si simula grid su larga scala al fine di consentire uno studio sistematico
delle loro dinamiche intrinseche (VO, applicazioni, middleware, risorse e reti). L’obiettivo è
di ottenere uno scenario dal quale possiamo ottenere la descrizione del comportamento dei
suoi componenti su larga scala.
In questa tesi si propone l‘utilizzo della simulazione, in quanto i vari scenari di rete devono
essere valutati e ripetuti.
Quindi, questa tesi descrive lo sviluppo di GridSim, uno strumento di simulazione di un
sistema grid ad eventi discreti, che permette la modellazione e la simulazione di varie pro-
prietà. La simulazione si basa sullo strumento GridSim messo a disposizione dall‘Università
di Melbourne.
Esso fornisce una infrastruttura virtuale di Grid che permette la sperimentazione di tecniche
di gestione dinamica delle risorse e di servizi adattabili sostenendo esperimenti controllabili,
ripetibili e osservabili.
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1 Introduction

1.1 What is the goal that we want to reach?

In this thesis we study the behavior of the grid using large scale scenarios.
It’s impossible to actually test on a large network, so we use GridSim toolkits provided by
the University of Melbourne to simulate it (please refer to Chapter 2.2).
We will discuss in detail the GridSim toolkit in Chapter 3.
Originally, the GridSim toolkit was designed to develop large-scale simulations using some
random functions.
These random functions allow the developer to develop simulations without having to set
up a series of parameters (that we will explain in detail later) such as:

• link the newly created regional Grid Information Service (GIS) with any router on the
network at random;

• link the newly created resource with any regional GIS in the network;

• link the newly created user with any router on the network at random;

• link the newly created user with any regional GIS in the network;

• set the initial time when a gridlet is submitted to a resource;

• set the gridlet ID to a gridelt submit event;

• set in which resource to send one or more gridlets;

• set the number of users per resource.

Our goal is to make these features adaptable, in this way we can choose how to implement
the simulation network by manipulating all of its components.
In fact, to construct a scenario that is as close as possible to reality, we have to know with
certainty where and when certain events will occur before the simulation begins.
In this way we can have a virtual grid infrastructure that enables experimentation with
dynamic resource management techniques and adaptive services by supporting controllable,
observable and, especially, repetable experiments.
With this, we will be able to build a series of scenarios on a large scale, and all data will be
included at our discretion.
The ultimate goal is to analyze the results of these experiments in several aspects, by chang-
ing the settings of some parameters of the the network topology in order to obtain an
overview of the behavior of software in different ways.
As we have said, with changes to the toolkit, we can get any kind of scenario we want.
But to obtain a clear view of GridSim, we concentrate our efforts in two different scenarios.
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1 Introduction

The first one is based on the EU DataGrid Testbed 1[1], and the second one is a large sce-
nario that represents a typical network topology.
The choice of the first scenario comes from an experiment carried out by researchers at the
University of Merlbourne in which they tested the proper operation of the toolkit with an
extension of GridSim[2].
The second scenario is based on a network topology of our invention and wider than its
predecessor.
This is because the first scenario must serve as a control model through which to obtain reli-
able results from a second scenario, that reflects a hypothetical future structure of a network
at a large scale.

1.2 How do we reach the goal (methodology)?

In recent years, there have been many examples in which the software GridSim was used for
modeling and simulating many interesting systems and ideas.
For example, IBM Research uses DataGrid package to simulate a grid meta-scheduler that
tightly integrates the compute and data transfer times of each job[3].
Another example is Universidad de Santiago de Compostela’s extension of GridSim to opti-
mize execution of parallel applications on a grid[3].

In our project we simulate several tests in which we evaluate the result of grid comput-
ing systems.
To simulate grid resources using the GridSim toolkit, we need to create new entities that
exhibit the behavior of grid users and scheduling systems.
GridSim base classes are extended by user-defined entities to inherit the properties of con-
current entities capable of communicating with other entities using events.
The detailed steps involved in modeling resources and applications, and simulating using the
GridSim toolkit are discussed below.

1.2.1 A general view to understand the application scheduling

In this section we present high-level steps, to demonstrate how GridSim can be used and
modified to simulate a grid environment to analyze scheduling algorithms.
As shown in Figure 1.1, the high-level steps can be summarized in five points.

In the first step we declare the most important entities of GridSim.
Indeed we have to set the number of the users that join the network, the number of the
gridlets that each user has and, finally, we have to specify in how many regional GIS our
network is shared.

The second step is important because we build the network topology among the routers.
After obtaining the network topology, GridSim reads it and initializes the simulation de-
pending on the number of routers present.

The third, fourth and fifth steps are similar.
All three are creating and setting up an entity (GIS, resource or user) and then connect it
to a router.

2



1.3 The contents of the thesis

Figure 1.1: GridSim high-level steps

Moreover, the resources and users are also connected to various GISs in the network.
One or more resources which contain one or more users can be inserted in any GIS.
Various routers link the entities, drawing the character of the network that will be created.
In fact, as we shall see, based on our changes we can choose adaptively all five steps listed
above, unlike original toolkit that provides a random choice.

These five steps concerning the entities of GridSim toolkit, are the first of a series of stages
required to simulate a topology of the performing network.
Depending on the choice of the entities of the simulation, other parameters will be set that
affect performance.

1.3 The contents of the thesis

The rest of this thesis consists of seven chapters listed below.
In Chapter 2 we will talk about grid computing and simulation in grid computing. Chapter 3
will be totally dedicated to GridSim toolkit.
In Chapter 4 we will explain in detail the topologies of the two scenarios that we have chosen
for our simulations.
Chapter 5 contains all the results and comments on tests performed on the The Scenario of
EU DataGrid Test Bed 1. While Chapter 6 contains all the results and comments on tests
performed on the Scenario Artificial EU.
In Chapter 7 we will insert all the comments about the comparison among the two scenarios.
And Chapter 8 will be totally dedicated to the final conclusions.
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2 Simulation in grid computing

2.1 What is grid computing

Grid computing is the act of sharing tasks over multiple computers.
Tasks can range from data storage to complex calculations and can be spread over large
geographical distances.
In some cases, computers within a grid are used normally and only act as part of the grid
when they are not in use.
These grids scavenge unused cycles on any computer that they can access, to complete given
projects.[4]
SETI@home is perhaps one of the best-known grid computing projects, and a number of
other organizations rely on volunteers offering to add their computers to a grid.
These computers join together to create a virtual supercomputer as shown in Figure 2.1.

Networked computers can work on the same problems, traditionally reserved for super-
computers, and yet this network of computers is more powerful than the supercomputers
built in the seventies and eighties.

Modern supercomputers are built on the principles of grid computing, incorporating many
smaller computers into a larger whole.

Figure 2.1: How grid computing works[5]

The idea of grid computing originated with Ian Foster, Carl Kesselman and Steve Tuecke.
They got together to develop a toolkit to handle computation management, data movement,
storage management and other infrastructure that could handle large grids without restrict-

5



2 Simulation in grid computing

ing themselves to specific hardware and requirements.
The technique is also exceptionally flexible.
Grid computing techniques can be used to create very different types of grids, adding flexi-
bility as well as power by using the resources of multiple machines.

An equipment grid will use a grid to control a piece of equipment, such as a telescope,
as well as analyze the data that equipment collects. A data grid, however, will primarily
manage large amounts of information, allowing users to share access.

Grid computing is similar to cluster computing, but there are a number of distinct differ-
ences.
In a grid, there is no centralized management; computers in the grid are independently con-
trolled, and can perform tasks unrelated to the grid at the operator’s discretion.
The computers in a grid are not required to have the same operating system or hardware.
Grids are also usually loosely connected, often in a decentralized network, rather than con-
tained in a single location, as computers in a cluster often are.[6]

2.2 Introduction to the simulation in grid computing

The proliferation of the Internet and the availability of powerful computers and high-speed
networks as low-cost commodity components are changing the way we do large-scale parallel
and distributed computing.[7]

In recent years the demand for resources on a large scale has led to the development of
two possible solutions: the grid and peer-to-peer (P2P) computing networks.

The grid consists of four key layers of components: fabric, core middleware, user-level
middleware, and applications. The grid fabric includes computers (low-end and high-end
computers including clusters), networks, scientific instruments, and their resource manage-
ment systems. The core grid middleware provides services that are essential for securely
accessing remote resources uniformly and transparently. The services they provide include
security and access management, remote job submission, storage, and resource information.
The user-level middleware provides higher-level tools such as resource brokers, application
development and adaptive runtime environment. The grid applications include those con-
structed using grid libraries or legacy applications that can be grid enabled using user-level
middleware tools.[7]

In large-scale grid environments, apart from the centralized approach, two other ap-
proaches that are used in distributed resource management are: hierarchical and decen-
tralized scheduling or a combination of them.

To meet the quality of the userâs requirements, the broker dynamically leases grid re-
sources and services at runtime depending on their capability, cost, and availability. Several
experiments were conducted with the dates-insensitive implementation schedule, particularly
in different branches of science.

The ability to experiment with a large number of grid scenarios was limited by the num-
ber of resources that were available in the WWG (World-Wide Grid) testbed. Also, it was
impossible to create a repeatable and controlled environment for experimentation and eval-
uation of scheduling strategies. This is because resources in the grid span across multiple
administrative domains, each with their own policies, users, and priorities.[7]

The simulation can solve many (all) difficulties of the grid research, indeed it doesn’t need
to build a real system, it conducts controlled/repeatable experiments, in principle there

6



2.2 Introduction to the simulation in grid computing

aren’t limits to experimental scenarios and it’s possible for anybody to reproduce results.

What is simulation? (2.1) It’s a ”representation of the operation of one system (A) through
the use of another (B)“.

Computer Simulation→ B ≡ a computer program. (2.1)

The key question is the validation, namely the correspondence between simulation and real-
world. In the computer science world we can find many types of simulation, as Microproces-
sor Design, where a few standard ”cycle-accurate” simulators are used extensively with the
possibility to reproduce simulation results; or Networking where there are a few standards
of “packet-level“ simulators, well known datasets for network topologies, and well-known
generators of synthetic topologies with the possibility to reproduce simulation results.[8]

In the grid computing, until a few years ago, we had none of the above, because most
people built their own solutions; but we have promising recent developments.
The simulation of parallel platforms was used throughout the last ten years, and it repre-
sents the simplistic platform model where the topology is fully connected (no communication
interference) or a bus (simple communication interference), and the communication and com-
putation are perfectly overlappable.

Furthermore it represents the simplistic application model where all computation is CPU
intensive, where there are clear-cut communication and computation phases, and where the
application is deterministic.

In the grid computing simulations, the simple models are used. The simulation grids hardly
suffice for grid platforms because the network topologies are complex and wide-reaching, they
involve an overhead of middleware, it is complex to access/manage the policies and there
can be an interface of communication and computation.

The goals of simulations are essentially two: the first is to simulate the platforms beyond
the ones at hand and the second is to perform the sensitivity analyses. To reach these goals
we need a synthetic platform which examines the real platforms, discovers the principles and
implements the ”platform generators”.[8]

The generation of synthetic grids consists of three main elements: Network Topology,
Compute Resources, “Background“ Conditions. The network topology (illustrated in Fig-
ure 2.2) is composed of:

• Graph Figure 2.2(a)

• Bandwidth and Latencies Figure 2.2(b)

The network community has wondered about the properties of the Internet topology for
years, beacuse Internet grows in a decentralized fashion with seemingly complex rules and
incentives.

The compute resources and the other resources are illustrated in Figure 2.3.
The background conditions (illustrated in Figure 2.4) that may occur are:

• Load and unavailability Figure 2.4(a)

• Failures Figure 2.4(b)

7



2 Simulation in grid computing

(a) Graph of a network topology [8] (b) Bandwidth and Latencies [8]

Figure 2.2: Global network topology

Figure 2.3: Resources [8]

2.3 What do we need for the simulation in grid computing?

As seen above, the simulation is a complex process.
It requires planning in advance for any component that will create and implement the process
simulation.
The main components of a well-designed simulation are:

• A network topology is the representation of the geometrical structure of a telecommu-
nications network.
A network topology represents a geometric model (graph) of a telecommunications
network whose elements are the nodes and branches.
A node detects a network element characterized by specific features, which in our case
will be routers and resources.
A branch is an element of connection between two nodes, which in our case are the

8



2.3 What do we need for the simulation in grid computing?

(a) Load and unavaiability [8] (b) Failures [8]

Figure 2.4: Background conditions

links.
A node can have one or more connections with others according to different schedules.
The connection used in GridSim is bidirectional.
The network topology is determined only by the configuration of connections between
nodes.
In the network topology we can have: the distance between nodes, physical intercon-
nections, transmission rates and the length of the communication that you want to
enter the network.
Two nodes can be placed in communication through a physical connection between
two nodes when there is a physical channel that connects them directly.

• A router in a logical level, is a deputy to the switching network node level 3 of the OSI
(Open Systems Interconnection) model.
In other words, the physical level is a network device that takes care of routing infor-
mation packets working at level 3 (network) of the OSI model or as a route between
two or more neighboring subnets through their interfaces, each with their address, or
to other subnets through non-adjacent routing tables on the transport network.
The type of routing function is called indirect addressing opposite instead to the direct
addressing typical of transport within the subnet.
The placement of the routers in the network topology is a fundamental choice in order
to achieve optimal performance from the entire network.
In the simulation of grid computing the router is never an end node, but only serves
as a connector between other nodes of the network topology, the resources.

• A resource represents the final node in the network topology of a simulation of grid
computing.
It has the task of receiving the information, processing it and then returning it to the
sender.
In the network topologies in large-scale, resources are usually indicated with the city
that have research centers grid and therefore possess the right tools to be able to start

9



2 Simulation in grid computing

a simulation.
Then we can provide the truthful parameters.

• A user represents an initial node of the network topology.
In reality a user resides in a resource, and as a result can not be considered a node in
its own right.
In fact it is the user who sends a signal the network because his own resource is unable
to perform the jobs required by it.

• A regional GIS is a region of the network topology.
In it there can be multiple nodes, then one or more routers that are connected to one
or more resources.
A grid information service (GIS) is an entity that provides grid resource registration,
indexing and discovery services.
The grid resources tell their readiness to process jobs by registering themselves with
this entity.

10



3 GridSim Toolkit

The GridSim toolkit is one of the most widely used grid simulation tools.
It has been used for simulating and evaluating VO-based resource allocation, workflow
scheduling, and dynamic resource provisioning techniques in global grids.[9]

3.1 Formation of GridSim

One of the many features of the toolkit GridSim, is the ability to simulate application
schedulers for single or multiple administrative domains.
The resource brokers are the application schedulers in the GridSim and in all the grid
enviroment. They perform selection, resource discovery and aggregation of several sets of
resource for every user.
In few words every user has its own private resource broker, and each resource can be targeted
to optimize for the requirements of its owner. Thus all the users need to submit their gridlets
(their jobs) to the central scheduler. After that the gridlets can be targeted to perform the
global optimization.

3.1.1 GridSim Features

We now list the main features of the toolkit GridSim that were relevant to our simulations.

• Heterogeneous resources can be modeled in GridSim.

• Resource capability can be defined in the form of MIPS (Million Instructions Per
Second) as per SPEC (Standard Performance Evaluation Corporation) benchmark.
In our simulations we will use MIPS as the standard units, in line with the decisions
of the University of Melbourne.

• Each resource can be located in any time zone, always.

• Each resource can be booked for an advance reservation.

• The applications with different parallel application models can be simulated.

• The application tasks can be heterogeneous and they can be CPU or I/O intensive.

• Every gridlet (jobs) can be submitted to a resource every time without any kind of
limit.

• Multiple users can simultaneously send multiple gridlets to the same resource.
This makes it possible to build different models for any kind of solution.

• The network speed between resources and between routers can be specified.

• GridSim makes it possible to record serious and very broad statistics related to testing
in simulation.

11



3 GridSim Toolkit

3.1.2 GridSim system architecture

The multi-layer architecture and abstraction for the development of GridSim platform and
its applications is shown in Figure 3.1.

In the first layer we can find the JVM (Java Virtual Machine) that represents the inter-
face and runtime machinery of Java. The implementation of JVM is avaible for single-multi
processor systems including clusters.

The first layer provides interfaces that are used by the second layer. Indeed a basic discrete
event infrastructure is built using these interfaces.

The most important grid entities are treated in the third layer, in which they are modeled
and simulated. With the most important grid entities we mean resources, information ser-
vicies, and so on. The GridSim toolkit focuses on this layer that simulates system entities
using the discrete-event services offered by the lower-level infrastructure.

In the fourth layer we can find the simulation of resource aggregators called grid resource
brokers or schedulers.

The fifth and final layer is focused on application and resource modeling with different
scenarios. This is possible using the services provided by the two lower-level layers for
evaluating scheduling and resource management policies and algorithms.

Figure 3.1: Architecture of GridSim [9]
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3.1 Formation of GridSim

A discrete event model: SimJava

SimJava[10] is a general purpose discrete event simulation package implemented in Java.[7]
In SimJava the simulations have some entities and each entity runs with its own process in
parallel. They use its body() method to encoded the behaviour.
These entities have access to some simulation primitives such as:

sim schedule() that sends event objects to other entities through ports;

sim hold() has the task of holding for some simulation time;

instead sim wait() is a primitive that waits for an event object to arrive.

In this way it is possible to build a topology network that is able to support entities that
communicate through sending and receiving passive event objects efficiently. The algorithm
that describes the simulation of events is explained below.
In SimJava there is an object, called Sim system, whose task is to maintain a timestamp of
orderly queues for all future events. After that:

1. All entities will be created.

2. The method body () of the entities will be put in run state.

3. When a simulation function is called by an entity, the thread of that entity will be
stopped and an event will be placed in the queue of future events. In this way the
function is in progress.

4. Only when all the entities halt, the Sim system object will pop the next event off the
queue, if the simulation times accordingly, and will restart entities as appropriate.

5. The previous step will be repeat until no more events are generated.

• JVM can support native threads. Only in this case all entities can start at the same
simulation time.

The entities of GridSim

One of the main characteristics of GridSim toolkit is that it supports entities for simula-
tion of single processors and multiprocessors.. It also supports simulation of heterogeneous
resources that are to be configured according to time-sharing, when they are configured ac-
cording to the space-sharing.
GridSim also allows the possibility to set the time according to different areas where it is
carrying out the simulation.

A simulation environment needs to abstract all the entities and their time-dependent inter-
actions in the real system. It needs to support the creation of user-defined time-dependent
response functions for the interacting entities. The response function can be a function of
the past, current, or both states of entities.[7]

GridSim based simulations contain entities for the users, brokers, resources, information
service, statistics, and network based I/O, as shown in Figure 3.2. The design and imple-
mentation issues of these GridSim entities are discussed below.
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Figure 3.2: A flow diagram in GridSim based simulations [7]

Entity user

Every user in GridSim is represented as an instance of the entity grid user. Each user has
some parameters that can differentiate from others; in our case, they are:

• types of job created, e.g. job execution time, number of parametric replications, etc.;

• scheduling optimization strategy, e.g. minimization of cost, time, or both;

• activity rate, e.g. how often it creates new job;

• time zone.

Entity broker

Through the entity broker, each user connects to the network topology. Each user’s job is
first submitted to its broker and after that the broker ccan schedule the tasks according
to the policy of the user. But before scheduling the tasks, the broker must receive the list
of resources available from the global directory entity. Every broker tries to optimize the
policy of its user and therefore, brokers are expected to face extreme competition while
gaining access to resources. The scheduling algorithms used by the brokers must be highly
adaptable to the market’s supply and demand situation.[7]
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Entity resource

Every resource in GridSim is represented as an instance of the entity grid resource. Each
resource has some parameters that can differentiate it from others; in our case, they are:

• the number of processors;

• the cost of processing;

• the speed of processing;

• the time zone.

MIPS and SPEC are the units of measure of the resource’s speed and the job execution
time. Moreover they can be defined with respect to the standard machine. Upon obtaining
the resource contact details from the grid information service, brokers can query resources
directly for their properties.

Entity grid information service

The grid information service is a very important entity that provides the registration service
to a resource and moreover it keeps track of all resources available in the grid by a list.
This list may be questioned by the broker to obtain information such as resource contact,
configuration, and status.

Entities input and output

The input and output entities control the flow of information between the entities of GridSim
toolkit. In each of the GridSim entities there are channels or ports of input and output, and
their task is to establish a link between the entity and its entities of input and output.
An important fact to keep in mind is that the GridSim entity and its Input and Output
entities are threaded entities, i.e. they have their own execution thread with body() method
that handles events.
Figure 3.3 illustrates the architecture for the entity communication model in GridSim.

3.2 GridSim model

One of the features that made us opt for GridSim is the ability to specify the application
model through schedulers and resource brokers. Now we describe the most important objects
of GridSim.

3.2.1 Gridlet

In GridSim toolkit toolkit, each time we send in a new piece of business, we must keep in
mind that it may vary depending on process time and size of the input file. This activity
and all its components are created through an object called a gridlet.
A gridlet is a package that contains all the information related to the job and its execution
management details such as job length expressed in MIPS, disk I/O operations, the size of
input and output files, and the job originator.[7]
All these parameters play a key role in GridSim. In fact, thanks to them we can determine
a range of information such as:
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Figure 3.3: Entity communication model via its Input and Output entities [7]

• the execution time;

• the time required to transport input file between users and resources;

• the time required to transport output file between users and resources;

• the time required to return the processed gridlet back with the results.

3.2.2 Event

The event is an important object because it allows interaction between the various entities
of GridSim.
Events are used by entities for the service request and for the service delivery.

All the entities of GridSim (user, broker, resource, information service, statistics, shutdown,
and report writer) use events to send service requests to other entities, to deliver results, or
to raise some actions.
We must remember that GridSim implements core entities that simulate resource, informa-
tion service, statistics, and shutdown services. This range of services is used to simulate
some behavior, such as a user with application, a broker for scheduling, and a report writer
for creating statistical reports at the end of a simulation.
At the beginning of the simulation an entity sends an event to the grid information service
(GIS) to encode itself and go into action.
After that the GIS entity returns a list of all registered resources and their contact details.
In the next step the broker entity sends an event to all the resources which contains a request
for the resource configuration and properties.
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The resources respond with information that could be dynamic as resource cost, availability,
load, capability and other parameters of the configuration.
At the end of the gridlet processing, the resource entity updates the processing time and the
gridelt status and then it sends it back to the broker who had raised the event. This means
for the broker that the event is finished.

Each entity must be implemented so that they can receive all events that have meaning
for it. However, it is the entity that decides the associated actions.

3.3 The multitasking and multiprocessing mode

The Processing Elements (PEs) represent a fundamental unit in GridSim toolkit. Indeed it
is through the PEs that GridSim can create machines, stitching together one or more PEs.
Each PE has different speed and it is measured in MIPS or SPEC-like ratings.
Moreover, all of the machines can be put together to create a grid resource.
Thus we can obtain a grid resource that can be:

• a single processor;

• a multiprocessor, or better a shared memory multiprocessor (SMP);

• a distributed memory cluster of computers.

These Grid resources can simulate time- or space-shared scheduling depending on the al-
location policy.

To manage all the distributed memory multiprocessing systems (such as clusters), Grid-
Sim uses a queuing system called a space-shared scheduler.
This scheduler executes a gridlet by running it on a dedicated PE when allocated.
The most common policies for allocating the resources in the space-shared systems are: first-
come-first-served (FCFS), back filling, shortest-job-first-served (SJFS).
Multitasking and multiprocessing systems allow concurrently running tasks to share system
resources such as processors, memory, storage, I/O, and network by scheduling their use for
very short time intervals.
In the real systems a detailed simulation of scheduling tasks would be very complex and very
costly in terms of time.
The events that simulate the execution of jobs, can be sent, received, or scheduled events by
GridSim.
The GridSim schedules self-events for simulating resource allocation depending on the schedul-
ing policy and the number of jobs in the queue or in execution.

3.4 GridSim Java package design

The GridSim may be represented by a hierarchy diagram.
The specification of each class contains up to three parts: attributes, methods, and internal
classes.
The GridSim package implements the following classes.
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• class gridsim.Input : this class allows us to define a port in which the simulation entity
receives some data from the simulated nerwork.
It maintains an event queue to serialize the data in flow.
Simultaneous inputs can be modeled using multiple instances of this class.

• class gridsim.Output : this class is very similar to the gridsim.Input class. The output
class allows us to define a port in which the simulation entity sends some data from
the simulated nerwork.
It maintains an event queue to serialize the data-out-flow.
Simultaneous outputs can be modeled by using multiple instances of this class.

• class gridsim.GridSim: this is the main class of the GridSim package. In every class
that extends the GridSim class, a method called body() must be implemented.
This method is automatically invoked since it is expected to be responsible for simu-
lating entity behavior. The entities that extend the GridSim class can be instantiated
with or without networked I/O ports.
The classes of input and output (gridsim.Input and gridsim.Output) provide commu-
nication capabilities to networked GridSim through the I/O objects of GridSim. Every
I/O entity has a unique name because we assume each GridSim entity that the user
creates has a unique name.

In the GridSim class there are methods that support simulation initialization, ma-
nagement, and flow control. Before creating any other GridSim entities at the user
level, the GridSim environment has to be initialized to set-up the simulation environ-
ment.
This method also prepares the system for simulation by creating three GridSim inter-
nal entities: GridInformationService, GridSimShutdown, and GridStatistics.
The GridSim class supports static methods for sending and receiving messages be-
tween entities directly or via network entities, managing and accessing handles to
various GridSim core entities, and recording statistics.

• class gridsim.PE : in this class, the CPU/PE is represented, which is the capability
defined in terms of MIPS rating.

• class gridsim.PEList : this class maintains a list of PEs that make up a machine.

• class gridsim.GridResource: as well as extending the class GridSim, it gains commu-
nication and concurrent entity capability.
An instance of this class simulates a resource with properties defined in an object of
the class in which the characteristics of the resource are defined.
(class gridsim.ResourceCharacteristics).
The process of creating a Grid resource is as follows:

1. create PE objects with a suitable MIPS/SPEC rating;

2. assemble them together to create a machine;

3. group one or more objects of the machine to form a resource.

A resource having a single machine with one or more PEs is managed as a time-shared
system using a round-robin scheduling algorithm.
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A resource with more then one machines is treated as a distributed memory cluster
and is managed as a space-shared system using FCFS scheduling policy or some of its
variants.

• class gridsim.GridInformationService: this is a a GridSim entity that provides grid
resource registration, indexing and discovery services. GridSim entities such as the
resource broker can contact this entity for resource discovery service, which returns
a list of registered resource entities and their contact addresses. The grid resources
register their readiness to process gridlets by registering themselves with this entity.

• class gridsim.Gridlet : in this class there is a job package that contains job length in
MI, the length of input and output data in bytes, execution start and end time, and
the originator of the job.
The users create gridlets to send to the resource grid according to their needs.

• class gridsim.GridletList : can be used to maintain a list of Gridlets and support meth-
ods for organizing them.

• class gridsim.ResGridlet : this class represents a Gridlet that is submitted to the re-
source to be processed. It acts as a placeholder for maintaining the amount of resource
share allocated at various times for simulating time-shared scheduling using internal
events. It contains a Gridlet object along with its arrival time and the ID of the
machine and the PE allocated to it.

• class gridsim.GridStatistics: in this class, all of the statistical data reported by other
entities is provided. This class stores data objects with their label and timestamp.
When the simulation ends, the entity user-defined report-writer can query the statistics
of interest to obtain a general report.

• class gridsim.GridSimShutdown: this is a GridSim entity that waits for termination of
all user entities to determine the end of simulation.
It then signals the user-defined report-writer entity to interact with the GridStatistics
entity to generate a report.
Finally, it signals the end of simulation to other GridSim core entities.

• class gridsim.GridSimRandom: this class provides static methods for incorporating
randomness in data used for any simulation.

In this section we have listed and briefly described only some classes of GridSim Java package
(the most relevant to our work).
For further discussion and for a comprehensive description of GridSim Java package, refer
to [7].

3.5 How did we modify the toolkit?

As we mentioned in Chapter 1 and described briefly in the previous section 3.4, much of
the original toolkit is based on a set of random functions that automatically set certain
parameters.
The GridSim toolkit was designed this way to reflect the uncertainty that is present in the
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prediction/estimation process and the randomness that exists in the nature.
Our goal is to construct scenarios that are first of all solid but mostly reliable on a large
scale. For this we need to simulate the tests by manually entering a number of parameters.

In this section we present our principal modifications to the GridSim toolkit.
Most of the changes concern the possibility to render some methods manually instead of
randomly, in order to simulate the possible case studies in certain network topologies.

As we mentioned in the 3.1.2, GridSim supports entities for simulation and an entity’s
behavior needs to be simulated within its body() method. Therefore our changes are focused
on the methods of the entities, inside the toolkit’s code.
Now we briefly describe the key variables for our simulations.

• User : an application or a broker tthat schedules jobs onto grid resources is considered
as a user.
Such components are able to query and request dataset transfers, submit jobs and
register for events.[11].

• Resource : in grid computing, any hardware or software component such as a cluster,
a supercomputer or a storage repository is called a resource.
Computing resources allow users to execute the required application.

• Router : users and resources are connected to routers.

• Machine : a Grid resource contains one or more machines. Similarly, a machine
contains one or more PEs.

• PE : Processing Elements or CPUs.

• Gridlet : GridSim already has the ability to schedule compute-intensive jobs, which
are represented by a gridlet class.
Each data-intensive job has a certain execution size (expressed in Millions Instructions
(MI)) that will be used by a resource to determine how much simulation time is required
[11].

• RegionalGIS : a Grid Information Service (GIS) is an entity that provides grid re-
source registration, indexing and discovery services.
The Grid resources tell their readiness to process Gridlets by registering themselves
with this entity.
In addition, GIS is responsible for notifying all the registered entities, such as GridResource
and network entities for shutting down at the end of a simulation.

• Link : defines connection between Router-Router, Router-Resources, Router-Users.

We will simulate a small network topology in which we have two Regional GIS, two
Routers, two Users and two Resources.
But first of all we introduce in detail the process of creating a simulation of a network
topology.
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3.5.1 Simulation steps in the original GridSim

In this section we introduce briefly the generic process in GridSim to set up and start a
simulation.
This will make it easier to understand the various changes that are introduced in the following
sections.

• First, we need to create grid resources of different capabilities and configurations (a
single or multiprocessor with time/space-shared1 resource manager).
We also need to create users with different requirements (application and quality of
service requirements).
A sample code for creating a grid environment is given in List of Figures 3.1.

Listing 3.1: A sample code segment for creating grid resource and user entities in GridSim

public stat ic void CreateSampleGridEnvironement ( int
n o o f u s e r s , int n o o f r e s o u r c e s ,

double B factor , double D factor , int po l i cy , double
how long , double seed ) {

Calendar now = Calendar . g e t In s tance ( ) ;
S t r ing ReportWriterName = ”MyReportWriter” ;
GridSim . I n i t ( n o o f u s e r s , ca lender , true , e f f , efp ,

ReportWriterName ) ;
S t r ing [ ] category = {” ∗ .USER. TimeUt i l i za t i on ” , ” ∗ .USER.

Grid letComplet ionFactor ” , ” ∗ .USER. Budge tUt i l i z a t i on ” } ;

// Create Report Writer E n t i t y and c a t e g o r y i n d i c a t e s t y p e s
o f in format ion to be recorded .

new ReportWriter ( ReportWriterName , n o o f u s e r s ,
n o o f r e s o u r c e s , ReportFi le , category ,

r e p o r t o n n e x t r o w f l a g ) ;

// Create Resources
for ( int i =0; i<n o o f r e s o u r c e s ; i++)
{

// Create PEs
PEList peL i s t = new PEList ( ) ;
for ( int j =0; j <( i ∗1+1) ; j++)

1If the failure only affects some of the machines in a resource, what happens next depends on the allocation
policy of this resource.
If the resource runs a space-shared (first come first serve) allocation policy, the jobs that are currently
running on the failed machines will be terminated and sent back to users.
However, when the resource runs a time-shared (round-robin) allocation policy, no jobs will be failed, as
their execution will continue in the remaining machines of the resource.
For both allocation policies, the remaining machines are responsible for responding to polling requests
from users and GIS.
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peL i s t . add (new PE(0 , 100) ) ;

// Create machine l i s t
MachineList mList = new MachineList ( ) ;
mList . add (new Machine (0 , peL i s t ) ) ;

// Create a resource c o n t a i n i n g machines
R e s o u r c e C h a r a c t e r i s t i c s r e s ou r c e = new

R e s o u r c e C h a r a c t e r i s t i c s ( ”INTEL” , ”Linux” ,
mList , R e s o u r c e C h a r a c t e r i s t i c s .TIME SHARED, 0 . 0 , i
∗0 .5+1.0) ;

L inkedLis t Weekends = new LinkedLis t ( ) ;
Weekends . add (new I n t e g e r ( Calendar .SATURDAY) ) ;
Weekends . add (new I n t e g e r ( Calendar .SUNDAY) ) ;
L inkedLis t Hol idays = new LinkedLis t ( ) ; // no h o l i d a y i s

s e t !

// Setup resource as s imu la ted e n t i t y wi th a name ( e . g . ”
Resource 1 ”) .

new GridResource ( ” Resource ”+i , 28000 .0 , seed , re source ,
0 . 0 , 0 . 0 , 0 . 0 , Weekends , Hol idays ) ;

}

Random r = new Random( seed ) ;

// Create App l i ca t ion , Experiment , and Users
for ( int i =0; i<n o o f u s e r s ; i++)
{

Random r = new Random( seed ∗997∗(1+ i ) +1) ;
G r i d l e t L i s t g l L i s t = Appl i cat ion1 ( r ) ; // i t c r e a t e s

G r i d l e t s and r e t u r n s t h e i r l i s t
Experiment expt = new Experiment (0 , g l L i s t , po l i cy , true

, B factor , D fac tor ) ;
new UserEntity ( ”U”+i , expt , 28000 .0 , how long , seed
∗997∗(1+ i ) +1, i , u s e r e n t i t y r e p o r t ) ;

}

// Perform Simulat ion
GridSim . Star t ( ) ;

}

• Second, we need to model applications by creating a number of gridlets and define all
parameters associated with jobs as shown in List of Figures 3.2.
The gridlets need to be grouped together depending on the application model.

• Then, we need to create a GridSim user entity that creates and interacts with the
resource broker to schedule an entity to coordinate execution experiment.
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It can also directly interact with GIS and resource entities for grid information and
submitting or receiving processed gridlets.
However, best way is to implement a separate resource broker entity by extending the
GridSim class.

Listing 3.2: The gridlet method in GridSim

Gr id l e t g l = new Gr id l e t ( G r i d l e t i d , Gr id l e t l eng th ,
G r i d l e t F i l e S i z e , Gr id letOutputS ize ) ;

• Finally, the scheduler accesses the GIS, and then inquires for resource capability in-
cluding cost.
Depending on the processing requirements, it develops a schedule for assigning gridlets
to resources and coordinates the execution.
The scheduling policies can be systems-centric like those implemented in many grid
systems

3.5.2 Initialize the GridSim Package

Original toolkit

When we want to initialize the GridSim package in the original toolkit, as shown in List of
Figures 3.3, we have to check that the external file with the network topology exists and
contains all of the information that we need to know.
Then we have to specify the number of users, resources and GISs, that in our example case
are all set at two, and initialize the random variable.

The second step consists of initializing a flag that denotes whether to trace GridSim events
or not, and to initialize the calendar variable.

The third and last step of this section regards the real initialization of the GridSim package.
It should be called before creating any entities.

We can’t run this example without initializing GridSim first, or we will get a run-time
exception error.

Listing 3.3: Code segment for initializing the GridSim Package

// [ 1 ] Check the network t o p o l o g y

i f ( args . l ength < 1)
{

System . out . p r i n t l n ( ”Usage : java Ex03 network ex03 . txt ” ) ;
return ;

}

// s p e c i f y the number o f users , r e s o u r c e s and GISs
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int num user = 2 ; // number o f g r i d u sers
int to ta lResource = 2 ; // number o f r e s o u r c e s
int num GIS = 2 ; // number o f Reg GIS e n t i t y
Random random = new Random( ) ; // randomize the s e l e c t i o n

// [ 2 ] I n i t i a l i z e a f l a g

boolean t r a c e f l a g = fa l se ; // don ’ t use SimJava t r a c e
Calendar ca l endar = Calendar . g e t In s tance ( ) ;

// [ 3 ] I n i t i a l i z e the GridSim package

System . out . p r i n t l n ( ” I n i t i a l i z i n g GridSim package ” ) ;
GridSim . i n i t ( num user , ca lendar , t r a c e f l a g ) ;
t r a c e f l a g = true ;

Our toolkit

The only difference in this section regards the initialization of the random variable.
Being a manual process, the Random() instace should not be initialized.

3.5.3 Builds the network topology among routers

Original toolkit and Our toolkit

This section consists of reading and building the network topology from an external file, as
shown in List of Figures 3.5

This file contains all of the data of the network that we want to simulate.

Listing 3.4: Network Topology

# t o t a l number o f Routers
2

# s p e c i f i e s each route r name and whether to l og i t s a c t i v i t i e s
or not

# by d e f a u l t no l ogg ing i s r equ i r ed
Router0
Router1

# s p e c i f y the l i n k between two Routers
# The format i s :
# Router name1 Router name2 baud rate prop de lay mtu

(GB/ s ) (ms) ( byte )
Router0 Router1 1 10 .0 1500

In our case, this file is shown in List of Figures 3.4 and contains the total number of
the routers, the name of these routers and the links between routers. The format of the
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link provides, for every two routers, the baud rate, the propagation of the delay and the
maximum transmission unit.
The baud rate represents the network communication speed between two routers and it’s
expressed in GB/s.
The propagation delay is expressed in milliseconds.
The maximum transmission unit is expressed in bytes.

Listing 3.5: Code for getting and building a network topology

St r ing f i l ename = args [ 0 ] ; // g e t the network t o p o l o g y
System . out . p r i n t l n ( ”Reading network from ” + f i l ename ) ;
L inkedLis t r o u t e r L i s t = NetworkReader . createFIFO ( f i l ename ) ;

With the action String filename = args[0] we get the network topology and we put all the
information in the variable filname.
Then we create a list of routers (routerList) type LinkedList with the routers contained in
the network topology. Furthermore the type LinkedList automatically connects the routers
present in the external file.

3.5.4 Regional GIS Code Changes

Original toolkit

In this section we want to show how to create a new regional GIS entity in the original
toolkit, as shown in List of Figures 3.6.
In the first action we have to set the variables that we need to create a regional GIS entity:
baud rate, propagation delay, maximum transmission unit and the total number of machines
for each resource.
In the second passage, for each regional GIS, we set the name.
In the third step, we create for each regional GIS, a network link with all the informations
set before.

Listing 3.6: Code segment for creating regional GIS entity and linking it to a router

[ . . . ]

// [ 1 ] Creates one RegionalGIS e n t i t y , l i n k e d to a r o u t e r in the
t o p o l o g y

double baud rate = 100000000;
// 100Mbps , i . e . baud r a t e o f l i n k s

double propDelay = 10 ;
// propagat ion d e l a y in m i l l i s e c o n d s

int mtu = 1500 ;
// max . t ransmiss ion u n i t in b y t e

int tota lMachines = 16 ;
// num o f machines each resource has
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for ( int i = 0 ; i < num GIS ; i++)
{

// [ 2 ] GIS name
St r ing gisName = NAME + ” Regional GIS ” + i ;

// [ 3 ] a network l i n k a t t a c h e d to t h i s r e g i o n a l GIS e n t i t y
Link l i n k = new SimpleLink ( gisName + ” l i n k ” , baud rate ,

propDelay , mtu) ;

// [ 4 ] c r e a t e s a new Regional GIS e n t i t y

RegionalGIS g i s = new RegionalGIS ( gisName , l i n k ) ;
g i s . se tTrace ( t r a c e f l a g ) ; // record t h i s GIS a c t i v i t y
g i s L i s t . add ( g i s ) ; // add i n t o the l i s t

// [ 5 ] l i n k t h e s e GIS to a r o u t e r
St r ing routerName = null ;
i f ( random . nextBoolean ( ) == true )
{

l inkNetwork ( router0 , g i s ) ;
routerName = route r0 . get name ( ) ;

}
else
{

l inkNetwork ( router1 , g i s ) ;
routerName = route r1 . get name ( ) ;

}

// [ 6 ] p r i n t some i n f o messages
System . out . p r i n t l n ( ” Created a REGIONAL GIS with name ” +

gisName + ” and id = ” + g i s . g e t i d ( ) +
” , connected to ” + routerName ) ;

The goal of the fourth step is to create a new instace of the class RegionalGIS :
RegionalGIS gis = new RegionalGIS(gisName, link);,
where gisName and link are variables set before.
Subsequently we have to record the activity of GIS just created and finally add the new GIS
into a list of all the existing GIS.
The fifth step consists of linking the GIS to a router in the random way. To obtain the
random way, we use the random algorithm that we have specified in 3.4.
In this example, if the random algorithm returns true, we link the current GIS to the first
router (router0 ), else we link the current GIS to the second router (router1 ).
The sixth and last step is to print on the screen all the information of the newly created
GIS.
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Our toolkit

To reach our goal, we have to change the way through which the GISs are linked to the
router. In this manner we can set and control the network. As shown in List of Figures 3.7,
the first four steps and the last step are the same in both in the toolkit.
What changes is the portion of code in the fifth step.

Listing 3.7: Creating regional GIS entity and linking it to a router manually

[ . . . ]

// [ 1 ] Creates one RegionalGIS e n t i t y , l i n k e d to a r o u t e r in the
t o p o l o g y

double baud rate = 100000000;
// 100Mbps , i . e . baud r a t e o f l i n k s

double propDelay = 10 ;
// propagat ion d e l a y in m i l l i s e c o n d s

int mtu = 1500 ;
// max . t ransmiss ion u n i t in b y t e

int tota lMachines = 16 ;
// num o f machines each resource has

for ( int i = 0 ; i < num GIS ; i++)
{

// [ 2 ] GIS name
St r ing gisName = NAME + ” Regional GIS ” + i ;

// [ 3 ] a network l i n k a t t a c h e d to t h i s r e g i o n a l GIS e n t i t y
Link l i n k = new SimpleLink ( gisName + ” l i n k ” , baud rate ,

propDelay , mtu) ;

// [ 4 ] c r e a t e s a new Regional GIS e n t i t y

RegionalGIS g i s = new RegionalGIS ( gisName , l i n k ) ;
g i s . se tTrace ( t r a c e f l a g ) ; // record t h i s GIS a c t i v i t y
g i s L i s t . add ( g i s ) ; // add i n t o the l i s t

// [ 5 ] l i n k t h e s e GIS to a r o u t e r
St r ing routerName = null ;
switch ( i ) {

case (0 ) :
l inkNetwork ( router0 , g i s ) ;
routerName = route r0 . get name ( ) ;
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break ;

case (1 ) :
l inkNetwork ( router1 , g i s ) ;
routerName = route r1 . get name ( ) ;
break ;

default :
System . out . p r i n t l n ( ”Not a recogn i z ed t e s t case . ”

) ;
break ;

}

// [ 6 ] p r i n t some i n f o messages
System . out . p r i n t l n ( ” Created a REGIONAL GIS with name ” +

gisName + ” and id = ” + g i s . g e t i d ( ) +
” , connected to ” + routerName ) ;

Indeed here we substitude the if control with a switch-case structure.
The value of the variable given into switch represents the current GIS and, in our example,
we want to link GIS0 to router0 and GIS1 to router1.
In this simple (but not too flexible) way, we can decide the structure of all the GISs instead
of obtaining it by the random mode.

3.5.5 Resource Code Changes

Original toolkit

After initializing the GIS instance, the next procedure is to create the instance for the
resource. This phase is represented in List of Figures 3.8.
The first step consists of setting the variables necessary to formulate the grid resource. The
variables considered are: the total number of processing elements that each machine has;
the rating of PEs, expressed in million instruction per second; and the baud rate expressed
in gigabytes.
In the second step, we set the name of the resource and then we proceed with the initialization
of the new instance of the resource. Subsequently we have to add the new resource into a
list of all the existing resources and, finally, record the activity of the resource just created.
In the third passage we link the instance of the resource to a router in a random way (as
the same algorithm of the previous section).

Listing 3.8: Creating a grid resource and linking it to a router

[ . . . ]
// [ 1 ] Set a l l the v a r i a b l e s

ArrayList r e s L i s t = new ArrayList ( to ta lResource ) ;

// Each resource may have d i f f e r e n t baud rate ,
// tota lMachine , ra t ing , a l l o c a t i o n p o l i c y and the r o u t e r to
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// which i t w i l l be connected . However , in t h i s example , we
assume

// a l l have the same p r o p e r t i e s f o r s i m p l i c i t y .
int totalPE = 4 ; // num o f PEs each machine has
int r a t i n g = 49000; // r a t i n g (MIPS) o f PEs
int GB = 1000000000; // 1 GB in b i t s
baud rate = 2 .5 ∗ GB;

for ( int i = 0 ; i < to ta lResource ; i++)
{

// [ 2 ] c r e a t e s a new g r i d resource

St r ing resName = NAME + ” Res ” + i ;
GridResource r e s = createGr idResource ( resName ,

baud rate , propDelay , mtu , totalPE ,
tota lMachines ,

rat ing , s ched a l g ) ;

i f ( i % 2 == 0) {
t r a c e f l a g = true ;

}
else {

t r a c e f l a g = fa l se ;
}

r e s L i s t . add ( r e s ) ; // add a resource i n t o a l i s t
r e s . setTrace ( t r a c e f l a g ) ; // record t h i s resource

a c t i v i t y

// [ 3 ] l i n k t h e s e RES to a r o u t e r

St r ing routerName = null ;
i f ( random . nextBoolean ( ) == true )
{

l inkNetwork ( router0 , r e s ) ;
routerName = route r0 . get name ( ) ;

}
else
{

l inkNetwork ( router1 , r e s ) ;
routerName = route r1 . get name ( ) ;

}

// [ 4 ] randomly s e l e c t which GIS to choose

int index = random . next Int ( g i s L i s t . s i z e ( ) ) ;
RegionalGIS g i s = ( RegionalGIS ) g i s L i s t . get ( index ) ;
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r e s . setRegionalGIS ( g i s ) ; // s e t the r e g i o n a l GIS e n t i t y

// [ 5 ] p r i n t some i n f o messages

System . out . p r i n t l n ( ” Created ” + resName + ” with id = ”
+

r e s . g e t i d ( ) + ” , l i nked to ” + routerName +
” and r e g i s t e r e d to ” + g i s . get name ( ) ) ;

}

The goal of the fourth step is to select which GIS to choose for each resource. Also in this
phase we operate in a random way.
These two steps show us that it is impossible to know the structure of the network, because
of the total randomness in the choice of their components.
The fifth and last passage prints the results of the previous steps on the screen.

Our toolkit

For our objectives, we can’t utilize the random selection to link the resource to a router and
to choose the GIS.
We have to modify the code in order to be able to insert our data manually.
Thus we change the code from the second to the fourth point (List of Figures 3.9) and we
obtain a new second step.

Listing 3.9: Creating a grid resource and linking it to a router manually

[ . . . ]
// [ 1 ] Set a l l the v a r i a b l e s

ArrayList r e s L i s t = new ArrayList ( to ta lResource ) ;

// Each resource may have d i f f e r e n t baud rate ,
// tota lMachine , ra t ing , a l l o c a t i o n p o l i c y and the r o u t e r to
// which i t w i l l be connected . However , in t h i s example , we

assume
// a l l have the same p r o p e r t i e s f o r s i m p l i c i t y .
int totalPE = 4 ; // num o f PEs each machine has
int r a t i n g = 49000; // r a t i n g (MIPS) o f PEs
int GB = 1000000000; // 1 GB in b i t s
baud rate = 2 .5 ∗ GB;

for ( int i = 0 ; i < to ta lResource ; i++)
{

// [ 2 ] c r e a t e s a new g r i d resource

St r ing resName = NAME + ” Res ” + i ;

S t r ing routerName = null ;
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RegionalGIS g i s = null ;
GridResource r e s = null ;

switch ( i )
{

case (0 ) :
r e s = createGr idResource ( resName ,
baud rate , propDelay , mtu , totalPE , totalMachines ,

rat ing , s ched a l g ) ;
l inkNetwork ( router0 , r e s ) ;
routerName = route r0 . get name ( ) ;
g i s = ( RegionalGIS ) g i s L i s t . get (0 ) ;
r e s . setRegionalGIS ( g i s ) ;
break ;

case (1 ) :
r e s = createGr idResource ( resName ,
baud rate , propDelay , mtu , totalPE , totalMachines ,

rat ing , s ched a l g ) ;
l inkNetwork ( router0 , r e s ) ;
routerName = route r0 . get name ( ) ;
g i s = ( RegionalGIS ) g i s L i s t . get (0 ) ;
r e s . setRegionalGIS ( g i s ) ;
break ;

default :
System . out . p r i n t l n ( ”Not a recogn i z ed t e s t case . ” ) ;
break ;

}

i f ( i % 2 == 0) {
t r a c e f l a g = true ;

}
else {

t r a c e f l a g = fa l se ;
}

r e s L i s t . add ( r e s ) ; // add a resource i n t o a l i s t
r e s . setTrace ( t r a c e f l a g ) ; // record t h i s resource

a c t i v i t y

// [ 3 ] p r i n t some i n f o messages

System . out . p r i n t l n ( ” Created ” + resName + ” with id = ”
+

r e s . g e t i d ( ) + ” , l i nked to ” + routerName +

31



3 GridSim Toolkit

” and r e g i s t e r e d to ” + g i s . get name ( ) ) ;
}

In point number two, we have changed all of the code.
We inizialize the instace of the objects at null:
String routerName = null;
RegionalGIS gis = null;
GridResource res = null;
and then we substitude the if control with a switch-case structure.
For every resource we create a new GridResource with all the datas declared in the previous
variables. The value of the variable given into switch represents the current resource and, in
our example, we want to put resO in the GIS0 and link it to router0, and put res1 in the
GIS1 and link it to router1.

3.5.6 User Code Changes

Original toolkit and Our toolkit

The construction of the user object is similar to the construction of the resource object.
Thus we show only the code of the modified toolkit. In the first step (as we can see at List
of Figures 3.10) we set the variables that we need to create a user entity:
totalGridlet indicates the total number of the jobs;
pollTime represents the time between the various polls;
glSize provides the size of the gridlets;
glLength is the length of the standard gridlets, expressed in million instructions.

Listing 3.10: Creating a grid user and linking it to a router manually

[ . . . ]
// [ 1 ] Set a l l the v a r i a b l e s

ArrayList r e s L i s t = new ArrayList ( to ta lResource ) ;

int t o t a l G r i d l e t = 4 ; // t o t a l j o b s
double pollTime = 100 ; // time between p o l l s
int g l S i z e = 100000; // the s i z e o f g r i d l e t s
long glLength = 420 ; // the l e n g t h (MI) o f g r i d l e t s s tandard

for ( int i = 0 ; i < num user ; i++)
{

// [ 2 ] c r e a t e s a new user e n t i t i e s

t r a c e f l a g = fa l se ;
S t r ing userName = NAME + ” User ” + i ;

// a network l i n k a t t a c h e d to t h i s e n t i t y
Link l i n k 2 = new SimpleLink ( userName + ” l i n k ” ,

baud rate , propDelay , mtu) ;
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// only keeps t r a c k a c t i v i t i e s from User 0
switch ( i ) {

case 0 : t r a c e f l a g = true ;
break ;

case 1 : t r a c e f l a g = fa l se ;
break ;

default :
System . out . p r i n t l n ( ”Not a recogn i z ed t e s t case . ” ) ;
break ;

}

GridUser user = null ;
S t r ing routerName = null ;
RegionalGIS g i s = null ;

switch ( i )
{

case (0 ) :
user = GridUser ( userName , l ink2 ,

pollTime , glLength , g l S i z e , g l S i z e ,
t r a c e f l a g ) ;

user . setGridletNumber ( t o t a l G r i d l e t ) ;
l inkNetwork ( router0 , user ) ;
routerName = route r0 . get name ( ) ;
g i s = ( RegionalGIS ) g i s L i s t . get (0 ) ;
user . setRegionalGIS ( g i s ) ;
break ;

case (1 ) :
user = GridUser ( userName , l ink2 ,

pollTime , glLength , g l S i z e , g l S i z e ,
t r a c e f l a g ) ;

user . setGridletNumber ( t o t a l G r i d l e t ) ;
l inkNetwork ( router1 , user ) ;
routerName = route r1 . get name ( ) ;
g i s = ( RegionalGIS ) g i s L i s t . get (1 ) ;
user . setRegionalGIS ( g i s ) ;
break ;

default :
System . out . p r i n t l n ( ”Not a recogn i z ed t e s t case . ” ) ;
break ;

}
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// [ 3 ] p r i n t some i n f o messages

System . out . p r i n t l n ( ” Created ” + resName + ” with id = ”
+

r e s . g e t i d ( ) + ” , l i nked to ” + routerName +
” and r e g i s t e r e d to ” + g i s . get name ( ) ) ;

}

In the second passage initially, we decide that we want to keep track of activities only
from User 0, and then we proceed with the standard operations.
We inizialize the instace of the objects at null:
GridUser user = null;
String routerName = null;
RegionalGIS gis = null;
and then we use the switch-case structure.
For every resource we create a new User with all the data declared in the previous variables
and we set the number of gridlets for each user. The value of the variable given into switch
represents the current user and, in our example, we want to put userO in the GIS0 and link
it to router0, and put user1 in the GIS1 and link it to router1.
Finally, we print on the screen the result of the operations.

3.5.7 Result

What we have obtained using these particular changes to the code (in our example), is a
simple network topology, which can be displayed in Figure 3.4.

The ovals represent the regional GIS (RegionalGIS0 and RegionalGIS1 respectively) that
we have built and initialized in 3.5.4.
Inside the ovals we find:

• resources (respectively Resource0 and Resource1 ) that we have implemented and ini-
tialized in 3.5.5.

• users (respectively User0 and User1 ) that we have created and initialized in 3.5.6.

• routers (respectively Router0 and Router1 ) that we have extracted from an external
file in 3.5.3.

Finally the link between the routers was specified in an external file in 3.5.3.
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Figure 3.4: Diagram of a simple network topology
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4 The Test Scenarios

4.1 The Scenario of EU DataGrid

We created an experiment based on EU DataGrid TestBed 1[12]. All data that we use for
this scenario are shown by an example constructed from the University of Melbourne.[11]
In the Figure 4.1 we have reconstructed the network topology of the testbed.

DataGrid is a project funded by European Union. The objective is to build the next generation
computing infrastructure providing intensive computation and analysis of shared large-scale
databases, from hundreds of TeraBytes to PetaBytes, across widely distributed scientific com-
munities.[13]

This phrase, quoted by the official website DataGrid Project, indicates the objective of
the project.
It also indicates why we chose this scenario for our tests:

• it is a project founded and recognized by the European Union;

• it is a large-scale project;

• the aims to exchange a large amount of data;

• it tries to provide intensive computation.

All these features make this the ideal test bed for our tests.
In the LHC (Large Hadron Collider) experiment, for which the EU DataGrid has been
constructed, most of the data is read-only. Therefore, to model a realistic experiment, we
make these files to be read-only.
Furthermore, we assume the atomicity of the files, i.e. a file is a non-splittable unit of
information, to simulate the already processed raw data of the LHC experiment.

We now describe the components of this scenario.

Resources. In the Table 4.1 reports all of the relevant information about resources.
In GridSim, total processing capability of a resource’s CPU or CPU rating is modeled in
the form of MIPS (Million Instructions Per Second) as devised by Standard Performance
Evaluation Corporation (SPEC)[14].
The resource settings were obtained from the current characteristics of the real LHC testbed[15],
except the number of users was slightly decreased to obtain a fast simulation.
We took the data about the resources and scaled them down. The computing capacities
were scaled down by 10 and the storage capacities by 20.
The scaling was done primarily for one reason: the simulation of the real computing capaci-
ties is not possible because of memory limitation of the computer we ran the simulation on.
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Figure 4.1: The simulated topology of EU DataGrid TestBed 1

The complete simulation would require more than 2 GB of memory.
Some parameters are identical for all network links, i.e. the Maximum Transmission Unit
(MTU) is 1,500 bytes and the latency of links is 10 milliseconds.

Users. We simulated 100 users in total, where each resource is assigned a certain number
of users as depicted in Table 4.1.
The users arrive with a Poisson distribution; four random users start to submit their jobs
approximately every 5 minutes. Each user has between 20 and 40 jobs.

Gridlet . The data gridlet class represents a data intensive job.
As a result, each data-intensive job has a certain execution size (expressed in Millions In-
structions - MI) and requires a list of files that are needed for execution.
This execution size (in MI) will be used by a resource to determine how much simulation
time is required.

RegionalGIS . In the EU DataGrid TestBed 1 there are three regional GISs.
The first one, shown in Figure 4.1 with green, includes two resources (CERN and Lyon).
The second (the blue one) includes four resources (Ral, Imperial College, NorduGrid and
NIKHEF).
The regional GIS shown in red is the last and it includes five resources (Milano, Rome,
Torino, Bologna, Padova).
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Table 4.1: Resource specifications of EU DataGrid TestBed 1

Resource Name (Location) # Nodes CPU Rating # Users

RAL (UK) 41 49000 12

Imperial College (UK) 52 49000 16

NorduGrid (Norway) 17 49000 4

NIKHEF (Netherlands) 18 49000 8

Lyon (France) 12 49000 12

CERN (Switzerland) 59 49000 24

Milano (Italy) 5 49000 4

Torino (Italy) 2 49000 2

Rome (Italy) 5 49000 4

Padova (Italy) 1 49000 2

Bologna (Italy) 67 49000 12

Baud rate . As we mentioned in 3.5.3, we have to set the baud rate between the routers
outside the source code.
For our goal we will change in some examples the values of the different baud rate (these
changes are visible in Chapter 5 and Chapter 6).
Differently from what was showed in the 3.5.5, for this scenario we need to change the baud
rate for every different resource.

In this scenario we assume that the CPU rating is the same for every processing element
(PE), thus each machine has the same power.

4.2 The Scenario EU Artificial

For the second scenario, we created an experiment based on EU Artificial.
EU Artificial is a scenario of our own creation, larger than the scenario described above,
which aims to offer a scenario for comparison with EU DataGrid TestBed 1. The Figure 4.2
shown the network topology of the EU Artificial.

The network topology is similar to the scenario of EU DataGrid. It has a branched
structure that connects most of Europe.
As resources have been chosen some European metropolis.
The numbers of resources, routers, and regional GIS users are greater than the previous
case: this means that the EU DataGrid scenario can be a model of comparison for a large
scenario.

We now describe the components of this scenario.

Resources. Table 4.2 summarizes all the resources relevant information in the EU Arti-
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Figure 4.2: The simulated topology of EU Artificial

ficial.
As in the previous scenario, some parameters are identical for all network links, i.e. the
Maximum Transmission Unit (MTU) is 1,500 bytes and the latency of links is 10 millisec-
onds.

Users. In this scenario we want to simulate 120 users in total, where each resource is
assigned a certain number of users as depicted in Table 4.2.
As in the previous scenario, the users arrive with a Poisson distribution; four random users
start to submit their jobs approximately every 5 minutes. Each user has between 20 and 40
jobs.

Gridlet . As already seen for the previous scenario, we implemented a DataGridlet class
to represent a data-intensive job. As a result, each data-intensive job has a certain execution
size (expressed in Millions Instructions - MI) and requires a list of files that are needed for
execution. This execution size (in MI) will be used by a resource to determine how much
simulation time is required.

RegionalGIS . In the EU Artificial scenario there are five regional GISs.
The first one, shown in Figure 4.2 with red, includes two resources (Dublin and Glasgow); the
second (the green one) includes six resources (Helsinki, Oslo, Stockhlom, Moscow, Warsaw
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Table 4.2: Resource specifications EU Artificial

Resource Name (Location) # Nodes CPU Rating # Users

Dublin (Ireland) 35 49000 11

Glasgow (Scotland) 43 49000 9

Helsinki (Finland) 12 49000 4

Oslo (Norway) 15 49000 3

Stockhlom (Sweden) 8 49000 6

Moscow (Russia) 15 49000 4

Warsaw (Poland) 9 49000 3

Vienna (Austria) 2 49000 5

Berlin (Germany) 40 49000 6

Munich (Germany) 45 49000 13

Budapest (Hungary) 4 49000 5

Athens (Greece) 10 49000 6

Milano (Italy) 42 49000 11

Pisa (Italy) 38 49000 6

Madrid (Spain) 35 49000 7

Lisbon (Portugal) 20 49000 3

Paris (France) 7 49000 8

Brussels (Belgium) 8 49000 10
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and Vienna), blu regional GIS consists of four resources (Berlin, Munich, Budapest and
Athens), the yellow includes the regional GIS with four resources (Milano, Pisa, Madrid
and Lisbon), and the regional GIS observed with the violet is the last and it includes two
resources (Paris and Brussels).

Baud rate . The baud rate has the same explanation as in the previous.
We have to set the baud rate between the routers outside the source code. For our goal we
will change in some examples the values of the different baud rates (these changes are visible
in Chapter 5) and Chapter 6).

In this scenario, as in the previous, we assume that the CPU rating is the same for every
processing element (PE), thus that each machine has the same power.
The number of the nodes (as we can see in the Table 4.2) was chosen on the basis of a
hypothetical structure that sees some of the resources provided more machines than others.

Thus the main characteristics in common of the two scenarios are:

• both are located all over the Europe;

• both are divided into regionalGISs;

• both have a branched structure of the routers.

While the differences are focussed on the main level of GridSim toolkit:

• the number of the users is raised from 100 to 120;

• the number of the resources is raised from 11 to 18;

• the number of the regionalGISs is raised from 3 to 5.

• the number of the routers is raised from 8 to 12.

Moreover, as discussed in Chapter 5 and Chapter 6, there will be several tests that differen-
tiate the two scenarios.
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TestBed 1

In this chapter we insert the most important results of some tests, of the scenarios EU Data-
Grid TestBed 1.
This network topology will be subjected to five different tests.

In the first test will use this scenario with the standard settings of the GridSim, thus we
can have an initial operation of the toolkit.

In the second test, we will introduce a introduced a variant that will change the values of
the different baud rates as specified in the original test bed.

Test number three introduces the data of the real scenario, the total number of gridlets
and the number of machines available for each resource.

In test number four, we will change the values of Processing Elements (PEs) in order to
assess the behavior of network topology with different computing powers.

The fifth and final test will be subject to changes in the length of gridelt, to study how
GridSim behaves in different series.

5.1 Test One - The original settings

As the first test on the Scenario EU Datagrid TestBed1, we have implemented the network
in which the baud rate between routers and between router and resource doesn’t change.
In this manner we want to show how the grid simulation works before changing some data
of the network topology.
The value of the baud rate between routers is 1 Gb/s, instead the value of the baud rate
between routers and resources is 3,5 Gb/s. In this simulation test, we use two gridlets and
only one machine per resource.
The first gridlet, Gridlet 0, was sent to different resources, while the second gridlet, Gridlet 1,
was always sent to the same resource.

• From User 0 to User 9 the Gridlet 0 was sent to resource NORDUGRID.

• From User 10 to User 81 the Gridlet 0 was sent to resource TORINO.

• From User 82 to User 99 the Gridlet 0 was sent to resource PADOVA.

• From User 0 to User 99 the Gridlet 1 was sent to resource NYKHEF.
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This arrangement allows us to evaluate four different user behaviors: in the first all users
reside in the same resource and gridlets are sent to the same resource, so it is interesting
to analyze the different response times; in the second, a large number of users residing on
different resources, send their gridlets same resource; in the third a small number of users
residing on different resources, sent their gridlets same resource; in last all users sent their
second gridlet the same resource.

For the first ten users we have a foregone conclusion, in fact all the users are located in
the resource CERN and all the Gridlet 0 are send to NORDUGRID and all the Gridlet 1
are send to NYKHEF ; so in Figure 5.1 we obtained almost the same latency in both gridlets
for all the users.

Figure 5.1: Test 1 - Performance of Latency - 10 Users

For the next 72 users, the destination of the first gridlet was changed to TORINO instead
of NORDUGRID. But the essential difference is that now users are located in different
resources and then the path to reach the resource TORINO can change by resource.
As we can see in Figure 5.2, the latency varies according to the starting point of gridlet. The
latency of the Gridlet 1 is low between the first and among the last members of the graph,
this is because their routers are geographically close (especially the last six users who reside
in the same router resource TORINO).
Instead, in the central part of the graph, we can see a gradual increase in both latencies due
to a shift away from gridlet target.
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Figure 5.2: Test 1 - Performance of Latency - 72 Users

The last 18 users show us a scenario that we expected, in fact the destination of the first
gridlet is now PADOVA and all the last users reside in the same router of this resource.
So the latency of the Gridlet 0 results low, while the value of the latency of the Gridlet 1
tends to increase.
The Figure 5.3 shown these results.

5.2 Test Two - Introduction of different baud rate

With the second test, we have simulated the behaviour of the following case: only two gridlets
(only two jobs) per every resource. But we have changed the values of the baud rates.
In Table 5.1 shows the baud rates that were indicated in the Scenario EU DataGrid TestBed
1.
Instead, the Table 5.2, represents the baud rates between routers and users.
Also in this test we assumed that the number of machines per each resource is one. To see
the behavior of the network, and to make it as close as possible to reality, we have divided
the destinations of the two gridlets.

The first gridlet, Gridlet 0, was sent to different resources, while the second gridlet,
Gridlet 1, was always sent to the same resource.

• From User 0 to User 9 the Gridlet 0 was sent to resource CERN.

• From User 10 to User 81 the Gridlet 0 was sent to resource NIKHEF.
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Figure 5.3: Test 1 - Performance of Latency - 18 Users

• From User 82 to User 99 the Gridlet 0 was sent to resource PADOVA.

• From User 0 to User 99 the Gridlet 1 was sent to resource LYON.

The Figure 5.4 shows the results from User 0 to User 9.
All these users are part of the resource CERN, this means that the performance of the chart
reflects the initial hypothesis (namely that the latency tends to increase with the number of
gridelts that join the network).
In addition, in this graph, the Gridlet 0 was always sent to resource CERN, and Gridlet 1
was always sent to resource LYON.
Indeed, as we can see on Figure 4.1, the resource CERN and the resource LYON reside
on two different routers (respectively R0 and R1 ) and a greater latency in the case of a
Gridlet 1 is motivated by the fact that the Gridlet 1 has a larger path to accomplish than
Gridlet 0.

If we consider a greater number of users on multiple resources, the result is what appears
in Figure 5.5. In this second part we analyzed users from User 10 to User 81.
In general, both the latencies (of the Gridlet 0 and Gridlet 1 ) tend to increase with an
increase of users who join the network. But in this case the Gridlet 0 was sent to different
resource, unlike Gridlet 1, which is always sent to LYON. So the resource LYON has a high
amount of work to do then the other resources and this justifies a higher latency.
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5.2 Test Two - Introduction of different baud rate

Table 5.1: Router Baud Rates specifications EU DataGrid TestBed 1

First Router Second Router Baud Rate (Gb/s)

Router0 Router1 0.15

Router1 Router2 2.5

Router2 Router3 10

Router2 Router8 10

Router3 Router4 10

Router3 Router5 2.5

Router4 Router5 0.15

Router4 Router6 10

Router5 Router6 2.5

Router6 Router7 10

Router7 Router8 10

Router8 Router1 1

Table 5.2: Resource Baud Rates specifications EU DataGrid TestBed 1

Router Resource Baud Rate (Gb/s)

Router0 CERN 1

Router1 Lyon 2.5

Router3 RAL 2.5

Router3 Imperial College 2.5

Router4 NorduGrid 0.15

Router5 NIKHEF 0.62

Router7 Milano 0.10

Router7 Torino 0.05

Router7 Roma 0.10

Router7 Bologna 0.15

Router7 Padova 0.05

The only few cases in which the latency decreases occur when the resource is sent and
returned through the routers with a series of very high baud rates.

The final part is proof of the above, that the second gridlet has a higher amount of work
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Figure 5.4: Test 2 -Performance of Latency - 10 Users

Figure 5.5: Test 2 - Performance of Latency - 72 Users
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5.2 Test Two - Introduction of different baud rate

Figure 5.6: Test 2 - Performance of Latency - 18 Users

to do than the other resources, and in part it is already visible in Figure 5.4 with the final
users. Indeed the Figure 5.6 shows the behavior of the last 18 users and we can see the huge
difference between the latency of the first gridlet and the latency of the second gridlet.

5.2.1 Notes about the first two examples

In the first two examples we have given the network behavior in simple cases, with the aim
to understand the evolution of the standard simulation. There would be other tests to be
carried forward, based on the increase or decrease the baud rate between routers and between
routers and resources.
As we shall see, in general, we found that with the decrease of the baud rate there is an
increase in the latency, especially with regard to the second gridlet, while the increase in the
baud rate causes a slight decrease in the level of latency.
These differences are in hundreds of seconds.
In these first two examples the number of gridlets is equal to two, and that is why we have
analyzed the results of the first gridlet with different target resources and the second gridlet
on a single target resource.
This allows us to get a visual of the results of the first gridlet in different circumstances, and
a view of the second gridlet constant, and then compare them.
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5.3 Test Three - The new settings

In this scenario we increase the values of two fundamental data:

• the number of the gridlets, from 2 to 5;

• the number of machines per resource, from 1 to 5.

Moreover gridlets have been redirected in the following order:

• From User 0 to User 24 the Gridlet 0, Gridlet 1 and Gridlet 2 were sent to resource
NIKHEF.

• From User 0 to User 24 the Gridlet 3, Gridlet 4 were sent to resource PADOVA.

• From User 24 to User 49 the Gridlet 0, Gridlet 1 and Gridlet 2 were sent to re-
source RAL.

• From User 24 to User 49 the Gridlet 3, Gridlet 4 were sent to resource TORINO.

• From User 50 to User 74 the Gridlet 0, Gridlet 1 and Gridlet 2 were sent to re-
source CERN.

• From User 50 to User 74 the Gridlet 3, Gridlet 4 were sent to resource BOLOGNA.

• From User 75 to User 99 the Gridlet 0, Gridlet 1 and Gridlet 2 were sent to re-
source IMPERIAL COLLEGE.

• From User 75 to User 99 the Gridlet 3, Gridlet 4 were sent to resource ROMA.

Thanks to a substantial increase in the number of machines available (we have gone from
100 machines in the example two to 500 machines), the value of latency is drastically reduced.
As shown in List of Figures 5.1, the latency of the User 0 in the simulation with one machine
ranges from about 2000 to about 10000 seconds.

Listing 5.1: Results of User 0 with one machine

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 38 2574 858 2574.02055733335
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

1 Success 43 2574 858 10297.8443013333
======================================================

Instead, the latency of the User 0 in the simulation with five machines (and five gridlets),
decreases due to the presence of a higher number of machines.
As shown in List of Figures 5.2, the latency of the User 0 in the simultion with five machines
ranges from about 800 to about 2000 seconds.
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5.3 Test Three - The new settings

Listing 5.2: Results of User 0 with five machines

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 63 2574 858 869.41017999999
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

3 Success 88 2574 858 901.240719733294
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

1 Success 63 2574 858 1726.27018000013
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

4 Success 88 2574 858 1757.65071973346
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

2 Success 63 2574 858 2582.18022030973
======================================================

In this context, we highlight a range of important information.

The gridlets are not executed in sequence, but based on the actual availability of the
resource to which they are sent. In fact, if we check the List of Figures 5.2 after Gridlet 0
is sent to the resource NIKHEF (resource id number 63), Gridlet 3 comes into play (and
not the Gridlet 1 ) but it is sent to the resource PADOVA (resource id number 88), because
that is the first gridlet that can be sent to this resource.
This means that the resource NIKHEF, at the moment when it is requested by the User 0,
is not available because it is probably occupied by other users.
In fact, the resource NIKHEF has five machines with which it performs the gridlet received.
But there are 25 possible users that may require the execution of a gridlet. And so it’s
possible that the occurrence of a temporary unavailability of the resource cause of a queue
of gridlets.
The large number of machines available for each resource allows the same resource to dispose
of the work in short time, thus maintaining a level of very low latency (as you can see from
the two previous listings).

In addition, this fact occurs with some regularity. We always take into account the List
of Figures 5.2.
The third gridlet to be executed is Gridlet 1 that is sent to the resource NIKHEF. Then
the Gridlet 4 to PADOVA and finally the Gridlet 2 to NIKHEF again.
Even in these a queue of gridlets that has been created changes the gridlets’ order of User 0.
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Table 5.3: User 0 simulation times (in seconds)

Gridlet ID Resource Target Submission Entry Queue Exit Queue Success

0 NIKHEF 557.361 / / 1414.591

1 NIKHEF 571.711 571.711 1414.591 2271.841

2 NIKHEF 595.241 595.241 2271.841 3129.371

3 PADOVA 596.421 / / 1453.801

4 PADOVA 610.571 610.571 1453.801 2311.071

Further evidence is given by the values of various times. Gridlet 0 comes into action at
second 557.361, the resource NYKHEF is free and completes the execution at time 1414.591.
When Gridlet 1 enters in execution time at second 571.711 the resource NYKHEF is occu-
pied and it has to wait for the first gridlet to be executed (in this case Gridlet 0 at second
1414.591).
Indeed Gridlet 1 enters the queue at the same time as Gridlet 0 when it comes into action
(571.711), and it exits at second 1414.591 just when the Gridlet 0 has finished its cycle, and
it completes the execution at second 2271.841.
Similarly, this also happens to Gridlet 2. It enters at time 595.241 seconds, but the resource
is still occupied and it enters the queue. It exits from the queue at time 2271.841 seconds
just when the Gridlet 1 has been executed and it completes its execution at time 3129.371.
The Gridlet 3 and the Gridlet 4 behave the same way.
Gridlet 3 enters the execution time 596.421 when the resource PADOVA is free and it fin-
ishes its cycle at 1453.801.
Gridlet 4 comes into action at second 610.571 but the resource PADOVA results occupied
ant it waits until the first gridlet in the queue of PADOVA has termined its execution (in
this case Gridlet 3 at second 1453.801).
We can also analyze this aspect by the values of latencies. Gridlet 0 has a latency of about
870 seconds. Gridlet 1 has a latency of about 1730 seconds and Gridlet 2 has a latency
of about 2580 seconds. This means that among the three gridlets that are sent to resource
NIKHEF, there is a difference between latencies of about 850 seconds.
And if we consider the values of latency of Gridlet 3, about 900 seconds, that was performed
after Gridlet 0, and Gridlet 4, about 1750 seconds, that was performed after Gridlet 1, it
is clear that we have created a queue of gridlets:
User 0 after sending and receiving Gridlet 0 from NYKHEF, tries to send Gridlet 1 again
to NYKHEF that results occupied. So, it sends the first gridlet available (Gridlet 3 ) for
the resource PADOVA. After that it tries to send the second gridlet to PADOVA, but also
in this resource there is a code queue of gridlets. Then it sends and receives Gridlet 1 from
NYKHEF because of the queue, 830 seconds pass after the notification from the notification
of the previous gridlet. As one can see from the Table 5.3. As can be seen from the table,
the same process occurs until the last gridlet.

Another example of the queue of gridlets is the User 75. As we can see from the List
of Figures 5.3, the first gridlets processed are Gridlet 3 and Gridlet 4.
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5.4 Test Four - Different processing elements

This means that at first the User 75 tried to send Gridlet 0 to resource IMPERIAL COL-
LEGE (resource ID number 53), but it was occupied. So it sent and received the first gridlet
available for the resource ROMA (resource id number 78), Gridlet 3, and after that the
Gridlet 4. Finally he tried again to send the Gridlet 0 and once confirmation is received,
Gridlet 1 and Gridlet 2.
Indeed if we check the value of the latency, we can see that the queue in IMPERIAL COL-
LEGE affects the value of latency.

Listing 5.3: Results of User 75 with five machines

============== OUTPUT for EUDataGrid User 75 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

3 Success 78 2574 858 2218.06010359999
======================================================

============== OUTPUT for EUDataGrid User 75 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

4 Success 78 2574 858 2217.79997880002
======================================================

============== OUTPUT for EUDataGrid User 75 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 53 2574 858 3319.76009879997
======================================================

============== OUTPUT for EUDataGrid User 75 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

1 Success 53 2574 858 3314.98956066664
======================================================

============== OUTPUT for EUDataGrid User 75 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

2 Success 53 2574 858 3309.16956066666
======================================================

5.4 Test Four - Different processing elements

In this test we maintained the same characteristics as Test 3 ( 5.3) with the exception of the
number of PEs. In fact, we decided to decrease the number of Processing Elements for each
resource from four to one.

The Processing Elements (PEs) are very important because one or more PEs are put
together to create a machine. So in this case the power of each machine is decreased to one
fourth of its initial value.

What we expect is a fairly substantial increase in the value of latencies. We always take
into account the User 0, as reported in the List of Figures 5.4.
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Listing 5.4: Results of User 0 with five machines and one PE

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

3 Success 88 2574 858 8594.13641306668
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

4 Success 88 2574 858 8593.96486640003
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 63 2574 858 12844.519593643
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

1 Success 63 2574 858 12844.5589989248
======================================================

============== OUTPUT for EUDataGrid User 0 ==============
Grid l e t ID STATUS Resource ID Cost CPU Time Latency

2 Success 63 2574 858 12844.7274522581
======================================================

The differences between this Test and the results reported in List of Figures 5.2 are huge.
The latency of the User 0 in the simultion with one PE per machine, ranges from about
8000 to about 13000 seconds. In some girdlets, nearly ten times more.
This allows us to understand the importance of each machine and its components.
In addition, to reconnect to the considerations contained in Test 3, 5.3, we have another
example of queue of gridlets.
Since there is only one PE for each machine, the response time of each resource is intended
to increase compared to the previous examples and, consequently, the values of the latencies
increase. If the response time of each resource increases, then it increases the possibility of
queues of gridlets forming and also the size of the queues themselves.
The User 0, in the last example, finds a queue in the resource NIKHEF and it decides to
send as first gridelet the Gridlet 3 to the resource PADOVA, because compared to NIKHEF
it was released first.

As a further test, we analyzed the network with a number of PEs equal to ten. The re-
sults are shown in Figure 5.7

In this figure the results of the latency (for the User 0 ) with 10 PEs per machine are put
in comparison with the other two cases.

In the first case we show the trend of latency with a number of PEs per machine equal to
four.

In the second case we consider the trend of latency with a number of PEs per machine
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5.4 Test Four - Different processing elements

Figure 5.7: Test 4 - Performance of Latencies of User 0 with different PEs

equal to one.

And the last case is the new trend with a number of PEs per machine equal to ten.
With four PEs we have a trend that tends to increase with the number of gridlets that are
processed. We observe that the value of latency is still quite low, this means that with four
PEs, each machine can do its job fast enough.
As the number of gridlets that are entered by users on the network increases, there is a
gradual increase in the value of latency.
With one PE the scenario of values is much higher, and again tends to increase with the
number of gridlets. Obviously in the two previous cases, the value peaks based on the
presence or absence of queues of gridlets.
Totally different is the result obtained with ten PEs. As shown in the Figure 5.7, the value
of the latency remains constant, linear, for all gridlets that join the network. This means
that with ten PEs in each machine, the latencies remain low and constant and the possibility
of queue formation is decreased.
Of course the formation of queues can always happen, even with ten PEs, but with a very
low percentage of probability.

Even for the User 75, that we have partially analyzed earlier, it behaves very similarly
with ten PEs.
In the Figure 5.8 reports the behavior of the User 75 with four, one and ten PEs, and the
results are very similar to those of User 0.
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Figure 5.8: Test 4 - Performance of Latencies of User 75 with different PEs

5.5 Test Five - Different lenghts for the gridlets

In this Test we have modified the lenght of the gridlets.
The lenght is one of the important details of a gridlet and it is expressed in MI (Millions
Instruction).
The standard value of the length of a gridlet, in fact is that which we have used in previous
tests, is 42000000 MI. The goal of this test is to observe the behaviour of the simulation
when increasing and decreasing this value.
For this test we analyze the value of the User 53 with a length of the gridlets first equal to
42000000 MI, then increased by a factor of ten (420000000 MI) and finally decreased by a
factor of ten (4200000).

In the Figure 5.9 shows the state of latency for the three different cases.

With a lenght equal to 42000000 MI we have a standard situation: with increasing number
of gridlets, the latency also increases accordingly.

If we increase the length ten times (420000000 MI) we get a substantial increase in latency
due to the difficulty of the resource to process the gridlet quickly.
The value of the latency ranges from about 8000 to about 25000 seconds, a remarkable
difference. But if we compare this range of values with that of the standard situation, we
note that the value of the latency is increased by a factor of ten, as well as the length value.
Indeed the value of latency in the standard situation ranges from 800 to 2500 seconds.
In fact if you look closely at the trend of the graph, we note that the behavior in both cases
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5.6 Comments of the results

Figure 5.9: Test 5 - Performance of Latencies of User 53 with different lenghts of gridlets

is similar, only more pronounced when the length was increased.
Finally we see a very similar behavior when the length of gridelt was decreased by a factor
of ten. Also in this case the value of latency range from 80 to 250, thus ten times less than
the standard cases.
And also in this situation the graph shown the trend, but it is much less visible than the
previous case because of the scale of the graph needed to show all three scenarios.

5.6 Comments of the results

The results obtained in this first scenario are the results that we could expect.
Indeed, we have prepared a toolkit to make it less casual and more programmable, and
according to this by repeating the tests with different settings, we could get different results
but find comparisons between them.
In particular:

• Test one: with the standard settings we have achieved results in line with expectations.
In general, the level of latency tends to increase with the number of gridlets placed in
the network.
Having made the baud rate constant for all nodes, we can see that the geographical
position of the various users and the allocation of gridlets onto the different resources
play basic roles in determining the values of latency.
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• Test two: the results are similar to those of test one, with some variations based on
the various baud rate of the nodes.
In fact there are now connections faster than others and this fact affects the latency,
especially for the second gridlet which is always sent to the same resource.

• Test three: with an almost total change of the settings we get an almost total change
in the levels of latency.
More machines available means more efficiency in executing and disposing gridelts
which means a lower level of latency.
We can also observe that certain peak latencies are also due to the formation of traffic
queues.

• Test four: these results allow us to understand the real contribution of the primary
source of GridSim, i.e. computing power.
Increasing the number of machines available may not be enough.
In fact, by varying the number of processing elements we can observe how the power
of every machine is relevant for an efficient network topology.

• Test five: in this test the results show us how important the length of the gridlet is
that the user enters into the network.
Entering a gridlet too long into the network slows the implementation process, as com-
pared to a gridlet of standard length.
When a gridlet is too short, is has the advantage of a faster execution but a disadvan-
tage that it keeps part of the network busy just to perform a simple task.
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6 Results of Thesis - Scenario Artificial EU

In this chapter we insert the most important results of some tests, of the scenario Artificial
EU.
For this network topology, five tests have been implemented.

In the first test will use this scenario with the standard level of baud rate but with all our
settings for the rest of the parameters.

Instead in the second test we will introduce a variant that will change the values of the
different baud rates with our settings, and also will change the value of Maximum Trans-
mission Unit (MTU).

Test number three will change the values of Processing Elements (PEs) and simultane-
ously the number of machines, in order to simulate the behavior of network topology with
different computing powers.

Test number four will subject to changes in the length of gridlets, to study how GridSim
behaves in different series.

In the fifth and final test, we will compare two different situations: the first with all the
standard settings of our network, the second with all gridlets sent to the resource Munich.

The map of this scenario is shown in Figure 6.1.

6.1 Test One - Standard baud rate

In the first test of this scenario we focus our attention immediately on the large-scale example
with, unlike the previous scenario, the following simulation data:

• the number of total machines for each resource is 6;

• the number of total gridlets for each user user is 10.

And the gridlets have been redirected in the following order for each users.
From User 0 to User 19 :

• Gridlet 0, Gridlet 1, Gridlet 2 and Gridlet 3 were sent to resource PARIS.

• Gridlet 4, Gridlet 5 and Gridlet 6 were sent to resource WARSAW.

• Gridlet 7, Gridlet 8 and Gridlet 9 were sent to resource MADRID.

From User 20 to User 39 :
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6 Results of Thesis - Scenario Artificial EU

Figure 6.1: The simulated topology of EU Artificial

• Gridlet 0, Gridlet 1, Gridlet 2 and Gridlet 3 were sent to resource MUNICH.

• Gridlet 4, Gridlet 5 and Gridlet 6 were sent to resource MOSCOW.

• Gridlet 7, Gridlet 8 and Gridlet 9 were sent to resource BRUSSELS.

From User 40 to User 59 :

• Gridlet 0, Gridlet 1, Gridlet 2 and Gridlet 3 were sent to resource BERLIN.

• Gridlet 4, Gridlet 5 and Gridlet 6 were sent to resource STOCKHLOM.

• Gridlet 7, Gridlet 8 and Gridlet 9 were sent to resource MILANO.

From User 60 to User 79 :

• Gridlet 0, Gridlet 1, Gridlet 2 and Gridlet 3 were sent to resource VIENNA.

• Gridlet 4, Gridlet 5 and Gridlet 6 were sent to resource OSLO.

• Gridlet 7, Gridlet 8 and Gridlet 9 were sent to resource ATHENS.

From User 80 to User 99 :
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6.1 Test One - Standard baud rate

• Gridlet 0, Gridlet 1, Gridlet 2 and Gridlet 3 were sent to resource GLASGOW.

• Gridlet 4, Gridlet 5 and Gridlet 6 were sent to resource LISBON.

• Gridlet 7, Gridlet 8 and Gridlet 9 were sent to resource DUBLIN.

From User 100 to User 119 :

• Gridlet 0, Gridlet 1, Gridlet 2 and Gridlet 3 were sent to resource HELSINKI.

• Gridlet 4, Gridlet 5 and Gridlet 6 were sent to resource BUDAPEST.

• Gridlet 7, Gridlet 8 and Gridlet 9 were sent to resource PISA.

We have implemented the network in which the baud rate between routers and between
router and resource doesn’t change.
The value of the baud rate between routers is 1 Gb/s, instead the value of the baud rate
between routers and resources is 3,5 Gb/s.
The Figure 6.2 represents the behaviour of the network for the first four users. As shown in
the graph, the results are influenced by the formation of queues of gridlets.

Figure 6.2: Test 1 - Performance of Latencies of four users

User 0 has a constant rate for the first four gridlets, gridlets because it sent Gridlet 0 as
the first gridlet to the resource PARIS, but after that this resource resulted occupied and
Gridlet 1 is left in a queue.
Thus Gridlet 4 (the first gridlet for the resource WARSAW ) starts its extension, but then,
like before, also WARSAW resulted occupied and Gridlet 5 is also left in a queue.
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Listing 6.1: Timing of Gridlet received by User 0

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #0 with s t a t u s Success at
time = 1431.5901839999767 from re sou r c e A r t i f i c i a l E U P a r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #4 with s t a t u s Success at
time = 1461.4202319999495 from re sou r c e Art i f i c ia lEU Warsaw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #1 with s t a t u s Success at
time = 1478.2001828570772 from re sou r c e A r t i f i c i a l E U P a r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #5 with s t a t u s Success at
time = 1480.5002239999321 from re sou r c e Art i f i c ia lEU Warsaw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #7 with s t a t u s Success at
time = 1540.6002091427347 from re sou r c e Art i f i c i a lEU Madr id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #8 with s t a t u s Success at
time = 1551.320209142725 from re sou r c e Art i f i c i a lEU Madr id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #2 with s t a t u s Success at
time = 2311.780227999988 from re sou r c e A r t i f i c i a l E U P a r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #6 with s t a t u s Success at
time = 2328.790227999957 from re sou r c e Art i f i c ia lEU Warsaw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #9 with s t a t u s Success at
time = 2403.9602091429283 from re sou r c e Art i f i c i a lEU Madr id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 0 : Rece iv ing Gr id l e t #3 with s t a t u s Success at
time = 3150.43018399999 from re sou r c e A r t i f i c i a l E U P a r i s

In this case, both the queues are released quickly and Gridlet 1 and Gridlet 5 have been
performed. This explains the similar values of the first four gridlets.
But given the large number of gridlets on the net, both the first two resources are returned
as occupied and the two gridlets that are to be carried out subsequently are the Gridlet 7
and Gridlet 8, namely the first two gridlets of the resource MADRID, and in the graph they
are represented from the subsequent two values slightly higher.
The next to be performed are the gridlets that were previously queued in each resource:
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6.1 Test One - Standard baud rate

Gridlet 2, Gridlet 6 and Gridlet 9, and therefore have higher latency values than previous
gridlets.
The last to be performed is Gridlet 3 which has undergone a queue longer than all previous
gridlets.
The List of Figures 6.1 shows these results.

On the contrary, User 1 has a completely different pattern of latency. This is because the
gridlets immediately encounter a series of queues of gridlets, which tend to increase their
latencies.
In the Figure 6.2 we can see that the first three gridlets have almost the same (and high)
latency. This is because they are performed in the sequence: Gridlet 4, Gridlet 5 and
Gridlet 6, all of them addressed in WARSAW, because in resource PARIS there is a queue
that prevents the execution of the first four gridlets.

Listing 6.2: Timing of Gridlet received by User 1

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #4 with s t a t u s Success at
time = 3177.4202319999767 from re sou r c e Art i f i c ia lEU Warsaw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #5 with s t a t u s Success at
time = 3178.940233142867 from re sou r c e Art i f i c ia lEU Warsaw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #6 with s t a t u s Success at
time = 3181.2902279999616 from re sou r c e Art i f i c ia lEU Warsaw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #7 with s t a t u s Success at
time = 3256.6002091428113 from re sou r c e Art i f i c i a lEU Madr id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #8 with s t a t u s Success at
time = 3257.9402091428406 from re sou r c e Art i f i c i a lEU Madr id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #9 with s t a t u s Success at
time = 3259.28020914287 from re sou r c e Art i f i c i a lEU Madr id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #0 with s t a t u s Success at
time = 3989.320228000048 from re sou r c e A r t i f i c i a l E U P a r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #1 with s t a t u s Success at
time = 3993.990184000003 from re sou r c e A r t i f i c i a l E U P a r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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6 Results of Thesis - Scenario Artificial EU

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #2 with s t a t u s Success at
time = 3999.970183999997 from re sou r c e A r t i f i c i a l E U P a r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A r t i f i c i a l E U U s e r 1 : Rece iv ing Gr id l e t #3 with s t a t u s Success at
time = 4005.5901839999924 from re sou r c e A r t i f i c i a l E U P a r i s

Indeed as we can foresee from List of Figures 6.2, after these, the three resources of
MADRID are performed, and lastly, after the queue has been disposed, the four resources
of PARIS are performed.
This is a clear example of how the formation of code causes a total change in the performance
of various gridlets.

The User 2 has a different behavior than the two previous users, but always linked to
the formation of queues.
The first three gridlets performed are the first gridlets for each resource, namely Gridlet 0,
Gridlet 4, Gridlet 7.
It is now quite clear that this order is related to the formation of queues: before in the
resource PARIS, then in WARSAW and finally in MADRID.
After that, based upon various queues in the various resources, six gridlets are performed in
series, and lastly, the Gridlet 7 from the resource PARIS.

It is easy to see from the Figure 6.2, the User 3 has a behavior very similar to the User 0,
while the User 4 has a pattern which mirrors the User 2.
In this test the behavior of other users is very close to those of the first four users that we
analyzed.

6.2 Test Two - Different MTUs

In this test we have changed the value of MTU. The MTU is the maximum transmission
unit and it is expressed in bytes.
We also have different values of the baud rate, between routers and between routers and
resources. In Table 6.1 shows the baud rates that were indicated in the Scenario EU Artificial.
Instead, in the Table 6.2, represents the baud rates between routers and users.

The values of the different baud rates between routers were chosen based on geographic
location: the closer the routers, the higher the transmission rate.
Instead the values of the different baud rates between routers and resources have been
determined on the basis of our assessment: some of the most important centers such as
Munich, Milano, Dublin, Berlin, Pisa, Madrid and Glasgow have baud rates higher than
other resources.

We decided to analyze the situation of the User 10. This is because all users in this test
have a similar behavior. Indeed the behavior of the ten gridlets is not affected by the specific
terms of latency.
The Figure 6.3 shows that the levels of latencies are very similar and this is due to an
important special feature of the toolkit GridSim: the packets which are larger than the
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6.2 Test Two - Different MTUs

Table 6.1: Router Baud Rate specifications EU Artificial

First Router Second Router Baud Rate (Gb/s)

Router0 Router1 5

Router1 Router2 1

Router2 Router3 2.5

Router2 Router5 2.5

Router3 Router4 7

Router4 Router5 0.55

Router5 Router6 2

Router5 Router9 0.5

Router6 Router7 1.5

Router6 Router8 1

Router9 Router10 1.25

Router9 Router11 5.5

Router10 Router11 7.5

Router11 Router1 1.5
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6 Results of Thesis - Scenario Artificial EU

Figure 6.3: Test 2 - Performance of Latencies of Users 10 with different MTU’s levels

MTU should be split up into MTU size units. When GridSim entities want to send a data
over the network, each of them has Input and Output (I/O) entities attached to it.

The Output entity is responsible for splitting the data into MTU sized packets, whereas
the Input entity is accountable to collate the different packets in a stream all together, and
send them a piece of data to the GridSim entity.
In addition, these I/O entities act as a buffer to hold the packets until a link is free.
A network packet in GridSim is represented as an interface class Packet. Currently, there
are two classes that belong to this category, i.e. NetPacket and InfoPacket.
A NetPacket class is used to encapsulate data passing through the network, whereas class
InfoPacket is devoted to gathering network information during runtime which is equivalent
to Internet Control Message Protocol (ICMP) in physical networks.
A Packet Scheduler is responsible for deciding the order in which one or more packets will
be sent downlink.
The ability to split data into packets avoids overloading the network.

6.3 Test Three - Change the calculation power

The third test of this scenario allows us to evaluate the progress of gridlets varying simul-
taneously the number of machines for each resource and the number of processing elements
for each machine.
Our goal is to compare five different cases:
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6.3 Test Three - Change the calculation power

Table 6.2: Resource Baud Rate specifications EU Artificial

Router Resource Baud Rate (Gb/s)

Router0 Dublin 1

Router0 Glasgow 2.5

Router3 Helsinki 0.5

Router3 Oslo 0.6

Router3 Stockhlom 0.15

Router4 Moscow 0.5

Router4 Warsaw 0.10

Router4 Vienna 0.05

Router7 Berlin 1.10

Router7 Munich 2.15

Router8 Budapest 0.05

Router8 Athens 0.15

Router9 Milano 1.25

Router9 Pisa 1.25

Router10 Madrid 0.95

Router10 Lisbon 0.55

Router11 Paris 0.05

Router12 Brussels 0.05
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6 Results of Thesis - Scenario Artificial EU

• The standard case: Number of Machines = 6 and Number of PEs = 4;

• The first case: Number of Machines = 12 and Number of PEs = 8;

• The second case: Number of Machines = 12 and Number of PEs = 2;

• The third case: Number of Machines = 3 and Number of PEs = 8;

• The fourth case: Number of Machines = 3 and Number of PEs = 2;

Given the large amount of data, we decided to focus our analysis on a single user and
on three particular gridlets. We will evaluate the behavior of the User 75 on Gridlet 0, on
Gridlet 5 and on Gridlet 9.

Figure 6.4: Test 3 - Performance of Latencies of Users 75 with different number of machines
and PEs

The first consideration is the latency of the three gridlets in the five cases described above.

As shown in the Figure 6.4, the Gridlet 0 has a linear trend in each of five cases. This is
beacause the first gridlet doesn’t meet traffic and then, regardless of the number of machines
and PEs, should not be an impact on latency.

Gridlet 5 has a similar pattern to Gridlet 0 until the fourth case, with three machines
and eight PEs. In fact, while in the first four cases the Gridlet 5 encounters little traffic, in
the fifth case, a probable formation of a code makes it impossible to have a quick execution
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of the gridlet, in a situation of limited computing power.

With Gridlet 9 we have a clear view of the situation, because being the last gridlet, it
will surely be subject to delays due to traffic.
The level of latency remains constant for the first two cases. This is because the simulation
of this network is optimal with six machines and eight PEs, and then doubling the computing
power does not affect the latency.
But as the number of machines and/or PEs begins to decrease, we can see that the level
of latency increases, because of the traffic on the network, and consequently, increases the
difficulty for the resources to perform a gridlet, especially when the number of machines and
PEs is idle.
We can also note that doubling the number of machines and halve the number of PEs, leads
to the same level of latency compared and to halving the number of machines and doubling
the number of PEs.

The second consideration is the time when a gridlet is sent running by a user. The behavior
of the three gridlets is similar to the previous case.

As we can see from the Figure 6.5, Gridlet 0 always has a linear trend. This is because
the time that it comes into action, as well as the latency, is not affected by the change in
computing power in the event of low traffic or no traffic.

Figure 6.5: Test 3 - Performance of Execution Time of Users 75 with different number of
machines and PEs
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With Gridlet 5, unlike what happened with the latency, the level of this time remains
constant until the third case, then increased slightly in the fourth case, and more prominently
in the fifth.
This happens because the resource has fewer machines available (from six/twelve to three)
and several more requests to perform than it did with the Gridlet 0 and thus takes longer
to initialize the process, especially when the number of PEs decreases.
As mentioned above, the last gridlet is particularly affected by traffic on the network, and
then at the slightest change in computing power, time starts to increase and reaches its
highest peak when computing power is at a minimum.
In Gridlet 9, with regard to latency, we can note two important aspects. The first one is that
the level of latency remains constant for the first two cases. The simulation of this network
results optimally with six machines and eight PEs, and then doubling the computing power
does not affect the time.
The second one regards the third and the fourth case: halving the number of PEs leads to
the same amount of time as to halving the number of machines and doubling the number of
PEs.

The third and last consideration that we have taken into account, affects the time when
the gridlet finishes its execution with success.
The variation of the chart for all three gridlets is similar. The only thing that changes is
obviously the range of time.

The Figure 6.6 highlights this fact.
For the Gridlet 0 we see a more linear variation, while for the time when the gridlets came
running, the range was around 700 seconds, the time when the gridlet ends its execution is
around 1500 seconds.
This means that for all the five cases, the gridlet takes about 800 seconds to be executed.
For Gridlet 5, as we have already seen before, the time starts to increase when the number
of machine decreases. We pass from a range of between 700 and 1800 seconds in the event
that the gridlet comes into action, to a range of between 1600 and 2600 seconds in cases
where the gridlet ends its successful execution.
This means that in the cases with the gridlet comes into action the difference is around 1100
seconds, while in the cases when the gridlet ends its successful execution the difference is
around 1000 seconds.
The reduction of the difference in the range of time can be explained by a partial decrease
in traffic when the resource is about to end the execution of Gridlet 5.
Being the fifth gridelt, i.e. the middle gridlet, the outgoing traffic from a resource begins to
decline slowly.

In fact, the Gridlet 9, the last gridlet, testifies to this. We pass from a range of between
900 and 3200 seconds in the event when the gridlet comes into action to a range of between
2000 and 4000 seconds in the case when the gridlet ends its successful execution.
In the case when the gridlet comes into action the difference is around 2300 seconds, while in
the case with the gridlet ends its successful execution the difference is around 2000 seconds.
A witness to what has been said before, the outgoing traffic is decreasing and therefore the
difference in the time of order execution is less than the difference in time of entry.
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Figure 6.6: Test 3 - Performance of Success Time of Users 75 with different number of ma-
chines and PEs

6.4 Test Four - Variation in the length of gridelt

The fourth test allows us to verify the behavior of this network by varying the length of
gridelts. In particular we will consider the User 90 and evaluate the behavior of the first
two and last two gridelts.
The standard length of gridelt we have used so far is 42000000 million instructions (MI). We
tried to change this standard lenght with two different cases: in the first one we decrese the
length by a factor of ten and in the second one we increase the length by a factor of ten.
The gridlets that we take into consideration are Gridlet 0, Gridlet 1, Gridlet 8 and Gridlet 9.
The Table 6.3 shows us the Gridlet 0.

Table 6.3: Gridlet 0 of User 90 with different lenghts

Gridlet 0 Lenght Execution Time Success Time CPU Time Cost Latency

4200000 MI 750.751 836.511 85.76 257.28 238.969

42000000 MI 741.53 1599.19 857.66 2572.98 866.540

420000000 MI 748.151 9319.661 8571.51 25714.53 8585.680
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The execution time is similar for all three lengths.
Being the first gridelet of the User 90, it was less affected by the extent of the change in
length as the traffic is low at the moment when comes into action.
Obviously, the time when the gridlet ends its execution is greatly influenced by the size of
the gridlet.
CPU Time and cost have an almost exponential trend. When the length decreases by ten
times their value also decreases by ten times. Similarly, if the length increases by ten times
their value also increases tenfold.
The behavior of latency follows that of the two previous data when the length increases
tenfold, while it decreases only three times when the length decreases tenfold.
This is because the value of latency is also influenced by time of success. And in this case
time success with the length equal to 4200000 MI is very close to that with the length equal
to 42000000 MI. This explains the higher latency.

Table 6.4: Gridlet 1 of User 90 with different lenghts

Gridlet 1 Lenght Execution Time Success Time CPU Time Cost Latency

4200000 MI 788.301 874.301 86 258 274.259

42000000 MI 817.411 1675.411 858 2574 963.870

420000000 MI 9316.151 17887.621 8571.47 25714.41 16941.860

The Gridlet 1 is a clear example that with increasing traffic, the length of gridlet has the
greatest impact.
As we can see from the Table 6.4, it is quite clear that with increased length of gridelt there
is a significant increase of all values.
In particular, we see this difference for the execution time, success time and latency. When
we increase the length of gridelt, the values of the three data increased very much, and when
we decrease the length of gridelt, the values decrease slightly.

Table 6.5: Gridlet 8 of User 90 with different lenghts

Gridlet 8 Lenght Execution Time Success Time CPU Time Cost Latency

4200000 MI 1059.301 1145.301 86 258 174.681

42000000 MI 2546.181 3404.181 858 2574 2677.960

420000000 MI 17944.031 26516.031 8572 25716 25541.760

The Table 6.5 and the Table 6.6 confirm what was said previously.
The increase in traffic over the past two gridlets of each resource is much higher, and in-
creasing the length of gridlet has a decisive effect on the values of the execution time, success
time and latency.
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Table 6.6: Gridlet 9 of User 90 with different lenghts

Gridlet 9 Lenght Execution Time Success Time CPU Time Cost Latency

4200000 MI 1119.821 1205.821 86 258 231.23

42000000 MI 2592.251 3450.251 858 2574 2476.200

420000000 MI 26468.321 35040.321 8572 25716 34312.250

6.5 Test Five - Comparison between two cases

In the fifth and final test we compare two different situations.
In the first we leave the network with the same data, while in the second we will send all
the gridlets to the resource Munich.
In this way we want to make clear what is the difference between a well-balanced network
and a network totally busted.
The Figure 6.7 shows a graph with the levels of latency of both the cases for the User 0.
The difference is remarkable.

Figure 6.7: Test 5 - Performance of Latencies of User 0 in two different scenarios

In the Standard case the latency ranges from about 800 to about 2500 seconds. This result
is in line with the previous tests, and that is what we expect with the default settings. In
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the case where all gridlets are sent to Munich, the latency ranges from about 11000 to about
30000 seconds.
This is about twelve times higher. This huge difference can be explained simply.
All users send their six gridelts to resource Munich.
Thus 6 gridelts for 120 users are 720 gridelts received from the resource. What logs can be
summarized as follows:

• The traffic is all directed towards Munich, then to the router number seven.

• This causes a blockage of the network, especially in Regional GIS number two.

• This means that each time a user sends a new gridlet, it is difficult for it to reach the
resource.

• All this leads to the creation of code that switches the traffic.

• But since all traffic is facing Munich, queues created will be large.

• Therefore the resource will take a long time to run all gridlets.

• And all this goes to affect the latency.

The graph shows the User 0 that is only part of the network.
All other users have similar differences between the standard case and that of Munich.
A major or a minor difference between the two cases may depend on such factors as the
route to the resource (distance and baud rate connections), the exact moment when a gridlet
reaches the resource (if there is a lot of a little bit of traffic at that moment), or how many
gridlets are in the queue that has formed in the resource.

6.6 Comments of the results

In the second scenario we wanted to apply a different type of tests that still remain compa-
rable with the first scenario.
The results obtained in this second scenario are still the results that we could expect.
Especially going in detail:

• Test one: we immediately implemented our settings, the only difference consists to
observe the behavior of the network topology with the constant values of baud rates.
If we take into account the traffic network that is significantly higher than the previous
scenario, we can see that the results are in line with expectations: as more gridlets
become part of the network, the greater the delay in executing.

• Test two: this test allows us to better understand the operation of one of the many
features of GridSim, the ability to divide data packets into smaller units if they ex-
ceeded the value set as the MTU.
The results show that the level of latency does not vary greatly from case to case,
thanks to the feature described above.
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• Test three: these results show how when varying the total computing power, i.e. num-
ber of machines and their PEs, the latency undergoes significant changes.
In addition, this test also allows us to see the progress of two other times, when gridlet
comes into action and when the gridlet finishes executing.
As expected the results of these last two data are in line with the latency, the lower
the power the greater the delay in responding to all three cases.

• Test four: these results indicate that varying the length of gridlet changes the various
times taken into consideration.
Again the results are in line with expectations, as the length increases, the time increase
and vice versa.
Only the time where gridlet come running does not change much, because a different
size gridelt not affect the start time running.

• Test five: in this test we wanted to present that a well balanced network topology
increases performance in the execution of gridlet, while a poorly balanced network has
a negative impact on performance.
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The results of these simulations give us an important view on the behavior of the toolkit
in various situations. This allowed us to model the toolkit as we liked to get a network
topology that reflects one hundred percent of our initial idea.
In order to obtain more significant results, we decided to implement two different scenarios.
The first is based on EU DataGrid TestBed 1, built on a real network topology of a few
years ago.
The second scenario is based instead on our own idea, bigger than the previous, so as to
simulate an environment even more extensive.
This double selection allows us to develop our scenario with the huge advantage of being
able to compare with a scenario that exists in reality.

Latency = Receiving Gridlet T ime− Sending Gridlet T ime (7.1)

Latency has been our main unit of measurement in the various tests, in both scenarios.
This is because we assumed scenarios without resources failures. Latency is simply the delay
of each gridlet (7.1), the difference between the time when the gridlet is sent by user to the
resource and time when the user returns gridlet with the work performed.

It is therefore clear that optimum performance of the network depends on these two values.
Figure 7.1 shows the behavior of the latency.
If the difference between the two values is marked, then it increases the level of latency.
And as we have already fully explained, this difference depends on:

• number of gridlets per each user;

• traffic encountered in the network and resulting in the formation of queues;

• the path to reach the resource;

• the speed of each link (baud rate);

• the lenght of the gridlet;

• number of machines and number of processing elements;

• ...

Latency is also an excellent tool for comparing the two scenarios.

7.1 Comparison of results

In the first scenario we focused the first two tests on simple examples that have allowed us
to know the best features of the toolkit.
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Figure 7.1: The behavior of the latency

In essence, we simulated a static network, i.e. with the same baud rate between routers and
between routers and resources, with few gridlets and the same gridlets sent to their specific
resources to better understand the operation of the network.

The results are in line with our expectations: if gridelts are sent to a resource nearby,
then their latency will be low, but if they are dispatched to resources spread throughout the
network, the latencies of gridlets undergo changes based on the paths they take.

If we consider a network with different baud rates, then this becomes an influential figure
for the value of latency.
In general latency tends to increase when more gridlets join the network.
So it is quite obvious that the latency has a fluctuating behavior based on these character-
istics.

The third example of the Scenario EU DataGrid TestBed 1 can be compared with the
second example of the Scenario Artificial EU. In fact, these two examples are very similar
to each other, except for some details.
Firstly, in the first scenario, the gridlets are redirected differently than the first two tests, so
as to achieve a more balanced network.
Just as we set in the second test of the second scenario.
In the second scenario we have also changed the number of MTU. But for this comparison
we will consider only the case standard with 1500 MTUs and the first five gridlets.
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7.1 Comparison of results

Table 7.1: Comparison of latency (in seconds) between two tests of the User 0

Gridlet Scenario EU DataGrid TestBed 1 Scenario Artificial EU

0 869.410 865.821

1 901.410 898.301

2 1726.270 923.550

3 1757.650 1715.721

4 2582.180 1723.691

In Table 7.1 we can see the comparison.
For the first two gridlets the situation is similar, the value of latency is around 800/900.
The situation began to change from the third gridlet onwards, where the difference between
the two scenarios starts to to become more pronounced nearly reaching 1000 seconds of dif-
ference in the latter case.
All this is explained by the increased power available to Scenario Artificial EU.
When the number of gridlets increases, the additional machine of the second scenario sim-
plifies the work of the resource, but finds more difficulty performing the gridlet in the first
scenario.

Another parallel can be drawn by test number four in the Scenario EU DataGrid TestBed
1 and test number three in the Scenario Artificial EU.
In both these examples we have changed the number of processing elements, while only in
the scenario did we also vary the number of machines for each resource.
The result of this comparison is shown in the Table 7.2.

Table 7.2: Comparison of latency (approximate value in seconds) between two tests with
different power

State of Gridlet 0 User 0 User 75

Scenario EU DataGrid TestBed 1 - 5MAC/4PE 2000 3000

Scenario Artificial EU - 6MAC/4PE 800 900

Scenario EU DataGrid TestBed 1 - 1MAC/4PE 8000 20000

Scenario Artificial EU - 3MAC/2PE 800 5000

The table shows us an interesting fact.
Moving from User 0 to User 75, we have an minimal increase in traffic in the case of the EU
DataGrid Testbed Scenario 1 with five machines and four PEs, while in the case of Scenario
Artificial EU with six machines and four PEs PEs, there is almost no increase.
This is because of the additional machine which allows, in the latter case, greater efficiency
in the execution of gridlet.
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If we focus our attention in the case with a lower power the gap becomes wider.
In the first scenario, a single machine with four PEs can not be performing as three machiness
with two PEs of the second scenario.
Once again, this underlines the importance of having a balanced network, especially with
adequate computing power.

The test number five in the Scenario EU DataGrid TestBed 1 and test number four in the
Scenario Artificial EU compare the different lengths of a gridlet.
In both experiments, the length of gridlet is both decreased and increased by a factor of ten,
as is shown in Table 7.3.

Table 7.3: Comparison of latency (value in seconds) between two tests with different gridlet
lengths for of the User 0

Lengths Scenario EU DataGrid TestBed 1 Scenario Artificial EU

420000 MI 160.965 127.710

4200000 MI 867.460 861.501

42000000 MI 8598.340 8577.041

The standard adopted by the length of GridSim Toolkit is 4200000 Millions Instruction.
With this length we can see that in both cases the value of latency is always around 860
seconds, as happened in most of the tests for the first gridlet of the first user.
If we decrease the length of gridlet we get a decrease in latency, which is more evident in
the second scenario.
This is because increased computing power, accompanied by a shorter length of gridlet,
makes it faster to execute the gridlet by the resource.
The same result is obtained when the length of gridelt is greater than the standard case.
The increased computing power allows the second scenario to obtain an advantage over the
first.
As we can see the difference between the two scenarios is not marked: this act can be
explained by a potential difference that is a single machine and thus only creates a small
change in the lengths.

Still to be considered are tests one and five in the Scenario Artificial EU.
The test number one with our default settings but with only the standard baud rates is
helpful to understand how increasing the size of the network topology, the traffic increases.
This easy interpretation leads us to emphasize the importance of queues and queue manage-
ment.
In the event that a resource has not successfully instantly execute the gridlets it is receiving,
it will create queues that store incoming gridlets and then release them with the method
first-come-first-served (FCFS).

While the fifth test show the enormous difference that exists between a network topology
where gridelts are addressed in a balanced way, and a network where all gridlet are directed
to the same resource.
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The fifth test shows us that a good balance in the addressing of gridlets, allows for maximum
effectiveness of the network topology.

7.2 Grid computing on large-scale examples

When we shift attention to large-scale scenarios, everything becomes more complicated be-
cause we have to take into account many variables.
We have to predict in advance all the situations that might occur.
The main problem we have often found is the formation of dangerous bottlenecks that can
ruin the whole process of the grid.
Fortunately GridSim provides an automatic creation of queues that handle bottlenecks.
But all this, thought on a large scale, leads to an inevitable delay in the execution of each
job.
To minimize the formation of bottlenecks and the consequent formation of queues we have
to plan a balanced network in advance.
To design a well balanced network topology we must (for example) try to balance the desti-
nations of the various jobs, trying to send fewer jobs in the resources that are less powerful
and more jobs in the powerful resources.
The large-scale scenarios, however, allow us to link resources that are scattered all over the
world, with different computational powers, reducing costs in both the public and the private
sectors, which would be high.
The simulation is a key source for great success of the process of creating a real grid network.
The simulation in large-scale needed to be also well designed, but with the difference of being
able to commit a certain number of errors and these errors can change at no cost, before
creating a real grid network.
The ultimate goal is to create a final grid network that is practically perfect and ready to
be implemented.
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8 Conclusion

The tests carried out on the EU DataGrid Testbed Scenario 1 and Scenario Artificial EU
have provided important results on the operation of the GridSim toolkit.
After our changes to the toolkit, we can say that GridSim remained efficient.
Indeed it has kept all the original features.

In several tests we have shown that it is possible to model and simulate a wide range of
heterogeneous resources, such as single or multiprocessors, shared and distributed memory
machines such as PCs and workstations with different capabilities and configurations.

It still supports a reservation-based mechanism for resource allocation.

In our test we can also note that the resources are geographically distributed across mul-
tiple administrative domains with their own management policies and goals.

In GridSim the broker (the scheduler of the resources) still focuses on improving perfor-
mance of a specific application in such a way that its end-users’ requirements are satisfied.

With our tests we can see that the toolkit allows the modeling of several regional GIS
components.

Our changes have left intact the possibility of modeling and simulating all the network
topology with different capabilities, configurations, and domains.

It still supports tasks for application jobs, information services for resource discovery, and
interfaces for assigning application tasks to resources and managing their execution.

Moreover the modified toolkit allows the simulation of workload traces taken from real
supercomputers.

8.1 Related Works

The simulation has been used in an extensive way for evaluation and modeling of the real
world systems, especially in buisness processes and in the computer systems design to as-
sembly lines.
Consequently over the years, several software tools have been developed in order to make
simulation a credible discipline.
We discussed grid computing and simulation in grid computing.
We now introduce the tool that we chose to perform the simulation of a grid network topol-
ogy.
GridSim is an object-oriented toolkit for resource modeling and scheduling simulation.
GridSim can simulate different configurations.
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It supports different application models that can be mapped to resources for execution by
developing simulated application schedulers.
In Chapter 3 we have already discussed the architecture and components of the GridSim
toolkit along with steps involved in creating GridSim based application-scheduling simula-
tors.
The main feature of GridSim is the total adaptability to any situation.
We opted to work on GridSim because it has a complete set of features for simulating real-
istic grid testbeds.
Such features are modeling heterogeneous computational resources of variable performance,
scheduling jobs, differentiated network service, and workload trace-based simulation from
real supercomputers.
More importantly, GridSim allows the flexibility and extensibility to incorporate new com-
ponents into its existing infrastructure.

8.1.1 Simulation Tools

As we mentioned in the previous chapters, simulations are essential for carrying out research
experiments in grid systems.
A number of simulation tools for grids exist, such as GridSim [16], OptorSim[17], SimGrid[18]
and MicroGrid[19].
These tools will be briefly mentioned next (and their characteristics are summarized in
Table 8.1).

OptorSim has been developed as part of the EU DataGrid project[13], and it aims to
study the effectiveness of data replication strategies.

SimGrid is an event driven simulator, which provides functionality to simulate infrastruc-
tures and applications based on their features.

Finally, MicroGrid provides on-line emulation of large-scale network and Grid resources.
However, MicroGrid is actually an emulator, meaning that actual application code is exe-
cuted on the virtual grid modeled after Globus toolkit[20].

To the best of our knowledge the above tools do not provide mechanisms to simulate
computing resources failure.

The Table 8.1 indicates the key features that a complete toolkit should have.
As we can see GridSim is the only one of the main grid simulation toolkits to possess all
these, and they are:

• Data replication is the process of sharing information so as to ensure to improve reli-
ability in case of fault-tolerance, or accessibility.
The data replication consists in storing data on multiple storage devices, or computa-
tion replication if the same computing task is executed many times.
A computational task is typically replicated in space, but sometimes it could be repli-
cated in time, if it is executed repeatedly on a single device.
GridSim and OptorSim have this feature.
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Table 8.1: Listing of functionalities and features for each grid simulator

Functionalities GridSim OptorSim SimGrid MicroGrid

data replication yes yes no no

disk I/O overheads yes no no yes

complex file filtering or data query yes no no no

scheduling user jobs yes no yes yes

CPU reservation of a fauilure yes no no no

workload trace-based simulation yes no no no

differentiated network QoS yes no no no

generate background network traffic yes yes yes yes

• Disk I/O overheads is the disk space required for non-data information (used for loca-
tion and timing).
GridSim and Microgrid have this feature.

• Complex file filtering or data query that allows the selection of file attributes in the
replica catalogue.
Only GridSim has this feature.

• Scheduling user jobs allows users to be able to do integrated studies of on demand
replication strategies with jobs scheduling on available resources.
GridSim, SimGrid and Microgrid have this feature.

• CPU reservation of a fauilure, it is possible to create, commit, activate, modify, cancel
and query a reservation of a failure.
Only GridSim has this feature.

• Workload trace-based simulation, the possibility to create a realistic simulation envi-
ronment where the gridlets are competing with others.
Only GridSim has this feature.

• Differentiated network QoS, the capability to simulate differentiated network quality
of service.
Only GridSim has this feature.

• Generate background network traffic, this is an important feature because in real-life,
networks are shared among users and resources.
Thus, performance may be affected by congested networks.
All the toolkits in the table have this feature.

8.1.2 Failures

As we can analyze, the availability of resources may vary due to changes in their working
conditions, in particular in the case with network congestion.
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Figure 8.1: Relationship between ”dependability & security”[21]

But there are also other conditions that may happen as partial failures or even the connection
or disconnection of computing resources.
With many resources in a grid, the resource or network failures are the rule rather than the
exception. Hence, they should be taken into account in order to provide a reliable service.
In order to cope with these challenges, from the fault tolerance point of view, the system
must have failure detection and recovery schemes.

Thus in this thesis we studied some performances of the GridSim.
We did not discuss failures of the grid computing, we only introduce some characteristics.
Dependability can be thought of as being composed of three elements, as describe in Fig-
ure 8.1:

For a complete description of failure detection and recovery scheme, see [22].
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