
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Using a Raspberry Pi

as a PC-DMX interface

Florian Edelmann

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Using a Raspberry Pi

as a PC-DMX interface

Florian Edelmann

Supervisor: Prof. Dr. Dieter Kranzlmüller

Advisors: Dr. Nils gentschen Felde

Tobias Guggemos

Date of submission: 27th November 2017

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 27. November 2017

. .

(Unterschrift des Kandidaten)

Abstract

DMX is a common standard in the entertainment technology industry that allows controlling
lighting fixtures (like spotlights or strobe lights on a stage) connected over a bus. The DMX
source driving the bus is usually a mixing desk console; alternatively, lighting control software
on a computer together with a physical PC-DMX interface is often used. The high costs of
professional desk consoles and DMX interfaces limits small associations like youth groups to
less expensive interfaces that often lack useful features.

This Bachelor’s Thesis defines requirements for a PC-DMX interface in this use case,
including a price limit and advanced features like the availability of a DMX input port to
enable haptic control of software functions. A market study is conducted, which reveals
that no existing products match all requirements, so a system design is established, building
upon the affordable single-board computer Raspberry Pi. The software basis is provided by
Open Lighting Architecture (OLA), an open-source software that is able to convert different
protocols to and from DMX and process the data internally.

OLA is then extended to support DMX output through a USB-DMX adapter by reverse
engineering and implementing its protocol. DMX input directly on Raspberry Pi’s hardware
is possible for the first time through the implementation of SPI bus sampling; other tested
approaches were not successful. The validation of the finished PC-DMX interface shows
satisfactory fulfillment of the requirements. Future work to improve the system design by
making it even less expensive, more easy to use or by adding extra features is possible.

Contents

1 Introduction 1

2 Technical background 3
2.1 DMX . 3

2.1.1 Typical DMX setup . 3
2.1.2 DMX protocol . 5
2.1.3 Art-Net and sACN protocols . 7

2.2 UART . 8
2.3 SPI . 8

3 Requirement analysis and system design 11
3.1 Requirement analysis . 11
3.2 Market study . 12
3.3 System design . 14

4 Implementation 15
4.1 The Open Lighting Architecture Project . 15

4.1.1 Terminology . 15
4.1.2 Relevant existing plugins . 16
4.1.3 Project organization with GitHub . 17

4.2 Initial setup of OLA on the Raspberry Pi . 17
4.2.1 Building and installing OLA . 18
4.2.2 Enabling UART . 19
4.2.3 USB configuration . 19
4.2.4 Network settings . 20

4.3 Electrical installation . 20
4.4 Implementation of the DMXCreator 512 Basic protocol as OLA USB sub-plugin 23

4.4.1 Reverse engineering the protocol with Wireshark 23
4.4.2 Extending OLA’s USB DMX Plugin 24

4.5 Implementation of the OLA Native SPI DMX Plugin 28
4.5.1 Insufficiency of Raspberry Pi’s UART input 28
4.5.2 Bit bang reading with pigpio library 29
4.5.3 Using SPI to sample DMX . 30

4.6 Chassis build . 40

5 Validation 43
5.1 Unit tests . 43
5.2 Code quality . 43
5.3 Fulfillment of requirements . 43

6 Conclusion and future work 45

ix

Contents

List of Figures 49

List of Tables 50

List of Listings 51

List of Files 52

Bibliography 57

x

1 Introduction

In theaters, at parties, concerts or for meditative purposes, e.g. in church, there is a demand
for professional lighting to convey or support the desired atmosphere. Often, one wants to
create custom light shows for a specific event or application.

This thesis describes the design and build of a feature-rich, inexpensive and open interface
between lighting control software on a computer and light fixtures like spotlights, strobe
lights, moving heads and scanners. It is built on top of the open-source project Open
Lighting Architecture running on a Raspberry Pi.

High quality lighting equipment is available from a wide variety of manufacturers and
nearly every light fixture is controllable via the DMX protocol. Traditionally, one uses DMX
mixing desks to generate the DMX signal. However, those desk consoles are usually very
expensive and therefore not accessible for small associations.

In particular, in our local parish youth, there is a technics team I am part of that ar-
ranges sound and lighting engineering for hosted parties and other events in church. Since
purchasing full-featured DMX desk would have exceeded the budget, the free version of the
PC lighting control software e:cue1 was used instead. The computer running the software
is connected to light fixtures via a translator box (PC-DMX interface). Unfortunately, this
box is still rather pricey and does only accept e:cue’s proprietary exchange protocol which
is output by their own software.

Eventually, in this use case, the software – being the free version after all – became too
limited: More ideas developed on how to design light shows than the program allowed. There
are many different completely free lighting programs that can be tried and compared, but
for all the same problem persists: The DMX data must be transmitted to the DMX line bus
from the computer with an auxiliary interface.

Additionally, the wish to use a small DMX desk as an input for the software formed,
making haptic (instead of mouse-driven) controlling possible. This would allow controlling
the speed of a chaser2 by changing its corresponding hardware fader or triggering a specific
function in the software whenever a DMX input channel exceeds a defined level. Another
possible use case could be directly forwarding a few DMX channels from the input to the
output and letting the software handle all other channels.

After a market study, it was clear that such advanced features are not available in any
professional yet inexpensive DMX interface. The decision was made to build a PC-DMX
interface on my own. It should communicate with the computer over open protocols to allow
usage with several different lighting control programs. The core of that box is a Raspberry
Pi running an open-source software called Open Lighting Architecture (OLA) that is able to

1http://ecue.de
2A chaser is a sequence of scenes defined in a lighting software. A scene in turn consists of fixtures set to a
certain state; e.g. spotlight 1 is red, spotlights 2 and 3 are off, spotlight 4 is yellow. The program then
cycles through those scenes whenever an event occurs (e.g. a button is clicked) or an adjustable amount
of time passes.

1

http://ecue.de

1 Introduction

convert different protocols to and from DMX and process the data internally. This software
needs to be extended to fulfill all needs.

This thesis documents the development of the interface from the gathering of requirements
and planning the approach, to setting up and extending OLA up until the finished product.
All the code improvements and additions I made to the existing project were also contributed
back to allow other users to benefit from my work.

Structure of this thesis

First, some technical background about the required protocols and technologies is given,
most notably the DMX and Art-Net protocols, which are needed to understand the goals of
the project. Then, the requirements of the PC-DMX interface are analyzed and incorporated
into a system design.

Afterwards, the implementation is presented by outlining the structure and concepts of
OLA, which much of this thesis is based on, documenting the electrical and chassis build,
and finally describing the code and proceedings for both the DMX output and input plugins.

Subsequently, the implemented features are validated against their specification and an
outlook to future improvements and use is given.

2

2 Technical background

For this thesis, a basic understanding of some concepts, protocols and specifications is needed.
Particularly, it must be clear to the reader how to use DMX hardware and how the low level
works technically, so that my programming work can be apprehended. In this chapter, I try
to give a sufficient overview about the most important topics.

It is assumed that the reader knows about Raspberry Pi programming and the standard
ISO/OSI layer model. It is helpful to already have worked with git sometime.

2.1 DMX

DMX is used in this paper to refer to the standard DMX512-A [EST13], which is short for
“Digital Multiplex with 512 individual pieces of information” [USI]. The original standard
was defined by the United States Institute for Theatre Technology (USITT) in 1986 and
revised and extended several times. Details of the protocol itself are given in the next
section. First, the general usage of DMX devices is outlined.

2.1.1 Typical DMX setup

A typical (very simple) DMX lighting setup according to [Ben12] which is shown schema-
tically in figure 2.1 is as follows: A DMX desk console outputs a DMX signal that is sent
via cable to the first light fixture (a simple dimmer in this case). The signal is then looped
through to the next fixture, which is a LED head lamp here. The final fixture in this example
to be “daisy-chained” is a moving head. Its output DMX signal is not used in another fixture
and therefore a terminating resistor (here a black and yellow “stick”) finishes the DMX line.

Figure 2.1: Schematical DMX lighting setup example.

The DMX signal basically consists of 512 integer values between 0 and 255, each repre-
senting the value of one channel. Every fixture f in the DMX line listens to a specific number
nf of these channels (fixed by the manufacturer) to control its features. The user now has
to give each fixture an address af to mark the first channel it has to listen to, e.g. via a DIP
switch or a small display on each of the fixtures. The order of the addresses given to the
fixtures does not have to match the order of the fixtures in the line.

3

2 Technical background

To show how this works in practice, the example is continued (see also table 2.1): At first,
the LED head lamp is given address aLED = 1. It needs nLED = 3 channels to control its
red, green and blue (RGB) components separately, thus listens to channels 1, 2 and 3. To
make the LED light yellow, we would need to set channels 1 and 2 (red and green) to 255 and
channel 3 (blue) to 0. The next address we can assign without conflict is aLED +nLED = 4.
We give this address to the dimmer (adim = 4) which needs only this one channel to control
its brightness. Now we reserve address 5 for future use of another dimmer, so that the two
dimmer channels will be next to each other on the desk console. Finally the moving head is
assigned address amov = 6. We assume that its RGB values, pan / tilt movement and gobo
wheel3 can be controlled and therefore 6 channels are needed.

Table 2.1: Example DMX addresses and channel numbers.

fixture address
number of
channels controlled channels

LED head 1 3 ch. 1: red

ch. 2: green

ch. 3: blue

dimmer 4 1 ch. 4: brightness

unused ch. 5: –

moving head 6 6 ch. 6: red

ch. 7: green

ch. 8: blue

ch. 9: pan movement

ch. 10: tilt movement

ch. 11: gobo wheel

The 512 channels being signalled through one line are called a DMX universe. A desk
console can output multiple universes, which allows to address more fixtures in total.

Instead of using a physical DMX desk, its task can also be fulfilled by a software. The
computer running it is then connected to the DMX line via a physical interface.

2.1.1.1 DMX Splitters and Mergers

There are two notable hardware components that can be used in a DMX line to make the
wiring between fixtures and DMX sources more flexible:

3A gobo is a stencil in front of the lamp that shapes the emitted light beam. Typically, multiple gobos are
mounted in a wheel that rotates according to the DMX value in the corresponding channel to allow the
selection of one gobo at a time.

4

2.1 DMX

❼ A DMX splitter is used as a T piece to forward one input signal into two (or more)
output lines.

❼ A DMX merger combines the signals from its two input universes A and B (seldomly
also more) into one output signal. Mergers typically have different modes of operation,
such as the following. [Sho15]

– Backup: As long as A is a valid signal, loop it through; else use B.

– Merge: Use A’s first x channels, then fill the remaining 512 minus x channels
with B ’s first channels.

– LTP (“latest takes precedence”): Loop the universe through that has changed
later. Sometimes this algorithm is also applied per channel instead of per universe.

– HTP (“highest takes precedence”): For each of the 512 channels, use the highest
value of the both corresponding channels in A and B.

2.1.2 DMX protocol

This section gives a short summary of the official DMX512-A standard [EST13] by the
Entertainment Services and Technology Association (ESTA).

The DMX protocol defines a serial signal (shown in figure 2.2) at a baud rate of 250000 bits
per second. It consists of individual packets, each of which is initiated by the reset sequence
(an arbitrarily long low BREAK signal followed by the high mark after BREAK (MAB)

and slot 0). A slot contains 8-bit data (least significant bit first), prepended by a low start
bit and followed by two high stop bits. The data in slot 0 is called the start code, it is always

0x00 for DMX packets. Other start codes can be used to indicate manufacturer-specific
information or special functions; those packets shall be ignored by standard DMX receivers,
so they are not relevant in this project.

After the reset sequence, the channel values of the universe are transmitted in one slot
each. Since channels are transmitted serially, it is possible for fixtures in the DMX line
to count received channels and start listening as soon as their address matches the current
channel number. The channel number therefore does not have to be transmitted separately.
Slots can be separated by a high mark between slots (MBS 4).

Following the last channel, a high mark before BREAK (MBB) or the next BREAK
indicates the end of the packet. At least one packet per second should be transmitted, though
faster updates are desirable to ensure fast respondence of the fixtures and, in particular,
smooth light fading. To increase the refresh rate, not all 512 channels have to be transmitted
in a packet.

BREAK

M
A

B

M
B

S

M
B

S

BREAK

M
B

B

slot 0
(NULL START code)

slot 1
(channel 1 value)

slot N
(channel N value)

slot 2

DMX packet

reset sequence

M
B

S

Figure 2.2: DMX timing diagram.

4This abbreviation is not used in the official standard. I introduced it for simpler referencing.

5

2 Technical background

Table 2.2: DMX timing. Values in parenthesis only apply to receivers. From [EST13]

Entity Min Typical Max

Bit rate 245kbit/s 250kbit/s 255kbit/s

Bit time 3.92➭s 4➭s 4.08➭s

BREAK 92➭s (88➭s) 176➭s –

MAB 12➭s (8➭s) – < 1.00s

MBS 0 – < 1.00s

MBB 0 – < 1.00s

DMX packet 1204➭s (1196➭s) – 1.00s (1.25s)

Refresh rate 830Hz (836Hz) – 1Hz (0.8Hz)

If one considers packets with all 512 channels, one can work out from table 2.2 a minimum
packet time of 22.7ms, or a maximum refresh rate of 44Hz.

An extension to DMX that will not be important for this thesis but should still be men-
tioned is Remote Device Management (RDM). It allows setting the fixtures’ DMX address
and other options from the RDM controller, which is an extended DMX desk or software.
It works by interleaving the unidirectional DMX signal with bidirectional RDM packets.

2.1.2.1 Electrical specification

DMX uses the electrical specifications defined in the industry standard EIA-485 (also known
as RS-485) which describes balanced transmission-line signaling [TII08]. “Balanced” means
data bits are encoded via the potential difference between the twisted-pair cables Data +
and Data –. This decreases interference liability, since noise adds to both data lines equally
– effectively cancelling itself out in the difference –, and thus makes line lengths of up to
1.2km possible. For DMX lines though, the recommendation is to stay below 300m [Ben12].

Data +

Data – 1
2
0
 Ω

1
2
0
 Ω

Figure 2.3: EIA-485 bus with one transmitter and up to 32 receivers.

In figure 2.3, the electrical schematic of such a bus is shown. On the left, the transmitter
converts the raw signal into the differential signal. All the receivers on the bottom (up to 32

6

2.1 DMX

are allowed) do the same in the other direction.5 At both the near end (transmitter side) and
the far end (after last receiver), a termination resistor of 120 ohms is installed to minimize
reflections that could interfere with the signal.

The DMX standard requires 5-pin XLR connectors, except where they are “physically
impossible to mount” [EST13]. Even so, most DMX hardware is equipped with a 3-pin XLR
connector instead or additionally. This is due to the fact that only 3 pins are needed and 3-
pin XLR cables are common in event technology because they are also used for microphones.

3

21

3

2 1

5

4

3

2

1

5

4

3

2

1

Male

Female

3-pin XLR 5-pin XLR

Figure 2.4: XLR connectors used for DMX.

Table 2.3: XLR pin assignment for DMX.

Pin Number 3-pin XLR 5-pin XLR

1 Ground Ground

2 Data – Data –

3 Data + Data +

4 – Data 2 – (optional)

5 – Data 2 + (optional)

2.1.3 Art-Net and sACN protocols

DMX only allows one or two universes per line, which may make cabling impractical in some
use cases. To overcome this issue, the English lighting equipment company Artistic Licence
created a free-to-use DMX over UDP6 protocol called Art-Net [Art17] in 1998. It allows
sending multiple DMX universes over a standard IP network and thus highly extends the

5Actually, all devices connected to the bus are allowed to both transmit and receive (e.g. used in RDM).
Thus, usually so-called “bus transceiver chips” that can convert in both directions are deployed. Since
communication over DMX will always be uni-directional in this thesis, I simplified the figure.

6User Datagram Protocol

7

2 Technical background

flexibility of lighting systems since a single Ethernet link or a wireless network can be used
for large parts of the transport way.

There are lighting controllers and fixtures that work directly with Art-Net (exclusively or
alongside traditional DMX), all others can be connected via an Art-Net Node that converts
to and from DMX. Often, the protocol is used for communication between a lighting software
on a computer and one such Node acting as the DMX source for fixtures, like in figure 2.5.

Fixture

Fixture

Art-Net Node

DMX universe 1

DMX universe 2

Art-Net input

Computer

Ethernet port

Ethernet switch

Figure 2.5: Schematical connection of an Art-Net Node.

Streaming ACN (sACN), which was standardized as ANSI E1.31 in late 2016 [EST16], is
ESTA’s open protocol with the same goals and shares most of its high level properties with
Art-Net. In this thesis, the details and differences of both protocols will not be covered.

2.2 UART

The Universal Asynchronous Receiver Transmitter (UART) is an interface present on many
microcontrollers that allows communication over serial bus lines. There is no extra clock
signal, the receiver synchronizes itself through the fixed data format: Data bits are trans-
mitted sequentially, framed in slots with low start and high stop bits. If the signal is low

for longer than one slot time, the break condition is fulfilled.

Various parameters have to be fixed at both receiver and transmitter to avoid misunder-
standing: Baud rate, the number of data bits per slot (usually 5 to 9), bit numbering (most
or least significant bit first), the number of stop bits used (one or two) and if each slot should
additionally contain a parity bit.

As the DMX timing protocol is a specialization of this specification, sending and receiving
DMX data via a UART is possible. One caveat though is the non-standard baud rate of
250kbit/s.

2.3 SPI

The Serial Peripheral Interface (SPI) is a synchronous data transmission interface between
a master and multiple slave devices designed by Motorola [Dem15]. Only the independent
slave configuration will be discussed here, which can be seen in figure 2.6.

8

2.3 SPI

SPI

Master

SCK

MOSI

MISO

CE1

CE2

SPI

Slave 1

SCK

MOSI

MISO

CE

SPI

Slave 2

SCK

MOSI

MISO

CE

Figure 2.6: Schematic of SPI master and slaves.

By applying a low signal at one of the Slave select / Chip enable (CE) pins, the master
can notify the corresponding slave that it wants to communicate with. After that, the master
generates a clock signal at the SCK (Serial clock) pin and simultaneously reads at the MISO
(Master In, Slave Out) pin and transmits at the MOSI (Master Out, Slave In) pin one bit
per clock cycle. After the data transmission is completed (e.g. one byte is sent to the slave
who then may answer with one byte, but that depends on the protocol fixed between the
devices), the master resets all pins to their idle levels.

There are multiple SPI modes that define when the bit read / write operation should
happen in relation to the clock signal. For simplicity, only mode 0 is shown here, in which
SCK ’s idle status is low and data transfer starts with the first rising edge in the clock signal
(see figure 2.7).

1 2 3 4 5 6 7 8

SCK

MOSI MSB LSB

MISO MSB LSB

CE1

data transfer

Figure 2.7: SPI timing diagram. MSB and LSB are short for most significant bit and least
significant bit, respectively. Adapted from [Dem15].

9

3 Requirement analysis and system design

In this chapter, the plan for the PC-DMX interface is outlined. First, I will define my
requirements and examine several existing products on the market on how they match or
fail these requirements. This will then lead to the design of the interface described in this
thesis.

3.1 Requirement analysis

The requirements defined in this section are designed for the specific use case of small
associations like technics teams in youth groups (i.e. not professional event management
companies or the like). Their budget is usually very limited but their expertise does not
have to be – i.e. the PC-DMX interface must offer features for advanced users while still
being affordable.

A youth technics team may not have found its optimum workflow yet and may want to
improve it by trying out different free lighting control programs, e.g. QLC+7, DMX Control8

or FreeStyler DMX9. The interface should support that by being compatible with as many
of them as possible.

Connection to the computer shall be possible via Ethernet to allow extending the cable via
standard network equipment like switches, routers and Wi-Fi access points. USB connection
is not sufficient because USB devices need special drivers and configuration, which would
make the interface less portable, e.g. if a quick replacement computer in an emergency
situation is needed. Among the protocols used for data transmission, at least one should be
open, i.e. either sACN or Art-Net10 should be supported.

The interface should support output of at least two DMX universes to be able to address a
sufficiently large number of fixtures and input of at least one to allow haptic control of DMX
channels using a mixing desk. The method how DMX input signals are handled should be
configurable:

❼ Either the DMX channel values are sent via Art-Net to the control software (default
Art-Net Node-like mode), e.g. to control software functions with hardware mixing desk
faders,

❼ or it acts like a DMX splitter, forwarding its DMX input signal on both DMX outputs,

❼ or the DMX input channels are merged with the channel values provided over the
network into one of the output universes using one of the merge modes described in
section 2.1.1.1.

7http://www.qlcplus.org/
8https://www.dmxcontrol.org/
9http://www.freestylerdmx.be/

10Although Art-Net is not strictly open, it is free-to-use and supported by a wide variety of software and
hardware.

11

http://www.qlcplus.org/
https://www.dmxcontrol.org/
http://www.freestylerdmx.be/

3 Requirement analysis and system design

All input and output DMX signals should be processed with a high refresh frequency, so
that delays remain low and smooth light fading is possible.

Using the interface should be as simple as possible for end-users. That means that neither
in-depth knowledge about the DMX protocol or computer networks nor special know-how
about this specific interface should be required to use it. However, end-users are assumed
to know how to work with DMX software and hardware in general. More complicated
functions like the flexible input mapping mentioned above should be trivial enough to be
understandable in a short period of time.

The whole setup should cost less than 100e and be extensible, i.e. widened future require-
ments like the need for more DMX universes should be easy to implement without a redesign
and rebuild of the whole hardware and software.

Additionally, it would be appreciated if both hardware and software were open-source to
allow others to extend and improve the interface.

3.2 Market study

A market study was conducted to see how existing products do fulfill the requirements
defined in the previous section. The price limit on 100e was fixed to narrow down the
products in the first step. An overview of the products described here is given in table 3.1.

Since the price limit of 100e narrows down the range of professional hardware to various
USB-to-DMX adapters and one Art-Net Node by Eurolite11 – all of them with support for
only one output universe, none with DMX input –, only “Do It Yourself” projects are left.

A popular one, DMXControl Projects’ Nodle U1 12, can also only be connected via USB.
Thus, it has to be explicitly supported by lighting programs – which several do. Nevertheless,
it fails the network connection requirement.

Some members of the DMXControl forum and wiki created an Art-Net Node based on a
commercially available AVR construction kit13. It was refined and eventually ported to its
own hardware to support two DMX universes14. Unfortunately, this is still not sufficient.

The same applies to GitHub user mtongnz ’s Art-Net Node based on the Wi-Fi-enabled
ESP8266 microcontroller15.

The project that matches most of my requirements is the Quad Art Net Box by Ulrich
Radig16: It supports four DMX output universes, one of them can be toggled to an input.
Sources and schematics are available online, and an assembly kit can be ordered. However,
there is no information given about whether the DMX input can be flexibly merged into one
DMX output universe or if it is always forwarded to the Art-Net output.

Rather than doing all the work in one microcontroller like in the previous projects,
raspberrypi-dmx.org17 uses a much more powerful Raspberry Pi with an additional co-
processor on an extension board (sometimes called shield) that is plugged into the GPIO

11https://www.steinigke.de/en/mpn70064842-eurolite-art-net-dmx-node-1.html
12https://www.dmxcontrol-projects.org/hardware/nodle-u1.html
13https://wiki.dmxcontrol.de/wiki/Art-Net-Node_f%C3%BCr_25_Euro
14https://wiki.dmxcontrol.de/wiki/ArtNetNode_auf_einer_Platine
15https://github.com/mtongnz/ESP8266_ArtNetNode_v2
16https://www.ulrichradig.de/home/index.php/dmx/quad-art-net
17http://www.raspberrypi-dmx.org/raspberry-pi-art-net-dmx-out

12

https://www.steinigke.de/en/mpn70064842-eurolite-art-net-dmx-node-1.html
https://www.dmxcontrol-projects.org/hardware/nodle-u1.html
https://wiki.dmxcontrol.de/wiki/Art-Net-Node_f%C3%BCr_25_Euro
https://wiki.dmxcontrol.de/wiki/ArtNetNode_auf_einer_Platine
https://github.com/mtongnz/ESP8266_ArtNetNode_v2
https://www.ulrichradig.de/home/index.php/dmx/quad-art-net
http://www.raspberrypi-dmx.org/raspberry-pi-art-net-dmx-out

3.2 Market study

(General Purpose Input / Output) pins. Thereby, only the software needs to be replaced (by
re-flashing the SD card) to match the use case: USB, Art-Net, sACN, Open Sound Control
and MIDI can all be converted to DMX with the correct SD card image. Unfortunately, the
extension board hardware does only support one input and one output universe.

Table 3.1: Available products overview. Values in parenthesis specify alternate modes.

Product

Simultaneous
output / input

universes

Flexible
input

mapping
Open /

Extensible
Connection
to computer

Professional
USB-to-DMX adapters

1 ✗ / 0 ✗ N/A ✗ ✗ / ✗ USB ✗

Eurolite
Art-Net/DMX Node 1

1 ✗ / 0 ✗ N/A ✗ ✗ / ✗ Art-Net ✓

DMXControl Projects
Nodle U1

1 ✗ / 1 ✓ ✗ ✓ / ✗ 18 USB ✗

DMXControl Wiki
AvrArtNodeV2.0

2 ✓ / 0 ✗

(0 ✗ / 2 ✓)
N/A ✗ ✓ / ✗ Art-Net ✓

mtongnz
ESP8266 ArtNetNode v2

2 ✓ / 0 ✗

(1 ✗ / 1 ✓)
✗ ✓ / ✗ Art-Net ✓

Ulrich Radig
Quad Art Net Box

3 ✓ / 1 ✓

(4 ✓ / 0 ✗)
✗ ✓ / ✗ Art-Net ✓

Raspberry Pi
Art-Net 3 -> DMX Out

1 ✗ / 1 ✓ ✗ ✓ / ✓ Art-Net
+ others ✓

Another interesting project I have found during my research is the Open Lighting Ar-
chitecture (OLA) software, which will be further explained in section 4.1. It aims to be a
universal protocol translator for DMX signals, supporting different devices through plugins.
It can be installed on the Raspberry Pi and a plugin providing native DMX output through
its UART port is already available.

In conclusion, none of the existing products fulfills all requirements, but there are a few
different approaches and projects that provide a good starting point for building an PC-DMX
interface myself.

18DMXControl Projects do state in their manual that “future extensions should be possible”[DMX13]. How-
ever it seems to me that such extensions would still require completely redesigned hardware.

13

3 Requirement analysis and system design

3.3 System design

The single-board computer Raspberry Pi will form the basis of the adapter. It has Ethernet
and USB ports and a CPU powerful enough to run OLA. An extension board interfaced to
its GPIO pins must be developed. It has to be equipped with two EIA-485 bus transceivers
to provide one DMX input and, through the aforementioned UART plugin, one output.
The second output will be supplied by an USB-to-DMX adapter that was available to me,
the DMXCreator 512 Basic19. Its protocol has to be reverse-engineered and incorporated
into OLA’s USB plugin (see section 4.4). Initial observation of the protocol suggested the
feasibility of this approach.

An OLA plugin that allows direct DMX input on the Raspberry Pi is yet to be developed.
Initially, I planned to extend the UART plugin. However, prototyping the protocol recogni-
tion using the UART port did not succeed, so the SPI bus will be used to sample the DMX
signal instead. Further details of this technique are explained in section 4.5.

DMX input

SPI MISO pin

UART TX pin

Ethernet port

USB port

Raspberry Pi
running OLA

Computer

Ethernet port
Art-Net

sACN

bus
transceiver

DMXCreator
512 Basic

DMX output

DMX output

bus
transceiver

extension
board

Figure 3.1: Schematic of the planned PC-DMX interface.

19http://www.dmx512.ch/512.html

14

http://www.dmx512.ch/512.html

4 Implementation

In chapter 3, requirements were specified which the desired PC-DMX interface has to fulfill.
A market study revealed that no existing products match these requirements, so a system
design was developed. This chapter describes the steps I took to implement this design.

First, relevant parts of theOpen Lighting Architecture (OLA) project, which will be used as
the software basis, are outlined, before it is initially installed on a Raspberry Pi. Afterwards,
the physical extension board and implementation of both required extensions to the OLA
software are explained. The build of a chassis completes this chapter.

4.1 The Open Lighting Architecture Project

The Open Lighting Architecture (OLA) project I discovered during my market study is
described in [Hes15] as

[. . .] free, open source software originally created by Simon Newton and now
developed by a team of contributors around the world. It runs on Linux or Mac
and is capable of interfacing with USB DMX512 hardware, DMX512 over IP
protocols, and the Raspberry Pi’s GPIO pins. The application includes a web
interface for easily creating, monitoring, and configuring DMX universes. OLA
is one part of the larger Open Lighting Project, which aims to build high-quality,
free software for the entertainment lighting industry.

As it provides the basis of my implementation, I briefly explain some concepts in the
project that are needed later.

4.1.1 Terminology

In OLA, some keywords are used extensively [OLP]:

❼ A port is a point where at most 512 DMX channel values are passed to (output port)
or read in (input port). It can either be physical or virtual (like in Art-Net).

❼ A device groups ports together, it consists of at least one port.

❼ A plugin provides support for recognizing, connecting to and communicating with one
or more devices. It has to be compiled along with OLA (i.e. cannot be downloaded
and connected afterwards) and thus has to be part of the project. At runtime, plugins
can be enabled and disabled independently.

❼ An OLA universe is an internal set of 512 DMX channel values. It can be patched by
the user to input ports to receive new data and / or to output ports to transmit its
current channel values.

15

4 Implementation

4.1.2 Relevant existing plugins

At the time of writing, there are already more than 20 plugins available in OLA’s source
code. Amongst them, the following are of special interest for this thesis.

4.1.2.1 Art-Net Plugin

The ArtNet Plugin20 implements the Art-Net protocol version 3, which supports at most four
input universes and four output universes per IP address. This plugin creates input ports
and output ports accordingly, which can be patched to OLA universes and thereby relay
DMX data to / from external lighting programs. Since the Art-Net protocol is designed in a
backwards-compatible manner, both newer and older client software are able to communicate
with OLA.

This plugin does not need additional hardware, it uses the network ports that are already
available.

4.1.2.2 UART Plugin

The Native UART DMX Plugin21 instantiates one output port that directly generates the
DMX signal via the UART port of the host device, usually a Raspberry Pi.

This signal at a GPIO pin must then only be run through a bus transceiver chip to
transform it into a balanced EIA-485 signal with a valid potential difference.

Richard Ash, the initial author of this plugin, outlines the difficulties he had to face for
his implementation in a blog post22:

❼ “DMX-512 runs a a [sic] non-standard (for PC) baud rate of 250kbaud.”
Fortunately, this issue could be solved on Linux by using the termios2 interface for
UART setup.

❼ “DMX-512 uses serial break signals [. . .]. These cannot be sent by just writing char-
acters out of the serial port.”
Again, the termios2 interface provides methods to start and end the BREAK. In
between, a standard usleep call interrupts the sending thread for the specified time;
imprecisions do not matter in this case.

❼ “DMX-512 has relative tight timing requirements for various elements of the signal
– if your computer suddenly stops sending data for a while, then the lights you are
controlling may go out or flicker randomly.”
This is true indeed, however both his own project experience and my testing have
proven the output to be reliable enough for smooth light fading.

20https://github.com/OpenLightingProject/ola/tree/master/plugins/artnet. It is actually not named
Art-Net Plugin at the time of writing. I opened issue #1328 on GitHub to fix this.

21https://github.com/OpenLightingProject/ola/tree/master/plugins/uartdmx
22http://eastertrail.blogspot.de/2014/04/command-and-control-ii.html

16

https://github.com/OpenLightingProject/ola/tree/master/plugins/artnet
https://github.com/OpenLightingProject/ola/issues/1328
https://github.com/OpenLightingProject/ola/tree/master/plugins/uartdmx
http://eastertrail.blogspot.de/2014/04/command-and-control-ii.html

4.2 Initial setup of OLA on the Raspberry Pi

4.1.2.3 USB Plugin

The USB DMX Plugin23 provides support for a variety of USB-to-DMX adapters. Each of
them is controlled by a “sub-plugin” that extends the common basis implementation. This
simplifies access to the libusb library and reduces code duplication.

Each sub-plugin gets notified about a newly plugged in USB device and can claim it if
vendor ID, device ID and possibly other information match predefined values. Then, it is
responsible for creating ports and communicating with the device.

4.1.2.4 SPI Plugin

The SPI Plugin24 allows to directly operate LED pixel strips with SPI-controllable LED
drivers like WS2801 or LPD880625. Advanced functions like using hardware SPI multiplexers
and multiple pixel strips are available but beyond the scope of this explanation.

4.1.3 Project organization with GitHub

The project repository is hosted at GitHub26. Its master branch always contains the newest
development version, released versions are tagged commits in the git history (like 0.10.5).
For every bigger version change (like from 0.9.x to 0.10.0), a version branch is created
(0.10) that allows future bug fix commits to be targeted against the released version without
having to include newer features from the master branch.

Pull requests from contributors’ forks are automatically run against the project’s tests and
linters and have to be approved by both main developers, Simon Newton and Peter Newman.
This allows spotting bugs and inconsistencies early and ensures good code quality.

4.2 Initial setup of OLA on the Raspberry Pi

In this section, I explain the steps which were needed to install OLA on a Raspberry Pi 1
model B+ from scratch. Newer versions of the single-board computer should work as well,
but may need some slight adjustments.

First, a recent Raspbian Lite image from the Raspberry Pi homepage27 has to be down-
loaded and flashed28 onto the microSD card that the Raspberry Pi will boot from. The
microSD card should be at least 4GB in size29. Secure shell (SSH) access is disabled by
default in Raspbian. Since SSH is required for connecting remotely to the Raspberry Pi, it
must be enabled by putting a new (empty) file named ssh in the card’s root directory.

23https://github.com/OpenLightingProject/ola/tree/master/plugins/usbdmx
24https://github.com/OpenLightingProject/ola/tree/master/plugins/spi
25see https://opendmx.net/index.php/OLA_LED_Pixels
26https://github.com/OpenLightingProject/ola
27https://raspberrypi.org/downloads/raspbian/. There are also pre-configured OLA images available

from http://dl.openlighting.org/, but since I need the latest git version to apply my own changes and
those images were not updated for several years, the manual procedure is the better way.

28Instructions: https://raspberrypi.org/documentation/installation/installing-images/README.md
29I managed to install OLA on a 2GB card, but that required removing various packages and constantly

scratching at the space limit. I later switched to a 4GB card.

17

https://github.com/OpenLightingProject/ola/tree/master/plugins/usbdmx
https://github.com/OpenLightingProject/ola/tree/master/plugins/spi
https://opendmx.net/index.php/OLA_LED_Pixels
https://github.com/OpenLightingProject/ola
https://raspberrypi.org/downloads/raspbian/
http://dl.openlighting.org/
https://raspberrypi.org/documentation/installation/installing-images/README.md

4 Implementation

After booting up the Raspberry Pi with the newly flashed microSD card and connecting
it to the network with an Ethernet cable, the IP address has to be found out30 so that a
secure shell can be opened. In this shell, all following commands are executed.

Before continuing, all packages, firmware and the kernel should be updated to their latest
versions:

sudo apt update

sudo apt upgrade

sudo rpi-update

4.2.1 Building and installing OLA

Building OLA from source for the first time takes several hours. Thus, it may be helpful to
overclock Raspberry Pi’s processor via raspi-config ; the Medium setting worked reliably
for me. A reboot is needed for the change to take effect.

Some prerequisite packages are required for building OLA and need to be installed with
apt . Thereafter, the latest source code from GitHub is downloaded, built and the resulting
binaries get copied to the correct paths.

sudo apt install git libcppunit-dev libcppunit-1.13-0 uuid-dev pkg-config ←֓

libncurses5-dev libtool autoconf automake g++ libmicrohttpd-dev ←֓

libmicrohttpd10 protobuf-compiler libprotobuf-lite9 python-protobuf ←֓

libprotobuf-dev libprotoc-dev zlib1g-dev bison flex make libftdi-dev ←֓

libftdi1 libusb-1.0-0-dev liblo-dev libavahi-client-dev

git clone https://github.com/OpenLightingProject/ola.git

cd ola

autoreconf -i

./configure

make

sudo make install

sudo ldconfig

Note: It may be possible to cross-compile OLA on a more powerful machine. However, I
could not find any advice on how to do this for such a big project depending on the autotools
build toolchain and therefore instead decided to try as much new code as possible on my
work computer and build only those versions on the Raspberry Pi that have already been
built successfully there.

After the install is complete, the OLA daemon can be started with olad and its web
interface accessed at port 9090.

OLA should be started automatically as soon as the Raspberry Pi has booted, which can
be achieved by an init script. I used OLA’s official one31 as a basis, but simplified it a bit,
changed it for user pi and included GPIO pin initialization (see init-olad.sh32 and listing 4.1).
The script needs to be made executable and registered with the following commands.

30Instructions: https://raspberrypi.org/documentation/remote-access/ip-address.md
31https://github.com/OpenLightingProject/ola/blob/master/debian/ola.olad.init
32I henceforth use this font for references to files that are part of this thesis. A list of all files and further

information is provided at the end of the document.

18

https://raspberrypi.org/documentation/remote-access/ip-address.md
https://github.com/OpenLightingProject/ola/blob/master/debian/ola.olad.init

4.2 Initial setup of OLA on the Raspberry Pi

sudo mv init-olad.sh /etc/init.d/olad

sudo chmod a+x /etc/init.d/olad

sudo update-rc.d olad defaults

Listing 4.1: Excerpt from init-olad.sh.

31 /sbin/start-stop-daemon --start --background --make-pidfile --pidfile ✩PIDFILE ←֓

--umask 0002 --chuid ✩USER --exec ✩DAEMON -- ✩DAEMON_ARGS

32

33 # set GPIO24 high (drive enable of IC1) and GPIO16 low (drive enable of IC2)

34 echo "24" > /sys/class/gpio/export

35 echo "16" > /sys/class/gpio/export

36 sleep 1

37 echo "out" > /sys/class/gpio/gpio24/direction

38 echo "out" > /sys/class/gpio/gpio16/direction

39 sleep 1

40 echo "1" > /sys/class/gpio/gpio24/value

41 echo "0" > /sys/class/gpio/gpio16/value

4.2.2 Enabling UART

In /boot/config.txt , enable_uart=0 needs to be changed to enable_uart=1 to make the
port usable. The maximum baud rate is 115200bit/s (less than the required 250kbit/s), so
another line init_uart_clock=16000000 has to be added to the same file to increase the
limit.

By default, shell and kernel messages are output on the serial connection. This behavior
must be disabled via raspi-config . Finally, to allow access to the UART port, the default
user pi has to be added to the dialout group:

sudo usermod -a -G dialout pi

OLA’s UART plugin needs to be enabled and configured so that it uses the correct UART
port. This can be done by changing the contents of file /home/pi/.ola/ola-uartdmx.conf

to the following.

1 enabled = true

2 device = /dev/ttyAMA0

3 /dev/ttyAMA0-break = 100

4 /dev/ttyAMA0-malf = 100

4.2.3 USB configuration

Recognized USB devices are accessible for members of the plugdev group, so pi should be
added there like above. To make all of OLA’s supported USB devices recognized, OLA’s
udev rules are imported with the following commands.

19

4 Implementation

sudo wget -O /etc/udev/rules.d/10-ola.rules https://raw.githubusercontent.com/←֓

OpenLightingProject/raspberrypi/master/etc/udev/rules.d/10-local.rules

sudo udevadm control --reload-rules

4.2.4 Network settings

To make it easier to directly connect the PC-DMX interface to computers that do not have
a DHCP server running (which possibly applies to most end user systems), it is assigned a
static IP address. The computer’s IP address then only has to be in the same subnet to be
able to communicate. The following lines need to be added to /etc/dhcpcd.conf .

1 # static ip

2 interface eth0

3

4 static ip_address=192.168.0.10/24

5 static routers=192.168.0.1

6 static domain_name_servers=192.168.0.1

OLA’s web interface is accessible at port 9090 by default, which can be changed with a
command line parameter. However, since ports below 1024 can not be opened without root
privileges33 and olad refuses to run as root, well-known port 80 for web servers can not be
used. These commands install forwarding rules from port 80 to 9090 as a workaround.

sudo sysctl -w net.ipv4.ip_forward=1

sudo sysctl -w net.ipv4.conf.all.route_localnet=1

sudo iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j DNAT --to ←֓

127.0.0.1:9090

sudo mkdir /etc/iptables

sudo sh -c "iptables-save > /etc/iptables/rules.v4"

To make these rules persist after a reboot, the following lines are added to /etc/rc.local .

1 sysctl -w net.ipv4.conf.all.route_localnet=1

2 iptables-restore < /etc/iptables/rules.v4

4.3 Electrical installation

The next goal is to build the extension board that hosts both bus transceiver chips for
UART output and SPI input and is connected via Raspberry Pi’s GPIO pins, as designed
in section 3.3. I developed the schematic in figure 4.1 based on Richard Ash’s blog post (see
section 4.1.2.2) and examples in the SN75176B transceiver chip data sheet [TI15] (though
similar transceiver chips like the MAX485 could also be used instead) with the EAGLE
software34.

33See RFC 1700 [RP94]. It was obsoleted by RFC 3232, but the information about privileged ports still
remains valid.

34https://www.autodesk.com/products/eagle/overview

20

https://www.autodesk.com/products/eagle/overview

4.3 Electrical installation

R
1

12
0

R
2

12
0

C1

100n

C2

100n
GND

GND

!RE2
A 6

B 7

D4
DE3

GND 5
R1

VCC 8

IC1

75176B

!RE2
A 6

B 7

D4
DE3

GND 5
R1

VCC 8

IC2

75176B

1
2
3

JP1

DMX OUT

1
2
3

JP2

DMX IN

1
JP

3

+
5V

1 JP
4

G
N

D

+
5V

R3

1k

R
4 2k

R5

1k

R
6

2k

3V
3A

1

3V
3B

17

5V
0A

2

5V
0B

4

GND_A 6

GND_B 9

GND_C 14

GND_D 20

GND_E 25

GND_F 30

GND_G 34

GND_H 39

GPIO047

GPIO0529

GPIO0631

GPIO1232

GPIO1333

GPIO1636

GPIO1711

GPIO1812

GPIO1935

GPIO2038

GPIO2140

GPIO2215

GPIO2316

GPIO2418

GPIO2522

GPIO2637

GPIO2713

ID_SC 28

ID_SD 27

RXD 10

SCL5

SDA3

SPI_CE0 24

SPI_CE1 26

SPI_MISO 21
SPI_MOSI 19

SPI_SCLK 23

TXD 8

Raspberry Pi
GPIO Port
Model B+

Figure 4.1: Extension board schematic. See extension-board.sch.

The schematic is designed such that the receive (R), drive (D) and drive enable (DE) pins
of both transceiver chips IC1 and IC2 – not just one direction for each chip – are connected
to the Raspberry Pi. Currently, only one direction for each chip is supported, but this design
allows bidirectional use of the chips in the future (see chapter 6). The negated receive enable
(!RE) pin is hard-wired to ground (GND) to enable receiving, as this cannot cause harm to
data transmission.

Received data at the R pins are forwarded to the GPIO pins via voltage dividers (resistors
R3/R4 and R5/R6) to reduce the 5V output signal to the allowed 3.3V for Raspberry Pi’s
inputs. IC2 ’s received data (of the DMX input line) additionally to SPI’s MISO (Master
In, Slave Out) pin go also into UART’s RXD (receive) pin as that was my first try to make
receiving DMX data on the Raspberry Pi work. IC1 ’s received data (of the DMX output
line) go into the SDA pin to keep the option open to use the I2C bus to parse data there;
otherwise it can be used as a simple GPIO pin.

Resistors R1 and R2 are DMX termination resistors as defined in the DMX standard.
Both chips’ supply voltage (VCC) pins are connected to ground via small capacitors (C1
and C2) to mitigate voltage peaks of the power supply.

All other parts in the schematic are plug connectors; JP1 and JP2 go to the DMX
XLR connectors, JP3 and JP4 allow an external voltage supply to power the Raspberry Pi
through the extension board instead of the onboard micro USB port.

This schematic was then transformed into a two-sided layout that can either be printed to
create a PCB (printed circuit board) or soldered manually on a drilled board, which I did.
The layout is shown in figure 4.2, the finished board in figure 4.3.

21

4 Implementation

C1

C2

IC
1

7
5
1
7
6
B

IC
2

7
5
1
7
6
B

D
M

X
 O

U
T

D
M

X
 I
N

+5V

GND

R1

R2

R3

R4

R5

R6

Figure 4.2: Extension board layout. See extension-board.brd. Complete view, top view with-
out labels, bottom view without labels (mirrored).

Figure 4.3: The finished extension board. Top view, bottom view, side view.

22

4.4 Implementation of the DMXCreator 512 Basic protocol as OLA USB sub-plugin

After installing the extension board on Raspberry Pi’s GPIO pins, fixtures connected via
IC1 ’s DMX line can be controlled by changing an OLA universe’s channel values in the web
interface. The UART output port just has to be patched to that universe.

In an earlier version, termination resistors were missing, which resulted in an increased
number of transmission errors. Also, both transceiver chips’ Drive enable pin were hard-
wired to VCC. Thus, whenever the receiver chip (IC2) was connected to a DMX line with
another DMX source, it always tried to pull the bus to low and eventually broke down.

4.4 Implementation of the DMXCreator 512 Basic protocol as
OLA USB sub-plugin

The second DMX output port shall be provided by the DMXCreator 512 Basic USB-to-DMX
adapter35. It is only officially supported by VXCO’s Windows lighting software DMXCreator
[VXC11]. To make it usable in OLA, its protocol must be reverse engineered and then re-
implemented as an extension for the USB DMX Plugin.

4.4.1 Reverse engineering the protocol with Wireshark

To capture the traffic between the DMXCreator software and USB adapter, I installed the
network analyzer software Wireshark with USB support on Windows36 and went through
the steps in table 4.1. By investigating the resulting capture file dmxcreator.pcap, I found
out the following:

1. Only when the source DMX data changes (e.g. while fading a slider), USB traffic can
be observed. The adapter generates a DMX signal with a valid refresh rate itself. This
was verified by unplugging power of a connected fixture, which instantly reset to the
correct color when it was plugged in again.

2. For every DMX data change, one packet with a constant byte string is sent to USB
endpoint 0x01 of the device and then either one or two data packets (with 256 bytes
of payload each) are sent to endpoint 0x02 :

a) If the change occurs in the first half of the universe (channels 1 to 256), the byte
string is 0x80 0x01 0x00 0x00 0x00 0x01 and only one data packet is sent.

b) If the change occurs in the second half (channels 257 to 512), the byte string is
0x80 0x01 0x00 0x00 0x00 0x02 and two data packets are sent.

3. The data packets’ payload consists of half a universe’s DMX channel values as one
byte string. Hence, two data packets are needed if the changed channel is located in
the second half.

4. The USB device’s vendor ID is 0x0a30 , its product ID is 0x0002 (included in packet
88; can also be retrieved by running lsusb on Linux).

35http://www.dmx512.ch/512.html
36Instructions: https://wiki.wireshark.org/CaptureSetup/USB

23

http://www.dmx512.ch/512.html
https://wiki.wireshark.org/CaptureSetup/USB

4 Implementation

Table 4.1: Procedure for capturing DMXCreator’s USB communication protocol. The pcap
packets column corresponds to the packets in dmxcreator.pcap that were captured
during each step.

Step
pcap

packets

1. Start to capture USB traffic with Wireshark. 0 – 26

2. Plug in the DMXCreator 512 Basic USB adapter. 27 – 97

3. Start the DMXCreator software. 98 – 103

4. Patch eurolite LED PAR-64 RGB Spot fixture (5 channels: Red,
Green, Blue, Dimmer, Flash) to DMX address 1.

5. Patch another eurolite LED PAR-64 RGB Spot fixture to DMX
address 367.

6. Go to main window. 104 – 106

7. Slowly fade the first fixture’s Red channel (DMX channel 1) down
from 255 to 0.

107 – 260

8. Slowly fade the second fixture’s Blue channel (DMX channel 369)
down from 255 to 86.

261 – 386

9. Slowly fade the second fixture’s Green channel (DMX channel 368)
down from 255 to 0.

387 – 224

10. End capturing.

4.4.2 Extending OLA’s USB DMX Plugin

The reverse-engineered protocol now had to be incorporated into OLA’s USB DMX Plugin.
Since this plugin does not depend on Raspberry Pi’s embedded hardware, development could
happen completely on my more powerful work computer to speed up build times.

Note: All code blocks in this section can be found unshortened in OLA’s GitHub pull
request 113637.

First, the user starting olad has to be given permissions to communicate with the USB
adapter. This can be achieved by adding the following rule to the udev rules from sec-
tion 4.2.3 in /etc/udev/rules.d/10-ola.rules and reloading the rules. It allows all mem-
bers of the plugdev group access to USB devices identified by the given vendor and product
IDs.

19 # udev rules for the DMXCreator 512 Basic device

20 SUBSYSTEM=="usb|usb_device", ACTION=="add", ATTRS{idVendor}=="0a30", ATTRS{←֓

idProduct}=="0002", GROUP="plugdev"

I also added the rule to OLA’s debian/ola.udev file to have it included in released OLA
.deb packages. When installing these, the rules gets extracted to the correct location.

37https://github.com/OpenLightingProject/ola/pull/1136/files

24

https://github.com/OpenLightingProject/ola/pull/1136/files

4.4 Implementation of the DMXCreator 512 Basic protocol as OLA USB sub-plugin

DMXCreator512BasicFactory (factory class)

For creating a new sub-plugin of the USB DMX Plugin, I followed its developer information
document38. Every sub-plugin has a factory class, whose DeviceAdded method is called
whenever a new USB device is found. This method is expected to return false if the
device should not or cannot be claimed by this sub-plugin. In DMXCreator ’s case, the only
identifying attributes of the USB adapter are its vendor and product IDs.

Listing 4.2: Excerpt from DMXCreator512BasicFactory.cpp.

36 const uint16_t DMXCreator512BasicFactory::VENDOR_ID = 0x0a30;

37 const uint16_t DMXCreator512BasicFactory::PRODUCT_ID = 0x0002;

38

39 bool DMXCreator512BasicFactory::DeviceAdded(

40 WidgetObserver *observer,

41 libusb_device *usb_device,

42 const struct libusb_device_descriptor &descriptor) {

43 if (descriptor.idVendor != VENDOR_ID || descriptor.idProduct != PRODUCT_ID) {

44 return false;

45 }

46

47 LibUsbAdaptor::DeviceInformation info;

48 if (!m_adaptor->GetDeviceInfo(usb_device, descriptor, &info)) {

49 return false;

50 }

51

52 OLA_INFO << "Found a new DMXCreator 512 Basic device";

The USB adapter does not return a serial number, so because it is not possible to distin-
guish between different devices, only one at a time is supported.

58 if (info.serial.empty()) {

59 if (m_missing_serial_number) {

60 OLA_WARN << "We can only support one device without a serial number.";

61 return false;

62 } else {

63 m_missing_serial_number = true;

64 }

65 }

In the case that the device should be claimed, the method creates a new widget in-
stance, passes it to BaseWidgetFactory ’s AddWidget method (located in WidgetFactory.h),
which tries to initialize it, and returns the result. OLA supports detecting hot-plugged de-
vices (i.e. devices plugged in after OLA was started) in the default asynchronous mode of
the underlying libusb library, but a fallback version using libusb ’s synchronous meth-
ods shall be implemented as well. Thus, two classes AsynchronousDMXCreator512Basic

and SynchronousDMXCreator512Basic are implemented as child classes of the widget class

DMXCreator512Basic .

38https://github.com/OpenLightingProject/ola/blob/master/plugins/usbdmx/README.developer.md

25

https://github.com/OpenLightingProject/ola/blob/master/plugins/usbdmx/README.developer.md

4 Implementation

DMXCreator512Basic (widget class)

The protocol allows sending a whole universe (instead of only the first half), thus I decided
to always use this method. In DMXCreator512Basic.cpp, I declared a constant array with the
bytes which should be sent to USB endpoint 0x01 .

Listing 4.3: Excerpt from DMXCreator512Basic.cpp.

55 // if we only wanted to send the first half of the universe, the last byte would

56 // be 0x01

57 static const uint8_t status_buffer[6] = {

58 0x80, 0x01, 0x00, 0x00, 0x00, 0x02

59 };

Both the synchronous and asynchronous implementations of DMXCreator512Basic use the
Facade software pattern, i.e. method calls to the widget class are passed through to a child
class of ThreadedUsbSender or AsyncUsbSender , respectively. I explain my approach to
implementing the synchronous version here because it is a bit easier to understand. The
asynchronous version provides the same functionality while using asynchronous libusb

methods and callback functions.

For initialization, the USB device must be opened and claimed. With the resulting device
handle, the ThreadedUsbSender child class can be instantiated and a pointer of it is saved
in the instance variable m_sender .

160 bool SynchronousDMXCreator512Basic::Init() {

161 libusb_device_handle *usb_handle;

162

163 bool ok = m_adaptor->OpenDeviceAndClaimInterface(

164 m_usb_device, 0, &usb_handle);

165 if (!ok) {

166 return false;

167 }

168

169 std::auto_ptr<DMXCreator512BasicThreadedSender> sender(

170 new DMXCreator512BasicThreadedSender(m_adaptor, m_usb_device,

171 usb_handle));

172 if (!sender->Start()) {

173 return false;

174 }

175 m_sender.reset(sender.release());

176 return true;

177 }

Whenever new DMX data shall be sent via this USB adapter, the widget’s SendDMX

method is called, which just forwards the DmxBuffer object to m_sender if it is already
available (i.e. if the Init function was called correctly before), whose infinite loop then in
turn calls TransmitBuffer in the next iteration.

179 bool SynchronousDMXCreator512Basic::SendDMX(const DmxBuffer &buffer) {

180 return m_sender.get() ? m_sender->SendDMX(buffer) : false;

181 }

26

4.4 Implementation of the DMXCreator 512 Basic protocol as OLA USB sub-plugin

In TransmitBuffer , the provided DmxBuffer first is compared with the last transmitted
one. If they are the same, nothing needs to be transmitted at all.

96 bool DMXCreator512BasicThreadedSender::TransmitBuffer(

97 libusb_device_handle *handle, const DmxBuffer &buffer) {

98

99 if (m_dmx_buffer == buffer) {

100 // no need to update -> sleep 50➭s to avoid timeout errors

101 usleep(50);

102 return true;

103 }

104

105 m_dmx_buffer = buffer;

Else, both halves of the universe are copied into m_universe_lower and m_universe_upper .

If the provided DmxBuffer does not contain all 512 channels (the length variable gets set
to the number of copied channels), the rest is filled up with zeros.

107 unsigned int length = CHANNELS_PER_PACKET;

108 m_dmx_buffer.Get(m_universe_data_lower, &length);

109 memset(m_universe_data_lower + length, 0, CHANNELS_PER_PACKET - length);

110

111 length = CHANNELS_PER_PACKET;

112 m_dmx_buffer.GetRange(CHANNELS_PER_PACKET, m_universe_data_upper, &length);

113 memset(m_universe_data_upper + length, 0, CHANNELS_PER_PACKET - length);

Afterwards, status_buffer is sent to USB endpoint 0x01 and both halves are consecu-
tively sent to endpoint 0x02 . If any operation fails, false is returned, so that the thread
stops and the device handle gets closed.

115 bool r = BulkTransferPart(handle, ENDPOINT_1, status_buffer,

116 sizeof(status_buffer), "status");

117 if (!r) {

118 return false;

119 }

120

121 r = BulkTransferPart(handle, ENDPOINT_2, m_universe_data_lower,

122 CHANNELS_PER_PACKET, "lower data");

123 if (!r) {

124 return false;

125 }

126

127 r = BulkTransferPart(handle, ENDPOINT_2, m_universe_data_upper,

128 CHANNELS_PER_PACKET, "upper data");

129 return r;

130 }

27

4 Implementation

Integration

At several locations, the new classes had to be integrated into the USB DMX Plugin.
However, the required snippets are very similar to all existing sub-plugins, hence, I will not
include them here, but only provide a list of changed files and functions for reference:

❼ AsyncPluginImpl.cpp:
instantiated factory class in Start method; overloaded NewWidget method

❼ AsyncPluginImpl.h:
overloaded NewWidget method

❼ SyncPluginImpl.cpp:
instantiated factory class in constructor; overloaded NewWidget method

❼ SyncPluginImpl.h:
overloaded NewWidget method

❼ SyncronizedWidgetObserver.h [sic]39:
overloaded NewWidget method

❼ WidgetFactory.h:
overloaded virtual NewWidget method

Additionally, the USB adapter was included in UsbDmxPlugin.cpp’s plugin description40

and the new files had to be added to Makefile.mk to allow recompiling with make and
make install .

Now, patching the new DMXCreator 512 Basic USB Device to a universe in OLA’s web
interface and sending DMX data through it is working as expected.

The new code was merged back into OLA’s project repository on GitHub41, after improv-
ing my initial version together with the project’s main developers Peter Newman and Simon
Newton.

4.5 Implementation of the OLA Native SPI DMX Plugin

Two output ports are provided by the UART and USB DMX plugins, the input port is yet
to be implemented. In this section I briefly describe my first two approaches and why they
failed. Afterwards, the working solution with SPI is explained in detail.

4.5.1 Insufficiency of Raspberry Pi’s UART input

My first idea was to extend the UART plugin to also support DMX input. This seemed
perfect since the UART and DMX protocols are so similar and very little software overhead
would be needed.

However, there is a big catch: Receiving and recognizing the BREAK signal is very difficult
because it is just forwarded to the application as a null byte and thus indistinguishable from

39I raised issue #1331 on GitHub to correct the typing error.
40Today, after changes in OLA’s plugin structure, the plugin description is located in README.md and

read in from there.
41https://github.com/OpenLightingProject/ola/pull/1136

28

https://github.com/OpenLightingProject/ola/issues/1331
https://github.com/OpenLightingProject/ola/pull/1136

4.5 Implementation of the OLA Native SPI DMX Plugin

data channels that are just set to zero. There are options in the termios C interface’s
c_iflag input flags to change this:

Listing 4.4: Excerpt from the termios man page. Note that octal \377 is 255 in decimal.

BRKINT If IGNBRK is set, a BREAK is ignored. If it is not set but

BRKINT is set, then a BREAK causes the input and output queues

to be flushed, and if the terminal is the controlling terminal

of a foreground process group, it will cause a SIGINT to be

sent to this foreground process group. When neither IGNBRK

nor BRKINT are set, a BREAK reads as a null byte (✬\0✬),

except when PARMRK is set, in which case it reads as the

sequence \377 \0 \0.

IGNPAR Ignore framing errors and parity errors.

PARMRK If this bit is set, input bytes with parity or framing errors

are marked when passed to the program. This bit is meaningful

only when INPCK is set and IGNPAR is not set. The way erro-

neous bytes are marked is with two preceding bytes, \377 and

\0. Thus, the program actually reads three bytes for one

erroneous byte received from the terminal. If a valid byte

has the value \377, and ISTRIP (see below) is not set, the

program might confuse it with the prefix that marks a parity

error. Therefore, a valid byte \377 is passed to the program

as two bytes, \377 \377, in this case.

If neither IGNPAR nor PARMRK is set, read a character with a

parity error or framing error as \0.

INPCK Enable input parity checking.

ISTRIP Strip off eighth bit.

However, regardless of which settings I tried, after some time only random data bytes were
decoded. The UART seemed to be confused by the frequent BREAKs.

I was unable to figure out where this issue arose from because I could not verify if the
signal was captured by the UART correctly. So I decided to look for a way to receive data
that permits access to the “raw” DMX signal, as this would potentially be a more stable
approach. It would require implementing parsing myself but thereby also give me full control
over it.

4.5.2 Bit bang reading with pigpio library

The next idea was to constantly poll one GPIO pin’s value and getting the raw signal that
way. This technique is known as “bit bang reading” in the pigpio library42. I had concerns
about the speed and precision of the read process, since Linux is not a real time operating
system and scheduling could delay read operations so that they already sample the pin when
the next bit is fed in. At 250kbit/s, these delays could already be significant.

42http://abyz.me.uk/rpi/pigpio/cif.html#gpioSerialReadOpen

29

http://abyz.me.uk/rpi/pigpio/cif.html#gpioSerialReadOpen

4 Implementation

Fortunately, pigpio provides a diagnose tool called piscope that displays the bit banged
signal. I generated DMX data with an external DMX interface and inspected the signal
captured by piscope. An example capture image together with the expected signal can be
seen in figure 4.4.

Figure 4.4: pigpio “bit bang read” signal shown in piscope (top) versus sent data. The sent
channel values are 255, 0, 0, 127, 0, 0, 255, 255, 0, 0, . . .

This revealed that often a short pulse, i.e. a quick change from low to high to low or
the other way around, was not visible at all, e.g. in slot 4 and 7 in figure 4.4. Addition-
ally, sampling seemed to happen once every 5➭s, since slots’ stop bits (2 high bits) lasted
sometimes 5➭s and sometimes 10➭s, but never 8➭s as expected.

In conclusion, “bit bang reading” a GPIO pin is not sufficiently accurate for the 250kbit/s
DMX signal.

4.5.3 Using SPI to sample DMX

An idea I came across in a Raspberry Pi StackExchange answer43 while researching GPIO
bit banging speeds was sampling the native SPI port (see section 2.3) for arbitrary DMX
data. For this, the DMX line is connected (via the bus transceiver) to Raspberry Pi’s
MISO (Master In, Slave Out) pin, the other SPI pins are left unconnected. The intention
is that SPI is designed for much higher speeds than UART, so a stable clock frequency is
important. Unfortunately, not many details were provided in that post, and it seems to be
a very uncommon technique, so I had to figure out most steps myself.

Raspberry Pi’s SPI controller (acting as SPI master) has a core frequency of 250MHz that
can be divided by any even number44. The goal is to sample the connected DMX signal
8 times per bit to have enough tolerance if sometimes the sample time falls exactly on an
edge, so the required sample frequency is 250kbit/s ➲ 8/bit = 2MHz. The required clock
divider 250MHz / 2MHz = 125 is odd, so 124 will be used instead (odd divisors are rounded
down) and parsing of the sampled bits must be flexible enough to account for this inaccuracy.
However, since a valid DMX receiver has to accept any signal with a bit rate of 245kbit/s
to 255kbit/s (see section 2.1.2), flexibility must be ensured anyway.

43https://raspberrypi.stackexchange.com/a/2044
44According to the BCM2835 manual [Bro12], only powers of two can be used as clock divider, but this is

incorrect according to https://raspberrypi.stackexchange.com/a/3444 and testing by myself.

30

https://raspberrypi.stackexchange.com/a/2044
https://raspberrypi.stackexchange.com/a/3444

4.5 Implementation of the OLA Native SPI DMX Plugin

feff =
250MHz

124
≈ 2.02MHz

feff

245kbit/s
≈

8.23 sampled bits

DMX bit

feff

250kbit/s
≈

8.06 sampled bits

DMX bit

feff

255kbit/s
≈

7.91 sampled bits

DMX bit

4.5.3.1 Enabling SPI

Enabling SPI can be done with raspi-config . To increase the buffer size (i.e. the number

of bytes that can be received/transmitted in one operation), spidev.bufsiz=65536 should

be added to the kernel options in /boot/cmdline.txt . After a reboot, the value returned

by cat /sys/module/spidev/parameters/bufsiz should be the requested 65536.

Note: Since there is much contradicting information available online, I want to clarify:
In newer firmware versions, no additional steps (like manually enabling a kernel module or
blacklisting another) are needed.

To test the configuration, the MISO and MOSI pins can be wired together for a loopback
test:

wget https://raw.githubusercontent.com/raspberrypi/linux/rpi-3.10.y/←֓

Documentation/spi/spidev_test.c

gcc -o spidev_test spidev_test.c

./spidev_test --device /dev/spidev0.0 --speed 2000000

Output should look like the following.

spi mode: 0

bits per word: 8

max speed: 2000000 Hz (2000 KHz)

FF FF FF FF FF FF

40 00 00 00 00 95

FF FF FF FF FF FF

FF FF FF FF FF FF

FF FF FF FF FF FF

DE AD BE EF BA AD

F0 0D

Additionally, I ran the test while connecting the MISO pin to either +3.3V, ground, or
leaving it unconnected. As expected, the output was FF s only, 00 s only and again 00 s
only, respectively.

31

4 Implementation

4.5.3.2 Receiving DMX data

Based on the loopback test program above, I wrote spi-receive.c, which reads in 8192 bytes45

four times from the SPI MISO bus and outputs them in binary format to the console. As
the loopback test code and the existing SPI Plugin (see section 4.1.2.4) do too, it uses the
spidev interface, which enables SPI communication from user space (not as part of the
kernel).

A single SPI transfer with spidev is configured by an spi_ioc_transfer struct like shown

below. The transfer itself is then executed with ioctl(fd, SPI_IOC_MESSAGE(1), &tr) .

Listing 4.5: Excerpt from spi-receive.c.

43 struct spi_ioc_transfer tr = {

44 // don✬t transmit anything

45 .tx_buf = 0,

46

47 // save received bytes into ❵rx❵ buffer (at appropriate offset)

48 .rx_buf = (unsigned long)(rx + BYTES_PER_TRANSFER*offset),

49

50 // bytes to send/receive in this transfer operation

51 .len = BYTES_PER_TRANSFER,

52

53 // don✬t delay after data bytes are sent

54 .delay_usecs = delay,

55

56 // overwrite speed temporarily to 2MHz

57 .speed_hz = speed,

58

59 // overwrite bits per word temporarily to 8

60 .bits_per_word = bits_per_word,

61 };

The transfer function, where the struct above is created and used to initiate the SPI
data transfer, is called four times. Afterwards, the printBinary function prints the rx

buffer as binary numbers. It uses the BYTE_TO_BINARY macro to deconstruct bytes into 8
ones and zeros.

71 #define BYTE_TO_BINARY_PATTERN "%c %c %c %c %c %c %c %c "

72 #define BYTE_TO_BINARY(byte) \

73 (byte & 0x80 ? ✬1✬ : ✬0✬), \

74 (byte & 0x40 ? ✬1✬ : ✬0✬), \

75 (byte & 0x20 ? ✬1✬ : ✬0✬), \

76 (byte & 0x10 ? ✬1✬ : ✬0✬), \

77 (byte & 0x08 ? ✬1✬ : ✬0✬), \

78 (byte & 0x04 ? ✬1✬ : ✬0✬), \

79 (byte & 0x02 ? ✬1✬ : ✬0✬), \

80 (byte & 0x01 ? ✬1✬ : ✬0✬)

45On Raspberry Pi, spidev ’s buffer size is 4096 bytes by default. Because this limit is too low (see end of
section 4.5.3.4), its maximum size was increased to 65536 in the previous section.

32

4.5 Implementation of the OLA Native SPI DMX Plugin

I tried the program with an example DMX signal and saved the resulting binary data
to dmx-spi-data.txt. Then these data were loaded and plotted in GNU Octave46 with the
following commands. A screenshot of the resulting plot is shown in figure 4.5.

load "dmx-spi-data.txt"

data2 = dmx_spi_data(2, :) # copy 2nd chunk

stairs(data2 * 0.9 + 0.05) # show square signal

axis([17000 19500 0 1]) # show x values (bits) 17000...19500, y values 0...1

Figure 4.5: Received SPI data (excerpt) plotted with GNU Octave.

I repeated the procedure multiple times and the plots kept looking very promising. No
short pulses were missed and due to the oversampling, the timing was also very accurate47.
The only problem I noticed was that two consecutive chunks (i.e. received in multiple transfer
operations) are separated by an uncaptured gap, even if the transfer calls are right after
each other in the code.

That means that the resulting bytes cannot be parsed as a (possibly infinitely) long stream
of bits, but rather each chunk must be parsed on its own. As a result, there are chunks that
do only contain the start of a DMX packet, some do only contain the end. These are useless
though, since it is not clear how many channels have been transmitted before. Thus, the
refresh rate is lower for higher channels. The problem is visualized in figure 4.6.

46https://www.gnu.org/software/octave/
47Actually, the “real” DMX signal that the piscope bit banged signal in figure 4.4 was compared against, was

a plot of the same data received with SPI.

33

https://www.gnu.org/software/octave/

4 Implementation

MAB + NULL start code (DMX packet start)

DMX channel values (slots 1…N)

BREAK

Case 1

Case 2

Case 3

Figure 4.6: Received SPI chunks versus DMX signal stream. (Note: Sizes and proportions
are not to scale.) DMX packets can be either fully enclosed in one SPI chunk
(case 1; this is the optimum case) or only partially. If only the end of a DMX
packet is contained (case 2), the chunk is useless. If a DMX packet’s start is
included (case 1 and case 3), all channel values until the chunk end can be
correlated to their respective channel numbers. Since it is less likely that a DMX
packet starts right at the chunk’s beginning than somewhere in the middle, higher
channels are updated less often.

4.5.3.3 Parsing received SPI chunks

As mentioned earlier, receiving the raw signal requires implementing parsing the DMX chan-
nel values from the sampled data myself. This parsing has to obey timing constraints of the
DMX protocol.

My approach to implementing this is a state machine that processes the sampled data bit
by bit, proceeds to the next state if the received data follow the DMX protocol and goes back
to the initial state otherwise. A flow chart of this state machine is pictured in figure 4.7.

After a DMX slot’s start bit is detected, always the middle of the following 8 DMX bits (=
8 “SPI bytes”) is sampled to construct the channel value. The subsequent stop bits decide
how to proceed:

a) Either the two stop bits are high and arbitrarily many high bits as mark between
slots / mark before BREAK follow. Then, at the next falling edge, the parser saves
the constructed DMX channel value to the correct position and continues in the in
data start bit state for the next slot. An exception is the last channel: If the just saved
DMX value was written to channel 512, then it is clear that no more slots can follow,
so the DMX packet is completed and the state gets changed to in BREAK instead.

b) Or there are low bits where the stop bits should be. If the constructed channel value
is also zero, that was actually not a data slot, but the beginning of the BREAK. So
all channel values from here on are set to zero, the DMX packet is completed and the
state machine proceeds to in BREAK.

34

4.5 Implementation of the OLA Native SPI DMX Plugin

0xff byte

0xff byte

0x00 byte

0x00 byte

0xff byte

wait for BREAK

in BREAK

wait for MAB

in MAB

in start code

in start code stop bits

in data start bit

falling edge

at least 88µs of low bits

else

rising edge

else

at least 8µs of high bits

else

9 · 4µs of low bits

else

else

0x00 byte

at least 8µs of high bits

else

in data stop bits

calculate sampling
position for data bits

no

in data bits:
gather channel value

after 8th bit

7 times

are we
actually already

in BREAK?
yes

low
bit at sampling

position?

yes

stop bits
at least 8µs?yes no

DMX packet
successfully decoded

Figure 4.7: Parsing DMX from sampled SPI data with a state machine.

35

4 Implementation

To recognize falling and rising edges, I wrote two helper functions. DetectFallingEdge

returns the number of zeros if the passed byte has the form 1n08−n (n ∈ {0, . . . , 7}), and
-1 otherwise. Note that this case can occur if the byte contains either only ones or random
spikes. DetectRisingEdge works equivalently.

I show the WaitForMab function as a simple state handler example. It looks for the first
rising edge after the BREAK to change to the IN_MAB state.

Listing 4.6: Excerpt from SPIDMXParser.cpp.

259 void SPIDMXParser::WaitForMab() {

260 uint8_t byte = chunk[chunk_bitcount];

261 if (byte != 0) {

262 int8_t ones = DetectRisingEdge(byte);

263 if (ones > 0) {

264 ChangeState(IN_MAB);

265 state_bitcount = ones;

266 } else {

267 ChangeState(WAIT_FOR_BREAK);

268 }

269 }

270 chunk_bitcount++;

271 }

Another notable state handler is InDataStartbit because it calculates the sampling posi-
tion of the DMX data bits. This sampling position should always be in the middle of a byte,
and thus depends on state_bitcount , i.e. the number of “SPI bits” that belong to the cur-
rent state, set by the previous state handler (i.e. InStartcodeStopbits or InDataStopbits).
Possibly, the middle bit was already contained in the last handled byte, so the current byte
is reset to the previous one in this case. Table 4.2 lists all possible cases.

385 void SPIDMXParser::InDataStartbit() {

386 uint8_t byte = chunk[chunk_bitcount];

387

388 if (state_bitcount >= 4) {

389 // look at the last byte again and don✬t increase chunk_bitcount

390 byte = chunk[chunk_bitcount - 1];

391 sampling_position = state_bitcount - 4;

392 } else {

393 // next byte will be handled in next step as usual

394 chunk_bitcount++;

395 sampling_position = state_bitcount + 8 - 4;

396 }

397

398 // start bit must be zero

399 if ((byte & (1 << sampling_position))) {

400 ChangeState(WAIT_FOR_BREAK);

401 } else {

402 current_dmx_value = 0x00;

403 ChangeState(IN_DATA_BITS);

404 }

405 }

36

4.5 Implementation of the OLA Native SPI DMX Plugin

Table 4.2: Calculating the sampling position in InDataStartbit state handler. d represents
a data bit. The desired sampling position is indicated with an arrow.

state bit
count

previous byte,
current byte backtrack?

new current
byte

sampling bit
number

8 00000000 dddddddd

❫

yes 00000000

❫

4

7 10000000 0ddddddd

❫

yes 10000000

❫

3

6 11000000 00dddddd

❫

yes 11000000

❫

2

5 11100000 000ddddd

❫

yes 11100000

❫

1

4 11110000 0000dddd

❫

yes 11110000

❫

0

3 11111000 00000ddd

❫

no 00000ddd

❫

7

2 11111100 000000dd

❫

no 000000dd

❫

6

1 11111110 0000000d

❫

no 0000000d

❫

5

All other state handler functions can be inspected in SPIDMXParser.cpp.

The ParseDmx method, which is given an SPI chunk to parse, iterates through the chunk’s
bytes and calls the respective state handlers. Whenever a DMX packet end is detected,
PacketComplete is called, which in turn invokes a callback function if it has been set before

via SPIDMXParser.h’s SetCallback method.

Note: The code listings above are part of the OLA plugin I wrote. Details are outlined in
the next section. Initially, I tested the code in a standalone version that could process the
output of spi-receive.c’s printCArray function.

4.5.3.4 Wrapping the code into an OLA plugin

The final step was to create a new OLA plugin that provides an input port for every SPI
port found on the system. This port can then be patched to an OLA universe which is
forwarded via Art-Net to the lighting software or directly to a DMX output port.

OLA’s OSC (Open Sound Control) Plugin includes information about its development
process48 which is a good reference for writing a new plugin. As a name, I chose Native SPI
DMX Plugin, following Native UART DMX Plugin’s convention. All classes are prefixed
with SPIDMX ; their namespace, as well as directory name, is spidmx . I based the general
plugin structure on UART plugin’s:

48https://github.com/OpenLightingProject/ola/blob/master/plugins/osc/README.developer.md

37

https://github.com/OpenLightingProject/ola/blob/master/plugins/osc/README.developer.md

4 Implementation

❼ The Plugin class (SPIDMXPlugin.h) hooks into OLA’s plugin infrastructure and searches
for SPI devices.

❼ For every found SPI device, a new OLA Device (SPIDMXDevice.h) is instantiated,
which in turn creates one instance of each of the following classes:

– A Widget class (SPIDMXWidget.h) that abstracts away the required spidev calls.

– A Thread class (SPIDMXThread.h) that repeatedly calls the Widget’s ReadWrite

method and saves the resulting data. The Thread itself instantiates a new Parser
(SPIDMXParser.h) to decode the raw SPI data.

– An InputPort class (SPIDMXPort.h) connects the Thread to OLA’s plugin mech-
anism by forwarding DMX data and notifying the Thread whenever it is patched
or unpatched to / from a universe.

❼ A README.md document describes the plugin.

The UML class diagram in figure 4.8 clarifies those relations.

SPIDMXPlugin

+ Id()
+ Name()
+ Description()

StartHook()
StopHook()
SetDefaultPreferences()

SPIDMXDevice

m_blocklength

+ DeviceId()
+ GetWidget()
StartHook()

ola::Plugin ola::Device

1 0..*searches

ola::thread::Thread ola::BasicInputPort

SPIDMXWidget

m_fd
m_path

+ Open()
+ Close()
+ IsOpen()
+ SetupPort()
+ ReadWrite(*tx_buf, *rx_buf, blocklength)

SPIDMXThread

m_receive_callback
m_dmx_rx_buffer
m_dmx_tx_buffer
m_spi_rx_buffer
m_spi_tx_buffer

+ RegisterPort()
+ UnregisterPort()
+ WriteDMX(&buffer)
+ GetDmxInBuffer()
+ SetReceiveCallback(*callback)

SPIDMXInputPort

+ field: type

+ ReadDMX()
+ PreSetUniverse(*old_universe, *new_universe)

registers

invokes callback

extends

1

1

creates

1

1

creates

1

1

opens

SPIDMXParser

state

+ ParseDmx(*buffer, chunksize)
+ SetCallback(*callback)

1

1

lets parse

opens /

reads

invokes

callback

–
–
–

–

–
–

–
–
–
–
–

–

extends

extendsextends

Figure 4.8: Native SPI DMX Plugin UML class diagram. Note that only important fields
and methods are included.

38

4.5 Implementation of the OLA Native SPI DMX Plugin

Whenever the Parser detects a DMX packet end, its PacketComplete function invokes
the callback function that was set in the constructor, called from SPIDMXThread.cpp. Its
callback in turn is set in SPIDMXPort.h’s PreSetUniverse method (listing 4.7) which is
always called when the universe that the port is patched to changes.

This callback chain needs special attention because one has to remember which pointers
could still reference a callback variable, especially as it could be one in another thread.
Mistakes here easily lead to segmentation faults.

Listing 4.7: Excerpt from SPIDMXPort.h.

54 bool PreSetUniverse(Universe *old_universe, Universe *new_universe) {

55 if (!old_universe && new_universe) {

56 return m_thread->SetReceiveCallback(NewCallback(

57 static_cast<BasicInputPort*>(this),

58 &BasicInputPort::DmxChanged));

59 }

60 if (old_universe && !new_universe) {

61 return m_thread->SetReceiveCallback(NULL);

62 }

63 return true;

64 }

Since plugins can be enabled / disabled at build time, the autotools toolchain must be
informed about the new plugin and its operating system dependencies (namely spidev),
which was done by adding a single line to configure.ac:

836 PLUGIN_SUPPORT(spidmx, USE_SPIDMX, [✩have_spi])

Additionally, the plugin’s Makefile.mk, which is similar to other plugins’ Makefiles, had to
be included from plugins/Makefile.mk.

At runtime, the plugin is loaded in olad/DynamicPluginLoader.cpp, where the build con-
stant USE_SPIDMX determines if the plugin was enabled at build time.

215 #ifdef USE_SPIDMX

216 m_plugins.push_back(

217 new ola::plugin::spidmx::SPIDMXPlugin(m_plugin_adaptor));

218 #endif // USE_SPIDMX

Each plugin is assigned a plugin ID constant in common/protocol/Ola.proto, in this case
OLA_PLUGIN_SPIDMX = 23 . It was temporarily 10000 during development and changed to its
final value shortly before merging into the master branch.

After integrating the new plugin into the existing infrastructure, a complete rebuild of the
project was required:

autoreconf

./configure

make

sudo make install

sudo ldconfig

39

4 Implementation

The finished SPI DMX Plugin was tested with multiple DMX sources and works fine. As
explained earlier, higher channels are updated less often, resulting in higher latency. Hence,
they should not be used for light fading, which should be smooth by definition.

The chunk size of one transmission – which has the largest impact on this – is configurable
through OLA’s plugin settings file (/home/pi/.ola/ola-spidmx.conf). However, the value
of 8192 bytes seems to be a good compromise between a high probability of including higher
channels in a chunk on one hand, and not having too large uncaptured gaps between chunks
on the other.

Note: All code changes and additions from this section can be found in OLA’s GitHub
pull request 128949.

4.6 Chassis build

To make the DMX interface robust and portable, I housed the Raspberry Pi together with
the extension board in a plastic chassis.

Figure 4.9: Plastic chassis. Top half with holes for mounting connectors, bottom half with
mounted Raspberry Pi.

All external plugs (2 female XLR connectors, 1 male XLR connector, 1 Ethernet jack and
1 power supply plug) are connected via pluggable extension wires. This allows for a modular
installation and easy replacement of faulty parts. To fit the DMXCreator 512 Basic USB
adapter into the chassis, I had to remove its casing, replace its cable with a more flexible
one and enclose it in a heat shrink tube.

49https://github.com/OpenLightingProject/ola/pull/1289/files

40

https://github.com/OpenLightingProject/ola/pull/1289/files

4.6 Chassis build

Figure 4.10: Connectors with extension cables.

Because Raspberry Pi’s indicator LEDs are useful to know if it has powered up and booted
correctly, I mounted transparent plastic cords that act as optical waveguides.

Figure 4.11: Optical waveguides for indicator LEDs.

41

4 Implementation

Figure 4.12: Open chassis with all connectors mounted and connected.

Figure 4.13: Finished PC-DMX interface.

42

5 Validation

The PC-DMX interface implementation – both hardware and software – needs to work
reliably. This means in particular that it should fulfill all requirements I defined in section 3.1
at all times, except when outer circumstances, e.g. power loss, prevent it from doing so.

Code quality checks and unit tests can help as automatic tools to ensure this. However,
as I will outline in the first subsection, I cannot fully rely on them.

5.1 Unit tests

The Open Lighting Architecture project provides a test infrastructure and various existing
tests. My code changes and additions did not cause these existing tests to fail, which suggests
that no regressions were introduced.

Testing the new code with actual hardware support is very difficult. A DMX signal would
have had to be sent through an output port back into an input port to check its delay
and data integrity. That procedure would depend on two plugins and thereby violate the
principle of isolation for unit tests: If the test fails, it is not clear which of the components
caused it to. Also, hardware testing is not automatable in continuous integration tools.

Instead, I manually tested the PC-DMX interface’s functionality by connecting light fix-
tures and comparing expected and observed light output. Indeed, the interface was already
successfully deployed at several events that lasted for around 10 hours. It ran stable for the
whole period of time, indicating that no mistakes were made in the implementation that
would noticeably affect the behavior.

5.2 Code quality

To ensure a high code quality standard, the OLA project has defined a code style that has
to be adhered to. The automatic lint checks that are run after every commit in GitHub pull
requests to prevent violation are fulfilled by my code changes.

The consistent code style improves readability, which makes careful reviews by the project
maintainers in the GitHub pull requests easier. Discussion there also helped find bugs and
inconsistencies before merging the new features into the master branch.

5.3 Fulfillment of requirements

Many of the requirements are already fulfilled by OLA as the software basis. That applies
to supporting different lighting control programs using both proprietary and open network
protocols, ease of use through the web interface and being open-source. Also, OLA directly

43

5 Validation

allows flexibly patching DMX inputs and outputs to universes, which permits all wanted use
cases and possibly even more.

Two DMX outputs and one DMX input are supported right now, more can be added by
simply connecting appropriate hardware via USB. DMX output frequency is satisfactory,
which was verified manually by connecting light fixtures at different DMX addresses and
fading them smoothly using a lighting control software. DMX input is also picked up often
enough to allow smooth fading for approximately the lower 400 channels, fading higher
channels feels rough.

The costs of Raspberry Pi 1 Model B+, 4GB microSD card, circuit board, electronic
components, plug connectors chassis and power supply add up to about 60e, staying far
below the limit of 100e. The DMXCreator 512 Basic USB adapter though is not included.
It was apparently sold for over 400e50 before it was discontinued, but it was available to
me for free anyway, so it would not be fair to count it. As substitute, other very cheap
USB-DMX adapters (around 20e) could possibly be integrated into OLA with some effort.
Other options are mentioned in the next chapter.

Table 5.1: Fulfillment of requirements. See section 3.1.

Requirement Fulfillment

Works with multiple lighting control programs ✓

Connection to computer possible via Ethernet ✓

Open protocol between computer and interface
supported

✓

2 DMX output ports ✓

1 DMX input port ✓

Input universe handling configurable ✓

High refresh rate for DMX input and output mostly ✓

(higher DMX input channels are
refreshed less often, see above)

Easy usability for end-users mostly ✓

(computer’s network settings have
to be changed)

Costs below 100e partially ✓

(DMXCreator 512 Basic USB-DMX
adapter exceeds limit, see above)

Extensible ✓

Open-source ✓

50http://vxco.ch/wp-content/uploads/2012/10/DMXCREATOR-_PREISLISTE_CH_D_2.15.pdf

44

http://vxco.ch/wp-content/uploads/2012/10/DMXCREATOR-_PREISLISTE_CH_D_2.15.pdf

6 Conclusion and future work

The goal of this thesis was to create an inexpensive yet feature-rich interface between lighting
control software on a computer and DMX fixtures. The detailed requirements were defined
and a market study was conducted to identify strengths and weaknesses in existing products.
No product fulfilled all requirements, so a system design was developed and implemented,
which included reverse engineering the protocol of a USB-DMX adapter and sampling the
SPI bus.

As a result, the new PC-DMX interface is a big improvement over the proprietary e:cue
interface used before in my parish youth: Haptic input is now possible using any DMX desk
console (though not entirely for a full universe) and it can be used with multiple lighting
control programs to compare their features and concepts.

There are several subjects that can be improved for future versions and reproductions to
make the interface less expensive, more easy to use or to add extra features.

More Raspberry Pi-native DMX output ports

To stay below the limit of 100e for future replications, the output port that is currently
provided by the DMXCreator 512 Basic USB adapter needs to be replaced. If this second
output could be generated directly with Raspberry Pi’s hardware, the costs for a USB
adapter would diminish completely.

An approach that looks promising is using the SPI port not only for DMX input, but also
for output, i.e. making use of the MOSI pin as well. Each DMX channel value would have
to be encoded in 11 bytes; one low byte as the DMX start bit, then one byte for each DMX
data bit and two high bytes as stop bits. In total, this adds up to 11 ➲ 512 = 5632 bytes,
plus some more for the reset sequence, which is suitable to go together with the current
input implementation.

Another idea is bit banging UART output on a GPIO pin. Timing was too unreliable for
parsing DMX input data but things could indeed look different for output. There is a bench-
mark measuring GPIO bit banging speed51, which suggests maximum possible speed is not
an issue when using a native C implementation, like pigpio’s gpioWaveAddSerial function52.
However, inaccurate timing could of course still be a problem, so further investigation is
needed to draw a conclusion.

Remote device management (RDM)

As explained briefly at the end of section 2.1.2, Remote Device Management (RDM) is
a bidirectional extension to DMX that allows setting fixture’s options remotely. RDM con-
trollers are usually even more expensive than regular DMX desk consoles and PC interfaces.

51http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/
52http://abyz.me.uk/rpi/pigpio/cif.html#gpioWaveAddSerial

45

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/
http://abyz.me.uk/rpi/pigpio/cif.html#gpioWaveAddSerial

6 Conclusion and future work

OLA has support for RDM internally, but there is currently no way to receive / transmit
RDM packets natively on the Raspberry Pi.

Note that both directions (input / output) need to be supported for RDM. Thus, the SPI
DMX Plugin could be modified to support DMX output (see previous section) and make the
input use configurable: Either one wants to use both input and output ports individually,
or only one output port with RDM support is desired.

Improve network management

Another expensive addition to regular DMX systems are so-called wireless DMX solutions,
which use radio signals to transmit DMX data over the air to their respective receivers. Those
are useful when a long distance has to be bridged between the DMX source and the first
lighting fixture.

Since network protocol like Art-Net and sACN can be carried over Wi-Fi without problems,
it would be possible to use it for communication between the PC-DMX interface and the
controlling computer. One would only need to add a wireless network adapter to both the
Raspberry Pi and the computer (if it is not a laptop with builtin Wi-Fi support anyway)
and connect both to an external access point.

Currently, as one static IP address is set for Raspberry Pi’s network adapter, it is not
possible to use multiple PC-DMX interfaces in the same setup without manually changing
the IP addresses to differ from each other. Additionally, an IP address in the same subnet
must be chosen for the computer, which is tedious extra setup work. Especially in a wireless
system, it would be a desired feature to have them managed automatically.

An idea would be to have one PC-DMX interface set into master mode, e.g. with a
hardware switch. It then runs a DHCP server and acts as the access point for all other
DMX interfaces in slave mode and also the controlling computer.

46

Postface

Since all parts of this PC-DMX interface are open-source, anybody reading this is welcome
to build upon my hardware engineering and to contribute to the Open Lighting Architecture
project like I did. I hope that my work will inspire others to implement their own PC-DMX
interfaces and share their experiences.

For questions and remarks, the author can be contacted via email53 or GitHub54.

53florian-edelmann@online.de
54https://github.com/FloEdelmann

47

mailto:florian-edelmann@online.de
https://github.com/FloEdelmann

List of Figures

2.1 Schematical DMX lighting setup example . 3
2.2 DMX timing diagram . 5
2.3 EIA-485 bus with one transmitter and up to 32 receivers 6
2.4 XLR connectors used for DMX . 7
2.5 Schematical connection of an Art-Net Node 8
2.6 Schematic of SPI master and slaves . 9
2.7 SPI timing diagram . 9

3.1 Schematic of the planned PC-DMX interface 14

4.1 Extension board schematic . 21
4.2 Extension board layout . 22
4.3 The finished extension board . 22
4.4 pigpio “bit bang read” signal shown in piscope (top) versus sent data 30
4.5 Received SPI data (excerpt) plotted with GNU Octave 33
4.6 Received SPI chunks versus DMX signal stream 34
4.7 Parsing DMX from sampled SPI data with a state machine 35
4.8 Native SPI DMX Plugin UML class diagram 38
4.9 Plastic chassis . 40
4.10 Connectors with extension cables . 41
4.11 Optical waveguides for indicator LEDs . 41
4.12 Open chassis with all connectors mounted and connected 42
4.13 Finished PC-DMX interface . 42

49

List of Tables

2.1 Example DMX addresses and channel numbers 4
2.2 DMX timing . 6
2.3 XLR pin assignment for DMX . 7

3.1 Available products overview . 13

4.1 Procedure for capturing DMXCreator’s USB communication protocol 24
4.2 Calculating the sampling position in InDataStartbit state handler 37

5.1 Fulfillment of requirements . 44

50

List of Listings

4.1 Excerpt from init-olad.sh . 19
4.2 Excerpt from DMXCreator512BasicFactory.cpp 25
4.3 Excerpt from DMXCreator512Basic.cpp . 26
4.4 Excerpt from the termios man page . 29
4.5 Excerpt from spi-receive.c . 32
4.6 Excerpt from SPIDMXParser.cpp . 36
4.7 Excerpt from SPIDMXPort.h . 39

51

List of Files

Files listed here are referenced from this document, the full files are included in the zip archive
handed in together with this Bachelor’s Thesis. In some cases, an excerpt is included in the
text (see the list of listings). For readers who can only access the printed or PDF version of
this document, online versions of the files are provided where possible.

dmx-spi-data.txt

Example DMX data received with spi-receive.c
referenced on page 33

dmxcreator.pcap

An example pcap file that was captured with Wireshark during executing the procedure
described in table 4.1.
referenced on pages 23–24

spi-receive.c

A simple program that reads in 8192 bytes four times from SPI’s MISO bus and outputs
them in binary format.
referenced on pages 32–33, 37

init-olad.sh

Init script that is executed automatically after Raspberry Pi has booted. It starts the
OLA daemon and initializes GPIO pins.
referenced on pages 18–19

eagle/extension-board.brd

EAGLE electrical circuit layout of the extension board.
referenced on pages 21–22

eagle/extension-board.sch

EAGLE electrical circuit schematic of the extension board.
referenced on pages 20–21

ola/configure.ac

Source file for OLA’s build process where I added a line to support the SPI DMX Plugin.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/configure.ac

referenced on page 39

ola/common/protocol/Ola.proto

Specifies all plugin ID constants.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/common/protocol/Ola.proto

referenced on page 39

52

https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/configure.ac
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/configure.ac
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/common/protocol/Ola.proto
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/common/protocol/Ola.proto

List of Files

ola/debian/ola.udev

udev rules that allow users in the plugdev group to communicate with USB devices
recognized by OLA.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/debian/ola.udev

referenced on page 24

ola/olad/DynamicPluginLoader.cpp

Loads and initializes OLA’s plugins if they were not disabled at build time.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/olad/DynamicPluginLoader.cpp

referenced on page 39

ola/plugins/Makefile.mk

Includes all individual plugin Makefiles.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/Makefile.mk

referenced on page 39

ola/plugins/spidmx/Makefile.mk

Makefile for SPI DMX Plugin’s files.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/Makefile.mk

referenced on page 39

ola/plugins/spidmx/README.md

Plugin description of the SPI DMX Plugin.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/README.md

referenced on page 38

ola/plugins/spidmx/SPIDMXDevice.cpp

Represents an SPI device and manages thread, widget and input / output ports.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXDevice.cpp

ola/plugins/spidmx/SPIDMXDevice.h

Header file for SPIDMXDevice.cpp.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXDevice.h

referenced on page 38

ola/plugins/spidmx/SPIDMXParser.cpp

Parses an SPI buffer into a DmxBuffer and notifies a callback when a DMX packet is
received completely.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXParser.cpp

referenced on pages 36–37

53

https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/debian/ola.udev
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/debian/ola.udev
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/olad/DynamicPluginLoader.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/olad/DynamicPluginLoader.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/Makefile.mk
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/Makefile.mk
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/Makefile.mk
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/Makefile.mk
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/README.md
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/README.md
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXDevice.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXDevice.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXDevice.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXDevice.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXParser.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXParser.cpp

List of Files

ola/plugins/spidmx/SPIDMXParser.h

Header file for SPIDMXParser.cpp.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXParser.h

referenced on pages 37, 38

ola/plugins/spidmx/SPIDMXPlugin.cpp

Looks for possible SPI devices to instantiate and is managed by the OLA daemon.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXPlugin.cpp

ola/plugins/spidmx/SPIDMXPlugin.h

Header file for SPIDMXPlugin.cpp.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXPlugin.h

referenced on page 38

ola/plugins/spidmx/SPIDMXPort.h

Represents the input / output ports that hook into the thread.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXPort.h

referenced on pages 38–39

ola/plugins/spidmx/SPIDMXThread.cpp

This thread runs while one or more ports are registered. It simultaneously reads / writes
SPI data and then calls the parser. This is repeated in an infinite loop.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXThread.cpp

referenced on page 39

ola/plugins/spidmx/SPIDMXThread.h

Header file for SPIDMXThread.cpp.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXThread.h

referenced on page 38

ola/plugins/spidmx/SPIDMXWidget.cpp

A wrapper around the required spidev calls.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXWidget.cpp

ola/plugins/spidmx/SPIDMXWidget.h

Header file for SPIDMXWidget.cpp.
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f

/plugins/spidmx/SPIDMXWidget.h

referenced on page 38

54

https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXParser.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXParser.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXPlugin.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXPlugin.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXPlugin.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXPlugin.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXPort.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXPort.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXThread.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXThread.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXThread.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXThread.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXWidget.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXWidget.cpp
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXWidget.h
https://github.com/OpenLightingProject/ola/blob/f9e7a7668768eea30ed015e7080a656887a0373f/plugins/spidmx/SPIDMXWidget.h

List of Files

ola/plugins/usbdmx/AsyncPluginImpl.cpp

Asynchronous implementation of the USB DMX Plugin.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/AsyncPluginImpl.cpp

referenced on page 28

ola/plugins/usbdmx/AsyncPluginImpl.h

Header file for AsyncPluginImpl.cpp.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/AsyncPluginImpl.h

referenced on page 28

ola/plugins/usbdmx/DMXCreator512Basic.cpp

Implementation of the DMXCreator 512 Basic USB protocol.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/DMXCreator512Basic.cpp

referenced on pages 26–27

ola/plugins/usbdmx/DMXCreator512Basic.h

Header file for DMXCreator512Basic.cpp.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/DMXCreator512Basic.h

ola/plugins/usbdmx/DMXCreator512BasicFactory.cpp

Factory class for DMXCreator512Basic widgets.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/DMXCreator512BasicFactory.cpp

referenced on page 25

ola/plugins/usbdmx/DMXCreator512BasicFactory.h

Header file for DMXCreator512BasicFactory.cpp.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/DMXCreator512BasicFactory.h

ola/plugins/usbdmx/Makefile.mk

Makefile for USB DMX Plugin’s files.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/Makefile.mk

referenced on page 28

ola/plugins/usbdmx/SyncPluginImpl.cpp

Synchronous implementation of the USB DMX Plugin.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/SyncPluginImpl.cpp

referenced on page 28

55

https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/AsyncPluginImpl.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/AsyncPluginImpl.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/AsyncPluginImpl.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/AsyncPluginImpl.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512Basic.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512Basic.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512Basic.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512Basic.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512BasicFactory.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512BasicFactory.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512BasicFactory.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/DMXCreator512BasicFactory.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/Makefile.mk
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/Makefile.mk
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/SyncPluginImpl.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/SyncPluginImpl.cpp

List of Files

ola/plugins/usbdmx/SyncPluginImpl.h

Header file for SyncPluginImpl.cpp.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/SyncPluginImpl.h

referenced on page 28

ola/plugins/usbdmx/SyncronizedWidgetObserver.h

Transfers widget add / remove events to another thread.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/SyncronizedWidgetObserver.h

referenced on page 28

ola/plugins/usbdmx/UsbDmxPlugin.cpp

USB DMX Plugin base class.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/UsbDmxPlugin.cpp

referenced on page 28

ola/plugins/usbdmx/UsbDmxPlugin.h

Header file for UsbDmxPlugin.cpp.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/UsbDmxPlugin.h

ola/plugins/usbdmx/WidgetFactory.h

Contains the WidgetObserver base class which receives notifications when Widgets are
added or removed.
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3

/plugins/usbdmx/WidgetFactory.h

referenced on page 28

56

https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/SyncPluginImpl.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/SyncPluginImpl.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/SyncronizedWidgetObserver.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/SyncronizedWidgetObserver.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/UsbDmxPlugin.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/UsbDmxPlugin.cpp
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/UsbDmxPlugin.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/UsbDmxPlugin.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/WidgetFactory.h
https://github.com/OpenLightingProject/ola/blob/8c0aea98458b807ea9d94b241b7e729ef03158c3/plugins/usbdmx/WidgetFactory.h

Bibliography

[Art17] Art-Net 4 – Specification for the Art-Net 4 Ethernet Communication Proto-
col. Protocol Release V1.4, Revision 1.4dd. Artistic Licence, 2017. – http:

//www.artisticlicence.com/WebSiteMaster/User%20Guides/art-net.pdf

[Ben12] Bennette, Adam: Recommended Practice for DMX512 – A guide for users and
installers. 2nd Edition. PLASA, 2012. – ISBN 978–0–9557035–2–2

[Bro12] BCM2835 ARM Peripherals. Broadcom, 2012. – https://www.raspberrypi.org/

documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf

[Dem15] Dembowski, Klaus: Raspberry Pi - Das technische Handbuch: Konfigura-
tion, Hardware, Applikationserstellung. 2., erweiterte und überarbeitete Auflage.
Springer Vieweg, 2015. – ISBN 978–3–658–08710–4

[DMX13] Nodle U1 Bau- und Bedienungsanleitung. Rev. 1.0. DMXControl Projects
e.V., 2013. – http://www.dmxcontrol-projects.org/component/phocadownload/category/

1-verein.html?download=3:nodle-u1

[EST13] ANSI E1.11 – DMX512-A Asynchronous Serial Digital Data Transmission Stan-
dard for Controlling Lighting Equipment and Accessories. Entertainment Services
and Technology Association, 2008 (R2013). – http://tsp.esta.org/tsp/documents/

docs/ANSI-ESTA_E1-11_2008R2013.pdf

[EST16] ANSI E1.31 — Lightweight streaming protocol for transport of DMX512 using
ACN. Entertainment Services and Technology Association, 2016. – http://tsp.

esta.org/tsp/documents/docs/E1-31-2016.pdf

[Hes15] Hesmond, Michael: Build your own DMX tester: With Open Lighting Ar-
chitecture and Raspberry Pi. In: Lighting&Sound America Summer 2015
(2015). http://www.lightingandsoundamerica.com/mailing/PLASAProtocol/PSummer2015_

BuildYourOwnDMXTester.pdf

[OLP] Open Lighting Project: Using OLA. https://wiki.openlighting.org/index.php/

Using_OLA, fetched October 25th, 2017

[RP94] Reynolds, J. ; Postel, J.: Assigned Numbers / RFC Editor. Version:October
1994. https://www.ietf.org/rfc/rfc1700.txt. RFC Editor, October 1994 (1700). –
RFC. – ISSN 2070–1721

[Sho15] DMX Merge Manual. Version 2. Showtec, 2015. – http://www.highlite.nl/silver.

download/Documents%40extern%40Manuals/50359_MANUAL_GB_V2.pdf

[TI15] SNx5176B Differential Bus Transceivers. Rev. F. TI, 2015. – http://www.ti.com/

lit/ds/symlink/sn75176b.pdf

57

http://www.artisticlicence.com/WebSiteMaster/User%20Guides/art-net.pdf
http://www.artisticlicence.com/WebSiteMaster/User%20Guides/art-net.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
http://www.dmxcontrol-projects.org/component/phocadownload/category/1-verein.html?download=3:nodle-u1
http://www.dmxcontrol-projects.org/component/phocadownload/category/1-verein.html?download=3:nodle-u1
http://tsp.esta.org/tsp/documents/docs/ANSI-ESTA_E1-11_2008R2013.pdf
http://tsp.esta.org/tsp/documents/docs/ANSI-ESTA_E1-11_2008R2013.pdf
http://tsp.esta.org/tsp/documents/docs/E1-31-2016.pdf
http://tsp.esta.org/tsp/documents/docs/E1-31-2016.pdf
http://www.lightingandsoundamerica.com/mailing/PLASAProtocol/PSummer2015_BuildYourOwnDMXTester.pdf
http://www.lightingandsoundamerica.com/mailing/PLASAProtocol/PSummer2015_BuildYourOwnDMXTester.pdf
https://wiki.openlighting.org/index.php/Using_OLA
https://wiki.openlighting.org/index.php/Using_OLA
https://www.ietf.org/rfc/rfc1700.txt
http://www.highlite.nl/silver.download/Documents%40extern%40Manuals/50359_MANUAL_GB_V2.pdf
http://www.highlite.nl/silver.download/Documents%40extern%40Manuals/50359_MANUAL_GB_V2.pdf
http://www.ti.com/lit/ds/symlink/sn75176b.pdf
http://www.ti.com/lit/ds/symlink/sn75176b.pdf

Bibliography

[TII08] Interface Circuits for TIA/EIA-485 (RS-485). Texas Instruments Inc., 2008. –
http://www.ti.com/lit/an/slla036d/slla036d.pdf

[USI] USITT: DMX512 FAQ. http://old.usitt.org/DMX512FAQ.aspx, fetched June 15th,
2017

[VXC11] DMXCreator Manual. Version 2.2. VXCO Lighting Systems, 2011. – http://www.

dmx512.ch/download/dmxcreator_manual_e_22.pdf

58

http://www.ti.com/lit/an/slla036d/slla036d.pdf
http://old.usitt.org/DMX512FAQ.aspx
http://www.dmx512.ch/download/dmxcreator_manual_e_22.pdf
http://www.dmx512.ch/download/dmxcreator_manual_e_22.pdf

	Title
	Abstract
	Contents
	Introduction
	Structure of this thesis

	Technical background
	DMX
	Typical DMX setup
	DMX Splitters and Mergers

	DMX protocol
	Electrical specification

	Art-Net and sACN protocols

	UART
	SPI

	Requirement analysis and system design
	Requirement analysis
	Market study
	System design

	Implementation
	The Open Lighting Architecture Project
	Terminology
	Relevant existing plugins
	Art-Net Plugin
	UART Plugin
	USB Plugin
	SPI Plugin

	Project organization with GitHub

	Initial setup of OLA on the Raspberry Pi
	Building and installing OLA
	Enabling UART
	USB configuration
	Network settings

	Electrical installation
	Implementation of the DMXCreator 512 Basic protocol as OLA USB sub-plugin
	Reverse engineering the protocol with Wireshark
	Extending OLA's USB DMX Plugin
	DMXCreator512BasicFactory (factory class)
	DMXCreator512Basic (widget class)
	Integration

	Implementation of the OLA Native SPI DMX Plugin
	Insufficiency of Raspberry Pi's UART input
	Bit bang reading with pigpio library
	Using SPI to sample DMX
	Enabling SPI
	Receiving DMX data
	Parsing received SPI chunks
	Wrapping the code into an OLA plugin

	Chassis build

	Validation
	Unit tests
	Code quality
	Fulfillment of requirements

	Conclusion and future work
	More Raspberry Pi-native DMX output ports
	Remote device management (RDM)
	Improve network management

	List of Figures
	List of Tables
	List of Listings
	List of Files
	Bibliography

