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Abstract

Grid networks are used to process large amounts of data and use a large number of resources.
These resources are embedded in virtual organizations and in coordination with each other,
share the computing power to execute certain jobs. Grid systems must exhibit a high degree
of dependability, i.e., the ability to appear trustworthy to users. A essential feature of grid
networks is their large scalability, which represents a major challenge to understand the
”dependability”. In this project, we simulate large scale grids using the GridSim toolkit
provided by the University of Melbourne. This toolkit is modified to adapt to our needs of
having a virtual grid infrastructure on a large scale, in which the components (resources,
routers, machines, etc.) can have failures of any kind: natural disaster, malicious attack
or normal faults. We study with controllable, repeatable and observable experiments the
behavior of the grid network when a single point of failure occurs and when a set of failures
affects the grid network. The results of these simulations are compared with the results of
the same architecture grid network without failure, to evaluate the differences of behaviour,
and to understand the dependability of the network.
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Sommario

Le reti grid sono utilizzate per elaborare grandi quantità di dati e impiegano un gran numero
di risorse. Queste risorse sono inseriti in organizzazioni virtuali e coordinatamente condivi-
dono la potenza di calcolo per eseguire determinati lavori. I sistemi grid devono presentare
un alto grado di ”dependability”, cioè la capacità di apparire affidabili agli utenti. Una
caratteristica fondamentale delle reti grid è la loro grande scalabilità, che rappresenta una
sfida importante per capire la ”dependability”. In questo progetto, abbiamo simulato una
rete grid su larga scala utilizzando il GridSim toolkit messo a disposizione dall’Università
di Melbourne. Questo toolkit è stato modificato per adattarsi alle nostre esigenze di avere
un’infrastruttura grid virtuale su larga scala, in cui i componenti (risorse, router, macchine,
ecc....) possono avere fallimenti di ogni tipo: catastrofi naturali, attacchi dannosi o normali
guasti. Con esperimenti controllabili, ripetibili e osservabili, studiamo il comportamento
della rete grid, quando un singolo punto di fallimento si verifica e quando un insieme di fal-
limenti intacca la rete. I risultati di queste simulazioni sono confrontati con i risultati della
stessa architettura di rete grid senza fallimenti, per valutare le differenze di comportamento,
e per comprendere la ”dependability” della rete.
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1. Introduction

1.1. What is the problem that we want to solve?

We can say that grid computing is and will be the future of networks that require large
computational capabilities.

All that glitter is gold? The answer is no, in fact, grid computing brings many advantages
over standard networks, but the management of a large scale is not easy. In a realistic
grid scenario, resources, routers, machines, and users are distributed in different parts of the
world, and this distribution must be done in a meaningful way. For example it is not sensible
to put resources in an area of high seismic risk. Earthquakes, natural disasters, malicious
attacks or normal network or resources faults are some of the problems that may affect the
proper functioning of the network grid. What do we want? We want that the grid network
working properly, despite these attacks or failures. For example if I send a gridlet (ie a job
to be executed) to a certain resource but this one fails (for whatever reason), then I will
have to relocate this gridlet to another resource available. This obviously causes a delay in
gridlet execution, dependent on where it has been relocate in the grid network.

So the network will be created and managed, yet must preserve dependability (refers to
Chapter 2.2), ie the reliability of a computing system with respect to users, which allows
them to be able to trust it and use it safely and without preoccupations of possible failures.
We want to analyze the behavior of the grid when these attacks or failures occur and assess
the various delays for execute gridlets that depend on the network topology.

1.2. How to solve the problem?

Grid computing has emerged as a potential next generation platform for solving large-scale
problems in science, engineering, and commerce. It is expected to involve millions of (het-
erogenous) resources scattering across multiple organizations, administrative domains, and
policies. The management and scheduling of resources in such a large-scale distributed sys-
tems is complex and therefore, demands sophisticated tools for analysing and fine-tuning
the algorithms before applying them to the real systems [1].

The simulation is a very powerful analysis tool, with which we can represent the real
grid network and we can evaluate the events (output) succeeding the imposition of certain
conditions by the user that wants to check the behavior of the grid network. Simulation is
the only possible way to analyze the behavior of a large scale distributed and heterogenous
system and is essential for carrying out research experiments in grid systems.
It allows us to avoid unnecessary workload on the resources which, moreover, in a distributed
system must be coordinated, and in addition, having a large scale grids also avoids the
involvement of several active users.
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1. Introduction

So to preseve the dependability and to study the behavior of grid using large scale sce-
nario, we make some simulation using the GridSim toolkit provided by the University of
Melbourne[1]. In this way we can have a virtual grid infrastructure that enables experimen-
tation with dynamic resource management techniques and adaptive services by supporting
controllable, repetable, observable experiments.
GridSim is an excellent toolkit to perform simulations, but to resolve the problem, parts of
it are modified to meet our needs of a large network with the characteristics that we want.

The grid network involves all of Europe and the resources can be strategically placed (for
example in areas of low seismic risk), so as to facilitate the dependability of the network. Also
the connections between routers and between the various resources will be made strategically,
so that if a connection fails, is possible to reach the destination with another connection
(probably slower and more expensive). To study the behavior and reliability of the network,
the simulations are made by increasing the complexity step by step; the architecture remains
the same, but we pass from a single failure to a set of resource failures. Finally, tests are
performed, setting the times about resources failure in various combinations, and assess how
the network reacts with respect to the various dependabilty parameters (Refers to section
2.2).

1.3. Goals of thesis

In this thesis we study the behavior and the dependability (i.e. the ability to appear trust-
worthy to users) of a grid large scale scenario using GridSim toolkit. We have created a
complex network in which routers, resources and users are allocated in Europe’s main cities
so we can have a grid that we call ”Artificial EU Grid”. The project goal is to run several
tests to see how the ”Artificial EU Grid” behaves when certain events occure. For example,
if one or more resources fail, the gridlet (i.e. the job executed by the resource) must be
submitted to another available resource, so probably at end, the gridlet will come back to
the user with a certain latency. To do this the grid network must support the fault tolerance,
i.e enable the system to continue operating properly in the event of the failure of some of its
components.

The basic characteristics of fault tolerance required are:

1. No single point of repair

2. Fault isolation to the failing component

3. Fault containment to prevent propagation of the failure

It is obvious that if all the resources on grid network fail I can’t submit the gridlet to any
resources available, and so I have to wait to repair a resource. So in this project we study
the behavior of ”Artificial EU Grid” when a failure, natural disasters or malicious attacks
happen. Finally the results obtained using ”Artificial EU Grid” tipology network compare
the grid with failures (discussed in this thesis) to the same grid without failures (discussed
in [9]).
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1.4. Structure of this thesis

1.4. Structure of this thesis

This thesis is organised as follows.
In the Chapter 2 we explain briefly what grid computing is and the important of it in the new
networks. We then describe the various aspects of the dependability and how to guarantee
it, while the last part deals with the management of failure in grid network, and how the
GridSim toolkit (the software used for the simulation) detected the failure.
In Chapter 3 we present the GridSim entity, e.g. users, resources, routers, etc. We then show
the existing GridSim classes for support of the failure functionality and finally are present
the changes make on some java classes of GridSim to obtain the features that we need.
In Chapter 4 the scenario on which the tests will be run is presented, and a small simulation
with a low workload is introduced to facilitate the reader in understanding the behavior of
the network.
Chapter 5 presents the simulation of the large scale network grid that we have built. In these
simulations, we test the dependability of the network in the cases where we have: one single
point of failure, a set of failures and finally a set of failures where we decide when resources
fail and how long the failures last.
Chapter 6 shows a comparison between the simulations of the previous chapter and the sim-
ulation of the same large scale grid network without failures. Moreover some consideration
is made about the simulations and the GridSim toolkit. Finally, the last chapter 7, presents
the conclusions about the project and future work intentions. Appendix A reports all part
of the Java code modified to meet our needs. Chapter 3, where the changes to the Java code
are presented, is closely related to Appendix A .
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2. Dependability and management of failures

2.1. What is grid computing?

Before talking about dependability, we introduce briefly the concept of grid computing. This
concept was born in the nineties when the first computer networks and the Internet spread.
The term grid computing is the act of sharing many works on a distributed computing
infrastructure, these works can range from data storage to complex calculations and can be
spread over large geographical distances. Usually these computers connect to each other in
the network grid and work on the same problems that require large computational power;
this grid network has much more power than a single supercomputer. Grid computing
is used for applications that require huge data processing, for example, financial, medical
and scientific sectors. The largest grid network is CERN grid in Geneva: the work on the
LHC1 project (which recreates the big bang), needs a huge computational power to process
the mass of data generated by the experiment, so many machines distributed all over the
world constitute the grid network of Cern. The Figure 2.1 [2] shows the idea of grid in a

Figure 2.1.: How grid computing Works [2]

good way: computer all over the world can be connected to the grid network and share the
computational power of the other machines in the network to perform works.

Networked computers can work on the same problems, traditionally reserved for super-
computers, and yet this network of computers is more powerful than the super computers
built in the seventies and eighties.

1Large Hadron Collider
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2. Dependability and management of failures

Modern supercomputers are built on the principles of grid computing, incorporating many
smaller computers into a larger whole. We can compare the grid to a power network where
we connect the appliance and we use the power of the network to power our unit. The grid
is the same: the computer is the appliance that, when connected to the network grid, uses
its power.

2.2. Dependability

We want to study the dependability of the grid network, i.e. the ability to appear trustworthy
to users. This subchapter gives a short introduction on dependability in distributed systems
so the reader can better understand its different aspects. Dependability can be thought of
as being composed of three elements, as described in 2.2 [6]:

• Attributes: a way to assess the dependability of a system. The following dependapility
attributes are qualities of a system:

– Availability: readiness for correct service

– Reliability: continuity of correct service

– Safety: absence of catastrophic consequences on the users and the environment

– Integrity: absence of improper system alteration

– Maintainability: ability for a process to undergo modifications and repairs

• Threats: Threats are things that can affect a system and cause a drop in dependability:

– Fault: a fault is a defect in a system

– Error: an error is a discrepancy between the intended behaviour of a system and
its actual behaviour inside the system boundary. Errors occur at runtime when
some part of the system enters an unexpected state due to the activation of a
fault.

– Failure: A failure is an instance in time when a system displays behaviour that
is contrary to its specification. An error may not necessarily cause a failure.

• Means: ways to increase the dependability of a system:

– Fault prevention: deals with preventing faults being incorporated into a system

– Fault Removal: remove the fault during development or during execution

– Fault Forecasting: predicts likely faults so that they can be removed or their
effects can be circumvented

– Fault Tolerance: deals with putting mechanisms in place that will allow a system
to still deliver the required service in the presence of faults, although that service
may be at a degraded level.

As we mentioned before we want to study the dependability of the grid network, so the
grid must satisfy the quality attributes. If a resource fails, the grid must continue to work
without altering the entire system. Our grid must always be ready in case a resource is out

6



2.2. Dependability

Figure 2.2.: Relationship between ”dependability & security” and Attributes, Threats and
Means [6]

of order, the work to be done will be delegated to another available resource. If all resources
in the network are out of order, then it is necessary to repair the fault as soon as possible
so that the system is ready to work.

What may alter the dependability of the grid network are the defects, errors and failures in
the system. These three things make the resource, the single machine or router unavailable
for a certain period of time. In our simulations on the grid network, we will not distinguish
if it is a defect rather than a failure, because more importantly than why a resource is out of
order, we want to know how long it is unavailable and the effects that has on the network.
In the grid network, usually the components are located in strategic places that can at least
avoid failures due to natural events. A situation of failure occurs when the services offered
no longer correspond to the specifications previously imposed on the system.

The ”means” are useful for increasing the dependability because they allow the system to
work also in presence of defects, or better yet, prevent the defects. The fault tolerance is a
property that allows the network to continue working properly when there is one or more
failures of the components. To guarantee a fault tolerance, it is essential that there isn’t a
single point of repair, then the system must continue to work without interruption while the

7



2. Dependability and management of failures

fault is repaired. The system must be able to contain and isolate the failure so that it does
not propagate to the entire system. The techniques of prevention and fault tolerance allow
the achievement of dependability, ie how to ensure that the system has the ability to provide
a service that is always faithful to specifications. Additonally, the techniques of prevention
and avoidance of faults show how to be confident in the ability of the system to provide a
service according to the specifications established.

With many resources in the grid, it is obvious that the possibilities of resource or network
failure are very high. The grid network on which we base our test should be able to support
the fault tolerance, in order to have a platform that can simulate the real grid enviroment.
The system must have a scheme for detecting the failure as well as a recovery scheme. In the
next section, we describe the schemes of how it works, with GridSim toolkit, the detection
of failures and recovery of them.

2.3. Management of failure

In this section some information is taken from the paper Extending GridSim with an Archi-
tecture for Failure Detection [8]. For more details refer to [8].

In the Grid architecture there are three fundamental entites:

• the resources that execute the users’ job.

• the users that submit jobs to the resources and contact the GIS2 to know the list of
available resources.

• the GIS that is responsible for maintaining an up-to-date list of available resources.

For detecting the resource failure, we use the pull method, where the GIS sends a message
or a polling request to the resources monitored. When a resource receives this message, it
must return it back to the sender. If the message doesn’t come back to the GIS after a
certain time interval, it means that the resource is not available at the moment.

Figure 2.3 [8] shows a sequence diagram about a failure detection scenario. First of all
the two resources, Resource 1 and Resource 2 register to the GIS. The GIS adds the two
resources to the list of available resources, but remember also that the GIS have to keep this
list update, so it sends a message to the resouces periodically. Now User 1 wants to submit
a job to a resource, so he contact the GIS to get the list of available resources. The GIS
sends the list to the user that asked for it, and submits the job to Resource 1.

In step 4 we can note that a failure occurs to Resource 1, and the GIS uses the polling
mechanism to detect the failure and remove Resource 1 from the list of available resources.
User 1 periodically uses a polling mechanism to know if the resource is available, and in this
case is discovers that Resource 1 is out of order.

If the failure involves only some machines of the resource, the destiny of the job depends
on the allocation policy: if the resource uses a space-shared policy the job will be terminated
and sent back to the user, but if it uses a time-shared policy the job continues its execution
on other machines available of the resource, and it doesn’t fail.

2GIS: Grid Information Service is an entity that allow the grid resources registration and provides services

8



2.3. Management of failure

So the User 1 has a job to process, so asks again to the GIS the list of available resources.
Since now only Resurce 2 is available, User 1 submits his job to this resource (step 5). In
the last step, Resource 1 works again and it’s registered to the GIS, but Resource 2 doesn’t
fail in this simulation so the job executed is send back to User 1.

Figure 2.3.: Scenario of failure detection [8]

9





3. Calibration of the GridSim toolkit

3.1. GridSim Entity

The GridSim is an open source software relased under GPL license (Copyright The Gridbus
Project, GRIDS Lab, The University of Melbourne, 2002- to date) that can be downloaded
from the site http://www.cloudbus.org/gridsim/ [1] and allows modeling and simula-
tion of entities in parallel and distributed computing (PDC) systems-users, applications,
resources, and resource brokers (schedulers) for design and evaluation of scheduling algo-
rithms. It provides a comprehensive facility for creating different classes of heterogeneous
resources that can be aggregated using resource brokers for solving computational and data
intensive applications. A resource can be a single processor or multi-processor with shared or
distributed memory and can be managed by time or space shared schedulers. The processing
nodes within a resource can be heterogeneous in terms of processing capability, configura-
tion, and availability. The resource brokers use scheduling algorithms or policies for mapping
jobs to resources to optimize system or user objectives depending on their goals.

In this project it was necessary to change several parts of the Java code of GridSim so the
toolkit meets our needs. Note that we should represent the ”Artificial EU Grid” scenario
with failures. The main entity of the GridSim toolkit includes:

• User: an application or a broker that schedules jobs onto Grid resources is considered
to be a user. Such components are able to query and request dataset transfers, submit
jobs and register for events. Within GridSim, these are implemented by creating a
specific DataGridUser object for a particular application or scenario [7].

• Resource: in Grid computing, any hardware or software component such as a cluster, a
supercomputer or a storage repository is called a resource. Computing resources allow
users to execute the required application. There is also a ResourceCharacteristics
object that stores the properties of a Grid resource: architecture, OS, list of Machines,
allocation policy: time- or space-shared 1, time zone.

• Router: users and resources are connected to routers.

• Machine: a Grid resource contains one or more machines. Similarly, a machine contains
one or more PEs.

• PE: Processing Elements or CPUs.

1If the failure only affects some of the machines in a resource, what happens next depends on the allocation
policy of this resource. If the resource runs a space-shared (first come first serve) allocation policy,
the jobs that are currently running on the failed machines will be terminated and sent back to users.
However, when the resource runs a time-shared (round-robin) allocation policy, no jobs will be failed, as
their execution will continue in the remaining machines of the resource. For both allocation policies, the
remaining machines are responsible for responding to polling requests from users and GIS.

11
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3. Calibration of the GridSim toolkit

• Gridlet: GridSim already has the ability to schedule compute-intensive jobs, which are
represented by a Gridlet class. Each data-intensive job has a certain execution size
(expressed in Millions Instructions (MI)) that will be used by a resource to determine
how much simulation time is required [7].

• RegionalGIS: a Grid Information Service (GIS) is an entity that allow the grid resources
registration and provides services. The Grid resources tell their readiness to process
Gridlets by registering themselves with this entity. In addition, GIS is responsible for
notifying all the registered entities, such as GridResource and network entities to shut
down at the end of a simulation.

• Link: defines connection between Router-Router, Router-Resources, Router-Users.

3.2. Resource failure classes into GridSim

In this section, we describe the most important classes that GridSim has for support the
resource failure functionality, while in the next section (refers to 3.3) we describe how some
of them are modified to meet our needs. The information in this section is taken from
Extending GridSim with an Architecture for Failure Detection [8], for a detailed description
of the GridSim classes that support failure functionality, refer to [8].

The Figure 3.1 [8] shows the GridSim classes to support failures. In the first line there are
the main classes and represented under these are the classes that extend them. For example
the class GridUserFailure extend the class GridUser.

Figure 3.1.: GridSim classes that support failure functionality. [8]

This is a brief explanation of the failure classes of GridSim that we have later modified to
create a network with custom features.

• RegionalGISWithFailure: this class is based on RegionalGIS GridSim class and it
extends the class AbstractGIS. The class RegionalGISWithFailure allow the process of
resource failure and the recovery of the resources. In this class the parameters are
set for the duration of the failure and for the begining time of failure. This part, as
we will see in the next section (refers to 3.3), is modified, so we can customise these
parameters (in the orginal class these parameters are set randomly).

We said that this class support the failure functionality, so we can decide which resource
fails. Again, this part of the class is modified, because in the original class the resource
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that fails is chosen randomly, but according to our needs we want to decide which
resource fails (more details in section 3.3).

• GridUserFailure: this class implements the behavior of the users of our grid environ-
ment, and allow the creation of jobs and the submission of jobs to resources. This part
of the class is modified, because in our grid network we want to submit the gridlets to
established resources, while in the original code the gridlets are submitted randomly
(more details in section 3.3). If a resource fails while executeing a job, this class is
responsible for choosing another resource and resubmitting the failed job to it (also
this part is modified, for meet our needs).

The last task of this class is receive the succeeded jobs from the resources.

• GridResourceWithFailure: based on GridResource GridSim class, it extends the Grid-
SimCore. This class interacts with RegionalGISWithFailure to set machines as failed/
working. Also it interacts with classes implementing AllocPolicyWithFailure to set
jobs as failed. AllocPolicyWithFailure is an interface, which provides some functions
to deal with resource failures. Each allocation policy implementing this interface will
have a different behavior with regard to the failures [8].

• SpaceSharedWithFailure and TimeSharedWithFailure: these classes are based on Space-
Shared and TimeShared GridSim classes, two of the allocation policies already imple-
mented in GridSim. They extend AllocPolicy and implement AllocPolicyWithFailure
[8].

• NumResPattern, ResPattern, TimePattern and LengthPattern, are the four parame-
ters that allow us to set the number of resources that fails, which resource will fail,
when they fail and how long the duration of fails are. These parametres are modified
because in the original program they are set randomly, based on continuos distribution
(like uniform distribution), discrete distribution (as Poisson distribution), and vari-
ate distribution (like HyperExponential distribution). To support the generation of
these random numbers based on these distributions, GridSim use the following classes:
Variate Random, LCGRandom, HyperExponential and Weibull.

• Other classes that we don’t describe, but only mention are: AvailabilityInfo, Gridlet-
Submission, FailureMsg. For more details of these classes refer to [8]

3.3. What we have modified?

The original toolkit emulates the grid network very well, but it works very randomly. For
example, a user or resource is randomly connected with a router, the User 0 can be connected
to router 0 or to router 1 with the same probability. Is this what we want? No. We want to
completely manage the grid, so we have set all parametres (listed below) to change several
numbers of java classes. The only thing that we don’t change is the registration time of the
resource on the RegionalGIS. We don’t set the registration time because after several test
we noted that random registration don’t cause a change in the output simulation.

In the next sub chapters we describe the changes made.
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3.3.1. Changes in User-Router connection

In the original program, users are connected randomly to the router. We want to connect
each user to a established router so that our scenario is realistic. Moreover, we want to
create a custom network, so it’s useless if the routers are randomly distributed. If we want
that a user with certain features (eg. high workload) is connected to the Router 0 because it
is close to powerful resources, we must avoid the random link between users and resources,
because most likely the user will not be connected to Router 0.

In the original code, Listing A.1 (Appendix A.1.1), the java class makes a cycle for
each user and links it randomly to Router0 or Router1 depending on the value of ran-
dom.nextBoolean(). In the modified code, Listing A.2 (Appendix A.1.2), the java class
makes a cycle for each user and links it to an established router. There is ”statement”
variable that is uses in the switch-case structure to decide which user is assign to a certain
Router. Note also that in the original code, users are randomly assigned to a RegionalGIS,
while in the modified code are assigned to a RegionalGIS with a established criterion.

In the modified code, for each case, a group of users correspond to and must be connected
to a specific router. So with the command linkNetwork, the user is taken in consideration
and is connected to the router specified. In the variable ”routerName” the name of the
router where the user is connected is saved. This is useful afterward to print to video the
message that confirms the connection. We select the RegionalGIS where positioning the
users with the command gisList.get(number fo the RegionalGIS), and we set the connection
between this and the user with the command user.setRegionalGIS(gis).
Refers to Listing in Appendix A.1.1 to see the original code and refer to Listing in Appendix
A.1.2 to see the modified code.

3.3.2. Changes in Resource-Router connection

The toolkit has been modified so that the resources are connected to a specific router and not
to a random router. This is very important for the construction of the grid ”Artificial EU
Grid”. It’s obvious that for have a custom network the resources can’t be distributed ran-
domly. Moreover it is important that resources with some features (eg. high computational
power) are connected to a certain router, probably in a zone of high network traffic or in a
zone without natural disaster risk, while some other resources (eg with low computational
power) are connected to other routers, depending on the needs that we have.

Are proposed the original code (Listing A.3, Appendix A.2.1) where the resources are link
to the random router and then the modified code (A.4, Appendix A.2.2). A resource can be
link to a Router in a certain RegionalGIS but it can belong to another RegionalGIS. The
original toolkit made this randomly,but in the modified toolkit we select the RegionalGIS
to be assigned to the resource. In the modified code we can note that there is a switch-case
structure that is indispensable for assigning to each resource the features that we want. In
each case (so for each resource), a resName is define to be the name of the resource. The
command createGridResource permits the creation of the resource and specifies the baud
rate (refers to 3.4) between resource and router, the propagation delay (refers to 3.4), mtu
(Maximum Transmission Unit, refers to 3.4), the total number of cpu for each machine of
the resource, the total number of the machines for the resource, the rating of the machines2

2In our simulation the rating changes from resource to resource, but it is the same for all machines of the
resource
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and the schedule alghoritm (time or space shared).

Like in the previous modification with the command linkNetwork we connect the resource
with a specific router. Afterward, the name of the router is saved and we place the resource
in a RegionalGIS with the command res.setRegionalGIS(gis).
Refers to Listing in Appendix A.2.1 to see the original code and refers to Listing in Appendix
A.2.2 to see the modified code.

3.3.3. Changes failure parameters

In Listing A.5 Appendix A.3.1, 4 parameters are set using HyperExponential Java class that
generates hyperexponentially distributed random numbers. This parameters are:

• how many resources fail;

• how many machines for each resource fail;

• when the resource will fail;

• how long the failure will be;

In the modified code, Listing A.6 Appendix A.3.2, we change the type of the variables (for
each parameter we have a variable) from ”HyperExponential” to ”Int”, and we make a
switch-case structure, so for each RegionalGIS we can set the 4 parameters as we want. To
do this, we have also modified the Java file (RegionalGISWithFailure.java): in this file we
initialise the 4 variables and we set them using a ”constructor class”.
In this way we can decide for each RegionalGIS how many resources fail and how many
machines for each resource fail, moreover we can decide the time when the resource has to
fail, and for how much time it isn’t available.

These changes in the java class are very important because allow us to manage the
”Artificial EU Grid” as we want, for example if we want to simulate a natural disaster that
destroyes one resource, and so we know that this resource is unavailable for one day, we can
set the variable ”how long the failure will be” equal to 24 hours. These code changes will
become useful in the last simulations, when the network will be completely customized as
we want and according to our needs. To see the description of simulation with time failure
customised, refer to Chapter 5.3.

Note that, in the original code, to decide how many resources fail, when and how long
the failure is, the code calls the class HyperExponential. This class is one of the class of
the GridSim for support failure (refers to section 3.2). In this class there is a mathematical
function that generates a hyperexponential distributed random number.
Refers to Listing in Appendix A.3.1 to see the original code and refers to Listing in Appendix
A.3.2 to see the modified code.

3.3.4. Change init time

Another thing changed is the time when we start to submit the gridlets to the resources.
If you have many resources and GIS entities, we have to wait for a few minutes to allow
GIS to receive registrations from resources. Otherwise, the resource does not exist when we
submit. In the original code (Listing A.7, Appendix A.4.1) the initial time is set in a random
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way, in the modified code (Listing A.8, Appendix A.4.2) we set the variable init time with
an established number, which is very easy. Note that this time is expressed in seconds, so
in the code for simplicity, we write the number of minutes multiplied by 60. We change
this, because when we do the last simulation (with custom failure parameters), is important
also to do tests with a low init time, so probably not all resources are registered, and with
medium and high init time, the resources are probably out of order or maybe already being
recovered, so they work normally.

Refers to Listing in Appendix A.4.1 to see the original code and refers to Listing in
Appendix A.4.2 to see the modified code.

3.3.5. Set which resources fail

In the sub chapter above (3.3.3) we saw how to set how many resources fail, but we want
also to decide which resources fail. In the original code (Listing A.9, Appendix A.5.1),
the java class chooses for the failure a random resource only considering the set of the
available resources in the RegionalGIS. We set this not randomly, because sometimes we
want that a resource with high computational power fails to see the behavior of the grid
network, sometimes we want that a resource fails in a certain position in the network, due
to its geographical zone or to its connection to the routers. So it is impossible to do this
in a random way, but we have to modify the code so that we can decide which resources
fail. In the modified code (Listing A.10, Appendix A.5.2 ), we choose the Resource that
we want from the RegionalGIS. To do this we have change several lines of code in the
’RegionalGISWithFailure.java’ file.

The resources are registered to RegionalGIS in a random way, so when all resources are
registered we have a list ordered by the registration time. We want for example to fail the
’Resource 6’ because we know that corresponds to the resource located in Milan. We can’t
send a failure directly to the seventh resource in the List of available resources because it
probably doesn’t correspond to the ’Resource 6’. So before sending a failure we have to order
our available resources in this way: Resource 0, Resource 1, ...., Resource (n-1), Resource n.
Now if we send a fail to the seventh resource we are sure that is the ’Resource 6’.

To decide which resource fail we use an if-then structure with the support of the variable
’cont’. This variable is very important when we have more than one resource fail in the
RegionalGIS.
This integer variable is incremented each time by 1, and counts how many resources fail
for the RegionalGIS considered. Be careful, because if 2 resources fail for the RegionalGIS0
and it has 5 resources total, the first time ’cont’ is equal to 1 and Resource 0 fails if the
variable ’res num’ is set to 0 (now the number of the resources available are 4, and the first
resource is: Resource 1) , the second time ’cont’ is equal to 2, and if ’num set’ is equal to
0 the resource that fails is Resource 1, otherwise if ’num set’ is 1 the resource that fails is
’Resource 2’. We use this instruction ”gisName.equals(Name of the ArtificialRegionalGIS )”
to know which RegionaGIS we are considering and then we set the variable ”Res num” that
indicates the number of the resource that fails.

If we set a number of resources that fail larger then the total resource of the RegionalGIS,
then Java code sets the number of resources that fail equals to the total number of resources,
so there aren’t available resources in this RegionalGIS. If we examine the modified code
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(Listing in Appendix A.5.2) we can note that the first thing is a for cycle that allows to
order by id and in ascending way the resources in the grid network. After, with the command
gisName.equals(name of the RegionalGIS) we can know which RegionalGIS is considered and
set the variable ”res num”. If we want a failure for the first resource in the RegionalGIS
considered, we set res num equals to 0. The next code lines are indispensable to send the
message of resource failure and to set the recovery time for the resource.
Refers to Listing in Appendix A.5.1 to see the original code and refers to Listing in Appendix
A.5.2 to see the modified code.

3.3.6. Submit the gridlet to a specific resource

Scenario like ”Artificial EU Grid”, a user has to submit gridlets to the resources that he
wants, according to his needs. A user have to submits 20 gridlets to Resource 1 because
it is the more powerful and other 25 gridlets to Resource 24 because it is safer than the
other resources. In the original GridSim toolkit it is not possible to do this because the
user submits his gridlets to the resources that are chosen randomly (Listing A.11, Appendix
A.6.1). We changed several code lines of ’GridUserFailure.java’ file so each user can decide
to submit each gridlet to the resource that he wants (Listing A.12, Appendix A.6.2). In
addition we edit the java class so that the user can submit some gridlets to a Resource 1,
some to Resource 2 and some others to another resource.

If we check the modified code, we can note that with respect to the original code there is a
switch-case structure. This is necessary to choose the gridlet that we take in consideration.
So the variable ”name actual user” indicates the user that we are considering. For example,
if the user is ArtificialEU User 0 the correspondent case (in switch-case structure) indicates
where to submit the gridlets. The variable ”index” specifies the number of the resources
where gridlets are sent. If we want to send the first ten gridlet to one resource and the other
to another resource we use an if-then-else structure like in Listing A.6.2.
Refers to Listing in Appendix A.6.1 to see the original code and refers to Listing in Appendix
A.6.2 to see the modified code.

Another important thing is that in original code the user can submit gridlets only to the
resources inside his RegionalGIS, instead in our ”Artificial EU Grid” we want that a user can
submit his gridlets everywhere, for example a user in the RegionalGIS 0 can submit gridlets
to resources available in the RegionalGIS 0 or in the other RegionalGIS. To do this we have
to modify the function ’getResList()’ (the original code is this: Listing A.13) so that we can
have an array that contains a list of ids of available resources in the grid network ordered
by id (Listing A.14). When a resource fails there are two possible beahviors:

1. we wait for a recovery of the resource that failed.

2. we re-submit the gridlet to another resource

In the original code the user resubmits the gridlet to a resource available in a random way,
with the changes made the user can re-submit the gridlet to an established available resource.
If we check the modified code, it is possible to note that in the first lines, we get the list
of the local resources in the RegionalGIS considered, and the list of global resources (the
resources out of the RegionalGIS). The variable ”lengthtotal” is equal to the sum of the sizes
of the local and global lists of resources. The code lines after are necessary to join the two
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lists, while the two for cycle nested are used for order in ascending way the resources by
id. Finally we check if there are resources in the list (with an if structure) and we return
the array resourceID, using the command return resourceID. This array contains all the
resources available at this time.

Refers to Listing in Appendix A.6.3 to see the original code and refers to Listing in
Appendix A.6.4 to see the modified code.

3.4. Links between routers: the file network thesis.txt

Different routers spread throughout Europe as well as related resources and users must also
be interconnected with each other used order to create the network grid. We must therefore
create the connections quite complexly and efficiently so that if a router should fail or a
connection is broken, communication can continue diverting traffic to another way. This is
important to preserve the dependability, if a resource fails, we must isolate the failure and
ensure that the network continues to work as without failure, therefore it is essential that
routers and resources are linked in a strategic manner.

To create these connections between routers we use a text file: network thesis.txt (Listing
3.1). This file specifies the total number of the routers, the name of the routers and for each
connection between two routers:

• baud rate(Gb/s): in digital communication systems, the baud rate is the total number
of physically transferred bits per second over a communication link. More simply, rates
of exchange of data between two routers. The higher the cost, less time is used to send
and process a gridlet.

• prop delay(ms): in computer networks, propagation delay is the amount of time it takes
for the head of the signal to travel from the sender to the receiver over a medium. It
can be computed as the ratio between the link length and the propagation speed over
the specific medium.

• mtu(byte): in computer networking, the maximum transmission unit (MTU) of a com-
munications protocol of a layer is the size (in bytes) of the largest protocol data unit
that the layer can pass onwards [5].

Listing 3.1: Network Topology

# t o t a l number o f Routers
12

# s p e c i f i e s each route r name and whether to l og i t s a c t i v i t i e s or
not

# by d e f a u l t no l ogg ing i s r equ i r ed
Router0
Router1
Router2
Router3
Router4
Router5
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Router6
Router7
Router8
Router9
Router10
Router11

# s p e c i f y the l i n k between two Routers
# The format i s :
# Router name1 Router name2 baud rate prop de lay mtu

(GB/ s ) (ms) ( byte )

Router0 Router1 1 10 1500
Router1 Router2 1 10 1500
Router2 Router3 1 10 1500
Router2 Router5 1 10 1500
Router3 Router4 1 10 1500
Router5 Router4 1 10 1500
Router5 Router6 1 10 1500
Router6 Router7 1 10 1500
Router6 Router8 1 10 1500
Router5 Router9 1 10 1500
Router9 Router10 1 10 1500
Router9 Router11 1 10 1500
Router10 Router11 1 10 1500
Router11 Router1 1 10 1500

When we run the simulation, the first thing that the main class does is to read the topol-
ogy network by the network thesis.txt file. Below are shown the instructions in which the
class reads the file (Listing 3.2); the Java main class is launched from the terminal with the
following statement:

macbook−di−andrea−c a s t i g l i o n i : ˜ Beavis$ java −cp / Users / Beavis /
Downloads/ g r i d s i m t o o l k i t −4.1/ j a r s / gr ids im . j a r : .
Ar t i f i c i a lEUGr id ne twork the s i s . txt>s imu la t i on . txt

where ArtificialEUGrid is the name of Java class, network thesis.txt is the topology net-
work file and simulation.txt is the output file with results.

Listing 3.2: Read network grid from txt file

[ . . . . ]
S t r ing f i l ename = args [ 0 ] ; // g e t the network

t o p o l o g y
System . out . p r i n t l n ( f i l ename ) ;
System . out . p r i n t l n ( ”Reading network from ” + f i l ename )

;
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LinkedLis t r o u t e r L i s t = NetworkReader . createFIFO (
f i l ename ) ;

[ . . . . ]
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4.1. Failure in Artificial EU Grid

As mentioned in Chapter 1.3 we want to study the behavior and the dependability of grid
using large scale scenario using GridSim toolkit. So we created the network grid ’Artificial
EU Grid’, a network that can represent a European grid: resources, machines, routers and
users are located in European states, so that we can cover all Europe with the grid. In the
Figure 4.1 [3] we can see, marked with a red dot, where the resource are located, more or
less all Europe is covered by the grid.

Figure 4.1.: Artificial EU Grid: dislocation of resources [3]

More precisly, the ’Artificial EU Grid’ consists of five RegionalGIS (RegionalGIS O, Re-
gionalGIS 1, RegionalGIS 2, RegionalGIS 3, RegionalGIS 4 ), 12 routers and 18 Resources.
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The routers are connected in a certain way so if a router should fail or a connection is broken,
the communication can continue following another way. This is only a brief presentation of
the ’Artificial EU Grid’ structure (Figure 4.2), that can be useful to understand the simula-
tions that we describe in the next sub chapters, the links between routers are set in List of
Figures 3.1.

Figure 4.2.: Artificial EU Grid: structure

In the Table 4.1 there is the list of resources for the ’Artificial EU Grid’, which specifies how
many machines each resource has (column ”NODE”), and to which RegionalGIS each one
belongs. The computing power of each machine is expressed in MIPS (Million Instructions
per second) and it corresponds to the CPU Rating, and also the allocation policy of the
resource is declared . The resources have a Sun Ultra system architecture and use Solaris1

operating system. The speed between the router and a resource is determined by the baud
rate (expressed in Gb), some links resource-network have 1Gb of baud rate some have 0.0001
Gb. Baud rate is very important because it determines the final latency of the gridlet that
runs on certain resource. Is important to have a heterogeneous grid network, so in the
Table 4.1 we can note that the various resources have different values.

1Oracle Solaris. Refers to [4]
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In the ArificialEU Regional GIS 0, there are only two resources with a good rating and
baud rate, so we decide to set a medium number of machines (30 for each resource).

In the ArificialEU Regional GIS 1 there are 6 resources, we decide to set high performances
for the first three, and low performances for the last three. Res Moscow, Res Warsaw have
a low number of machines and a low rating and are connected to the router with a low baud
rate. Res Vienna has a low number of machines but good rating and baud rate. We set
these features, so in the simulation we can study the behavior in this RegionalGIS when
the resources with good computational power fail, when resources with low computational
power fail or when for example, all resources fail except Res Vienna, which has to process a
job with few machines but with high rating.

In the ArificialEU Regional GIS 2 we have 4 resources. Also there we set the parameters,
so that we can have an heterogeneous RegionalGIS. Res Berlin has more machines and less
rating than Res Munich so more or less this two resources have the same high computa-
tional power. So these two resources have more or less the same high computational power.
Similarly, Res Budapest and Res Athens have.

In the ArificialEU Regional GIS 3 two resources are located in Italy, one in Spain and one
in Portugal. So we set for each state one resource with high rating, baud rate and number
of machines, and one with medium number of machines but low rating and baud rate with
the router.

The two resources in ArificialEU Regional GIS 4 are located in France and are identical:
they have good rating and good number of machines.

Resource name Node RegionalGIS Cpu rating Policy Baud rate
(MIPS) (Gb/s)

Res Dublin 30 ArtificialEU Regional GIS 0 49000 Space-Shared 1
Res Glasgow 30 ArtificialEU Regional GIS 0 49000 Space-Shared 1
Res Helsinki 60 ArtificialEU Regional GIS 1 49000 Space-Shared 1

Res Oslo 50 ArtificialEU Regional GIS 1 49000 Space-Shared 1
Res Stocklom 50 ArtificialEU Regional GIS 1 49000 Space-Shared 1
Res Moscow 20 ArtificialEU Regional GIS 1 1000 Space-Shared 0.0001
Res Warsaw 20 ArtificialEU Regional GIS 1 1000 Space-Shared 0.0001
Res Vienna 20 ArtificialEU Regional GIS 1 49000 Space-Shared 1
Res Berlin 100 ArtificialEU Regional GIS 2 49000 Space-Shared 1

Res Munich 80 ArtificialEU Regional GIS 2 80000 Space-Shared 1
Res Budapest 12 ArtificialEU Regional GIS 2 700 Space-Shared 0.0001
Res Athens 10 ArtificialEU Regional GIS 2 700 Space-Shared 0.0001
Res Milano 70 ArtificialEU Regional GIS 3 49000 Space-Shared 1

Res Pisa 40 ArtificialEU Regional GIS 3 1000 Space-Shared 0.0001
Res Madrid 40 ArtificialEU Regional GIS 3 49000 Space-Shared 1
Res Lisbon 40 ArtificialEU Regional GIS 3 700 Space-Shared 0.0001
Res Paris 50 ArtificialEU Regional GIS 4 49000 Space-Shared 1

Res Brussels 50 ArtificialEU Regional GIS 4 49000 Space-Shared 1

Table 4.1.: Resources in the Artificial EU Grid

The main components of the network are the users, that want to submit the gridlets to
the different resources. Users can have one or more gridlets, usually in our simulations we
used 15 gridlets. This is because the length of each grid is 4200 MI (Milion Instructions) and
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the total number of users is 125, so we have to submit 1875 gridlets and the simulation is
not possible with a greater gridlets’ number because of memory limitation of the computer
we run the simulation on.
The length of the gridlets is set to 4200 MI, we can also increase this value up to 42000000 MI
but the time of simulation becomes too high with this huge number of users and gridlets; for
this reason, we prefer to use 4200 MI. The table 4.2 describes how the users are distributed
in the grid network.

From User to User Connect to router

from User 0 to User 9 Router2

from User 10 to User 29 Router3

from User 30 to User 41 Router4

from User 42 to User 71 Router7

from User 72 to User 81 Router8

from User 82 to User 101 Router9

from User 102 to User 113 Router10

from User 114 to User 124 Router11

Table 4.2.: Users in the Artificial EU Grid

If the number of users is set to more than 125, then the excess users submit their gridlets
to the resources in a random way. We decide to assign the group of users at these routers,
because if we refer to Figure 4.2, we can note that every RegionalGIS has a group of users
and these are distributed across the entire network.
Remember that we want to simulate the network grid in case of possible failures of resources,
routers or links due to earthquakes, or malicious attacks. In the next section, we will describe
the simulations carried out on ’Artificial EU Grid’ with failures using only one gridlet.
Then in the next chapter we make simulations on large scale grid (with more than 1 gridlet)
with a single point of failure, with a set of failures, and in the end we set the failure time of
the resources, the duration of fail, and when the user starts to submit his gridlets (refers to
Chapter 3.3.3).
For view the description and the results of the ’Artificial EU Grid’ without failures, refers
to [9]. In the Table 4.3 there is a small summary of the components of the network:

N◦ ArtificialEURegionalGIS N◦ Resources N◦ Users N◦ Machines

5 18 125 772

Table 4.3.: Summary of Artificial EU Grid

So the ”Artificial EU Grid” has a good number of resources and machines, each machine
has 4 PE2. The are not very many users, only 125, but we set this number because we use
the same grid network setting in the simulation with more than 1 gridlet, and if we increase
the number of users that have to submit many jobs, the complexity of simulation increases,
and the machine on which we do the simulation doesn’t support it.

2CPU unit
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4.2. Artificial EU Grid: single point of failure, 1 GL

In this simulation we refer to the ’Artificial EU Grid’ (Figure 4.2) and we make a failure on
resource Res Helsinki. The network characteristics are described in the previous paragraph
4.3, 4.2. To look the behaviour of the grid in a simple scenario we set the number of gridlets
for each user equal to 1. We don’t spend much time to describe this scenario because our
goal is too simulate large scale grid (so with more than 1 Gridlet), but this first simulation
is important to see the behaviour of the network.
Table 4.4 specifies for each user, to which resource he submits the gridlet (every user can
submit a gridlet to a different resource, but for simplicity we have combined the users into
groups, that submit the gridlet to a certain resource):

From User to User Submit to resource

from User 0 to User 9 Res Helsinki

from User 10 to User 29 Res Budapest

from User 30 to User 41 Res Budapest

from User 42 to User 71 Res Budapest

from User 72 to User 81 Res Budapest

from User 82 to User 101 Res Madrid

from User 102 to User 113 Res Budapest

from User 114 to User 124 Res Budapest

Table 4.4.: Where gridlets are submitted

The different groups of users submit their gridlets to only three resources, because we want
to study the behavior of the user when he submits a gridlet to a reosurce with high com-
putational power (Res Helsinki), low computational power (Res Madrid) and medium com-
putational power (Res Budapest). Be careful, because in the next simulations Res Helsinki
fails and in the second variant we decrease the baud rate for the connections that lead to
Res Madrid.

4.2.1. First variant

The configuration of baud rate between routers is the same as in Listing 3.1, beetwen resource
and router is the same as in Figure 4.2.
What do we expect? Ten users submit the gridlets to Res Helsinki, but this resource fails, so
we expect that the gridlet is resubmitted to another resource. We expect that latency is high
for the gridlet submitted to Res Budapest because many gridlets are sent to this resource
that has only 12 machines, a low cpu rating and a low baud rate (with the Router 10)

From Table 4.1 we can note that Res Helsinki has 60 machines, so if we want that this
resource fails completely, all machines of it must fail. We can see in our simulation that all
the machines fail from the output file: Listing 4.1.
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Listing 4.1: Res Helsinki no working machines

[ . . . ]
A r t i f i c i a l E U \ Res\ H e l s i n k i . p r o c e s s F a i l u r e ( ) : r e c e i v e s an event

GRIDRESOURCE FAILURE. Clock : 337.13031324800005 which w i l l l a s t
u n t i l c l o ck : 766 .9132608756137 . There are NO working machines

in t h i s r e s ou r c e .
[ . . . ]

If we examine the results of output we see that the first 10 users who send their gridlets to
Helsinki now send them in Oslo (due to the fails of Res Helsinki). Other users send normally
the gridlets to the prefixed resources because these are not involved in fails. As we expected
the gridlets send to Res Madrid have a low latency, infact the users are connect directly to
the resource and the network traffic is not high.

Figure 4.3.: Graph: Res Helsinki fail, 1gridlet

Infact in graph 4.3 we can see that from users 82 to users 101 the gridlet is submitted to
Res Madrid and their latency is between 20 and 30 seconds (the average latency for these
20 gridlet is 25,82s in this simulation, it is obvious that, even if only slightly, it may vary
from one simulation to another).
We can also note (Table 4.5) that the first 10 gridlets are sent to Res Helsinki which fails, so
we decide to submit the gridlets to Res Oslo which has more or less the same characteristics
of Res Helsinki, so the result doesn’t change much.

In graph 4.3 we can see that the others gridlets have an high latency because they are
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Gridlet number Res Oslo Res Helsinki

0 4,5 4,33

1 7,26 4,49

2 3,42 7 ,93

3 4,06 4,03

4 4,74 6,04

5 4,6 6

6 5,54 7,72

7 4,18 3,42

8 4,41 5,83

9 4,7 5,51

Table 4.5.: Comparison latency between first 10 gridlet, first time submit to Res Oslo
(Res Helsinki fail) and second time submit to Res Helsinki (no fail)

submit to Res Budapest which has only 12 machines, so if some machines are free, the gridlet
is immediately processed and the latency is low (approximately 100-120), otherwise we have
to wait free machines to process the gridlets and the latency of gridlets increase.

4.2.2. Second variant

The configuration beetwen resource and router is the same as in Figure 4.2, but in this second
simulation we change the baud rate between the routers, so in the file network thesis.txt
(refers to 3.1) we change this connection:

Listing 4.2: network thesis file modified

[ . . . ]
Router9 Router10 0.00001 10 1500
Router11 Router10 0.00001 10 1500
[ . . . ]

We decrease the baud rate for the connections between Router9-Router10 and Router11-
Router10, from 1 Gb/s to 0.00001 Gb/s. The users are distributed and the gridlets are
submitted to the resources like in the ”first variant” simulation, so User 82, User 83, ....,
User 101 submit the gridlets to Res Madrid that is connected to Router10. So the only two
ways to arrive at Res Madrid are from link Router9-Router10 or Router11-Router10 (refers
to Figure 4.2). We set these links with a low baud rate (0,00001 Gb/s) so we expect that
the latency for the gridlets submitted to Res Madrid is much higher than in ”first varian”
simulation.

The graph 4.4 explains very well the results of simulation:

• The first 10 gridlets are submitted to Res Helsinki, but this fail, so they are resubmitted
to Res Oslo as in the ”first variant” simulation. In fact, the values of latency for these
10 gridlets are more or less the same as in the first variant.
Note that in these simulations we set the program in a way that when a resource
fail occurs, there aren’t resource recovery signals, so the resource is off for all the
simulation’s time.
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Figure 4.4.: Graph: Res Helsinki fail, 1gridlet, change the network settings

• Same speech for the gridlets submitted to Res Budapest, this part of the network is
the same that in ”first variant”, so the output latency for the gridlets is like in the first
simulation.

• The 20 gridlets sent to Res Madrid are submitted by users that are connected to
Router9 (as described before we have 2 ways to arrive to this resource in the network).
As we can see in the graph 4.4 the latency for these gridlets increases dramatically.
The values of latency for these gridlets oscillate between 1000s and 2000s with an
average of 1526,53 seconds. This is precisely due to the low baud rate of connections
to the resource.

It is very useful to keep track of users during simulations. In this case we consider for
example the User 94 that submitted his gridlet to Res Madrid. In the trace file of this
user we can see the sending and receiving time for the gridlet in the ”first variant”
simulation and in the ”second variant”.
Obviously, the time difference, produces latency gridlet. In Listing 4.3 we can see the
numerical results for User 94 that are described in the two graphs 4.3, 4.4.
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Listing 4.3: User 94 trace file

Event Grid let ID Resource Gr id l e tS ta tu s Clock
Sending 0 Art i f i c i a lEU Res Madr id Created 967.420383
Rece iv ing 0 Art i f i c i a lEU Res Madr id Success 997.870431

Event Grid let ID Resource Gr id l e tS ta tu s Clock
Sending 0 Art i f i c i a lEU Res Madr id Created 966.580383
Rece iv ing 0 Art i f i c i a lEU Res Madr id Success 3070.300151

There is a big difference for the User 94 between the first simulation where the latency
is 30,450048s and the second simulation where the latency is 2103,719768s. This is
precisely due to the low baud rate.
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As mentioned in the previous chapter we simulate a large grid scenario (Artificial EU Grid)
with one single point of failure, with a set of failures, and in the end we set the failure time
of the resources, the duration of fail, and when the user starts to submitted his gridlets.

5.1. Artificial EU Grid: single point of failure

We want to simulate a real large grid scenario, so we always refer to Artificial EU Grid
(Figure 4.2), but the number of gridlets that every user has to submitted is set to 15. We
have only one point of failure, so as in the previous scenario we decide to send a fail signal
to Res Helsinki. Note that unlike the previous simulation, now it is possible to recover the
resource. So when we submitted gridlets to Res Helsinki and this is ”fail”, then we send
gridlets to Res Oslo, but if Res Helsinki begins to work again, the gridlet will be submitted
here last.

We slightly modified the file network thesis.txt (Listing 5.1), so the network is more het-
erogeneous. We set the baud rate equal to 0,00001 for the links between Router0-Router1,
Router9-Router10, Router10-Router1112

Listing 5.1: Network Topology - single point of failure

\# t o t a l number o f Routers
12

\# s p e c i f i e s each route r name and whether to log i t s a c t i v i t i e s or
not

\# by d e f a u l t no l ogg ing i s r equ i r ed
Router0
Router1
Router2
Router3
Router4
Router5
Router6
Router7
Router8
Router9
Router10
Router11

1These changes can make an increase of latency if gridlets travel one of these link connections between
routers

2These changes increase the duration of the simulation
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\# s p e c i f y the l i n k between two Routers
\# The format i s :
\# Router name1 Router name2 baud rate prop de lay mtu

(GB/ s ) (ms) ( byte )

Router0 Router1 0 .00001 10 1500
Router1 Router2 1 10 1500
Router2 Router3 1 10 1500
Router2 Router5 1 10 1500
Router3 Router4 1 10 1500
Router5 Router4 1 10 1500
Router5 Router6 1 10 1500
Router6 Router7 1 10 1500
Router6 Router8 1 10 1500
Router5 Router9 1 10 1500
Router9 Router10 0.00001 10 1500
Router9 Router11 1 10 1500
Router10 Router11 0.00001 10 1500
Router11 Router1 1 10 1500

The simulation takes a long time due to the large number of gridlets sent and lower baud
rate between some links. In the table 5.1 we can see how users submitted gridlets to the
resources, we decide for each user to split his set of gridlets, so the first 10 gridlets are
submitted to a certain resource the other 5 are submitted to another resources.

From User to User submitted first 10 to submitted last 5 to

from User 0 to User 9 Res Dublin Res Glasgow

from User 10 to User 29 Res Warsaw Res Vienna

from User 30 to User 41 Res Berlin Res Munich

from User 42 to User 71 Res Budapest Res Athens

from User 72 to User 81 Res Milano Res Pisa

from User 82 to User 91 Res Madrid Res Lisbon

from User 92 to User 101 Res Madrid Res Lisbon

from User 102 to User 113 Res Paris Res Paris

from User 114 to User 124 Res Paris Res Helsinki

Table 5.1.: Where gridlets are submitted in Artificial EU Grid

The setting of the resources is the same as Table 4.1. When Res Helsinki fails we decide
that the gridlets will be submitted not to the Resource established but to the next resource,
for example if one gridlet was submitted to Res Moscow now (with the failure) is submitted
to Res Warsaw (for network grid structure refers to Figure 4.2)
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5.1.1. Results of simulation

This section presents the results of the simulation. Obviously it is impossible to describe
for each of the 120 people what happens, but be consider the most significant aspects of the
simulation, ie, those that allow us to understand the functioning of the network in case of
grid failures.

First, we examine the times of Res Helsinki failure. If we go to check the output file of
the simulation (Listing 5.2) we can see that:

Listing 5.2: Failure and recovery of Res Helsinki

[ . . . ] Ar t i f i c i a lEU Reg i ona l GIS 1 : sends an autogenerated
GRIDRESOURCE FAILURE to i t s e l f . Clock ( ) : 0 . 0 . resTimeFai l :
20.918443148412194 seconds [ . . . ]

[ . . . ] A r t i f i c i a lEU Reg i ona l GIS 1 : 1 r e s o u r c e s w i l l f a i l in t h i s
s imu la t i on . Num of f a i l e d machines on each r e sou r c e w i l l be
dec ided l a t e r [ . . . ]

[ . . . ] A r t i f i c i a lEU Reg i ona l GIS 1 : sends an autogenerated
GRIDRESOURCE FAILURE to i t s e l f . Clock : 20.918443148412194 ,
resTimeFai l : 27.138488245452017 seconds [ . . . ]

[ . . . ] A r t i f i c i a lEU Reg i ona l GIS 1 : sends a GRIDRESOURCE FAILURE
event to the r e sou r c e A r t i f i c i a l E U R e s H e l s i n k i . numMachFailed :

100 . Clock : 337 .090157248 . Fa i l durat ion :0 .11938415211878156
hours . Some machines may s t i l l work or may not [ . . . ]

[ . . . ] A r t i f i c i a l E U R e s H e l s i n k i . p r o c e s s F a i l u r e ( ) : r e c e i v e s an event
GRIDRESOURCE FAILURE. Clock : 337.13031324800005 which w i l l

l a s t u n t i l c l o ck : 766 .9132608756137 . There are NO working
machines in t h i s r e s ou r c e . [ . . . ]

[ . . . ] A r t i f i c i a l E U R e s H e l s i n k i − Machine : 0 i s s e t to FAILED
A r t i f i c i a l E U R e s H e l s i n k i − Machine : 0 i s FAILED
A r t i f i c i a l E U R e s H e l s i n k i − Machine : 1 i s s e t to FAILED
A r t i f i c i a l E U R e s H e l s i n k i − Machine : 1 i s FAILED [ . . . ]

[ . . . ] A r t i f i c i a lEU Reg i ona l GIS 1 : sends a GRIDRESOURCE RECOVERY to
the r e sou r c e A r t i f i c i a l E U R e s H e l s i n k i . Clock : 9 6 1 . 0 [ . . . ]

[ . . . ] Clock : 962.92039
A r t i f i c i a l E U R e s H e l s i n k i − Machine : 0 i s s e t to WORKING
A r t i f i c i a l E U R e s H e l s i n k i − Machine : 0 i s WORKING [ . . . ]

Some calculations:

• Res Helsinki fails at clock 337.13031s
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• fail duration is 0.11938 hours, equal to 0.11938 * 3600(sec) = 429.768s

• all machines of Res Helsinki fail so the resource becomes unavailable

• failure will last 766.9132608756137s in fact 337.13031 + 429.768 = 766.89831s (approx-
imately equal)

• but, the machines of the network restart to work at clock: 962.92039s

So Res Helsinki has to be registered again to the ArtificialEU Regional GIS 1, and this is
not immediately, we have to wait some seconds, so the resource doesn’t become available at
962.92039s precisely.

from User 0 to User 9 the first 10 gridlets are submitted to Res Dublin and the other
5 to Res Glasgow. The two resources have the same features. We can analyze for example
the trace file for User 8 (Listing 5.3) and see the sending time of the gridlet to the resource
and when it is received, the difference of these two times is latency. The latency increases
for each gridlet, this is due to a high number of gridlets, a computing power of machines
that are not high (rating) or a low number of processors. This was demonstrated by testing
on a network with only one user and one single resource (simple network) and studying the
behavior:

• with 50 gridlets, 1 processor and a small machine rating the latency increases from
first gridlet to the last

• with 50 gridlets, small machine rating but high number of processors, the latency
decreases from first gridlet to the last.

• obviously, with 50 gridlets, high machine rating, high number of processors the latency
decreases from first gridlet to the last and the value of latency is low.

• if the number of machines of the resource increases, obviously the latency is low and
tends to decrease from first to last gridlet executed.

Listing 5.3: Helsinki fail: trace file User 8

Event Grid let ID Resource Gr id l e tS ta tu s Clock

Sending 0 Art i f i c i a lEU Res Dub l in Created 686.3601319999988
Sending 1 Art i f i c i a lEU Res Dub l in Created 688.320131999997
Sending 2 Art i f i c i a lEU Res Dub l in Created 690.2801319999952
Sending 3 Art i f i c i a lEU Res Dub l in Created 692.0901319999936
Sending 4 Art i f i c i a lEU Res Dub l in Created 694.0201319999918
Sending 5 Art i f i c i a lEU Res Dub l in Created 695.98013199999
Sending 6 Art i f i c i a lEU Res Dub l in Created 697.7901319999884
Sending 7 Art i f i c i a lEU Res Dub l in Created 699.7201319999866
Sending 8 Art i f i c i a lEU Res Dub l in Created 701.6801319999848
Sending 9 Art i f i c i a lEU Res Dub l in Created 703.4901319999832
Sending10 Art i f i c i a lEU Res Glasgow Created 705.4201319999814
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Sending11 Art i f i c i a lEU Res Glasgow Created 707.3801319999797
Sending12 Art i f i c i a lEU Res Glasgow Created 709.190131999978
Sending13 Art i f i c i a lEU Res Glasgow Created 711.1201319999763
Sending14 Art i f i c i a lEU Res Glasgow Created 712.9601319999746
Rece iv ing0Art i f i c i a lEU Res Dub l in Success 1629.6401920000346
Rece iv ing1Art i f i c i a lEU Res Dub l in Success 2429.640191999994
Rece iv ing2Art i f i c i a lEU Res Dub l in Success 3229.6401919998757
Rece iv ing3Art i f i c i a lEU Res Dub l in Success 4029.6401919997575
Rece iv ing4Art i f i c i a lEU Res Dub l in Success 4829.64019199964
Rece iv ing5Art i f i c i a lEU Res Dub l in Success 5629.640191999521
Rece iv ing6Art i f i c i a lEU Res Dub l in Success 6429.640191999403
Rece iv ing7Art i f i c i a lEU Res Dub l in Success 7229.640191999285
Rece iv ing8Art i f i c i a lEU Res Dub l in Success 8029.640191999167
Rece iv ing9Art i f i c i a lEU Res Dub l in Success 8829.640191999522
Rece iv ing10Art i f i c i a lEU Res GlasgowSucces s 9629.640191999995
Rece iv ing11Art i f i c i a lEU Res GlasgowSucces s 10429.640192000468
Rece iv ing12Art i f i c i a lEU Res GlasgowSucces s 11229.640192000941
Rece iv ing13Art i f i c i a lEU Res GlasgowSucces s 12029.640192001414
Rece iv ing14Art i f i c i a lEU Res GlasgowSucces s 12829.640192001887

In the graph 5.1 we can see that the latency always increases for all 15 gridlets submitted
by User 8 to Res Dublin and Res Glasgow. Also, below (Listing 5.4) the output of User 8
regarding the CPU time, the cost of processing gridlet (cost = CPU Time * the cost of using
this resource (that is set to 3$/s)), and the latency:

Listing 5.4: Helsinki fail: output User 8

============== OUTPUT f o r A r t i f i c i a l E U U s e r 8 ===========
Gr id l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 51 6 .0 2 .0 943.2800600000359
1 Success 51 6 .0 2 .0 1741.3200599999968
2 Success 51 6 .0 2 .0 2539.3600599998804
3 Success 51 6 .0 2 .0 3337.550059999764
4 Success 51 6 .0 2 .0 4135.620059999648
5 Success 51 6 .0 2 .0 4933.660059999532
6 Success 51 6 .0 2 .0 5731.850059999415
7 Success 51 6 .0 2 .0 6529.920059999298
8 Success 51 6 .0 2 .0 7327.960059999182
9 Success 51 6 .0 2 .0 8126.150059999539

10 Success 56 6 .0 2 .0 8924.220060000014
11 Success 56 6 .0 2 .0 9722.260060000488
12 Success 56 6 .0 2 .0 10520.450060000963
13 Success 56 6 .0 2 .0 11318.520060001438
14 Success 56 6 .0 2 .0 12116.680060001912

====================================================
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Figure 5.1.: Graph: User 8 latency

from User 10 to User 29 the first 10 gridlets are submitted to Res Warsaw and the
other 5 to Res Vienna. The features are completly different in fact, Res Warsaw is connected
with Router4 with a low baud rate (0.0001 Gb) while Res Vienna is connected with high
baud rate (1 Gb), moreover Res Warsaw has a rating equal to 1000 MIPS, while Res Vienna
has rating set to 49000 MIPS. We consider the User 23 and we examine the output (Listing
5.5).

Listing 5.5: Helsinki fail: output User 23

============== OUTPUT f o r A r t i f i c i a l E U U s e r 2 3 ===========
Grid let ID STATUS ResourceID Cost CPU Time Latency

0 Success 86 1.86000000000376 0.62000000000125 2103.44023999965
1 Success 86 3.93000000000188 1.31000000000062 2077.19023999967
2 Success 86 0.4200000000050 0.14000000000169 1815.84027599965
3 Success 81 15 .0 5 .0 1791.8302759996768
4 Success 81 15 .0 5 .0 1482.270239999652
5 Success 81 15 .0 5 .0 1464.0102399996686
6 Success 81 15 .0 5 .0 1445.1402399996857
7 Success 81 15 .0 5 .0 1118.6102279999782
8 Success 81 15 .0 5 .0 1099.9602279999951
10 Success 86 4.6200119999698 1.5400039999899 664.54996399979
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9 Success 81 15 .0 5 .0 687.5499640002959
11 Success 86 6 .0 2 .0 350.00996400028407
12 Success 86 0.3299999998762 0.1099999999587 330.87996399986
13 Success 86 6 .0 2 .0 16.63000000036299
14 Success 86 2.4299999999220 0.80999999997402 15.5400000003392
====================================================

The resourceID number 81 is Res Warsaw, the resourceID 86 is Res Vienna. The latency
decreased gradually gridlet after gridlet, because there is a lot of computing power to process
the gridlet, but it is evident that the gridlets submitted to Res Warsaw have a cost greater
than the cost of the gridlets submitted to Res Vienna because the rating of Res Warsaw is
low.
After we do another simulation where the Res Vienna (ResourceID=86) has rating equal to
100 MIPS. In Listing 5.6 we have the output for User 23 and we can see that with a low
rating (100 MIPS) the CPU Time increases, and consequently the total cost.
For example, gridlet0 in Listing 5.5 has a cost equal to 1.86000000000376, in Listing 5.6,
setting the gridlet of the resource to 100 MIPS the cost is 128.04000000000087. This is
due to an increase of CPU time, because the time for processing the gridlet with a low
latency is greater. The following listing (Listing 5.6) represent the output of User 23 using
for Res Vienna 100MIPS as rating:

Listing 5.6: Helsinki fail: output User 23 Res Vienna rating 100 MIPS

============== OUTPUT f o r A r t i f i c i a l E U U s e r 2 3 ===========
Grid let ID STATUS ResourceID Cost CPU Time Latency
0 Success 86 128.04000000000087 42.68000000000029 2307.18027599974
1 Success 86 127.11000000000172 42.37000000000057 2284.23026399973
2 Success 86 127.50000000000136 42.50000000000045 2018.90023999974
3 Success 81 15 .0 5 .0 1994.3602399997649
4 Success 81 15 .0 5 .0 1681.9502399997425
5 Success 81 15 .0 5 .0 1658.6502399997637
6 Success 81 15 .0 5 .0 1345.3599640000443
7 Success 81 15 .0 5 .0 1319.7200000000676
8 Success 81 15 .0 5 .0 1006.6699640000459
9 Success 81 15 .0 5 .0 979.3300000000706
10 Success86 128.3399999999856 42.7799999999952 668.6499999998832
11 Success86 127.85999999997512 42.61999999999170 642.2599639993073
12 Success86 128.15999999998166 42.71999999999389 331.0099999998692
13 Success86 128.129999999981 42.70999999999367 311.0599999994338
14 Success86 127.07998799995812 42.35999599998604 47.69003200010229
====================================================

Is interesting also to see that we submitted the first 10 gridlets to Res Warsaw and the
other 5 to Res Vienna, but in our simulation (Listing 5.5) we see that the gridlets with id 0,
1, 2 are submitted to Res Vienna. This is because, as mentioned above, when Res Helsinki
fails, the gridlets that had to be submitted to a certain resource, now are sent to the next
resource until Res Helsinki return to work.
In the simulation the first three gridlets are submitted while Res Helsinki is out of order, in
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fact are not submitted to Res Warsaw but to Res Vienna. This means that the first three
gridlets are processed by a resource with greater power so the cost of these gridlets is less
than the cost of gridlets 3, 4, 5, 6, 7, 8, 9 (refers to Graph 5.2).
In the graph the green bars refer to the gridlets submitted to Res Vienna, and we can see
that they are more or less the same height as the bars of the first 3 gridlets (in fact these
last are submitted again to Res Vienna). The high blue bars refer to the gridlets submitted
to Res Warsaw.

Figure 5.2.: Graph: cost of the gridlets

from User 30 to User 41 the first 10 gridlets are submitted to Res Berlin and the other
5 to Res Munich. The output for these users is very similar to the output of User 23. The
first three gridlets are submitted to Res Berlin while Res Helsinki is out of order, so they
are submitted to the next resource that is Res Munich. As in Listing 5.5 these 3 gridlets
have a low cost because Res Munich has a rating equal 80000 MIPS, that is almost double
the rating of Res Berlin (49000 MIPS).

from User 42 to User 71 the first 10 gridlets are submitted to Res Budapest and the
other 5 to Res Athens.
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In this case all the gridlets are submitted while Res Helsinki is down, according to our setting
the gridlets will be submitted to the next resources, so the first 10 gridlets are submitted to
Res Athens and the other 5 to Res Milan.
This improves the performance of the grid network, because Res Budapest and Res Athens
have the same features, but are not very powerful (rating=700, number of machines = 10 and
12, baud rate of link Router8-resouce=0,0001 Gb), while Res Milano has a greater rating
(49000 MIPS), 70 machines and baud rate equal to 1Gb.

Listing 5.7: Helsinki fail: output User 45

============== OUTPUT f o r A r t i f i c i a l E U U s e r 4 5 ===========
Grid let ID STATUS ResourceID Cost CPU Time Latency
0 Success 106 21 .0 7 .0 2693.700179999003
1 Success 106 21 .0 7 .0 2663.700179999030
2 Success 106 21 .0 7 .0 2412.430239998969
3 Success 106 21 .0 7 .0 1980.319999999328
4 Success 106 21 .0 7 .0 1955.049999999351
5 Success 106 21 .0 7 .0 1641.639999999629
6 Success 106 21 .0 7 .0 1616.829999999652
7 Success 106 21 .0 7 .0 1175.699999999929
8 Success 106 21 .0 7 .0 1150.629999999382
10 Success 111 2.760047999 0.920015999 670.449999999
9 Success 106 21 .0 7 .0 695.560000000366
11 Success 111 6 .0 2 .0 271.2900000007485
12 Success 111 6 .0 2 .0 241.8800000001065
13 Success 111 3.929999999 1.309999999 35.52000000077
14 Success 111 6 .0 2 .0 22.59000000049309
====================================================

Listing 5.7 reports the output for User 45. The gridlets submitted to Res Athens (Re-
sourceID = 106) have a greater latency than gridlets submitted to Res Milan (ResourceID =
111). Every machine of the resources has four processors so gridlet after gridlet the latency
decreases. Obviously the gridlets submitted to Res Athens have a cost greater than gridlets
submitted to Res Milan, this is due to the different features of the resources.

from User 72 to User 81 the first 10 gridlets are submitted to Res Milan and the other
5 to Res Pisa. Like in the group of users before, also here the gridlets are submitted while
Res Helsinki is down. So the gridlets will be submitted to Res Pisa and to Res Madrid,
the output cost for these 10 users is always the same, obviously the gridlets submitted to
Res Pisa have a greater cost due to the low rating of the resource (1000 MIPS).

from User 81 to User 101 the first 10 gridlets are submitted to Res Madrid and the
other 5 to Res Lisbon. It is the same discourse of the previous users. The gridlets are
submitted while Res Helsinki is down. So the first 10 gridlets will be submitted to Res Lisbon
and the other 5 to Res Paris (that is situated in another RegionalGIS).
The gridlets submitted to Res Lisbon have a greater cost then gridlets sent to Res Paris,
this is usually because the rating of Res Lisbon is low. Moreover, the connection between
Res Lisbon and Router10 has a low baud rate (0,00001 Gb/s).
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from User 102 to User 113 all the gridlets are submitted to Res Paris, but these
gridlets are sent from the users when Res Helsinki is down. According to our setting the
gridlets will be submitted to the next resource that is Res Brussels. This resource and
Res Paris have the same features so there isn’t an increase of latency or cost. In Listing 5.8
we report the ouput for the user 103, the ouputs for User 102, User 103, ...., User 113 are
the same.

Listing 5.8: Helsinki fail: output User 103

============== OUTPUT f o r A r t i f i c i a l E U U s e r 1 0 3 ===========
Gr id l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 136 6 .0 2 .0 23943.31235200712
1 Success 136 6 .0 2 .0 4670.752112000744
2 Success 136 6 .0 2 .0 4372.891848000698
3 Success 136 6 .0 2 .0 3937.561584000723
4 Success 136 6 .0 2 .0 3640.301320000580
5 Success 136 6 .0 2 .0 3209.501320000607
6 Success 136 6 .0 2 .0 3461.948984002796
7 Success 136 6 .0 2 .0 3991.14898400339
8 Success 136 6 .0 2 .0 4653.888720003815
9 Success 136 6 .0 2 .0 5183.088720004409

10 Success 136 6 .0 2 .0 5845.828456004834
11 Success 136 6 .0 2 .0 6375.028456005428
12 Success 136 6 .0 2 .0 7037.768192005853
13 Success 136 6 .0 2 .0 7566.968192005177
14 Success 136 6 .0 2 .0 8229.707928002765

====================================================

We try also to modify the features of Res Brussels in this way (Table 5.2):

N◦ machines rating

original 50 49000
modified 5 50

Table 5.2.: Res Brussels: modified features

The result, as seen in the previous example (Listing 5.6) is that the cost for processing
the gridlet by the resource increases significantly: the CPU time for each gridlet becomes
equal to 85 and consequently the cost is equal to 255.

from User 114 to User 124 the first 10 gridlets are submitted to Res Paris and the
other 5 to Res Helsinki. The gridlets are submitted while Res Helsinki is out of order, so the
gridlets will submitted to Res Brussels and Res Oslo. The feautures of these 2 resources are
the same but the latency of the first 10 gridlets is higher than the last 5 because in the same
time at Res Brussels are submitted also the gridlets from User 102, User 103, ...., User 113,
while Res Oslo is ”free”, so the latency is minor.
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5.2. Artificial EU Grid: set of failure

In this section we simulate the ”Artificial EU Grid” with, not one, but a set of failures. It is
a little more difficult than the scenario before (Chapter 5.1) because we have a lot of users
and gridlets, and so it is complicated to manage the resources that fail and check the output
file. This section, like the previous scenario, describes for each group of users the behavior
of the grid network (resources, machines, gridlets).

For the network topology we use the same file network thesis.txt (Listing 5.1) that we use
for the previous scenario.
The resources that fail are distribuited in all ”Artificial EU Grid” and one machine fails for
each ArtificialEU Regional GIS, except for ArtificialEU Regional GIS 1 where 2 resources
fail (refers to Table 5.3):

Resource Name Regional GIS

Res Dublin ArtificialEU Regional GIS 0
Res Helsinki ArtificialEU Regional GIS 1
Res Warsaw ArtificialEU Regional GIS 1
Res Munich ArtificialEU Regional GIS 2

Res Pisa ArtificialEU Regional GIS 3
Res Brussels ArtificialEU Regional GIS 4

Table 5.3.: Resources that fail

For setting this failure we modified the java file ”RegionalGISWithFailure.java” (Chapter
3.3.5) so that we can decide the resource that fails based on the Table 5.3. The Listing 5.9
shows the block If-Then, use for set the ”res num”, that is the index of the resource in the
RegionalGIS that we want to fail. The Listing 5.10 shows the block Switch-Case in java
file ”ArtificialEUGrid.java” that we used for setting for each RegionalGIS the number of
the resources that fail and the number of machines involved in the failure (in our case all
machines in the resource fail so the resource will be out of order).

Listing 5.9: RegionalGISWithFailure.java: block If-Then

i f ( gisName . equa l s (” Ar t i f i c i a lEU Reg i ona l GIS 0 ”) ) { res num =0;}
\∗ f a i l s Dublin

i f ( gisName . equa l s (” Ar t i f i c i a lEU Reg i ona l GIS 1 ”) )
{ cont=cont + 1 ;
i f ( cont== 1) { res num =0;} \∗ f a i l s H e l s i n k i

e l s e { res num =3;}} \∗ f a i l s Warsaw
i f ( gisName . equa l s (” Ar t i f i c i a lEU Reg i ona l GIS 2 ”) ) { res num =1;} \∗

f a i l s Munich
i f ( gisName . equa l s (” Ar t i f i c i a lEU Reg i ona l GIS 3 ”) ) { res num =1;} \∗

f a i l s Pisa
i f ( gisName . equa l s (” Ar t i f i c i a lEU Reg i ona l GIS 4 ”) ) { res num =1;} \∗

f a i l s Bru s s e l s
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Listing 5.10: ArtificialEUGrid.java: block Switch-Case

switch ( i ) {
case 0 : fai lureNumResPattern =1; /∗ 1 Res f a i l s ( Dublin )

failureNumMacPattern =30; /∗ a l l machines o f Dublin f a i l
break ;

case 1 : fai lureNumResPattern =2; /∗2 Res f a i l s ( He l s ink i−Warsaw)
failureNumMacPattern =60; /∗ a l l machines o f H e l s i n k i and

Warsaw f a i l
break ;

case 2 : fai lureNumResPattern =1; /∗ 1 Res f a i l s ( Munich )
failureNumMacPattern =100; /∗ a l l machines o f Munich

f a i l
break ;

case 3 : fai lureNumResPattern =1; /∗ 1 Res f a i l s ( Pisa )
failureNumMacPattern =40; /∗ a l l machines o f Pisa f a i l

break ;

case 4 : fai lureNumResPattern =1; /∗ 1 Res f a i l s ( Bru s s e l s )
failureNumMacPattern =50; /∗ a l l machines o f Bru s s e l s

f a i l
break ;

}

In this simulation we submitted the gridlet to certain resources. In the previous scenario
if Res Helsinki failed we submitted the gridlets to the next resource. It is not the same in
this scenario with a set of failures. In this case if we send the gridlets to resource with index
equal to 5 (Res Moscow, refers to Figure 4.2), we have to be careful that there aren’t fail
resources with less index.
If there is a resource out of order with a smaller index than which we consider, the gridlets
will be submitted to the resource after the resource considered. If there are 2 resources
out of order with a smaller index than which we considerd, the gridlets will be submitted 2
resources after the resource considered. For example, refer always to Figure 4.2, Res Dublin
has index equal to 0 (the index depends on the order in which the resources are written
in our java code), this resource and Res Helsinki are down. Want to submit the gridlet
to Res Vienna (normaly index equal to 7), so we have to submit them not to the resource
with index equal to 7 but to the resource with index equal to 5, because Res Dublin and
Res Helsinki aren’t in the list of the available resources.
Table 5.4 shows how the gridlets are submitted to the resources. Note that in this simulation
the gridlets are submitted to different resources and the users from #71 to #101 are gathered
in the same groups, like the users from 102 to 124 for a better understanding of the simulation
output file. Anyway the gridlets are submitted to resources in all RegionalGIS. In the next
section, we can show with the results of the simulation, that due to the failure of 6 resources,
the gridlets will be submitted to other resources (following the index specified).
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From User to User submitted first 10 to (index) submitted last 5 to (index)

from User 0 to User 9 Res Dublin (0) Res Dublin (0)

from User 10 to User 29 Res Glasgow (1) Res Helsinki (2)

from User 30 to User 41 Res Oslo (3) Res Stocklom (4)

from User 42 to User 71 Res Warsaw (6) Res Vienna (7)

from User 72 to User 101 Res Berlin (8) Res Munich (9)

from User 102 to User 124 Res Budapest (10) Res Dublin (0)

Table 5.4.: Artificial EU Grid, set of failure: gridlets submitted to resources

5.2.1. Results of simulation

This section presents the results of the simulation when more than one resource fails in the
network. As described in the previous scenario, we analyze the simulation results considering
the main aspects that describe the behaviour of the grid network.
As described in the Table 5.3, 6 resources fail, so we have to analyze for each group of users
where the gridlets are submitted effectively, and how the output file changes for the users.

from User 0 to User 9, all the gridlets are submitted to Res Dublin. But according
to our setting (refers to Table 5.3) this resource fails, so all gridlets will be submitted to
Res Glasgow. This resource has the same features of Res Dublin so the output doesn’t
change much.
If we analyze the output for these 10 users we can see that, as mentioned, the gridlets will
be submitted to the resource with id equal to 56 (Res Glasgow), accordingly the cost for
each gridlet is equal to 6 (remember: cost = cost using the resource (set to 3) * CPU Time,
cost=3*2 = 6s). This cost is low, this happen when the power of resource’s machines is
higher than the load of work.

The latency (sending time - receiving time) for the ten users is quite high, this is because
the baud rate between router0 and router1 is very low (like 0.0001 Gb/s, refers to Listing
5.1). Normaly, the latency from the first gridlets to the last gridlet submitted increases,
but for User 1, User 7 and User 8 it decreases, this is due to the fact that the gridlets are
submitted in different time (first gridlet0, then gridlet1, ecc....) but sometimes when we
have many gridlets, these are stopped in a queue and are received from the user in the same
time. In our case we have to consider 465 gridlets that are submitted to Res Glasgow: 15
for each of the ten first users, 5 for each of 23 users (from User 102 to User 124) and another
10 gridlets for each user from the 10th to 29th.

from User 10 to User 29, the first ten gridlets are submitted to Res Glasgow and other
5 to Res Helsinki. Before the submission of gridlets, Res Dublin and Res Helsinki fail. So we
have to check the index set to submit the gridlets, and send these to the available resource
with the corresponds index.
In our case (refers to Table 5.4), the index for the first 10 gridlets is equal to 1, that cor-
rispond, in the list of available resources to Res Oslo, while the last 5 gridlets are submitted
to the resource with index equal to 2 that is Res Stocklom. In this way we have a small
improvement of the performance for the gridlets that were submitted to Res Glasgow, in
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fact we are now sending to Res Oslo, which has more machines (20), so it can manage more
gridlets in the same time. Listing 5.11 shows the output of one of the 20 users, all of their
output are very similar, changing only some decimal values. The cost of each gridlet is very
very low, this is due to the high number of machines and high rating of the both resources.
Listing 5.12 shows the output of the same user as before, but the Res Dublin is not out of
order, so index equal to 1 now corresponds to Res Glasgow.
Comparing these outputs, it is clear that in the second, the first 10 gridlets have a higher
cost due to the less machines of Res Glasgow and the latency is higher because as mentioned
before, many gridlets are submitted to it.
So if the failure of the resource is managed correctly, it does not always involves an aggrave-
tion of grid network performance.

Listing 5.11: Set of fails: output User 16

============== OUTPUT f o r A r t i f i c i a l E U U s e r 1 6 ===========
Grid let ID STATUS ResourceID Cost CPU Time Latency
0 Success 66 4.2600000000015 1.4200000000005 829.3602879996
1 Success 66 0.5100000000049 0.1700000000016 824.7502879996
2 Success 66 1.2900000000042 0.4300000000014 820.1702519996
3 Success 66 2.8800000000028 0.9600000000009 815.7002879996
4 Success 66 1.8600000000037 0.6200000000012 811.2102879996
5 Success 66 1.6500000000039 0.5500000000013 806.7302879996
6 Success 66 1.2000000000043 0.4000000000014 802.3002879996
7 Success 66 0.9000000000046 0.3000000000015 797.8802879996
8 Success 66 2.1600000000034 0.7200000000011 793.4002879996

10 Success 71 3.1800000000025 1.0600000000008 17.75999999998
9 Success 66 1.4700000000041 0.4900000000013 26.30003599997

11 Success 71 2.2800000000033 0.7600000000011 73.91003599993
12 Success 71 1.8000000000038 0.6000000000012 86.71003599992
13 Success 71 0.5400000000049 0.1800000000016 95.04003599991
14 Success 71 0.7500000000047 0.2500000000015 103.9800359999
====================================================

Listing 5.12: Set of fails: output User 16 (Res Dublin works)

============== OUTPUT f o r A r t i f i c i a l E U U s e r 1 6 ===========
Grid let ID STATUS ResourceID Cost CPU Time Latency
10 Success 66 0.2700000000052 0.0900000000017 211.13000000002
11 Success 66 0.3300000000051 0.1100000000017 208.13000000002
12 Success 66 0.3300000000051 0.1100000000017 205.13000000002
13 Success 66 1.2300000000043 0.4100000000014 21.520035999980
14 Success 66 4.9500000000009 1.6500000000003 32.240035999970

0 Success 56 6 .0 2 .0 10432.660056000
1 Success 56 6 .0 2 .0 14770.009792003
2 Success 56 6 .0 2 .0 16367.009792004
3 Success 56 6 .0 2 .0 17963.899792005
4 Success 56 6 .0 2 .0 19560.839792006
5 Success 56 6 .0 2 .0 21157.839792007
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6 Success 56 6 .0 2 .0 22754.839792008
7 Success 56 6 .0 2 .0 24351.839792009
8 Success 56 6 .0 2 .0 25948.839792010
9 Success 56 6 .0 2 .0 27545.839792011

====================================================

from User 30 to User 41 the first 10 gridlets are submitted to Res Oslo and the last
to Res Stocklom. These are submitted while 3 resources are out of order:

1. Res Dublin

2. Res Helsinki

3. Res Warsaw

So we have to send the gridlets to the resource indicated by index (in GridUserFailure.java),
selecting it from the set of available resouces. In this case the indeces are 3 and 4, so the
first 10 gridlets will be submitted to Res Moscow and the other 5 to Res Vienna.

Figure 5.3.: Graph: User 40, cost CPU Time

Performance worsens because these two resources have fewer machines and have lower
rating then Res Oslo and Res Stockolm. The graph 5.3 explains very well the situation of
the CPU time and cost of each gridlet for User 40 (it is a random choice, the output of
these 12 users are similar). Res Moscow and Res Vienna have the same number of machines
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(20) but this last has a rating equal to 49000 MIPS, instead the first is equal to 1000MIPS.
We expected that the cost of gridlets submitted to Res Moscow is greater than the cost of
gridlets sent to Res Vienna. Graph 5.3 confirms that, the blue bar is the cost and the orange
bar is the CPU time.

More precisly, the first 10 gridlets have a CPU Time equal to 5s and consequently the cost
is 15s, while the cost for processing gridlet 10, gridlet 12 and gridlet 14 is equal to 6s, and
the cost for processing the other 2 gridlets is very low and is equal to 0.93s.

from User 42 to User 71 the first 10 gridlet are submitted to Res Warsaw and the last
5 are submitted to Res Vienna. The gridlets are submitted while 4 resources are down, these
are:

• Res Dublin

• Res Helsinki

• Res Warsaw

• Res Munich

The indices of resources where these users submitted the gridlets are set in the Java code
and are: index equal to 6 for the first 10 gridlet and index equal to 7 for the other gridlets. In
the list of available resources these 2 indeces correspond to Res Budapest and Res Athens.
These two resources have a low rating (700 MIPS) and are connected with the router8 with
a baud rate equal to 0.0001 Gb/s, the latency will be high.
The cost for executing the gridlet is equal to 21s, we can compare this value with the cost for
processing gridlets by Res Moscow in the group of previous users (from User 30 to User 41).
As we said before, the lower the rating of the resource, the higher the cost of processing the
gridlets will be. Res Moscow has a rating equal to 1000 MIPS, so not much higher than
Res Budapest and Res Athens, in fact the cost for processing one gridlet is equal 15s, a little
less than the cost of processing gridlets (21s) for the two resources that we are considering.

From the output Listing 5.13 it is possible to note that when the gridlets are submitted to
a resource connected with the router with a low baud rate, the latencies tend to decrease3

gridlet by gridlet, but is value is high.

Listing 5.13: Set of fails: output User 64

============== OUTPUT f o r A r t i f i c i a l E U U s e r 6 4 ===========
Gr id l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 101 21 .0 7 .0 3104.9903479977493
1 Success 101 21 .0 7 .0 3079.770347997772
2 Success 101 21 .0 7 .0 2725.79008399775
3 Success 101 21 .0 7 .0 2699.9600839977734
4 Success 101 21 .0 7 .0 2269.3500839981652
5 Success 101 21 .0 7 .0 2245.430083998187

3After several simulations based also on simple scenarios we can say that with a low baud rate connection,
the gridlets submitted by a user to a resource have a high latency, but this tends to decrease gridlet after
gridlet. From the trace file of the user it is possible to note that the gridlets are sent one after the other
and the ”sending time” everytime is increases. After they are processed and finally received by the users
in the same ”receiving time”
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6 Success 101 21 .0 7 .0 1795.1600839985895
7 Success 101 21 .0 7 .0 1769.8300839986125
8 Success 101 21 .0 7 .0 1306.9200839988625
9 Success 101 21 .0 7 .0 1281.240083998302
10 Success 106 21 .0 7 .0 831.9700839992979
11 Success 106 21 .0 7 .0 806.6500839987452
12 Success 106 21 .0 7 .0 475.45003599956135
13 Success 106 21 .0 7 .0 507.0797479987955
14 Success 106 21 .0 7 .0 296.9897119995694

====================================================

from User 72 to User 101 the first 10 gridlets are submitted to Res Berlin and the last
to Res Munich. These are submitted while 5 resources are out of order:

• Res Dublin

• Res Helsinki

• Res Warsaw

• Res Munich

• Res Pisa

The index is setting equal to 8 for the first ten gridlets and 9 for the 5 gridlets so the
resource with index 8 in the set of available resources is Res Milano and with index 9 is
Res Madrid. Referring to the Figure 4.2 it is simple to know at which resource the gridlets
will be submitted when a set of fails happens. In this case some gridlets will be submitted
to Res Madrid, and if we look at the network thesis.txt (refers to Listing 5.1) we can note
that the ways to arrive to Res Madrid, i.e. router11-router10 and router9-router10 have a
lower baud rate than the other. This cause an increase of the latency of gridlets submitted
to this resource.

Surely we have a worsening performance, because without failure the gridlets would send
to Res Berlin and Res Munich that have more machines than the actual resource, moreover
as already mentioned Res Madrid is connected with the router with a low baud rate. Listing
5.14 shows the output file of User 100.

Listing 5.14: Set of fails: output User 100

============== OUTPUT f o r A r t i f i c i a l E U U s e r 1 0 0 ===========
Gr id l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 111 4 .2 1 .40 274.1702639999837
1 Success 111 2 .01 0 .67 269.52026399998795
2 Success 111 2 .01 0 .67 264.8502639999922
3 Success 111 2 .28 0 .76 260.4402639999962
4 Success 111 1 .89 0 .63 256.09026400000016
5 Success 111 1 .56 0 .52 251.73026400000413
6 Success 111 2 .55 0 .85 247.43026400000804
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7 Success 111 2 .37 0 .79 243.09026400001198
8 Success 111 3 .78 1 .26 29.57981999973981
9 Success 111 4 .56 1 .52 38.21981999973195

10 Success 121 6 .0 2 .0 1824.1000159999471
11 Success 121 6 .0 2 .0 3444.9600159997117
12 Success 121 6 .0 2 .0 5041.690015999479
13 Success 121 6 .0 2 .0 6640.810015999246
14 Success 121 6 .0 2 .0 8282.49001599977

====================================================

In Listing 5.14, we can note that the gridlets submitted to the Res Madrid (Resource ID
equal to 121) have a latency greater than the latency of the gridlets submitted to Res Milano
(Resource ID equal to 111), this is due to low baud rate between Res Madrid and the router.
Moreover, Res Milano has 30 machines more than Res Madrid, and, as we can note in the
next group of users, more gridlets are submitted at Res Madrid. So if we compare the cost
of processing gridlet we can note that it is very low (between 2s and 4s) for the gridlets
submitted to Resource ID 111, and it is equal to 6 for gridlets submitted to Res Madrid.

from User 102 to User 124 the first 10 gridlets are submitted to Res Budapest and
the last to Res Dublin. These are submitted while 6 resources are out of order:

• Res Dublin

• Res Helsinki

• Res Warsaw

• Res Munich

• Res Pisa

• Res Brussels

In this case the indices are 10 and 0, in the list of available resources these indexes
correspond to Res Lisbon and Res Glasgow. If we examine the output of the simula-
tion we can note that at different times Res Dublin, Res Helsinki and Res Pisa receive a
GRIDRESOURCE RECOVERY signal.
Some of these last gridlets are submitted to Res Lisbon before the recovery of Res Pisa, but
some are submitted after the recovery, so Res Pisa becomes an available resource, then index
equal to 10 will not be Res Lisbon but Res Madrid.

Table 5.5 lists the users that submitted gridlets before and after the failure of Res Pisa,
note that here the gridlets 7, 8, 9 are submitted after the recovery, gridlet 6 is submitted
before.
Table 5.6 lists the users that submitted gridlets before and after the failure of Res Pisa, note
that here the gridlets 6, 7, 8, 9 are submitted after the recovery, while Table 5.7 lists the
users that submitted the gridlets before the recovery of Res Pisa .
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Artificial EU User

ArtificialEU User 107

ArtificialEU User 112

ArtificialEU User 113

Table 5.5.: List of users that submitted gridlets before and after recovery of Res Pisa (gridlets
7, 8, 9 submitted after the recovery)

Artificial EU User

ArtificialEU User 102

ArtificialEU User 103

ArtificialEU User 104

ArtificialEU User 105

ArtificialEU User 106

ArtificialEU User 108

ArtificialEU User 109

ArtificialEU User 110

ArtificialEU User 111

Table 5.6.: List of users that submitted gridlets before and after recovery of Res Pisa (gridlets
6, 7, 8, 9 submitted after the recovery)

Artificial EU User

ArtificialEU User 114

ArtificialEU User 115

ArtificialEU User 116

ArtificialEU User 117

ArtificialEU User 118

ArtificialEU User 119

ArtificialEU User 120

ArtificialEU User 121

ArtificialEU User 122

ArtificialEU User 123

ArtificialEU User 124

Table 5.7.: List of users that submitted gridlets before recovery of Res Pisa

Listing 5.15 shows the output file for User 121 (Table 5.7). As we expected the first 10
gridlets that are submitted to Res Lisbon have a greater cost for processing the gridlet. This
is because the resource has a rating of 700 MIPS, that is low. Also the latency is quite high
because Res Lisbon and Res Madrid can be reached only with router10-router11 way and
router9-router11 way. These two ways have a low baud rate that causes the increase of
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latency.
The other 5 gridlets are submitted to Res Glasgow that has a rating of 49000 MIPS in fact
the cost of processing gridlets is lower than the first 10 gridlets. Obviously the latency is
high because also to reach Res Glasgow the gridlets have to pass from router0-router1 way
that has a low baud rate.

Listing 5.15: Set of fails: output User 121

============== OUTPUT f o r A r t i f i c i a l E U U s e r 1 2 1 ===========
Gr id l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 126 21 .0 7 .0 1074.5100200000425
1 Success 126 21 .0 7 .0 1950.1300199999737
2 Success 126 21 .0 7 .0 2825.510019999848
3 Success 126 21 .0 7 .0 3700.9500199997224
4 Success 126 21 .0 7 .0 4576.630019999597
5 Success 126 21 .0 7 .0 5452.24001999947
6 Success 126 21 .0 7 .0 6327.890019999344
7 Success 126 21 .0 7 .0 7203.560019999218
8 Success 126 21 .0 7 .0 7867.079755999486
9 Success 126 21 .0 7 .0 8742.18975600001

10 Success 56 6 .0 2 .0 11746.893513335135
11 Success 56 6 .0 2 .0 12622.553513335659
12 Success 56 6 .0 2 .0 13498.063513336185
13 Success 56 6 .0 2 .0 14373.623513336708
14 Success 56 6 .0 2 .0 15249.603513337232

====================================================

Listing 5.16 shows the output file for User111 (Table 5.6). We can see that the first
six gridlets are submitted before the recovery of Res Pisa so are sent to Res Lisbon, like
User 121, the cost is equal to 21s and the latency is quite high.
The gridlet 6, 7, 8, 9 are submitted after the recovery of Res Pisa so are send to Res Madrid.
So the performance increases because this resource has the same machines of Res Lisbon but
it has a rating of 49000 MIPS (refers to Table 4.1), in fact the cost for processing gridlet
is lower than the first six gridlets (6s). The latency is quite high because the ways for the
resource have a low baud rate.
The last five gridlets are submitted to Res Glasgow, and it doesn’t matter if Res Pisa is
out of order or is recovered, because these gridlets are sent to a resource that has an index
smaller than its own. Res Madrid and Res Glasgow have the same baud rate in fact the cost
is always 6, the latency for these 5 gridlets is quite high because also Res Glasgow is reached
with a way that has a low baud rate.

Listing 5.16: Set of fails: output User 111

============== OUTPUT f o r A r t i f i c i a l E U U s e r 1 1 1 ===========
Gr id l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 126 21 .0 7 .0 16497.081316002503
1 Success 126 21 .0 7 .0 9363.311052003324
2 Success 126 21 .0 7 .0 3793.650792000277
3 Success 126 21 .0 7 .0 3568.3905280001673
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4 Success 126 21 .0 7 .0 3274.260264000115
5 Success 126 21 .0 7 .0 3011.660264000069
6 Success 121 6 .0 2 .0 2786.3999999999596
7 Success 121 6 .0 2 .0 2402.400000000014
8 Success 121 6 .0 2 .0 2092.19999999997
9 Success 121 6 .0 2 .0 1821.5999999999494

10 Success 56 6 .0 2 .0 2011.1724773356673
11 Success 56 6 .0 2 .0 2692.1724773362093
12 Success 56 6 .0 2 .0 3226.1724773368114
13 Success 56 6 .0 2 .0 3907.1724773373535
14 Success 56 6 .0 2 .0 4459.182077337962

====================================================

In the Table 5.8 we can compare the time, when the gridlet is submitted, and when
Res Pisa is recovered. We report only the first ten gridlets because the other 5 are submitted
to Res Glasgow, so are not interested in the recovery of Res Pisa.
Highlighted in red, are the times of the gridlets submitted before the recovery of Res Pisa,
while higlighted in green, are the time of the gridlets sent after the recovery of the resource,
so submitted to Res Madrid.

N◦ gridlet Time gridlet Time Res Pisa submitted to
submission (s) recovery(s)

0 758.3201 14352.404 ArtificialEU Res Lisbon

1 7892.0903 14352.404 ArtificialEU Res Lisbon

2 13461.7506 14352.404 ArtificialEU Res Lisbon

3 13687.010 14352.404 ArtificialEU Res Lisbon

4 13981.141 14352.404 ArtificialEU Res Lisbon

5 14243.741 14352.404 ArtificialEU Res Lisbon

6 14469.001 14352.404 ArtificialEU Res Madrid

7 14853.001 14352.404 ArtificialEU Res Madrid

8 15163.201 14352.404 ArtificialEU Res Madrid

9 15433.801 14352.404 ArtificialEU Res Madrid

Table 5.8.: Artificial EU Grid, set of failure: comparison of gridlets submission time and
Res Pisa time recovery

5.3. Artificial EU Grid: set of failure with custom time of failure

In the previous simulations, we made some tests on ”Artificial EU Grid” varying the number
of resources that fail, and setting the various parameters of the resources’ machines. The
only parametres that we don’t vary are the intial time for submitted gridlets, the time when
a resource fails and how many time the resources are out of order. In this section we want
to customize these parameters that before are setted in a random way. In the chapter 3.3.3
we have already mentioned the changes to Java code for setting these parameters.
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5.3.1. First testbed: high duration of resources failure

In the previous simulation, Chapter 5.2.1, from User 102 to User 124 the gridlets are sub-
mitted to Res Lisbon, Res Glasgow but for some users also to Res Madrid, because these
gridlets are submitted after the recovery of Res Pisa.
In this simulation we want to change the fail duration time of Res Pisa so that all users from
User 102 to User 124 submitted their gridlets to Res Lisbon and Res Glasgow. Obviously,
the resources that fail are the same of the previous simulation (Chapter 5.2). To do this we
set the variable ”failureLengthPattern” equal to 10 hours, so we are sure that the gridlets
submition is before GRIDRESOURCE RECOVERY signal. The resources, as specified in
Listing 5.17, fail after 180s (3 minutes) and the gridlets are submitted after 15 minutes (900s,
this value is set with the variable init time in the java code).

Listing 5.17: Set of fails: modify the time parameters for resource failure

switch ( i ) {
case 0 : fai lureNumResPattern =1;

failureNumMacPattern =30;
fa i lu reTimePatte rn = 180;// when the r e sou r c e f a i l s ( s )
f a i l u r eLengthPat t e rn = 10∗3600;// f o r 10 hours i s out

o f order
break ;

case 1 : fai lureNumResPattern =2;
failureNumMacPattern =60;
fa i lu reTimePatte rn = 180;// when the r e sou r c e f a i l s ( s )
f a i l u r eLengthPat t e rn = 10∗3600;// f o r 10 hours i s out

o f order
break ;

case 2 : fai lureNumResPattern =1;
failureNumMacPattern =100;
fa i lu reTimePatte rn = 180;// when the r e sou r c e f a i l s ( s )
f a i l u r eLengthPat t e rn = 10∗3600;// f o r 10 hours i s out

o f order
break ;

case 3 : fai lureNumResPattern =1;
failureNumMacPattern =40;
fa i lu reTimePatte rn = 180;// when the r e sou r c e f a i l s ( s )
f a i l u r eLengthPat t e rn = 11∗3600;// f o r 10 hours i s out

o f order
break ;

case 4 : fai lureNumResPattern =1;
failureNumMacPattern =50;
fa i lu reTimePatte rn = 180;// when the r e sou r c e f a i l s ( s )
f a i l u r eLengthPat t e rn = 10∗3600;// f o r 10 hours i s out
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o f order
break ;

}

Checking the output file, we can see that there aren’t GRIDRESOURCE RECOVERY
messages, this means that all gridlets are submitted while the resources (that we set as fail)
are out of order, and the simulation ends before a recovery of any resource. So it is deducible
that the processing of all gridlets in the networs takes less than 10 hours. In fact the last
gridlet processed is received at time 22573.79s that is equal almost to 6 hours.
Graph 5.4 shows the comparison of the User 111 cost when the Res Pisa is recovered (last
simulation) and when the Res Pisa is not recovery (this simulation). We can note that the
cost is always the same except for the gridlets 6, 7, 8, 9 that in this simulation are sent
again to Res Lisbon, so the cost for processing these gridlets is higher than the cost with
the recovery of Res Pisa. Moreover we can note that these four gridlets when the resource is
recovered are submitted to Res Madrid, that, as we have already mentioned, has the same
rating of Res Glasgow, thus the same cost (6s).

Listing 5.18 shows the output of User 111 without the recovery of Res Pisa, all first ten
gridlets are submitted to Res Lisbon.

Figure 5.4.: Graph: Compare User 111 cost: with recovery of Res Pisa and without the
recovery
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Listing 5.18: Set of fails: output User 111 without recovery of Res Pisa

============== OUTPUT f o r A r t i f i c i a l E U U s e r 1 1 1 ===========
Gr id l e t ID STATUS Resource ID Cost CPU Time Latency

0 Success 126 21 .0 7 .0 15866.802648002978
1 Success 126 21 .0 7 .0 12371.222372003596
2 Success 126 21 .0 7 .0 3127.9621120006814
3 Success 126 21 .0 7 .0 2902.7018480005718
4 Success 126 21 .0 7 .0 2676.7715840004475
5 Success 126 21 .0 7 .0 2345.9715840004737
6 Success 126 21 .0 7 .0 2120.711320000364
7 Success 126 21 .0 7 .0 1894.78105600024
8 Success 126 21 .0 7 .0 1563.981056000266
9 Success 126 21 .0 7 .0 1338.7207920001565

10 Success 56 6 .0 2 .0 2137.3582080020697
11 Success 56 6 .0 2 .0 2766.5582080026634
12 Success 56 6 .0 2 .0 3502.4979440031384
13 Success 56 6 .0 2 .0 4236.5676800037145
14 Success 56 6 .0 2 .0 4866.967680004309

====================================================

For the other users the output file doesn’t change, because also in the simulation before
(set of failure), except Res Pisa all resources that we set as fail are not recovered before the
end of the simulation, so the behavior of the grid network is the same.

5.3.2. Second testbed: medium duration of resources failure

We use the traditional network ”Artificial EU Grid”, and the users submitted the gridlets
to specific resources like in the previous scenario (refers to Table 5.4). The time of failure4

for all resources is this:

• how long it is out of order = 2 hours (7200 seconds).

The following lines describe the behavior of ”Artificial EU Grid” for each group of users,
and the results of the test are compared with the results of the test with high duration of
fail. Important: in this second test the variable init time to begin to submitted gridlets is
modified, this has a random value between 5 and 10 minutes (we wait this time because we
have many resources, so we allow GIS to receive registrations from resources. Otherwise,
the resource does not exist when we submitted). Note that, the times of failure that we set
in this test, are more or less similar to the times of failure in the simulation ”set of failure”5;
so if the variable init time doesn’t change (before was setting between 10 and 15 minutes),

4Remember that the real time of failure is a little bit different from that specified, because a resource has
to set its machine as failed, so it takes time. When there is a Grid resource recovery, happens the same,
because the resource has to set her machine as ”working”, and it must register to RegionalGIS, so also
here the time is not precisely the time specified in the variable ”failureLengthPattern”. Moreover, if the
baud rate between the resource and router is low (ex. Res Dublin - Router 0), the recovery and the new
registration take more time.

5In ”set of failure” simulation the failure times are set in a random way, after an analysis of the output, it
is confirm that the times of failures are more or less similar
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we have the same grid network features and the final output doesn’t change so much. The
resources, fail after 180s (3 minutes), like in the previous testbed.

from User 1 to User 9 the gridlets will be submitted to Res Dublin. In the previous
simulations (high duration time failure) all gridlets were submitted to Res Glasgow because
Res Dublin was out of order. Analyzing the output for this test (second testbed) is evident
that the situation doesn’t change in fact the gridlets are submitted to Res Glasgow. The
cost for processing the gridlet is equal to 6s (like before, the number of machines and the
rating don’t change).

from User 10 to User 29 the gridlets are submitted to Res Glasgow (first 10) an to
Res Helsinki (last 5). In the simulation ”high duration time failure” these gridlets will be
submitted to Res Oslo and Res Stocklom due to the failure of two resources.
Indeed in this test we can note that the first gridlets are submitted to Res Glasgow correctly
because the resource Res Dublin fails, but when we submitted the gridlets this is still regis-
tered in the list of resource available. Listing 5.19 shows the part of code where it is possible
to see the list of available resources, the user and the index of resource takes in consideration
and the message of gridlet sending.

Listing 5.19: Resource available output for User 18

User in c o n s i d e r a t i o n : A r t i f i c i a l E U U s e r 1 8
Total number o f l o c a l r e s o u r c e s a v a i l a b l e : 4
Total number o f g l o b a l r e s o u r c e s a v a i l a b l e : 12
Total number o f r e s o u r c e s a v a i l a b l e : 16
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 0 ] = 51
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 1 ] = 56
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 2 ] = 66
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 3 ] = 71
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 4 ] = 81
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 5 ] = 86
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 6 ] = 91
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 7 ] = 96
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 8 ] = 101
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 9 ] = 106
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 1 0 ] = 111
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 1 1 ] = 116
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 1 2 ] = 121
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 1 3 ] = 126
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 1 4 ] = 131
A r t i f i c i a l E U U s e r 1 8 : r e s ou r c e [ 1 5 ] = 136
ACTUAL USER: A r t i f i c i a l E U U s e r 1 8
ACTUAL INDEX: 1
A r t i f i c i a l E U U s e r 1 8 : Sending Gr id l e t \#2 to

Art i f i c i a lEU Res Glasgow at c l o ck : 1015.4902159999975

As we can see in Listing 5.19 the resource with index equal to 1 has resource ID equal
to 51 that corresponds to Res Glasgow, in fact the last line confirms that the gridlet #2
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is send to that resource. In this moment of the simulation the number of resources avail-
able is sixteen so 2 resources are out of order. Moreover from the output we know that
we are considering the ArtificialEU User 18 that is connected with Router3 that it’s in Ar-
tificialEU Regional GIS 1. So the number of local resources available, i.e. the resources
available in ArtificialEU Regional GIS 1 are 4 (on total of 6). If we check the output, is
clear that the Resource ID 61 (Res Helsinki) and Resource ID 71 (Res Moscow) are not in
this list, so they’re out of order. The number of global resources available is the number of
resources available that are not in ArtificialEU Regional GIS 1. This number is equal to 12
(on total of 12), this means that there aren’t global resource out of order.
After this analysis, it is obviously that for the same user and the same list of resources avail-
able, the gridlets between #10 and #14 are sent to the resource with index 2 (Table 5.4) that
is Res Oslo (Resource ID = 66). The latency in this test for the first 10 gridlets is greater
than the latency in ”set of failure” simulations, because Res Glasgow has fewer machines
than Res Oslo and in this case has a big work load, because many gridlets are submitted to
it.

from User 30 to User 41 the gridlets are submitted to Res Oslo (first 10) and to
Res Stockholm (last 5). In the simulation with high duration of failure these gridlets will be
submitted to Res Warsaw and Res Vienna due to the failure of three resources.
In this test we can note from the output that the first ten gridlets are correctly submitted
to Res Oslo because, if we check the list of available resources, we see that there aren’t
resources out of order.

Figure 5.5.: Graph: Compare User 38 latency, high and medium duration of failure
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For each of the 12 users, the last 5 gridlets are submitted to Res Stocklom and Res Warsaw:

• Gridlet #10 and Gridlet #11 are submitted to Res Stocklom. In fact, if we check for
example the output of User 38 (gridlet #10), we note that this gridlet is submitted
before the failure of Res Dublin and Res Helsinki, so all resources are available. The
gridlet will be submitted to the resource with index 4 in the list of available resources
that correspons to Res Stocklom.

• Gridlet #12, Gridlet #13 and Gridlet #14 are submitted to Res Warsaw. For example,
the gridlet #14 of User 38, is submitted when Res Helsinki is down, so the gridlet will
be submitted to the resource with index 4 in the list of available resources that is
Res Warsaw.

Graph 5.5 compares the output latency of User 38 in the simulation with a high duration
time of failure (10 hours) and with a medium duration time of failure (2 hours, this last
simulation). It is possible to see that the latency in case of medium duration time (blue
line), tends to decrease until gridlet #11, in fact these twelve gridlets are submitted to
Res Oslo and Res Stocklom, that have a high computational power, moreover it is less than
the latency with high duration time of failure (orange line), where the first 10 gridlets are
submitted to Res Warsaw (low computational power).
The blue line tends to increase between gridlet #12 and gridlet #14 because these three are
submitted to Res Warsaw, also the orange line tends to increase between gridlet #10 and
gridlet #14, but the values of latency are less than the simulation with medium duration
time of failure, this because these gridlets are submitted to Res Vienna (great CPU rating
but few machines).

Figure 5.6.: Graph: Compare User 38 cost, high and medium duration of failure
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Graph 5.6 compares the output cost of User 38 in the simulation with a high duration
time of failure (10 hours) and with a medium duration time of failure (2 hours, this last
simulation). As we can note the first 10 gridlets for high duration time of failure simulation
have a cost equal to 15s because they are submitted to Res Warsaw that has a low CPU
rating (1000 MIPS), while for the first twelve gridlets the cost of processing gridlet for
User 38 in medium time of failure simulation is low (max. 6s), this is becasue these gridlets
are submitted to Res Oslo and Res Stocklom (high CPU rating: 49000 MIPS). For the last
3 gridlets, the opposite happens, cost equal to 15s for gridlets in ”medium time” simulation
(submitted to Res Warsaw) and low cost for gridlets in ”high time” simulation (submitted
to Res Vienna).

from User 42 to User 71 the gridlets are submitted to Res Warsaw (first 10) an to
Res Vienna (last 5). In the simulation with high duration time of failure these gridlets will
be submitted to Res Budapest and Res Athens due to the failure of four resources.
In this testbed with a medium duration of failure, the gridlets are submitted to Res Vienna

Figure 5.7.: Graph: Compare User 47 cost, high and medium duration of failure

and to Res Berlin, which are the resources immediately following those established. If we
check for example the output of User 47 for each one of his gridlets submitted, we can
note that in the list of availbale resources there isn’t Res Dublin, that is out of order. The
computational power of Res Vienna and Res Berlin is higher than the Res Budapest and
Res Athens power. So it is obviously that in this case the performances are higher in the
medium duration of failure simulation, in fact for all of 30 users the maximum cost for
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submitting the gridlets is 6s, while in the simulation with high duration of failure the cost
never goes down below 21s.
Graph 5.7 perfectly explains the situation.

from User 72 to User 101 the gridlets are submitted to Res Berlin (first 10) an to
Res Munich (last 5). In the previous simulations (high duration time of failure) the gridlets
were submitted to Res Milano and Res Madrid, because five resources are out of order.
In this testbed, if we check the output, it is possible to note that gridlets are submitted
to different resources, this is due to the different submission time and to the recovery of
the resources. In this testbed, we note also that some gridlets are submitted to a certain
resource because it is available when we sent it the gridlet, but during the execution the
resource fails. What happens?
The gridlet, after some seconds (resubmission time6) is resubmitted many times to the same
resource (until it returns available), or to a resource in the list with the correspondent index.
For example, if we check the output we can see that User 84 submitted the gridlet #0 to
Res Munich because it is in the list of available resources, but when this receives the gridlet,
it is out of order, so the gridlet will be resubmitted after to the same resource.
We have a list of messages (Listing 5.20) about the behavior of gridlet #0 and User 84.
The gridlet is resubmitted 7 times, and at time 8701.972052019704 is received with status
success.
Remember that Res Munich is recovered at time 7674.960119999999s (Listing 5.21), so after
this time the resource is available again.

Listing 5.20: Resource unavailable: resubmission of gridlet

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s
F a i l e d r e s o u r c e u n a v a i l a b l e at time = 1792.9303960000118 from
re sou r c e Art i f i c ia lEU Res Munich ( resID : 96) . Resubmission time
w i l l be : 73.051986361447091792.9303960000118

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s
F a i l e d r e s o u r c e u n a v a i l a b l e at time = 3545.270731999608 from
re sou r c e Art i f i c ia lEU Res Munich ( resID : 96) . Resubmission time
w i l l be : 73.051986361447093545.270731999608

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s
F a i l e d r e s o u r c e u n a v a i l a b l e at time = 3959.4908160083064 from
re sou r c e Art i f i c ia lEU Res Munich ( resID : 96) . Resubmission time
w i l l be : 73.051986361447093959.4908160083064

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s
F a i l e d r e s o u r c e u n a v a i l a b l e at time = 4907.361104006151 from
re sou r c e Art i f i c ia lEU Res Munich ( resID : 96) . Resubmission time
w i l l be : 73.051986361447094907.361104006151

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s
F a i l e d r e s o u r c e u n a v a i l a b l e at time = 6123.341344009502 from

6The java code is not been modified, so the resubmission time is random
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r e s ou r c e Art i f i c ia lEU Res Munich ( resID : 96) . Resubmission time
w i l l be : 73.051986361447096123.341344009502

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s
F a i l e d r e s o u r c e u n a v a i l a b l e at time = 6533.891416018123 from
re sou r c e Art i f i c ia lEU Res Munich ( resID : 96) . Resubmission time
w i l l be : 73.051986361447096533.891416018123

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s
F a i l e d r e s o u r c e u n a v a i l a b l e at time = 7607.941680018377 from
re sou r c e Art i f i c ia lEU Res Munich ( resID : 96) . Resubmission time
w i l l be : 73.051986361447097607.941680018377

A r t i f i c i a l E U U s e r 8 4 : Rece iv ing Gr id l e t \#0 with s t a t u s Success at
time = 8701.972052019704 from re sou r c e Art i f i c ia lEU Res Munich

Listing 5.21: Res Munich recovery time

Ar t i f i c i a lEU Reg i ona l GIS 2 : sends a GRIDRESOURCE RECOVERY to the
r e sou r c e Art i f i c ia lEU Res Munich . Clock : 7674.960119999999

This is the history of the gridlet #0 for User 84 (Listing 5.22)

Listing 5.22: User 84: gridlet #0 history

h i s t o r y g r i d l e t : Time below denotes the s imu la t i on time .
Time ( sec ) Desc r ip t i on Gr id l e t \#0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 ,00 Creates Gr id l e t ID \#0
0 ,00 Ass igns the Gr id l e t to A r t i f i c i a l E U U s e r 8 4 ( ID \#477)
760 ,45 Sets Gr id l e t s t a t u s from Created to

F a i l e d r e s o u r c e u n a v a i l a b l e
760 ,45 A l l o c a t e s t h i s Gr id l e t to Art i f i c ia lEU Res Munich ( ID
\#96) with co s t = $3 .0/ sec

2503 ,47 Sets the length ’ s f i n i s h e d so f a r to 0 .0
2522 ,561 Moves Gr id l e t from Art i f i c ia lEU Res Munich ( ID \#96) to

Art i f i c ia lEU Res Munich ( ID \#96) with co s t = $3 .0/ sec
3805 ,061 Sets the length ’ s f i n i s h e d so f a r to 0 .0
3848 ,321 Moves Gr id l e t from Art i f i c ia lEU Res Munich ( ID \#96) to

Art i f i c ia lEU Res Munich ( ID \#96) with co s t = $3 .0/ sec
4844 ,131 Sets the length ’ s f i n i s h e d so f a r to 0 .0
4878 ,181 Moves Gr id l e t from Art i f i c ia lEU Res Munich ( ID \#96) to

Art i f i c ia lEU Res Munich ( ID \#96) with co s t = $3 .0/ sec
5095 ,151 Sets the length ’ s f i n i s h e d so f a r to 0 .0
5225 ,341 Moves Gr id l e t from Art i f i c ia lEU Res Munich ( ID \#96) to

Art i f i c ia lEU Res Munich ( ID \#96) with co s t = $3 .0/ sec
6338 ,441 Sets the length ’ s f i n i s h e d so f a r to 0 .0
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6468 ,791 Moves Gr id l e t from Art i f i c ia lEU Res Munich ( ID \#96) to
Art i f i c ia lEU Res Munich ( ID \#96) with co s t = $3 .0/ sec

7370 ,682 Sets the length ’ s f i n i s h e d so f a r to 0 .0
7445 ,402 Moves Gr id l e t from Art i f i c ia lEU Res Munich ( ID \#96) to

Art i f i c ia lEU Res Munich ( ID \#96) with co s t = $3 .0/ sec
8642 ,752 Sets the length ’ s f i n i s h e d so f a r to 0 .0
8695 ,632 Moves Gr id l e t from Art i f i c ia lEU Res Munich ( ID \#96) to

Art i f i c ia lEU Res Munich ( ID \#96) with co s t = $3 .0/ sec
8695 ,632 Sets the submiss ion time to 8695 ,632
8695 ,632 Sets Gr id l e t s t a t u s from F a i l e d r e s o u r c e u n a v a i l a b l e to

InExec
8695 ,632 Sets the execut ion s t a r t time to 8695 ,632
8695 ,802 Sets Gr id l e t s t a t u s from InExec to Success
8695 ,802 Sets the wa l l c l o ck time to 0 ,17 and the ac tua l CPU

time to 0 ,17
8695 ,802 Sets the length ’ s f i n i s h e d so f a r to 4200 .0

Now we can analyze the output for these 31 Users:

• from User 71 to User 81 the first ten gridlets are submitted to Res Budapest and
the other five to Res Athens, for both the rating is low (700 MIPS) so the cost for
processing gridlets is always equal to 21s. The gridlet is submitted to the resources
with indeces equal to 8 and 9, in that case these indeces correspond to Res Budapest
and Res Athens because if we check the list of available resources we can see that
Res Dublin (Resource ID 51) and Res Munich (Resource ID 96) fail.

• from User 81 to User 101 the first ten gridlets are submitted to Res Munich and the
last five to Res Budapest. In this case for each user the first ten gridlets are submitted
to Res Munich, but when this receives the gridlets, it is out of order, so the gridlets
will be resubmitted many times, until Res Munich works again (Listing 5.20). This
causes a delay, because the gridlets are processed after the resource recovery (in this
case only 2 hours, but sometimes it can be more).
Here the cost for processing gridlets is different, because Res Munich has a high rating
(80000 MIPS), while Res Budapest only 700 MIPS, so for each user the cost of the
first ten gridlets is low (maximum 4s), while for the last five is high (21s, like for the
gridlets submitted to Res Budapest by the users between #71 and #81).

Comparing the output of this simulation, with the output of the simulation with high
duration time of failure, we can say that the performances decrease when the failure time is
2 hours because the gridlets are submitted to resources with low rating, so the cost is greatest.
Moreover in this last testbed the gridlets are submitted to Res Budapest and Res Athens,
that are connected with the routers with a low baud rate, this causes an increase of latency.

from User 102 to User 124 the gridlets are submitted to Res Athens (first 10) an to
Res Glasgow (last 5). In the previous simulations (high duration time of failure) the gridlets
were submitted to Res Lisbon and Res Glasgow, because six resources are out of order.
The indexes are 10 and 0, so if we go to check the list of available resources we note that
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Res Dublin is out of order so the resource number 10 will be Res Athens and the resource
with index 0 corresponds to Res Glasgow.
The features of Res Lisbon and Res Athens are very similar, same rating and same baud rate
connection with the routers, they differ only in number of machines. Consequently there are
no different performances for these 23 users with high or medium duration time of failure.
Obviously, the first ten gridlets submitted have always a greater cost than the last five, due
to the rating of the machines.

5.3.3. Third testbed: medium duration of resources failure and high init time

In this testbed we use the same settings of the second testbed, so the duration of failure is
again 2 hours, but we set the variable init time for begin to submitted gridlets at 120 minutes
plus variable ”pause” that is set to 10 minutes, so totally 130 minutes (Listing 5.23). (we
wait this time because we have many resources, so we allow GIS to receive registrations from
resources. Otherwise, the resource does not exist when we submitted7).

Listing 5.23: Setting init time to 130 minutes

i n t PAUSE = 10∗60 ; // 10 mins
i n t i n i t t i m e = PAUSE + (120∗60) ; //120 mins

Analyzing the output we note that all gridlets are submitted to the resources that we are
setting in the Table 5.4, only the users from User 30 to User 41 send the gridlet #0 to a
resource different than what we had decided. So the initial submitted gridlets signal is for
all users at 7800 seconds (Listing 5.24), all gridlets are submitted after the recovery of the
resources, so they are sent to the correct destination.

Listing 5.24: Initial submitted gridlets after 7800 seconds

S ta r t i ng GridSim ve r s i o n 4 .0
E n t i t i e s s t a r t e d .
A r t i f i c i a l E U U s e r 5 6 : i n i t i a l submitted GRIDLET event w i l l be at

c l o ck : 7800 . Current c l o ck : 0 . 0
A r t i f i c i a l E U U s e r 6 2 : i n i t i a l submitted GRIDLET event w i l l be at

c l o ck : 7800 . Current c l o ck : 0 . 0
A r t i f i c i a l E U U s e r 6 4 : i n i t i a l submitted GRIDLET event w i l l be at

c l o ck : 7800 . Current c l o ck : 0 . 0
[ . . . . ] // f o r a l l users , we have an i n i t i a l submitted g r i d l e t event

.

For users between #30 and #41 the gridlets have to be submitted to Res Oslo (the first
ten) and Res Stocklom (the last five), but if we check the output we note that the gri-
dlets are sent to the correct resource with the exception of gridlet#0 that is submitted to
Res Stocklom. This is right because if we check the output we note that the gridlet #0
is sent when Res Helsinki (Resource ID 61) is not in the list of available resources, so the
resource with index equal to 3 is Res Stocklom (Listing 5.25).

7In our grid network 10 minutes is enough for the registration of resources, so there is no problem with more
than 120 minutes
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Listing 5.25: Resource available output for User 36

User in c o n s i d e r a t i o n : A r t i f i c i a l E U U s e r 3 6
Total number o f l o c a l r e s o u r c e s a v a i l a b l e : 4
Total number o f g l o b a l r e s o u r c e s a v a i l a b l e : 12
Total number o f r e s o u r c e s a v a i l a b l e : 16
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 0 ] = 51
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 1 ] = 56
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 2 ] = 66
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 3 ] = 71
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 4 ] = 81
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 5 ] = 86
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 6 ] = 91
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 7 ] = 96
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 8 ] = 101
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 9 ] = 106
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 1 0 ] = 111
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 1 1 ] = 116
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 1 2 ] = 121
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 1 3 ] = 126
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 1 4 ] = 131
A r t i f i c i a l E U U s e r 3 6 : r e s ou r c e [ 1 5 ] = 136
ACTUAL USER: A r t i f i c i a l E U U s e r 3 6
ACTUAL INDEX: 3
A r t i f i c i a l E U U s e r 3 6 : Sending Gr id l e t \#0 to

Art i f i c i a lEU Res Stock lom at c l o ck : 8221.150144000005

The following listing shows the output for the User 36, gridlet #0 as the last five gridlets
are submitted to Resource ID 71 that correspond to Res Stocklom (Listing 5.26).

Listing 5.26: Third testbed: medium duration of resources failure and high init time

============== OUTPUT f o r A r t i f i c i a l E U U s e r 3 6 ===========
Grid let ID STATUS ResourceID Cost CPU Time Latency

0 Success 71 6 .0 2 .0 342.1400000001122
1 Success 66 6 .0 2 .0 336.9699999999993
2 Success 66 6 .0 2 .0 334.7299999999504
3 Success 66 6 .0 2 .0 332.1999999998952
4 Success 66 2.1899999999 0.72999999997 329.66999999984
5 Success 66 6 .0 2 .0 327.0499999997828

10 Success 71 6 .0 2 .0 313.5699999994886
6 Success 66 2.1299999999 0.70999999997 324.42999999972

11 Success 71 2.4599999999 0.81999999997 310.26999999941
7 Success 66 6 .0 2 .0 321.8099999996684

12 Success 71 2.1599999999 0.71999999997 307.19999999934
8 Success 66 2.2199999999 0.73999999997 319.11999999960
9 Success 66 6 .0 2 .0 316.4099999995505

13 Success 71 6 .0 2 .0 6.630032000146457
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14 Success 71 0.3299999998 0.10999999995 23.590036000516
====================================================

5.3.4. Fourth testbed: duration of resources failure equal to 1 hour and high
init time

In this testbed we decrease the duration of failure to 1 hour, and we set the variable init time
to begin to submitted gridlets at 120 minutes plus ”pause” that is set to 10 minutes, so totally
130 minutes like in the previous testbed.
What happens?
All the gridlets now are sent after the recovery of all resources, so in this case, unlike the
previous scenario, these are submitted to the correct resource, also the users between #30
and #41 submitted the gridlet #0 to Res Oslo.

With regard to the Java code, remember that we need to set the variable ”failureLength-
Pattern”, so that the duration of failure lasts only 3600 seconds. Listing 5.27 shows the
output for User 36, note that gridlet #0 is submitted to Resource ID 66, equal to Res Oslo.

Listing 5.27: Fourth testbed: duration of resources failure equal to 1 hour and high init time:
output for User 36

============== OUTPUT f o r A r t i f i c i a l E U U s e r 3 6 ===========
Grid let ID STATUS ResourceID Cost CPU Time Latency

0 Success 66 6 .0 2 .0 336.7399999999943
1 Success 66 2.1899999999 0.72999999997 331.93999999988
2 Success 66 2.6399999999 0.87999999997 329.74999999984175
3 Success 66 3.9899999999 1.32999999998 327.33999999978914
4 Success 66 2.0999999999 0.69999999997 324.949999999737

10 Success 71 4.1399999999 1.37999999998 310.4099999994196
5 Success 66 3.9899999999 1.32999999998 322.53999999968437

11 Success 71 6 .0 2 .0 307.8499999993637
6 Success 66 1.7399999999 0.57999999996 320.139999999632
7 Success 66 6 .0 2 .0 317.7399999995796

12 Success 71 0.7799999998 0.25999999996 305.1499999993048
8 Success 66 1.4399999999 0.47999999996 315.3399999995272

13 Success 71 1.4699999999 0.48999999996 302.2499999992415
9 Success 66 4.7099999999 1.56999999999 312.8799999994735

14 Success 71 3.7200119999 1.24000399998 9.640036000211694
====================================================

5.3.5. Fifth testbed: low duration of resources failure

We use the traditional network ”Artificial EU Grid”,and we do a simulation like in first and
second testbed but using a low time of failure. The test has been executed two times, with
different values of the variable ”failureLengthPattern”, however the results are the same:
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• how long it is out of order = 15 minutes (900 seconds).

• how long it is out of order = 30 minutes (1800 seconds).

In this test the variable init time to begin to submit gridlets has a random value between
5 and 10 minutes, like in the testbed with medium duration of failure, in this way we can
compare the results.
For this testbed, the behavior of the gridlets on the grid network is not reported for each
group. This because analyzing the output file we can note that the users send the gridlets
to the same resources of the testbed with medium duration of failure. Table 5.9 shows
effectively at which resource the users submitted the gridlets, in the three simulations: low,
medium and high duration of failure.

Group of users Low time fail Medium time fail High time fail

from User 0 to User 9 Res Glasgow Res Glasgow Res Glasgow

from User 10 to User 29 Res Glasgow Res Glasgow Res Oslo
Res Oslo Res Oslo Res Stocklom

from User 30 to User 41 Res Oslo Res Oslo Res Warsaw
Res Stocklom Res Stocklom Res Vienna
Res Warsaw Res Warsaw

from User 42 to User 71 Res Vienna Res Vienna Res Budapest
Res Berlin Res Berlin Res Athens

fromUser 72 to User 81 Res Budapest Res Budapest Res Milano
Res Athens Res Athens Res Madrid

from User 82 to User 101 Res Munich Res Munich Res Milano
Res Budapest Res Budapest Res Madrid

from User 102 to User 124 Res Glasgow Res Glasgow Res Glasgow
Res Athens Res Athens Res Lisbon

Table 5.9.: Comparison 3 testbed: where gridlets are submitted?

As already mentioned the first 2 columns are equal, this is because we submitted the
gridlets more or less in the same time (between 5 and 10 minutes), moreover the gridresource
failure signals are sent for all resources at the same time (180 seconds, 3 minutes).

The duration of failure in this fifth testbed, one time is 900 seconds (15 minutes) and one
time is 1800 seconds (30 minutes), but in both case the gridlets are submitted to the same
resources because:

• The resources fail after 3 minutes, and minimum is recovered at time 18 minutes (with
15 minutes of failure).

• The gridlets are send between 5 and 10 minutes so when the resources are down, the
list of available resources in the two test are the same.

• Changing the variable ”init time” to 20 minutes (while ”failureLengthPattern” doesn’t
change and is equal 900 seconds), the gridlets are submitted to different resources,
this because are sent when some failure procedures are finished and some not, so the
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resource is in the list of available resources. If we use the same ”init time” but we
set the duration of failure equal to 1800 seconds, the grid network has more or less
the same behavior of the tests with high duration of failure, because the gridlet are
submitted after 20 minutes and all resources are out of order, the first gridresource
recovery signal can arrive only after minimum 33 minutes (180s + 1800s).

In our simulation, however, it is not important to do tests when resources are working (they
probably are interesting for check the correct functioning of the network), the important
thing is to observe the behavior when we have small time failures, with the original settings
of the network, so in ”Artificial EU grid”, we have proved that the situation doesn’t change
with respect to the situation with a medium duration of failure.

We increase the hours of failure for the ”medium duration failure” test. We can consider
2 hours, while a low time of failure would be something like thirty or fifteen minutes. After
the simulation made with ”failureLengthPattern” equal to seven hours, we note that the
behavior is the same of the grid network with high duration fail (the resources fail and the
simulation finishes before the recovery of any resource), so 7 hours can be considered a high
time of fail in this case, while we can consider 2 hours a great time for the class ”medium
fail time”.

Another test that we made is a simulation with a time of failure setting to 26 hours, so
for more than one day, the six resources that we want to fail are out of order. The output
confirms the expectations, in fact the grid network behaves like in the ”high duration failure”
testbed, because all resources that are failed received a grid resource recovery after 26 hours,
when all gridlets are already worked from other resources.
So for the analysis of high duration failure, we can consider ten hours a great value for the
variable ”failureLengthPattern”.

The last test is a simulation that confirms the behavior of grid network. In this testbed we
submitted the gridlet after a time between 5 and 10 minutes, as set in the variable init time,
while the grid resource failure signal is set to 36000s (10 hours) (refers to Listing 5.28). The
duration of failure is low (1800 seconds, 30 minutes), however, as we expected, we will see
that this feature is not very important, because all gridlets are submitted before the failure
of the resources.

Listing 5.28: Setting: submitted the gridlets before the failure of the resources

fa i lu reTimePatte rn = 18000;
f a i l u r eLengthPat t e rn = 1∗1800;

[ . . . . ]
i n t PAUSE =5∗60; // 5 mins
Random random = new Random( ) ;
i n t i n i t t i m e = PAUSE + random . next Int (5∗60) ;

So it is obvious that all gridlets are submitted to the correct resources that we had set
(refers to Table 5.4), this is due to the fact that when users submitted them, the list of
available resources is complete, no resources fail.
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6.1. Simulation analysis

In the previous chapter, we show many simulations based on the failure of the resources. In
this section we summarize and compare in an overall view the output of various simulations,
to see what happens in a large grid scenario with different failures of resources.
There is no reference to the test where there is only one gridlet, because we use it only to
introduce the Artificial EU Grid, but our goal is to study large scale scenario, so we will
consider the following scenarios:

1. single point of failure

2. set of failures

3. set of failures with custom times of failure

For each of these three scenario, we have already analyzed the outputs of simulation, so we
know the behavior of each user (remember that the users are gathered in groups of users),
but now we want to have a general view of the three scenario and compare them also with
scenario without failure. Obviously, the last scenario (set of failure with custom time of
failure) is treated in a certain way because it is compose of five testbeds, that depending on
settings, can get closer to ”single point of failure ” or ”set of failure” scenario.

6.1.1. Single point of failure simulation

In the first test only Res Helsinki fails, some gridlets are submit while the resource is down,
some other gridlets are submit after the recovery of the resource. In general when there is
a failure of the resource, the gridlets destined to this resource are sent to the next available
resource. For example for User 34 the first four gridlets are submit to the next resource
available respect the resource setted, because they are submitted while Res Helsinki is out
of order. Now we compare the cost of processing gridlets in the same scenario, but one time
without the fail of Res Helsinki, and one time with the failure of it (refers to chapter 5.1). In
Table 6.1 we can see the comparison of average costs for processing gridlets for each group
of users.

Graph 6.1 is reports the table in a graphic way, so it is easier to see that the costs are
more or less the same without failure or with the failure of Res Helsinki.

In the group of users from #10 to #29, we can note that the cost is greater with the
scenario without failure. This is because for this group of users the first ten gridlets are
submit to Res Warsaw and the other five to Res Vienna, while in ”single point of failure”
scenario the gridlets are submit to these same resources, except the first three gridlets that
are sent to Res Vienna, due to the failure of Res Helsinki. Res Vienna as a rating higher
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From User to User Cost without failure Cost with Res Helsinki fails

from User 0 to User 9 6 6

from User 10 to User 29 11,248 8,610

from User 30 to User 41 4,533 4,962

from User 42 to User 71 21 15,076

from User 72 to User 81 8,010 12

from User 82 to User 91 11 14,980

from User 92 to User 101 11 14,800

from User 102 to User 113 6 6

from User 114 to User 124 3,242 2,828

Table 6.1.: Comparison cost without and with failure of Res Helsinki in ”single point of
failure” scenario

than Res Warsaw so the costs for the first three gridlets are less in ”single point of failure”
scenario. This, leads to a slight decrease of average cost in ”single point of failure” scenario.

It is also evident in the graph that the cost for users from #42 to #71 is greater in the
scenario without failure.

Figure 6.1.: Graph: Comparison cost without and with failure of Res Helsinki in ”single
point of failure” scenario
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Infact, in this group, these users have to submit gridlets to Res Budapest and to Res Athens
that have small rating (700 MIPS) and a small number of machines so the average cost is
equal to 21s. In the ”single point of failure” scenario, due to Res Helsinki failure the gridlets
are sent to Res Athens and Res Milan. This last has a high rating (49000 MIPS) and a high
number of machines, so the cost of the gridlets processing by this resource (for every user
the last five) is low. This causes a decrease of the average cost for this group of users.

For the group of users between #72 and #81 the cost bar of ”single point of failure” sce-
nario is greater. When there isn’t failure the gridlets are submit to Res Milan and Res Pisa.
When Res Helsinki is out of order, the gridlets are sent to Res Pisa and Res Madrid, so
the cost in this case increases because ten of fifteen gridlets are sent to Res Pisa that has a
low rating (1000 MIPS), while in the scenario without failure, only the last five gridlets are
submit to this resource, so the average cost is less.
Note that Res Milan and Res Madrid have almost the same features.

Users between #82 and #101, in the scenario without failure, submit the gridlets to
Res Madrid and to Res Lisbon. With the failure of Res Helsinki the gridlets are submit to
Res Lisbon and Res Paris, like the previous group of users, the cost in this case increases,
because ten gridlets on fifteen are sent to Res Lisbon that has a low rating (700 MIPS), while
in the scenario without failure, only five gridlets are sent to Res Lisbon. For this reason the
average cost is greater in the ”single point of failure” scenario (refers to 6.1).

The graph 6.1 shows that the cost for processing gridlets in the ”Artificial EU Grid”, in
general, is equals or a little bit greater in the scenario with a single point of failure. Only in
two group of users this trend is reversed.

Table 6.2 shows the comparison of average latency without failure and with a single point
of failure, so Res Helsinki is down.

From User to User Latency without failure Latency with Res Helsinki fails

from User 0 to User 9 6277,639 5971,241

from User 10 to User 29 1227,045 1411,775

from User 30 to User 41 905,271 848,288

from User 42 to User 71 1353,058 1298,832

from User 72 to User 81 1362,220 4799,388

from User 82 to User 91 12492,746 13528,455

from User 92 to User 101 12367,32500 12860,996

from User 102 to User 113 6433,074 6251,193

from User 114 to User 124 11908,29900 12466,366

Table 6.2.: Comparison latency without and with failure of Res Helsinki in ”single point of
failure” scenario

Like for the cost, also here we have calculated the average latency for each group of users.
We can note that the average latency for the users is more or less the same, we have a
significant difference only for the users between #72 and #81.
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Analyzing the output, we can note that without failure, the gridlets are submit to Res Milano
and to Res Pisa, but if Res Helsinki fails the gridlets are submit to Res Pisa and Res Madrid.
But we have to remember that Res Madrid is connected to Router10 that is connected with
a low baud rate (0,00001 GB/s) with Router9 and Router11, so when the gridlets are submit
to this resource we have an increase of the latency. Graph 6.2 shows the results in a graphic
way of Table 6.2. We can see that all bars have approximately the same height, except, as
mentioned before, for the group of users between #72 and #81 that have different values of
average latency in the two scenario.

Figure 6.2.: Graph: Comparison latency without and with failure of Res Helsinki in ”single
point of failure” scenario

6.1.2. Set of failure simulation

In this simulation six resources fail: Res Dublin, Res Helsinki, Res Warsaw, Res Munich,
Res Pisa, Res Brussels. Some gridlets are submit while the resources are down, only Res Pisa
is recovered before the end of simulation. Refers to Table 5.4 (Chapter 5.2) to know at which
resources, the group of users submits their gridlets.
Table 6.3 shows the different costs for the scenario without failure and for the scenario with
a set of failures.

Graph 6.3 reports the table so it is more easier to see the trend of average cost without
failure or with the failure of Res Helsinki.

In the group of users between #0 and #9, if there are no failures, the gridlets are sub-
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From User to User Cost without failure Cost with set of failures

from User 0 to User 9 6 6

from User 10 to User 29 4,320 1,594

from User 30 to User 41 3,038 10,528

from User 42 to User 71 10,786 21

from User 72 to User 101 4,320 3,286

from User 102 to User 124 16 14

Table 6.3.: Comparison cost without and with a set of failures

mit to Res Dublin, if we consider the scenario ”set of failures” the gridlets are submit to
Res Glasgow. These resources have the same features, so the cost in the two different sce-
narios is the same and is equals 6s.

In the group of users between #10 and #29 the gridlets are submit to Res Glasgow and
to Res Helsinki. In the case of ”set of failures” scenario the gridlets are submit to Res Oslo
and to Res Stocklom due to the fact that Res Dublin and Res Helsinki are out of order.
These last resources have more machines than the first two, for this reason the cost in the
scenario without failures is greater than in the scenario with failures.

In the graph we can see that, for users between #30 and #41 the cost for processing
gridlets in the scenario with failures is greater than the scenario without. This is due to the
fact that in this last scenario the gridlets are sent to Res Oslo and to Res Stocklom that
have a good rating (49000 MIPS) and a good number of machines, while in the scenario
with failures the gridlets are submit to Res Moscow and to Res Warsaw that has a low
rating (1000 MIPS) and few machines. This fact causes an increment of average cost in the
”set of failure” scenario. Note that the average cost without failure is 3,038s that is very
similar to the average cost of the previous group of users (4,320s). Infact if we check the
resources where the gridlets are submit we can note that they more or less have the same
computational power.

Also the users between #42 and #71 have an average cost greater in the scenario with
failure than in that without. The cause, like in the previous group of users, is the compu-
tational power of the resources. In the testbed without failure the gridlets are submit to
Res Warsaw and to Res Vienna (medium computational power) while in the testbed with a
set of failures the gridlets are sent to Res Budapest and to Res Athens that each one has a
rating of 700 MIPS, so the average cost increases to 21s.

The users between #72 and #101 have more or less the same average cost in the two
different testbeds. This is because in the testbed without failure the gridlets are sent to
Res Berlin and to Res Munich, while in the testbed with failure are sent to Res Milano and
to Res Madrid. These resources have approximatly the same features, so the average cost
in the two testbeds are very similar. The costs are low because these four resources have an
high rating and number of machines.

In this last group of users (from #120 to #124) the average cost is a little bit low in the case
of testbed with failures. In the test without failure the gridlets are submit to Res Budapest
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(low rating) and to Res Dublin (high rating). In the testbed with failures, the gridlets are
submit to Res Lisbon and to Res Glasgow due to the failure of six resources, but in this case
Res Pisa is recovered so some gridlets are also submit to Res Madrid. Without the recovery
of Res Pisa the average cost would be the same because Res Lisbon has approximatly the
same features of Res Budapest, and Res Dublin the same of Res Glasgow, but with recovery
some gridlets are sent to Res Pisa that has an higher rating than Res Lisbon. This causes a
small decrease of average cost for ”set of failure” scenario.

Figure 6.3.: Graph: Comparison cost without and with a set of failures

Table 6.4 shows the comparison of average latency without failure and with a set of failures.

From User to User Latency without failure Latency with set of failures

from User 0 to User 9 8151,673 9104,547

from User 10 to User 29 11448,932 467,071

from User 30 to User 41 261,939 507,844

from User 42 to User 71 1094,686 1668,480

from User 72 to User 101 618,165 2791,910

from User 102 to User 124 11544,424 6021,168

Table 6.4.: Comparison latency without and with a set of failures

We can note from Table 6.4 and graph 6.4 that for the group of users from #10 to
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#29 there is a big difference of latency between the two testbeds. This, is due to the
fact that in the scenario without failures the gridlets are submit to Res Glasgow and to
Res Helsinki (Res Oslo and Res Stocklom respectively in the scenario with set of failure),
but the connection between Router0 and Router1 has a low baud rate (0.00001 GB/s),
and Res Glasgow is connected to Router1. The connection with a low baud rate causes an
increment of the average latency value. For this reason the average latency for the testbed
without failures is greater than the testbed with failures.

Also in the group of users from #102 to #104 there is a difference in the value of average
latency. It is always the baud rate value between connection that modifies the final average
latency. In the testbed without failures the gridlets are submit to Res Budapest and to
Res Dublin, both are connected to router with low baud rate, while in the testbed with
failures the gridlets are sent to Res Madrid, Res Lisbon and to Res Glasgow. So these last
two are connected to routers with a low baud rate, but Res Madrid is connected with an high
baud rate, these differences of connection cause a greater average latency (for this users) in
the testbed without failure.

Figure 6.4.: Graph: Comparison latency without and with a set of failures

6.1.3. Set of failure with custom time of failure

In this section we do not compare the results of the simulation without failures with the
results of the simulation with failures, but instead examine the fifth testbed to see the
behavior of the ”Artificial EU Network” when the failure time parameters are changed.
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Group Low Medium Medium 1 hour high
of duration duration duration duration duration

users high init time high init time
User 0 to User 9 6 6 6 6 6

User 10 to User 29 4,486 4,738 4,862 5,014 3,276
User 30 to User 41 5,452 5,390 2,908 3,298 10,474
User 42 to User 71 2,774 3,294 11,380 11,380 21
User 72 to User 101 15,169 13,321 3,632 3,446 4,216
User 102 to User 124 16 16 16 16 16

Table 6.5.: Comparison cost for the 5 testbed

Table 6.5 shows the average costs for processing gridlets for the six groups of users.
As we already mentioned in Chapter 5.3.5, analyzing the output files we can note that the
users sent the gridlets to the same resources in the ”testbed with medium duration of failure”
and in testbed with low duration of failure”. For this reason the second and third columns
have more or less the same values.

From User 42 to User 101 the average cost is completly different for the ”medium duration
testbed” and the ”medium duration testbed with high init time”, this is because in this
last testbed the gridlets are sent when the resources are already recovery. For users form
#42 to #71 (in ”medium duration testbed with high init time”) the gridlets are submit to
resources with a lower computational power and this causes an increase of the average cost.
For example, User 45 in medium duration testbed submits the gridlets to Res Vienna and to
Res Berlin (high computational power), in the medium duration testbed with high init time,
the user submits the gridlets to Res Warsaw and to Res Vienna, so the computational power
is lower and the average cost increases.

Note that, in ”medium duration testbed with high init time”, all gridlets are sent to the
resources established at the beginning, except gridlets #0 for group of users between #30
and #41 that are sent to a different resource respect that we had decided. In the following
testbed the duration of the failure is set to 1 hour, so all gridlets are submit to the correct
resources. The average costs for the fourth and fifth columns are more or less the same
because except for the gridlet #0, all gridlets are submit to the same resources in the two
different testbeds.

From User to User cost without 1 hour duration
failure high init time

from User 0 to User 9 6 6

from User 10 to User 29 4,320 5,014

from User 30 to User 41 3,038 3,298

from User 42 to User 71 10,786 11,380

from User 72 to User 101 4,320 3,446

from User 102 to User 124 16 16

Table 6.6.: Comparison cost without failures and with a medium duration and high init time
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In Table 6.6, it is possible to compare the average cost without failures of resources and
the average cost of ”1 hour duration, high init time”. These values are similar because in this
last testbed all gridlets are submit when the resources are recovered, so the grid network is
completly available. Note that the average costs are similar but the processing of the gridlets
finishes later in the ”1 hour duration, high init time” because the gridlets are submit later.

The testbed ”high failure duration” for users between #30 and #101 has different values
for average cost compared to testbeds with medium and low failure duration. More precisly:

• users from #30 to #71, in ”high duration failure” have a huge average cost because the
gridlets are submit to Res Warsaw, Res Vienna, Res Budapest and Res Athens that
have low rating, this causes an increase of the cost for processing gridlets.

• users from #72 to #101 have a small average cost for processing the gridlets because
them are submit to Res Milan and Res Madrid that have a good rating, so the average
cost is lower than the other two testbeds.

Figure 6.5.: Graph: Comparison cost for the 5 testbed

In the graph 6.5 the purple line shows the trend of the average cost for the testbed ”high
failure duration” . Note the high peak with respect to the other lines for the group of users
between #30 and #41 and between #42 and #71. For the users between #72 and #101
note the low peak with respect to the other tests due to the high rating of the machines that
process these gridlets.
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Note also that in all testbeds the average cost for the first group of users is equal 6s and for
the last group is equals 16s. It’s obvious because, for the first group, in all five testbeds,
the gridlets are submit to Res Dublin or Res Glasgow (depends if Res Dublin fails or not),
these two resources have the same features so the average cost is the same for all testbeds.
For the last group of users, in all five testbeds, some gridlets are submit to Res Budapest,
Res Athens and Res Lisbon, the other gridlets to Res Dublin and Res Glasgow, depending
on the resources that are out of order. The first three resources have the same performance
as the last two, consequently the average cost for this group of users is the same in the five
testbeds.

6.2. Considerations on simulations

After several simulations, with gradual changes of the grid network parameters, we can
extrapolate some conclusions. Some of these confirm what we expect.

1. To modified the baud rate between 2 routers we have to change the value in the
”network thesis.txt” file. If we decrease the baud rate between two routers and gridlets
travel this link, the value of latency increases. Obviously, if we set an high baud rate,
the latency values for those gridlets that travel the link decreases.

2. In the GridSim toolkit it is possible to change the value of baud rate between router
and resource. We note that if we decrease this baud rate the values of latency for the
gridlets increase, but we can also notice that if a user has to submit 15 gridlets, the
latency decreases from the first to the last gridlet.

3. It is possible to change the rating value for the machines of the resource. Table 4.1
shows the rating for each resource, some resources have a high rating (49000 MIPS)
some others have low rating (700 MIPS). The rating is the number of instructions per
second that the processor of the machine can execute. Obviously, the higher it is, the
lower the cost for processing gridlets, and vice versa..

4. After some tests, we see that, if the rating of machine is set very low, then the latency
has a big value, and if we have 15 gridlets the latency increases from the first to the
last gridlets1

5. It is possible to set the number of processors for the machines of the resource; the
greater the number of processors, the lower the value of latency. If we have a very
small grid network, with 1 user, 1 resource and 1 machine (with 3 processors), and
the user has to submit 3 gridlets, then these gridlets have the same latency (if low or
high depends on the rating of processors). But if the user has 5 gridlets to submit, the
latency for the first three is the same, for the fourth and fifth it increases.2

1The tests, were done keeping a low baud rate between router and resource (like in point 2), and a very low
rating for the machines of the resources. So, if with low baud rate, the latency should decrease from the
first to the last gridlet, mixed with a very low rating happens the contrary, it increases from the first to
the last gridlet submit.

2This usually what happens, but the values of latency depends also from rating of processor, baud rate of
the connection and size of the gridlet
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6. If the user submits some gridlets to a resource and this resource fails while these
gridlets are processed, then the user resubmits the gridlets to the same resource until
it is recovered.

Scalability is one of the main characteristics of the grids and indicates the system’s ability
to grow and decrease according to the needs. Through GridSim toolkit, it is easy to scale by
adding to the network ”Artificial EU Gid” resources in places where we want and increase
the computing power of the network. In our simulations the network ”Artificial EU Grid”
can expand simply by connecting routers, resources and users, in other words, we can pass
from a European grid network, to a network that covers the entire world. However, the
architecture of the ”Artificial Eu Grid” is not changed for the simulations carried out in
this project, so we studied the behavior with the original network without failures and the
network with failures (ie with fewer resources available).

With the classes of GridSim toolkit that support the failures, the dependability of the
system is always supported, but obviously, there are changes in system performance and
user satisfaction. Remember that we have set the GridSim, so that when a failure occurs,
the works assigned to the resource that fails are sent to the next available resource. Section
6.1.1 shows the difference between the scenario without failure and with a single failure. The
dependability is guaranteed also when Res Helsinki fails, because the system continues to
work normaly, but the gridlets are submits to different resources respect those we had estab-
lished. If we check the latency we note that there isn’t difference between the two scenario,
only the cost for processing gridlets changes for some users but not in a excessive way. In
section 6.1.2 a set of failure scenario is comapred with the scenario without failures. Also
here, the failures are isolated and the correct functioning of the grid network is guaranteed,
but in this case gridlets are submit in some case to resources with high computational power
and some time with low computational power, so the cost and the latency are different in the
two scenario (refers to graphs 6.3 and Table 6.4). Finally, in the section 6.1.3 the Table 6.5
and the graph 6.5 show the comparison between the five tests executed with custom time
of failure duration. As we already mentioned the cost with a low and high failure duration
are more or less the same. It is interesting to note that we can customise the simulation as
we want: if a set of failures occurs but we want to submit the gridlets to the established
resources, we must wait for recovery of all resources that failed. This is the test with 1 hour
duration of the failure and high init time (the time when the users begin to submit gridlets).
Refers to Chapter 5.3.4. The Table 6.6 proves the equality of the costs when we submit the
gridlets to the resources established, but while waiting for all of the resources to be recovery,
the gridlets will be sent to the resources and executed later (hence, the time of senting and
receiving gridlets is higher). With an high duration of failure, the dependability is guaran-
teed, and as we expected the cost for processing gridlets is higher for some users because
resources with high computational power fail and the gridlets are submit to resources with
low computational power, this causes the increase of the average cost.
Applying ”Artificial Eu Grid” network we can recommend some things about the large-scale
networks. Simulating a large-scale network, the number of resources and machines is very
high, then, the network is heterogeneous, so we haven’t only machines with good power.
Obviously, the possibility of failure of many resources is very high, so to maintain similar
performance of the ideal network with no failures, we should have always in each Regional-
GIS, resources with the same computational power. This because if one or more resources
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fail, users can submit the gridlets to resources that have the same features of the resources
that are out of order and so we haven’t a decrease of performance.
Configuring the large grid network with the GridSim toolkit, we can manage resources, ma-
chines and their power as we want (thanks to reconfigurability provided by the modified
toolkit). This allows us to carry out many experiments and configure the network grid to
reach the best performances. For example, after several simulation we can know where place
resources with high computational power and where place resources with low power for have
an increase of performances also when a failure happens.
Is always important to try to deploy the workload on all resources, and if we have the pos-
sibility, is better to submit big jobs on the most powerful resources, in this way we can have
a less cost for the elaboration and a less latency. This can be done manually through the
GridSim toolkit with the changes made, because we can decide which jobs sending to certain
resources.
In a large grid network, ensuring reliability is fundamental for prevent coordinated and dis-
tributed attacks. So in the construction of the network, a router that are connected many
resources must be reach by multiple connections, this because if a failure interrupts a con-
nection, we can reach this by using other connections, without latency or diversions of work
on other resources.
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The primary goal of this project is to simulate a large grid network, ”Artifcial EU Grid”
with many resources, machines and users with varied requirements and study scalability of
systems, efficiency of resources, satisfaction of users and the dependability of the system.

GridSim is the toolkit used to do the several testbeds that simulate the grid network. As
mentioned in Chapter 3, the toolkit was modified to adapt to our needs. With calibration of
some parameters we can customize the network as we want, for example, if a user actually
submits the gridlets to Res Budapest, but he needs more computational power so he submits
them to Res Munich, it is sufficent to just change the index of the resource in the java code.
The toolkit is very flexible and it allows to set heterogeneous types of resources. In ”Artificial
EU Grid” all resources have a different rating, different number of machines1 and different
baud rate connection (Refers to Table 4.1).

The resources can be located in any time zone, in ”Artificial Eu Grid” they are located
throughout Europe. Very important for this project is the possibility to specify network
speed between router and between resource, in Chapter 6.2 we saw the behavior of latency
when there are low connections and where there are fast connections.

There is no limit on the number of application jobs that can be submitted to a resource.
However we use a big number of gridlets, but without overdo, because there have been many
testbeds, and each testbed take a lot of time for the simulation. A large number of gridlets
and large numbers of users and resources cause a high simulation time. If we have a thousand
gridlets we need a machine with a good computational power. Simulations performed on the
network ”Artificial EU Grid”, where each of the 125 users submit 15 gridlet (so 1875 gridlet
total), last an average of 10 minutes2

GridSim Toolkit provides the trace function, that is very useful to know in the simulation
made the behavior of the resources and the users. For the users that we want, we can enable
the trace function, that after the simulation builds a file for each user, where is possible to
see when the gridlets are created, when they are sent, to which resource they are sendt and
when they are received.

With the GridSim toolkit, it is possible to perform scheduler performance evaluation in
a repeatable and controllable manner as resources and users are distributed across multi-
ple organizations with their own policies. The results confirm the initial expectations, the
dependability is ensured by the classes of GridSim dedicated to managing failures. For ex-
ample, it’s clear that if we increase the performance of resources, the cost to process gridlets
decreases, the simulations confirm this. The considerations in section 6.2 confirm what we

1For simplicity, the number of processors for each machine is the same. It was changed only in some testbeds
to check the behavior of the grid network when a machine has many processors and when it has only one.

2Simulation performed on a machine with memory equals 1 GB and Intel Core 2 Duo 2.16 GHz.
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expected with the exception of point two. But after several test (also on small scenario, that
are not reported in this thesis) we can confirm this behavior: when the baud rate between
resource and router is set low, the values of latency for the gridlets increase, and if a user
has to submit 15 gridlet, the latency decreases from the first to the last gridlet.

Numerous tests have been performed before reaching the simulations presented in this
thesis. These tests were performed on smaller grid networks, or on the ”Artificial EU Grid”
to evaluate the behavior with some parameters set, the results are not presented in this thesis
because they have not been fully analyzed and don’t cover the objective of the project. Surely,
however, are a good start for future development. We have seen that in the ”Artificial EU
Grid”, dependability is guaranteed, but for example we haven’t studied the behavior when
all resources fail3 in it. This test was performed, on a small grid network, the result is that
we must wait for the first resource recovery to begin to submit gridlets, this, depending on
the duration of failure, significantly increases the receving time of the gridlets for the users.
So a possible future development is the study of behavior of a large scale grid network with
all failed resources.
The tests in this thesis are based on the ”Artificial EU Grid” that is a large grid and its ”size”4

was increased to the maximum that the machine on which we perform the simulations could
support. Next step is to study the dependability on an even larger network with thousands
of users, machines and hundreds of resources. Our simulation has 1875 gridlets; it would be
useful to increase the number of these to see the behavior of the network and the increases
of the various execution times.
In ”Artificial EU Grid” we set to all resources a space shared allocation policy, so when a
gridlet fails it will be resubmitted to another machine, as future development we can make
the network even more heterogeneous, setting to some resources a time shared allocation
policy (in this way if some machines are available on the resource that has failed, the gridlet
is not resubmitted but continues its execution on these available machines).
Finally, the last future development, is to take advantage of the capabilities of GridSim
toolkit to create a network traffic. In fact, the toolkit contains a class named TrafficGenerator
that generates a background traffic, that which has not been explored in the Artificial EU
Grid.

3Pheraps in reality, it is improbable, but it would be useful to see what happens in this case
4With ”size” we intend the number of resources, machines, users and gridlets that belong to the grid network
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A. Appendix: modified code

A.1. Changes in User-Router connection

A.1.1. Original code

Listing A.1: Original Code: connect User-Router

[ . . . . ]
t r a c e f l a g = true ;

for ( int i = 0 ; i < num user ; i++)
{

St r ing userName = NAME + ” User ” + i ;

// a network l i n k a t t a c h e d to t h i s e n t i t y
Link l i n k 2 = new SimpleLink ( userName + ” l i n k ” , baud rate ,

propDelay , mtu) ;

// only keeps t r a c k a c t i v i t i e s from User 0
i f ( i != 0)
{

t r a c e f l a g = fa l se ;
}

GridUserFai lureEx03 user = new GridUserFai lureEx03 ( userName ,
l ink2 , pollTime , glLength , g lS i z e , g l S i z e , t r a c e f l a g ) ;

user . setGridletNumber ( t o t a l G r i d l e t ) ;

// l i n k t h i s user to a r o u t e r
St r ing routerName = null ;
i f ( random . nextBoolean ( ) == true )
{

l inkNetwork ( router0 , user ) ;
routerName = route r0 . get name ( ) ;
}

else
{
l inkNetwork ( router1 , user ) ;
routerName = route r1 . get name ( ) ;
}

// randomly s e l e c t which GIS to choose
int index = random . next Int ( g i s L i s t . s i z e ( ) ) ;
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RegionalGISWithFailure g i s = ( RegionalGISWithFailure ) g i s L i s t
. get ( index ) ;

user . setRegionalGIS ( g i s ) ; // s e t the r e g i o n a l GIS e n t i t y
[ . . . . ]

A.1.2. Modified code

Listing A.2: Modified Code: connect User-Router

[ . . . . ]
t r a c e f l a g = true ;

for ( int i = 0 ; i < num user ; i++)
{

St r ing userName = NAME + ” User ” + i ;

// a network l i n k a t t a c h e d to t h i s e n t i t y
Link l i n k 2 = new SimpleLink ( userName + ” l i n k ” , baud rate

propDelay , mtu) ;

// only keeps t r a c k a c t i v i t i e s from User 0
i f ( i != 0)
{

t r a c e f l a g = fa l se ;
}

GridUserFai lureEx03 user = new GridUserFai lureEx03 ( userName ,
l ink2 , pollTime , glLength , g lS i z e , g l S i z e , t r a c e f l a g ) ;

user . setGridletNumber ( t o t a l G r i d l e t ) ;

// l i n k t h i s user to a r o u t e r
St r ing routerName = null ;
RegionalGISWithFai lure1 g i s = null ;
int statement = 0 ; // v a r i a b l e f o r l i n k User−Router in the

swi tch−case be low
i f ( i <48)

{// f o r Users from 0 to 47 the v a r i a b l e s ta tement
=0;

statement =0;
}

i f (48<= i && i <=79)
{ // f o r Users from 48 to 79 the v a r i a b l e

s ta tement =1;
statement =1;

}
i f (80<= i && i <=87)

{ // f o r Users from 80 to 87 the v a r i a b l e s ta tement
=2;
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statement =2;
}

i f (88<= i && i <100)
{ // f o r Users from 88 to 100 the v a r i a b l e

s ta tement =3;
statement =3;

}
switch ( statement )
{ //Check the v a r i a b l e ” s ta tement ” and l i n k User to a

Router
case 0 :

l inkNetwork ( router2 , user ) ;
routerName = route r2 . get name ( ) ;
g i s = ( RegionalGISWithFailure1 ) g i s L i s t .

get (0 ) ;
user . setRegionalGIS ( g i s ) ;
break ;

case 1 :
l inkNetwork ( router3 , user ) ;
routerName = route r3 . get name ( ) ;
g i s = ( RegionalGISWithFailure1 ) g i s L i s t .

get (1 ) ;
user . setRegionalGIS ( g i s ) ;
break ;

case 2 :
l inkNetwork ( router4 , user ) ;
routerName = route r4 . get name ( ) ;
g i s = ( RegionalGISWithFailure1 ) g i s L i s t .

get (1 ) ;
user . setRegionalGIS ( g i s ) ;
break ;

case 3 :
l inkNetwork ( router7 , user ) ;
routerName = route r7 . get name ( ) ;
g i s = ( RegionalGISWithFailure1 ) g i s L i s t .

get (2 ) ;
user . setRegionalGIS ( g i s ) ;
break ;

default :
System . out . p r i n t l n ( ”Not a recogn i z ed t e s t

case . ” ) ;
break ;

}

System . out . p r i n t l n ( ) ;
[ . . . . ]
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A.2. Changes in Resource-Router connection

A.2.1. Original code

Listing A.3: Original Code: connect Resource-Router

[ . . . . ]
for ( int i = 0 ; i < to ta lResource ; i++)
{

// c r e a t e s a new g r i d resource
St r ing resName = NAME + ” Res ” + i ;
GridResourceWithFai lure r e s = createGr idResource ( resName ,
baud rate , propDelay , mtu , totalPE , totalMachines ,

ra t ing , s ched a l g ) ;

i f ( i \% 2 == 0)
{

t r a c e f l a g = true ;
}

else
{

t r a c e f l a g = fa l se ;
}

r e s L i s t . add ( r e s ) ; // add a resource i n t o a l i s t
r e s . setTrace ( t r a c e f l a g ) ; // record t h i s resource a c t i v i t y

// l i n k t h e s e GIS to a r o u t e r
St r ing routerName = null ;
i f ( random . nextBoolean ( ) == true )
{

l inkNetwork ( router0 , r e s ) ;
routerName = route r0 . get name ( ) ;
}

else
{

l inkNetwork ( router1 , r e s ) ;
routerName = route r1 . get name ( ) ;
}

// randomly s e l e c t which GIS to choose
int index = random . next Int ( g i s L i s t . s i z e ( ) ) ;
RegionalGISWithFailure g i s = ( RegionalGISWithFailure ) g i s L i s t .

get ( index ) ;
r e s . setRegionalGIS ( g i s ) ; // s e t the r e g i o n a l GIS e n t i t y

[ . . . . ]
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A.2.2. Modified code

Listing A.4: Modified Code: connect Resource-Router

[ . . . . ]
for ( int i = 0 ; i < to ta lResource ; i++)
{

St r ing resName = null ;
S t r ing routerName = null ;
RegionalGISWithFai lure2 g i s = null ;

//2 b a u d r a t e f o r l i n k Resource−Router
//1 high and 1 low . I s important . when a resource f a i l ,

p r o b a b l y
// I s en t the g r i d l e t to another resource wi th a low connect ion
double baud rate h igh= 1 ∗ 1000000000;
double baud rat low= 0.0001 ∗ 1000000000;
GridResourceWithFai lure r e s = null ;
// c r e a t e s a new g r i d resource
switch ( i )
{

case (0 ) :
resName = NAME + ” Res Dublin ” ;
r e s = createGr idResource ( resName ,

baud rate h igh , propDelay , mtu , totalPE ,
tota lMachines ,

rat ing , s ched a l g ) ;
l inkNetwork ( router0 , r e s ) ;
routerName = route r0 . get name ( ) ;
g i s = ( RegionalGISWithFailure2 ) g i s L i s t . get (0 ) ;
r e s . setRegionalGIS ( g i s ) ;

break ;

case (1 ) :
resName = NAME + ”Res Glasgow” ;
r e s = createGr idResource ( resName ,

baud rate h igh , propDelay , mtu , totalPE ,
totalMachines ,

ra t ing , s ched a l g ) ;
l inkNetwork ( router0 , r e s ) ;
routerName = route r0 . get name ( ) ;
g i s = ( RegionalGISWithFailure2 ) g i s L i s t . get (0 ) ;
r e s . setRegionalGIS ( g i s ) ;

break ;

[ . . . . ]
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case (17) :
resName = NAME + ” Res Brus s e l s ” ;
r e s = createGr idResource ( resName ,

baud rate h igh , propDelay , mtu , totalPE ,
tota lMachines ,

rat ing , s ched a l g ) ;
l inkNetwork ( router11 , r e s ) ;
routerName = router11 . get name ( ) ;
g i s = ( RegionalGISWithFailure2 ) g i s L i s t . get (4 ) ;
r e s . setRegionalGIS ( g i s ) ;
break ;

default :
System . out . p r i n t l n ( ”Not a recogn i z ed t e s t case . ” ) ;
break ;

}
i f ( i \% 2 == 0)
{

t r a c e f l a g = true ;
}

else
{

t r a c e f l a g = fa l se ;
}

r e s L i s t . add ( r e s ) ; // add a resource i n t o a l i s t
r e s . setTrace ( t r a c e f l a g ) ; // record t h i s resource a c t i v i t y

[ . . . . ]

A.3. Changes failure parameters

A.3.1. Original code

Listing A.5: Original Code: setting failure parameters

[ . . . . ]
for ( int i = 0 ; i < num GIS ; i++)
{

St r ing gisName = NAME + ” Regional GIS ” + i ; // GIS name

// a network l i n k a t t a c h e d to t h i s r e g i o n a l GIS e n t i t y
Link l i n k = new SimpleLink ( gisName + ” l i n k ” , baud rate ,

propDelay , mtu) ;

// HyperExponentia l : mean , s tandard d e v i a t i o n , stream
// how many r e s o u r c e s w i l l f a i l
HyperExponential fa i lureNumResPattern =
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new HyperExponential ( tota lMachines / 2 , totalMachines , 4) ;

// when they w i l l f a i l
HyperExponential f a i lu reTimePatte rn =

new HyperExponential (25 , 100 , 4) ;

// how long the f a i l u r e w i l l be
HyperExponential f a i l u r eLengthPat t e rn =

new HyperExponential (20 , 25 , 4) ; // b i g t e s t : (20 , 100 , 4) ;

// c r e a t e s a new Regional GIS e n t i t y t h a t g e n e r a t e s a resource
// f a i l u r e message accord ing to t h e s e p a t t e r n s .
RegionalGISWithFailure g i s = new RegionalGISWithFai lure ( gisName

, l ink , fai lureNumResPattern , fa i lureTimePattern ,
f a i l u r eLengthPat t e rn ) ;

g i s . se tTrace ( t r a c e f l a g ) ; // record t h i s GIS a c t i v i t y
g i s L i s t . add ( g i s ) ; // add i n t o the l i s t

// l i n k t h e s e GIS to a r o u t e r
St r ing routerName = null ;
i f ( random . nextBoolean ( ) == true )
{

l inkNetwork ( router0 , g i s ) ;
routerName = route r0 . get name ( ) ;
}

else
{

l inkNetwork ( router1 , g i s ) ;
routerName = route r1 . get name ( ) ;
}

[ . . . . ]

A.3.2. Modified code

Listing A.6: Modified Code: setting failure parameters

[ . . . . ]
for ( int i = 0 ; i < num GIS ; i++)
{

St r ing gisName = NAME + ” Regional GIS ” + i ; // GIS name

// a network l i n k a t t a c h e d to t h i s r e g i o n a l GIS e n t i t y
Link l i n k = new SimpleLink ( gisName + ” l i n k ” , baud rate ,

propDelay , mtu) ;

// how many r e s o u r c e s f o r each RegionaGIS f a i l
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int fa i lureNumResPattern= 2 ;

// how many machine f o r each resource f a i l
int failureNumMacPattern= 12 ;

// when the r e s o u r c e s w i l l f a i l
int f a i lu reT imePatte rn = 0 ;

// how long the f a i l u r e w i l l be
int f a i l u r eLeng thPat t e rn = 0 ;

switch ( i ) { // we s e t the 4 v a r i a b l e s as we want f o r each
RegionalGIS

case 0 : fai lureNumResPattern =1;
failureNumMacPattern =1;
fa i lu reTimePatte rn = 360 ;
f a i l u r eLengthPat t e rn = 1∗1000;

break ;

case 1 : fai lureNumResPattern =0;
failureNumMacPattern =0;
fa i lu reTimePatte rn = 390 ;
f a i l u r eLengthPat t e rn = 1∗1000;

break ;
}

// c r e a t e s a new Regional GIS e n t i t y t h a t g e n e r a t e s a resource
// f a i l u r e message accord ing to t h e s e p a t t e r n s .
RegionalGISWithFai lure3 g i s = new RegionalGISWithFai lure3 (

gisName ,
l ink , fai lureNumResPattern , fa i lureTimePattern ,
f a i lu reLengthPatte rn , failureNumMacPattern ) ;

g i s . se tTrace ( t r a c e f l a g ) ; // record t h i s GIS a c t i v i t y
g i s L i s t . add ( g i s ) ; // add i n t o the l i s t

// l i n k t h e s e GIS to a e s t a b l i s h e d r o u t e r
St r ing routerName = null ;
switch ( i ) {

case (0 ) :
l inkNetwork ( router0 , g i s ) ;
routerName = route r0 . get name ( ) ;
break ;
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case (1 ) :
l inkNetwork ( router1 , g i s ) ;
routerName = route r1 . get name ( ) ;
break ;

default :
System . out . p r i n t l n ( ”Not a recogn i z ed t e s t case . ” ) ;

break ;
}

[ . . . . ]

A.4. Change init time

A.4.1. Original code

Listing A.7: Original Code: setting initTime

[ . . . . ]
int PAUSE = 10∗60 ; // 10 mins . Wait to a l l o w GIS to r e c e i v e

r e g i s t r a t i o n s from r e s o u r c e s .
Random random = new Random( ) ;
int i n i t t i m e = PAUSE + random . next Int (5∗60) ;
// sends a reminder to i t s e l f
super . send ( super . g e t i d ( ) , i n i t t i m e , GridUserFai lureEx03 .

SUBMIT GRIDLET) ;
[ . . . . ]

A.4.2. Modified code

Listing A.8: Modified Code: setting initTime

[ . . . . ]
int PAUSE = 10∗60 ; // 10 mins . Wait to a l l o w GIS to r e c e i v e

r e g i s t r a t i o n s from r e s o u r c e s .
int i n i t t i m e = PAUSE + 5∗60 ;
// sends a reminder to i t s e l f
super . send ( super . g e t i d ( ) , i n i t t i m e , GridUserFai lureEx03 .

SUBMIT GRIDLET) ;
[ . . . . ]
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A.5. Set which resources fail

A.5.1. Original code

Listing A.9: Original Code: resources that fail are chosen at random

[ . . . . ]
boolean isWorking ;
do
{

res num = random . next Int ( r e s L i s t . s i z e ( ) ) ;
r e s i d I n t e g e r = ( I n t e g e r ) r e s L i s t . get ( res num ) ;
r e s i d = r e s i d I n t e g e r . intValue ( ) ;
resChar = g e t R e s o u r c e C h a r a c t e r i s t i c s ( r e s i d ) ;

i f ( resChar == null )
{

System . out . p r i n t l n ( super . get name ( ) + ” resChar == n u l l ” ) ;
isWorking = fa l se ;
}

else
{

isWorking = resChar . isWorking ( ) ;
}

} while ( isWorking == fa l se ) ;

FailureMsg r e s F a i l u r e = new FailureMsg ( f a i l u r eLength ,
r e s i d ) ;

r e s F a i l u r e . setNumMachines ( numMachFailed ) ;

// Sends the recovery time f o r t h i s resource . Sends
// a d e f e r r e d event to i t s e l f f o r t h a t .
super . send ( super . g e t i d ( ) ,

GridSimTags .SCHEDULE NOW + fa i lu r eLength ,
GridSimTags .GRIDRESOURCE RECOVERY, r e s F a i l u r e ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f ( r e c o r d == true ) {

System . out . p r i n t l n ( super . get name ( ) +
” : sends a GRIDRESOURCE FAILURE event to the r e sou r c e ” +
GridSim . getEntityName ( r e s i d ) + ” . numMachFailed : ” +

numMachFailed + ” . Clock : ” + GridSim . c l o ck ( ) +
” . Fa i l durat ion : ” + ( f a i l u r e L e n g t h / 3600) +
” hours . Some machines may s t i l l work or may not . ” ) ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// Send the GRIDRESOURCE FAILURE event to the resource .
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super . send ( super . output , 0 . 0 , ev . g e t t a g ( ) ,
new IO data ( r e s F a i l u r e , Link .DEFAULT MTU, r e s i d ) ) ;

}
} // e l s e ( i f b e g i n i n g )

[ . . . . ]

A.5.2. Modified code

Listing A.10: Modified Code: resources that fail are chosen with a criterion

[ . . . . ]
int res num =0;
boolean isWorking ;
do
{

for ( int j =0; j<r e s L i s t . s i z e ( ) −1; j++){
for ( int k=j +1; k < r e s L i s t . s i z e ( ) ; k++){

r e s i d I n t e g e r = ( I n t e g e r ) r e s L i s t . get ( j ) ;
r e s i d = r e s i d I n t e g e r . intValue ( ) ;
System . out . p r i n t l n ( ” f i r s t comparison value : ” + r e s i d ) ;

r e s i d I n t e g e r 1 = ( I n t e g e r ) r e s L i s t . get ( k ) ;
r e s i d 1 = r e s i d I n t e g e r 1 . intValue ( ) ;
System . out . p r i n t l n ( ” second comparison value : ” + r e s i d 1 ) ;

i f ( r e s i d > r e s i d 1 )
{

int memory = r e s i d ;
r e s L i s t . s e t ( j , r e s i d 1 ) ;
r e s L i s t . s e t (k , memory) ;
System . out . p r i n t l n ( ”change made” ) ;
}

else {System . out . p r i n t l n ( ” not changed” ) ;}
}
}

for ( int j =0; j<r e s L i s t . s i z e ( ) ; j++){
r e s i d I n t e g e r = ( I n t e g e r ) r e s L i s t . get ( j ) ;
r e s i d = r e s i d I n t e g e r . intValue ( ) ;
System . out . p r i n t l n ( ” Values : ” + r e s i d ) ;
}

i f ( gisName . equa l s ( ” Ar t i f i c i a lEU Reg i ona l GIS 0 ” ) ) { res num =0;}
// In RegionalGIS0 f a i l the f i r s t resource

i f ( gisName . equa l s ( ” Ar t i f i c i a lEU Reg i ona l GIS 1 ” ) ) { cont = cont
+ 1 ; // In RegionalGIS1 f a i l the f i r s t (0) and f o u r t h (3)

r e s o u r c e s
i f ( cont== 1)
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{
res num =0;
}
else { res num =3;}}

i f ( gisName . equa l s ( ” Ar t i f i c i a lEU Reg i ona l GIS 2 ” ) ) { res num =1;}
// In RegionalGIS0 f a i l the second resource

i f ( gisName . equa l s ( ” Ar t i f i c i a lEU Reg i ona l GIS 3 ” ) ) { res num =2;}
// In RegionalGIS0 f a i l the t h i r d resource

i f ( gisName . equa l s ( ” Ar t i f i c i a lEU Reg i ona l GIS 4 ” ) ) { res num =1;}
// In RegionalGIS0 f a i l the second resource

System . out . p r i n t l n ( ” i l resnum ” + res num ) ;
r e s i d I n t e g e r = ( I n t e g e r ) r e s L i s t . get ( res num ) ;
r e s i d = r e s i d I n t e g e r . intValue ( ) ;
System . out . p r i n t l n ( r e s i d ) ;
resChar = g e t R e s o u r c e C h a r a c t e r i s t i c s ( r e s i d ) ;

i f ( resChar == null )
{

System . out . p r i n t l n ( super . get name ( ) + ” resChar == n u l l ” ) ;
isWorking = fa l se ;
}

else
{

isWorking = resChar . isWorking ( ) ;
}
} while ( isWorking == fa l se ) ;

FailureMsg r e s F a i l u r e = new FailureMsg ( f a i l u r eLength , r e s i d ) ;
r e s F a i l u r e . setNumMachines ( numMachFailed ) ;

// Sends the recovery time f o r t h i s resource . Sends
// a d e f e r r e d event to i t s e l f f o r t h a t .
super . send ( super . g e t i d ( ) ,

GridSimTags .SCHEDULE NOW + fa i lu r eLength ,
GridSimTags .GRIDRESOURCE RECOVERY, r e s F a i l u r e ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f ( r e c o r d == true ) {

System . out . p r i n t l n ( super . get name ( ) +
” : sends a GRIDRESOURCE FAILURE event to the r e sou r c e ” +
GridSim . getEntityName ( r e s i d ) + ” . numMachFailed : ” +
numMachFailed + ” . Clock : ” + GridSim . c l o ck ( ) +
” . Fa i l durat ion : ” + ( f a i l u r e L e n g t h / 3600) +
” hours . Some machines may s t i l l work or may not . ” ) ;

}
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/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// Send the GRIDRESOURCE FAILURE event to the resource .
super . send ( super . output , 0 . 0 , ev . g e t t a g ( ) ,

new IO data ( r e s F a i l u r e , Link .DEFAULT MTU, r e s i d ) ) ;
}

} // e l s e ( i f b e g i n i n g )
[ . . . . ]

A.6. Submit the gridlet to a specific resource

A.6.1. Original code

Listing A.11: Original Code: gridlets are submit to a random resource

[ . . . . ]
// I f we have r e s o u r c e s in the l i s t
i f ( ( resourceID != null ) && ( resourceID . l ength != 0) )
{

index = random . next Int ( resourceID . l ength ) ;

// make sure the g r i d l e t w i l l be executed from the b e g i n i n g
r e s e t G r i d l e t ( g l ) ;

// submits t h i s g r i d l e t to a resource
super . g r id l e tSubmit ( gl , resourceID [ index ] ) ;
gr id letSubmiss ionTime [ g l . ge tGr id l e t ID ( ) ] = GridSim . c l o ck ( ) ;

// s e t t h i s g r i d l e t as submi t ted
( ( Gr id le tSubmiss ion ) Gr id l e tSubmi t t edL i s t . get ( i ) ) . setSubmitted (

true ) ;
[ . . . . ]

A.6.2. Modified code

Listing A.12: Modified Code: gridlets are submit to a specific resource

[ . . . . ]
// I f we have r e s o u r c e s in the l i s t
i f ( ( resourceID != null ) && ( resourceID . l ength != 0) )
{

index = 0 ;
S t r ing name actua l user = super . get name ( ) ;
System . out . p r i n t l n ( ”ACTUAL USER: ” + name actua l user ) ;

switch ( Stato . valueOf ( name actua l user ) ) {
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// User 0 submit the f i r s t 10 g r i d l e t s to the f i r s t resource (
index =0)

// and the o t h e r s g r i d l e t s to the second resource ( index =1)

case A r t i f i c i a l E U U s e r 0 : i f (0<= i && i <= 9)
{ index = 0 ;}

else { index = 1 ;} //
break ;

// User 1 submit the f i r s t 10 g r i d l e t s to the f i r s t resource (
index =0)

// and the o t h e r s g r i d l e t s to the second resource ( index =1)
case A r t i f i c i a l E U U s e r 1 : i f (0<= i && i <= 9)

{ index = 0 ;}
else { index = 1 ;}
break ;

// User 2 submit h i s g r i d l e t s to the second resource ( index =1)
case A r t i f i c i a l E U U s e r 2 : index = 1 ;

break ;

// User 3 submit h i s g r i d l e t s to the second resource ( index =1)
case A r t i f i c i a l E U U s e r 3 : index = 2 ;

break ;
}

System . out . p r i n t l n ( ”ACTUAL INDEX: ” + index ) ;

// make sure the g r i d l e t w i l l be executed from the b e g i n i n g
r e s e t G r i d l e t ( g l ) ;

// submits t h i s g r i d l e t to a resource
super . g r id l e tSubmit ( gl , resourceID [ index ] ) ;
gr id letSubmiss ionTime [ g l . ge tGr id l e t ID ( ) ] = GridSim . c l o ck ( ) ;

// s e t t h i s g r i d l e t as submi t ted
( ( Gr id le tSubmiss ion ) Gr id l e tSubmi t t edL i s t . get ( i ) ) . setSubmitted

( true ) ;
[ . . . . ]
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A.6.3. Original code for function getResList()

Listing A.13: Original Code: function getResList()

[ . . . . ]
private int [ ] g e tResL i s t ( )
{

Object [ ] r e s L i s t = super . g e tLoca lResourceL i s t ( ) ;
int resourceID [ ] = null ;

// i f we have any resource
i f ( ( r e s L i s t != null ) && ( r e s L i s t . l ength != 0) )
{

resourceID = new int [ r e s L i s t . l ength ] ;
for ( int x = 0 ; x < r e s L i s t . l ength ; x++)
{

// Resource l i s t con ta in s l i s t o f resource IDs
resourceID [ x ] = ( ( I n t e g e r ) r e s L i s t [ x ] ) . intValue ( ) ;

i f ( t r a c e f l a g == true )
{

System . out . p r i n t l n ( super . get name ( ) +
” : r e s ou r c e [ ” + x + ” ] = ” + resourceID [ x ] ) ;

}
}

}
return resourceID ;
}

[ . . . . ]

A.6.4. Modified code for function getResList()

Listing A.14: Modified Code: function getResList()

[ . . . . ]
private int [ ] g e tResL i s t ( )
{

Object [ ] r e s L i s t = super . g e tLoca lResourceL i s t ( ) ;
Object [ ] r e s L i s t 1= super . g e tGloba lResourceL i s t ( ) ;

S t r ing d=super . get name ( ) ;
System . out . p r i n t l n ( ”User name cons ide r ed ’ : ” + d) ;
int resourceID [ ] = null ;
int Array [ ]= null ;
int l e n g t h t o t a l= r e s L i s t . l ength + r e s L i s t 1 . l ength ;

System . out . p r i n t l n ( ” Total number o f l o c a l r e s o u r c e s ’ : ” +
r e s L i s t . l ength ) ;

97



A. Appendix: modified code

System . out . p r i n t l n ( ” Total number o f g l o b a l r e s o u r c e s ’ : ” +
r e s L i s t 1 . l ength ) ;

System . out . p r i n t l n ( ” Total number o f r e s o u r c e s ’ : ” +
l e n g t h t o t a l ) ;

Array = new int [ l e n g t h t o t a l ] ;
int mem=0; // i s a v a r i a b l e t h a t save the p o s i t i o n o f the

array index
i f ( r e s L i s t . l ength !=0)
{

for ( int y=0; y<r e s L i s t . l ength ; y++){
Array [ y ] = ( ( I n t e g e r ) r e s L i s t [ y ] ) . intValue ( ) ;
mem = y ;
} ;

}
i f ( r e s L i s t . l ength ==0){mem=−1;}
for ( int k=0; k<r e s L i s t 1 . l ength ; k++){

mem++;
Array [mem] = ( ( I n t e g e r ) r e s L i s t 1 [ k ] ) . intValue ( ) ;
}

//we order the r e s o u r c e s a v a i a l a b l e by id
for ( int j =0; j<Array . l ength −1; j++){
for ( int k=j +1; k < Array . l ength ; k++){
int r e s i d = Array [ j ] ;

System . out . p r i n t l n ( ” f i r s t va lue compared : ” + r e s i d ) ;
int r e s i d 1 = Array [ k ] ;

System . out . p r i n t l n ( ” second value compared : ” +
r e s i d 1 ) ;

i f ( r e s i d > r e s i d 1 ) {
int memory = r e s i d ;
Array [ j ] = r e s i d 1 ;

Array [ k ] = memory ;
System . out . p r i n t l n ( ”change made” ) ;

}
else {System . out . p r i n t l n ( ” not changed” ) ;}

}
}

// i f we have any resource
i f ( ( r e s L i s t != null ) | | ( r e s L i s t 1 != null ) && ( l e n g t h t o t a l != 0) )
{

resourceID = new int [ l e n g t h t o t a l ] ;
for ( int x = 0 ; x < l e n g t h t o t a l ; x++)
{

// Resource l i s t con ta in s l i s t o f resource IDs
resourceID [ x ] = Array [ x ] ;
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i f ( t r a c e f l a g == true )
{

System . out . p r i n t l n ( super . get name ( ) +
” : r e s ou r c e [ ” + x + ” ] = ” + resourceID [ x ] ) ;

}
}
}

return resourceID ;
}
[ . . . . ]
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