
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Efficiently Re-Keying Multicast
Groups with LKH in G-IKEv2

Marinus Enzinger

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Efficiently Re-Keying Multicast
Groups with LKH in G-IKEv2

Marinus Enzinger

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller
Betreuer: Tobias Guggemos

Abgabetermin: 15. November 2019

I assure the single handed composition of this bachelor’s thesis only supported by
declared resources.

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 15. November 2019

. .
(Unterschrift des Kandidaten)

Abstract

The growing field of the Internet of Things (IoT) has many applications which are in
the need for secure communication within groups of devices, for example wireless sensor
networks. Group re-keying, which means securely providing new keys to the group as a
result of members joining or leaving the group, remains one of the main challenges. Sev-
eral algorithms exist which provide for efficient re-keying with only one or few multicast
messages. They rely upon a central instance, called the Group Controller/Key Server
(GCKS) to manage the group and the keys associated with the group.

This work implements and evaluates the LKH group key management algorithm as
specified for its use within the G-IKEv2 protocol and focuses on constrained clients, as
those are mostly used in IoT scenarios. The GCKS part is integrated into Strongswan,
an open source, multi-platform IKE daemon. The group member part is implemented
for RIOT, an open source operating system for embedded devices supporting multiple
execution threads. It is shown that providing keys to constrained devices with low effort
while still ensuring security properties such as post compromise security (also known as
forward secrecy) and backward secrecy is possible.

In addition to the implementation, a proposal is made to enhance the G-IKEv2 stan-
dard in a way that allows the LKH key distribution mechanism to provide updated keys
to the group members more efficiently. With the proposal, rekey messages are signifi-
cantly decreased in size, while maintaining low computational complexity for the group
members to process those messages.

vii

Contents

1 Introduction 1

2 Background and related work 3
2.1 Secure multicast communication . 3

2.1.1 Registration security association 4
2.1.2 Data security association . 4
2.1.3 Rekey security association . 4
2.1.4 Group security association . 4

2.2 G-IKEv2 . 5
2.2.1 GSA_AUTH . 5
2.2.2 GSA_REKEY . 5
2.2.3 KEK management algorithm . 6

2.3 Logical key hierarchy . 7
2.3.1 Member join . 7
2.3.2 Member leave . 7
2.3.3 Security properties . 8

2.4 Related Work . 9
2.4.1 OFT . 9
2.4.2 Secure Lock . 10
2.4.3 CAKE . 11

3 Concept 13
3.1 Requirements analysis . 13

3.1.1 Functional requirements . 13
3.1.2 Non-functional requirements . 14

3.2 Architecture . 14
3.3 Design decisions . 15
3.4 RIOT . 15

3.4.1 Memory management . 15
3.5 Strongswan . 16

3.5.1 Memory management . 16
3.5.2 Member eviction . 17

3.6 Improve rekeying efficiency . 18

4 Implementation 21
4.1 Strongswan . 21

4.1.1 LKH . 21

ix

Contents

4.1.2 Rekey SA . 22
4.1.3 Initialization . 23
4.1.4 Group security association creation 23
4.1.5 Payload generation . 25
4.1.6 Multicast address handling . 25
4.1.7 Member registration . 25
4.1.8 Member eviction . 27

4.2 RIOT . 27
4.2.1 Static memory block allocator . 27
4.2.2 IKE SAD . 28
4.2.3 Rekey SAD . 28
4.2.4 LKH database . 30
4.2.5 G-IKEv2 Thread . 31

5 Evaluation 33
5.1 Test scenario . 33
5.2 Results . 33

5.2.1 Memory . 33
5.2.2 Computation effort . 34
5.2.3 Interpretation . 35

5.3 Summary . 35

6 Conclusion and future work 37

Appendix A: Strongswan configuration sample 39

List of Figures 41

Bibliography 43

x

1 Introduction

Communication between devices in networks is typically done by using the unicast com-
munication scheme, where one device transmits messages to exactly one destination
device. However, unicast is not always the most reasonable scheme, especially if nodes
want to transmit the same data to not only one, but two or more destination nodes. Not
only does this impose a burden on the transmitting node as it has to send multiple mes-
sages with the same contents but different target addresses, but it also may utilize too
much of the limited bandwidth of the network (especially in shared media like wireless
or bus networks). Here the multicast communication scheme comes into play. It allows
devices in a network to transmit a message to many other devices, a multicast group,
at once. To participate in a multicast group, devices have to join it. In the context
of IPv4 this is done by using the “Internet Group Management Protocol” (IGMP) or
“Multicast Listener Discovery” (MLD) when using IPv6. But all IP-based multicast ap-
proaches lack security features such as ensuring confidentiality of the transmitted data.
This can be resolved by using a “Group Key Management Protocol” (GKMP)[8] whose
main function is to provide the missing security features (confidentiality, integrity, au-
thorization) to the multicast group by providing the group members with cryptographic
keying material they can use to communicate securely.

In centralized environments an instance called the “Group Controller/Key Server”
(GCKS) is responsible for tasks such as key distribution or authorization of group mem-
bers.1 The keying material provided to the group members by the GCKS consists of a
“Key Encryption Key” (KEK) which is a symmetric key used to encrypt/decrypt one
or more “Traffic Encryption Keys” (TEK), which themselves are used to encrypt the
actual data exchanged between the group members. Whenever the TEKs have to be
changed, the GCKS sends them via a multicast message to the group members which is
protected by the group KEK. Due to the nature of symmetric encryption, the keys have
to be the same on all devices to ensure working communication. Consider now a sce-
nario where, due to various reasons, existing group members have to be removed from
their groups and should not be able to have access to any further data traffic from the
group 2. It is clear, that somehow the symmetric keys used for group communication
have to be replaced on all but the excluded group member(s).

A naive approach would be for the GCKS to randomly generate a new KEK and
provide it to the group members over the secure channel which has been established
when the GM initially entered the group (“Registration SA”). But that would require
the GCKS to not only keep the individual registration SAs open for each group member

1In IoT networks the GCKS might also act as the border router for the devices in the network.
2This security property is known as ”post compromise security” or ”forward secrecy”.

1

1 Introduction

but also to send a total of n unicast messages with n being the number of remaining
group members. This would not only impose significant computational load and high
memory usage on the GCKS but also might congest the possibly low-bandwidth network
carrier.

A more efficient approach is to use a so-called “KEK management algorithm” which
can handle the task of providing new keys to the remaining group members more ef-
ficiently and with less transmission overhead and/or a lower amount of messages that
need to be sent. They solve the task with the help of auxiliary data structures and by
taking advantage of specific cryptographic properties.

To be eligible for the use in the context of a GKMP, a KEK management algorithm
needs to fulfill specific security properties:

Backward secrecy Whenever a member joins a group, its knowledge of the current group
keys should not allow it to decrypt group data traffic it possibly recorded prior to
joining the group.

Post compromise security (forward secrecy) Any member which was removed from a
group must not be able to decrypt future group traffic.

Immunity against collusion If more than one possibly malicious group members have
been excluded from the group, their combined knowledge of group keys and other
parameters must not be sufficient to calculate the new group key(s).

This thesis describes the implementation of an efficient KEK management algorithm,
namely LKH (Logical Key Hierarchy) [17], in the context of the group key management
protocol G-IKEv2 [19] adapted for the needs of networks consisting of constrained de-
vices. The implementation of the GM side of the KEK management algorithm will ex-
tend Tobias Heiders existing implementation of an minimal G-IKEv2 initiator on RIOT
OS whereas the GCKS side will be based on Wolfgang Engelbrechts implementation of
an G-IKEv2 responder in Strongswan.

Structure of this thesis

Chapter 2 describes the basic concepts of secure group communication as well as group
key management in more detail, while chapter 3 describes the conceptual aspects and
design decisions of the implementation. In chapter 4, concrete details on the implemen-
tation and encountered difficulties are explained, whereas in chapter 5 the result of the
implementation is examined in regards to performance and functional criteria. This work
is concluded in chapter 6 with a short summary and some outlook to future research.

2

GCKS

Sender(s) Receiver(s)

Registration SA

Rekey SA

Data SA

Figure 2.1: Multicast security architecture

2 Background and related work

This chapter provides an overview of the fundamental architecture and principles of
modern multicast group communication scenarios. Firstly, detailed information about
the different conceptual components is given, whereas afterwards a concrete implemen-
tation of the abstract architecture in form of the protocol G-IKEv2 is presented and ex-
plained. Then, an efficient group key management algorithm, namely LKH, is presented
and compared to other algorithms serving the same purpose.

2.1 Secure multicast communication

The ”Multicast Group Security Architecture” describes a general reference framework
for secure multicast group communication scenarios in [6]. Essential elements are the
Group Controller/Key Server (GCKS) and the Group Members (GMs) which can either
be passive (only receive traffic) or active (send and receive). The GCKS is responsible
for creating and distributing the keys needed for group communication. The basic archi-
tecture features three types of security associations (SAs),1 which are depicted in figure
2.1 and described in more detail in the following sections.

1A SA is a set of parameters exchanged between network entities to allow for secure communication,
like negotiated cryptographic algorithms or the actual keys needed for data exchange.

3

2 Background and related work

2.1.1 Registration security association

The registration SA is a unicast SA between the GCKS and a GM. It is established by
the GM to securely exchange identity and authentication information with the GCKS
and register to an existing group. If, during the registration exchange, a rekey SA as
described in section 2.1.3 is provided to the GM by the GCKS, the registration SA is
usually dropped afterwards. This is possible because future changes of group policies as
well as distributing new keying material needed for data SAs and the rekey SA can be
done by utilizing the established rekey SA.

2.1.2 Data security association

A data security association (data SA) is a multicast, many to many SA between the
senders within a group and its receivers. Typically senders are also receivers and in
some scenarios there might even be no receive-only members at all. It it used to protect
data between the senders and receivers of a group by using so-called traffic encryption
keys (TEKs). There might be more than one data SA in a group, which adds the
possibility to separate unrelated traffic or allowing the receivers to use source origin
authentication to verify that received data was sent by a selected subset of the group
senders or even one specific sender.

2.1.3 Rekey security association

The rekey security association is a multicast, one-to-many SA between the GCKS re-
sponsible for a group and its GMs. It is usually created at GCKS startup and provided
to new GMs at registration. No negotiation is done as solely the GCKS is entitled to de-
fine the properties which make up the rekey SA. The rekey SA serves as a secure channel
over which the GCKS can distribute new TEKs to the group members. All data in the
rekey SA is encrypted with another key, the group KEK (key encryption key) which is
generated by the GCKS. A message sent over the rekey SA is called a rekey message and
can also be used to replace the current rekey SA itself by including a new group KEK.

2.1.4 Group security association

The group security association (GSA) contains all policies and keys needed for secure
multicast group communication (see [6]). On the one hand it is a superset of a security
association as it contains group specific policy attributes such as the rekey scheme that
is applied in the event of group members being added or removed from the group. On
the other hand it is an aggregation of SAs as it is composed of multiple individual
SAs. When combining the three types of SAs described beforehand, they add up to
the complete GSA. Even though a rekey SA is not necessary in any scenario and is in
fact an optional part of the GSA, as this work focuses on dynamic groups, a rekey SA
is considered to be an essential component of a GSA.

4

2.2 G-IKEv2

Source origin authentication

As every group member knows the group KEK, nothing would prevent possibly hostile
group members from crafting their own rekey messages and sending them over the rekey
SA. In order to allow the group members to be able to determine whether a rekey
message actually originated from the GCKS, rekey messages need to be authenticated
using some form of digital signatures. If authentication based on shared secrets were
used, the fact that a GM could verify the authentication information included in a rekey
message would only prove that the sender is a member of the group [19].

2.2 G-IKEv2
”Group Key Management using IKEv2”, abbreviated as G-IKEv2, is a protocol exten-
sion for the common IKEv2 protocol which adds support for centralized multicast group
communication scenarios as specified in [6]. It is standardized in [19] and has ”Internet
Draft” status at the time of writing. It is the successor of the GDOI (Group Domain Of
Interpretation [18]) protocol which was based based on the outdated IKEv1 [7]. The pro-
tocol shares the same initial exchange IKE_SA_INIT with the IKEv2 protocol. The IKE
SA established by that exchange serves as the registration SA for the GM. G-IKEv2 also
supports a way to update data SAs over the registration SA by the GSA_INBAND_REKEY
exchange. As updating the keys for a group with n members would require n transmis-
sion and this document primarily focuses on constrained devices/networks, this option
is not described further.

2.2.1 GSA_AUTH

The two-way GSA_AUTH exchange follows the IKE_SA_INIT exchange and is used to au-
thenticate the previously established IKE SA. Similar to the IKE_AUTH exchange used in
IKEv2, its contents is encrypted using a key derived from the Diffie Hellman exchange
completed by the IKE_SA_INIT exchange. The GM acts as initiator and sends its iden-
tity as well as its authentication data to the GCKS which in response authenticates itself
against the GM and also provides the GM with initial information and keying material
associated with the data SA(s) as well as the rekey SA. An exemplary group communi-
cation sequence in the context of a small group with only two members is show in figure
2.2. Both members one after another register at the group controller using the GSA_AUTH
message exchange described in this section. After some time, the group controller sends
new keys to the group using the GSA_REKEY exchange whose description follows in the
next section.

2.2.2 GSA_REKEY

The GSA_REKEY exchange is initiated by the GCKS and renews or updates the data SA(s)
and/or rekey SA of the communication group. It is sent in a secure way via multicast
to the group members by means of the previously established rekey SA. The GSA_REKEY

5

2 Background and related work

Client 1 Client 2GCKS

IKE_SA_INIT

IKE_SA_INIT

GSA_AUTH

GSA_AUTH

IKE_SA_INIT

IKE_SA_INIT

GSA_AUTH

GSA_AUTH

GSA_REKEY

GSA_REKEY

Figure 2.2: G-IKEv2 communication sequence

message is not acknowledged by the group members. Due to the missing acknowledgment
it is considered an unreliable exchange in that the GCKS cannot decide whether all
group members have received and processed the message. The G-IKEv2 draft therefore
suggests that the GCKS should send GSA_REKEY messages repeatedly within a small
period of time to account for messages not reaching all GMs.

2.2.3 KEK management algorithm

G-IKEv2 defines its KEK management method in a very generic manner and encourages
the use of a sophisticated KEK management algorithm. Those can be integrated into
G-IKEv2 by specifying payload formats for both initial key distribution used when a
group member registers at the GCKS as well as the embedding of rekeying information
into a multicast GSA_REKEY message. However, the only concrete algorithm that is yet
standardized for its use within G-IKEv2 is LKH, which is described in the next section.

6

2.3 Logical key hierarchy

1

2

4

8

A

9

B

5

10

C

11

D

3

6

12

E

13

F

7

14

G

15

H

Figure 2.3: Keys provided to H at group join

2.3 Logical key hierarchy

The logical key hierarchy (LKH), described in [17], is a centralized, efficient and robust
algorithm for multicast key management. It provides backward and forward secrecy and
is secure against collusion of excluded members. For a group G, a binary tree is generated
by the GCKS with at least as many leaves as there are possible group members in G.
The key associated with the root node is called the group KEK. Each node in the tree
is assigned a freshly generated symmetric key, called intermediate KEK.

2.3.1 Member join

When a member m joins G, a leaf node xm not yet associated with any group member
is selected. Every key starting from xm along the path to the root of the tree (the group
KEK) is provided to m. That leads to all members at least having the group KEK in
common, which is why it is used to protect the rekey SA of the group. Figure 2.3 shows
an example LKH tree with leaf nodes 8 to 15, which are associated with group members
A to H. Marked in brown are those keys which the GCKS provides to member H when
it registers at the group.

2.3.2 Member leave

When a group member m leaves G or is excluded from the group, the GCKS replaces
every key that m possesses (from xm until the group KEK) with a newly generated key.
To allow the remaining group members to get access to the replaced keys, a multicast
rekey message, encrypted with the old group KEK, is sent to the group. The message
contains a list of replaced keys, starting from the parent of xm until the group KEK.
Each replaced key is contained twice, once encrypted with the corresponding left child
key and once encrypted with its right child key. Thereby, each of the remaining group
members is able to replace their affected keys including the group KEK. Figure 2.4 shows
in light blue the new keys 1’, 3’, 6’ and 13’ which had to be generated in order to replace

7

2 Background and related work

1’

2

4

8

A

9

B

5

10

C

11

D

3’

6’

12

E

13’

F

7

14

G

15

H

Figure 2.4: LKH key tree after exclusion of F

the existing keys when member F left the group.

2.3.3 Security properties

LKH fulfills a set of security properties which are characterized in this section. The list of
properties is not exhaustive, but describes fundamental features of a secure architecture.

Backward secrecy

Backward secrecy with LKH is accomplished by replacing the group KEK before adding
a group member. That is, before a member wants to join, one rekey message is sent to
the group replacing the group KEK. Afterwards, the GCKS adds the member by using
the registration protocol and provides it with the new group KEK.

Post compromise security

The way LKH rekeys the remaining group members with a single rekey message when
a member is excluded implicitly provides forward secrecy to the group. This is because
the excluded group member, although being able to decrypt the rekey message itself,
cannot replace/decrypt any of the contained keys because none of them is sent encrypted
with any key that the group member possesses. It is important that the encrypted rekey
message may not include any unencrypted new TEK(s). The GM would otherwise be
able to use these to decrypt future data traffic. The new TEK(s) might for example be
sent to the group in a rekey message immediately following the one that replaces the
group KEK, while being encrypted with the new group KEK.

Protection against collusion

LKH provides protection against collusion of an arbitrary amount of excluded hostile
group members. After the group is rekeyed, neither of the group members possesses a
key that could be used to decrypt the new group KEK. Also, as the keys are unrelated,

8

2.4 Related Work

the combined knowledge of all their keys does not disclose any information about the
new group KEK.

2.4 Related Work

Other than LKH, there exist many more group key mangagement algorithms for central-
ized environments. All of them have individual properties, so depending on the scenario
and its particular requirements, a different algorithm may be best suited.

2.4.1 OFT

Like LKH, the oneway function tree (OFT) is a centralized multicast group key manage-
ment protocol originally proposed in [15]. It is also based on hierarchical key tree and
has the same storage requirements as LKH on both GCKS and group member. However,
it is able to reduce the number of keys needed to be sent in rekey messages from 2 log2 n
to log2 n+ 1. This is achieved by computing the keys associated to the tree nodes from
their children’s keys instead of just attributing randomly generated keys to the nodes.

Notation

In the following, let h(x) be a one-way function and f(x, y) a mixing function. The key
associated with node x is denoted as kx. The left child node of x is denoted as left(x)
and the right child note is denoted as right(x). If a symmetric key i is encrypted with
another key j, this is denoted as encr(i, j).

Construction

In a binary tree, for a node x, the set of nodes

A(x) := {x, p1, p2, . . . , pn|parent(x) = p1 ∧ parent(pi) = pi+1 ∀i ∈ 1 . . . n}

is called the ancestor set of x. The set of nodes

S(x) := {p|p /∈ A(x) ∧ (∃i ∈ A(x) | parent(i) = parent(p))}

is called the sibling set of x and resembles the siblings of x or one of its ancestors within
the tree. For any node x, its key is calculated as

kx = f(h(kleft(x)), h(kright(x)))

The application of the oneway function h on the key of node x, which is h(kx), is called
the ”blinded“ key of node x.

9

2 Background and related work

Member join

When a member joins, similarly to LKH it is assigned to a leaf node x not yet associated
with another group member. In contrast to LKH, the keys of all nodes in the sibling set
of x are sent blinded to the group member, that is, in addition to its own individual leaf
key, the group member receives

{h(ki) | i ∈ A(x)}

As per the definition of how the key of the parent node is constructed, the group member
is able to compute all keys for all nodes in its ancestor set.

Member eviction

When a member associated with node x leaves the group or is evicted from it, the GCKS
creates a new key for x and recomputes all keys until the root (group KEK). Then, in
the rekey message a list of encrypted keys is sent to the remaining group members.

{ encr(h(kj), ki) | i ∈ A(x) ∧ j ∈ S(x) ∧ parent(i) = parent(j) }

That is, the blinded key of any recomputed node is sent encrypted with the key of its
respective sibling. By possessing one of those keys used to encrypt its blinded sibling
key, any remaining group member can decrypt the blinded sibling key and thus compute
all needed parent keys until the group KEK.
OFT is however not yet standardized for its use within G-IKEv2 and thus not further
discussed in this document. Also, it has been found that OFT in its original form is
susceptible against various collusion attacks. Jing and Bo proposed an altered version,
called HOFT, which has the same communication overhead as the original form of OFT
[12].

2.4.2 Secure Lock
The Secure Lock method, originally presented in [4], uses properties of the Chinese
Remainder Theorem (CRT) to efficiently deliver encrypted messages to subsets of group
members. This specifically allows for efficient handling of mass-entry or mass-exclusion
of multiple members at once.

Construction

Let G denote a group with n members. The GCKS generates symmetric cryptographic
keys {k1, . . . , kn} as well as positive, pairwise relatively prime integers {N1, . . . , Nn}. At
group registration of member i, the GCKS securely provides the tuple (ki, Ni) to the
group member. When the GCKS wants to send a message M to a nonempty subgroup of
G, with q members {m1, . . . ,mq}, in a way such that only the members of the subgroup
can decrypt M , it constructs a message as follows:

• It generates a random session key d and encrypts M with d.

10

2.4 Related Work

• It generates the Secure Lock X as specified in [4] and uses it to encrypt d, prepends
the result of this to the generated ciphertext of M .

Md
dX

Figure 2.5: Secure Lock message construction

For X, the following conditions hold (E denotes the encryption operation):

X ≡ Ek1(d) mod N1

...
X ≡ Ekq(d) mod Nq

The group members in Q are then able to retrieve the value Eki(d) by calculating
X mod Ni and as they are in possession of ki, they can decrypt the session key d
and therefore also the message M . In the case of mass-exclusion of members, the GCKS
simply generates a new group KEK and distributes it to the remaining group members
using the method described just now. A serious disadvantage of the Secure Lock method
is the high computational effort needed to compute the CRT based congruence system,
especially if group exclusion operations have to be performed frequently.

2.4.3 CAKE
The ”Central Authorized Key Extension” (CAKE), originally presented in [11], is a
hybrid group key management protocol which combines the hierarchical approach of
LKH and the Secure Lock technique. Comparably to LKH, a hierarchical tree structure
(the original authors propose a ternary tree structure) is built. However, opposing to
LKH each node is associated with not only a single cryptographic key, but a tuple
(ki, Ni) as in the Secure Lock method. For every node, its immediate children form
a Secure Lock subdomain, that is, when one of the child keys need to be replaced,
it can be sent to its remaining siblings in the same way as the original Secure Lock
system provided a new group KEK to remaining group members. The advantage is that
the calculation complexity reduces significantly, as the number of nodes included in the
CRT calculations compared to the initial Secure Lock method is significantly smaller.
But as with LKH, when a member is excluded from the group, still the keys for all tree
nodes along to the root key have to be renewed.

Figure 2.6 depicts the ecxlusion of member mD32. All keys along the path to the root
(dark nodes) have to be replaced and are not included in the CRT calculation. For each
level of the tree, only the remaining siblings of the excluded node (shaded nodes) are
included in the CRT calculation. This way, the networking overhead of LKH is reduced
and the computational effort of the original Secure Lock system is reduced as well. In

11

2 Background and related work

Figure 2.6: From [11]: Ternary tree structure to manage the keys and to reduce the
calculation effort by withdrawal

[5], an academic proposal for the integration of CAKE as a group key management
algorithm into the G-IKEv2 protocol was made.

12

3 Concept

In this chapter, firstly the requirements an implementation of the key management
algorithm LKH within the G-IKEv2 protocol must fulfill are described. Based on those
requirements, the basic architecture and the structure of the implementation is explained.
In addition, the principles upon which the Strongswan and RIOT projects are designed
and built, are described. Their influence on the planned implementations is discussed
and it is shown how those principles are considered during the integration of the needed
features into the existing projects.

3.1 Requirements analysis
An implementation of rekeying functionality for RIOT OS and Strongswan needs to fulfill
several requirements in order to provide needed functionality and be able to be extended
further in the future. Those requirements can be split into functional requirements on
the one hand and non-functional requirements on the other hand.

3.1.1 Functional requirements
Functional requirements declare features and properties which must be provided by the
implementations in order to operate correctly. The following functional requirements
are defined:

Protocol conformity The parts of the implementation which are responsible for gener-
ating and parsing the payloads as well as sending and receiving rekey-related group
messages should conform to the G-IKEv2 specification. This is, the defined pay-
load formats should be strictly followed and also the semantics of the respective
fields should be honored and handled correctly.

Multicast messaging on IPv6 In order to be able to send and receive messages over the
rekey SA, network-level multicast messaging with IPv6 need to be used on both
the GCKS part (Strongswan) and the GM part (RIOT).

LKH key tree generation and management The GCKS needs to generate a LKH key
tree with fresh, independent symmetric keys at group initialization. Whenever a
member is excluded from the group, specific keys must be replaced.

LKH key array storage and management The GM needs a facility to store an array
of symmetric cryptographic keys and functionality for updating/replacing existing
keys by decrypting other keys must be available.

13

3 Concept

Replay protection Possible replay attacks by multiply sending previously recorded rekey
messages need to be prevented.

Member eviction user interface It should be possible for the operator of a GCKS to
interactively or programmatically evict members from their groups. Thus, an user
interface providing this exact functionality should be implemented.

3.1.2 Non-functional requirements

Non-functional requirements define properties in regards to code quality, resource con-
sumption, memory efficiency and scalability which must be fulfilled. The following non-
functional requirements are defined:

Efficient GM RAM usage As the primarily targeted platforms of RIOT OS are con-
strained microcontroller units, RAM usage by the G-IKEv2 and LKH implemen-
tation should be as low as possible.

Low computation effort The constrained computing capacity of microcontroller units
needs an efficient implementation so that the responsiveness of other running ap-
plications is not affected.

Scalability Multiple group memberships for a single device should be possible. Also if
needed large group sizes should be supported.

Extensibility Both implementations should fulfill code quality metrics in terms of mod-
ularity, abstraction and encapsulation of modules. This is needed if later support
for protocol extensions or different group key management algorithms should be
added.

3.2 Architecture

In a centralized group communications scheme utilizing LKH as its rekeying mechanism,
the GCKS has the responsibility of creating and maintaining the LKH key tree. Upon
group initialization at the GCKS, a fresh key tree has to be generated from secure
random data, where the root key represents the first group KEK. Whenever a group
member enters the group, an unused leaf key needs to be associated with the new group
member. The key chain up to the root key has to be provided to the group member
within the GSA_AUTH response. Whenever a group member is removed from the group,
its leaf key and all the keys on the path along to the root key need to be replaced with
fresh keys.

The group member implementation, on the other hand, needs a way to store the chain
of keys it received and functions to replace an arbitrary subset of its stored keys with
new keys, which also need to be decrypted using preceding keys.

14

3.3 Design decisions

3.3 Design decisions

The GCKS part holding the LKH tree logic and sending multicast rekey messages to
the group members is integrated into the Strongswan project [16]. Strongswan is a
multi platform open source IKE daemon written in the C programming language and
encouraging a highly object-oriented programming paradigm. The GM part responsible
for receiving and processing the rekey messages is integrated into RIOT OS [1], which
is a modern open source operating system for low-end microcontrollers written also in
the C programming language. RIOT OS and Strongswan were chosen because existing
implementations of the basic G-IKEv2 registration procedure were available for both:
Wolfgang Engelbrechts G-IKEv2 GCKS implementation for Strongswan [2] on the one
hand and Tobias Heiders G-IKEv2 group member implementation [10] on the other hand.

3.4 RIOT

RIOT is an operating system mainly targeting low-end microcontrollers and specifically
designed for the use in IoT and sensor devices with low energy consumption. It can be
programmed using the C or C++ languages and contains an efficient, full-fledged net-
work stack called GNRC, which is further described in [14]. Out of the box, modules for
various cryptographic applications are provided as well as a sophisticated interprocess
communcation (IPC) framework. It runs on a multitude of different hardware architec-
tures and provides drivers for lots of different sensors, network communication chips and
other hardware.

3.4.1 Memory management

As RIOT primarily targets microcontrollers with very limited resources in terms of RAM,
ROM and computing speed, efficient memory management is a key factor to consider.
In particular, memory usage by the G-IKEv2 and LKH implementation should be:

Predictable No unnecessary dynamic memory allocations should happen at program
runtime, as the risk of program crashes due to running out of memory increases.

Efficient As the general amount of available memory on microcontrollers is very low (i. e.
in the range of multiple KiB), the implementation should be as efficient as possible.

Typically, microcontrollers or embedded systems are used in more static, long-term ap-
plications. Dynamic behavior due to user interaction, for example, is often not required.
Consider the use case of group communication between constrained devices in infras-
tructure components of a smart city. In this setup the needed network configuration
and authentication information including pre-shared keys or certificates would likely
be deployed on the nodes before they are brought to their destination point of oper-
ation. Therefore it is sufficient for the RIOT implementation to support only a static

15

3 Concept

number of security associations defined at compile time. However, the number of sup-
ported security associations should be adjustable, because in some scenarios there might
be a need for multiple group memberships.

GNRC Packet Buffer

The RIOT GNRC network stack relies upon the so called packet buffer to store received
packets and ones which are about to be sent. Its default implementation consists of
a large block of statically allocated memory where the actual payloads and also the
control structures are stored and an API to add, manipulate and remove packets in the
packet buffer is provided. A network packet is represented as a linked list of data chunks
where each chunk normally represents the payload of a specific layer in the OSI model.
This way, each layer in the protocol stack can easily handle only the header or payload
chunk it is responsible for. Figure 3.1 shows how in the packet buffer the pktsnip_t
structures are interleaved with the actual data chunks. As an example, an IPv6 packet
containing a UDP payload is shown. Marked in green is the data chunk containing the
actual user data. A packet snip structure of undefined data type references this data
chunk. It also references the next packet snip structure of type UDP which is linked
with the UDP header data (drawn in red) as well as the packet snip responsible for the
IPv6 header (green). The placement of packet snip structures as well as data chunks
within the GNRC packet buffer is not predictable. The packet buffer can also be used as
a generic pool from which dynamically sized chunks of memory can be allocated and used
in user code. However this should be used sparingly, as by misusing the packet buffer
as a generic memory allocation mechanism, space actually needed for the operation of
the network stack may be occupied and this can result in dropped or missed network
packets.

3.5 Strongswan
Strongswan is implemented in the C programming language, however as opposed to other
software projects written in C, it uses a strongly object oriented approach. With the
help of preprocessor macros, the concept of ”classes” and ”interfaces” can be employed.
Object methods are represented by structure members of function-pointer type. This
concept should be respected and followed by any new functionality which has to be
added to Strongswan in order to realize group rekeying and LKH functionality.

3.5.1 Memory management
The memory management in Strongswan is completely realized by dynamically allocated
objects. Each class provides one or more factory functions which can be used to allocate
storage for the requested object and initialize it adequately. As there is no garbage
collection, to prevent memory leaks it has to be ensured that the memory allocated
by every object is released at some point in time. This is done by using the concept of
ownership, which means that some functions which take the ownership of objects given

16

3.5 Strongswan

UDP Header

UDP-

Payload IPV6 Header

data
next

TYPE_UDP

data
next

TYPE_IPV6

data
next

TYPE_UNDEF

data
next

TYPE

Packet snip structureData allocated/used by another packet

Points to the next packet snip in this packet
Points to the location of this packet snip's data

Figure 3.1: Layout of a IPv6 packet in the GNRC packet buffer

as their parameters guarantee that they will release the memory used by the provided
objects. Another option is the ownership of objects by composite data structures. For
example a linked list structure might be responsible for releasing its contained objects
when it is destroyed/released itself. In the context of payload processing, this means
that a message object is the owner of its contained payloads and will release them when
the message itself is released, for example when the message has successfully been sent
over the network. If this concept is applied to the tree structure of the LKH, it becomes
clear that a parent node must be the owner of its child nodes. Similarly, a specific node
will be the owner of its associated key.

3.5.2 Member eviction
When a member leaves the group or is excluded from it to ensure post compromise
security two consecutive GSA_REKEY messages need to be sent. The first one renews the
group KEK and the second one renews the TEK(s). This is necessary because the data
within a GSA_REKEY message is encrypted using the current KEK. If the new TEK(s)
were sent in the first GSA_REKEY message, the excluded GM could use the current group
KEK, which it possesses, to decrypt the new TEKs. Also the required user interface
which allows the operator of a GCKS to evict group members from their groups needs
some consideration. To remove a group member by user interaction, which corresponds
to handling externally triggered events, a communication option with the internal state
of the IKE daemon is required. As there are already several command line tools available

17

3 Concept

for Strongswan, which allow for creation, manipulation or deletion of IKE SAs, member
eviction should be implemented by extending those tools by the needed functionality.

3.6 Improve rekeying efficiency
The current version of the G-IKEv2 draft only one method of how the LKH algorithm
can distribute updated keys to the GMs is standardized. This method simplifies parsing
and processing the GSA_REKEY messages for the GMs but lacks efficiency as the message
sizes get unnecessarily big. Suppose a dynamic multicast group is to be formed which
consists of n members. The depth d of a LKH key tree sufficient to serve the group is
calculated as

d = dlog2 ne

Suppose now, a group member k is to be excluded from the group, with k denoting that
the GMs leaf key is the kth leaf key in the tree. The GCKS will now send a GSA_REKEY
message to the group containing LKH_UPDATE_ARRAY attributes. The first one of
these contains d encrypted keys, starting with the replaced parent key of k up until the
new root key of the tree, which will become the new group KEK. The second attribute
contains d−1 keys and so on until the last attribute, which only contains one encrypted
key, the new root key of the tree. Thus the total number of keys sent in one GSA_REKEY
message can be calculated as

nkeys =
d∑

i=1

i =
(d+ 1)d

2
∈ O(d2) = O((log2 n)

2)

This shows that the message size, which clearly increases linearly with the number of keys
contained, grows quadratically in the depth of the LKH tree. An alternative approach
which would heavily decrease message size is described as follows: Each key which is
to be replaced is sent only twice, firstly encrypted with its left child key and secondly
encrypted with its right child key. Replaced key(s) residing deeper in the tree hierarchy
have to be ordered before keys which are closer to the root key in the GSA_REKEY message.
This way each GM will be able to decrypt all needed keys on the path along to the
root key, as the child keys needed for decryption themselves already were successfully
decrypted. When excluding a GM using this alternative approach, each of the n keys
from the parent key of the excluded member along to the root key only has to be sent
twice, except for the lowest key which is only sent once, encrypted with the individual
key of the sibling of the excluded GM. Thus the total number of keys calculates as

nkeys = 2d− 1 ∈ O(d) = O(log2 n)

This is a significant improvement compared to the initial, standardized method. Table
3.1 shows the difference. 16 Byte Keys with 16 bytes of Initialization Vector (as the key
itself is encrypted) and 8 Bytes of metadata are assumed, which makes each key payload
a total of 40 Bytes. Already at a moderate group size of 256 members, the combined

18

3.6 Improve rekeying efficiency

Table 3.1: LKH rekey comparison
Tree depth Max group size Standardized method Proposed method

nkeys spayload (B) nkeys spayload (B)
3 8 6 240 5 200
5 32 15 600 9 360
8 256 36 1440 15 600
10 1024 55 2200 19 760
15 32768 120 4800 29 1160

payload size of the keys nearly exceeds the MTU of a normal Ethernet frame, let alone
that constrained devices usually use network techniques with much smaller MTUs. In
the proposed method even rekeying large groups with e.g. more than 30,000 members
is possible without exceeding a typical Ethernet MTU.

19

4 Implementation

This section describes the implementation details of the integration of rekeying func-
tionality by using LKH within the G-IKEv2 protocol into the IKE daemon Strongswan
and into RIOT OS. Strongswan is used to represent the GCKS part which creates and
manages the LKH key tree whereas the RIOT implementation contains the client (group
member) part. The interface between the base LKH algorithm and the G-IKEv2 protocol
is implemented as specified in the version 16 of the G-IKEv2 draft. As multiple updated
revisions of the G-IKEv2 draft were published after their work, some parts of those im-
plementations had to be altered or extended to be compatible to the newest revision as
of the time writing this document.

4.1 Strongswan
The implementation builds on the basic G-IKEv2 implementation of Wolfgang Engel-
brecht [2], which focused on the G-IKEv2 registration protocol and did not include any
functionality related to G-IKEv2 rekeying of group members. As the rekey SA is gener-
ated by the GCKS at initialization, there is no negotiation of any parameters done with
the group members. Referring to the Strongswan implementation, this means that all
transforms related to the rekey SA are chosen from the first IKE-proposal in the group
configuration structure. Although it might theoretically be possible for the GCKS to
change security related parameters or policies for the rekey SA at any point in time, this
is not implemented in the current version.

4.1.1 LKH
A new module is created for the LKH related functionality in Strongswan. This includes
tree as well as key generation and operations which operate on an established LKH key
tree like replacing a key at a specific position. It is designed to be completely independent
of the G-IKEv2 protocol and could thus be used in any other context. The new module
mainly consists of three classes:

lkh_tree representing a complete LKH key tree

lkh_node representing a single node within a LKH tree

lkh_key representing a symmetric key associated with a LKH node

The class diagram in figure 4.1 shows the positioning of the new LKH module within
the GCKS architecture. The LKH module contains some more classes, which are not

21

4 Implementation

displayed in the class diagram to simplify matters. For instance, a lkh_util class
is implemented which aggregates functions to create random numbers (used for key
generation) as well as key encryption (used for tree update functionality).

Key tree generation

An LKH key tree is generated as follows: let n be the number of group members for a
specific group. A binary tree structure is generated with its depth d calculated as

d = dlog2 ne

Now a chunk of random binary data representing a key for a symmetric encryption algo-
rithm is generated for and assigned to each node in the tree. The encryption algorithm
for which the keys are to be used and with it the size of the generated key is passed
to the LKH module as a parameter. In the current version, the number of configured
members in the Strongswan configuration determines the maximum size of the group.
Thus, by generating the tree structure and the node keys at GCKS initialization, a per-
fectly balanced tree is constructed and the tree won’t have to be rebalanced at any time,
because its capacity is sufficient for all possible group members. However, when only a
small amount of possible group members actually joins the group, this is a slightly inef-
ficient solution as more keys than necessary would have to be transmitted to and stored
by the group members. However, as the maximum group sizes are configured statically,
a fixed size LKH tree is seen as an appropriate solution and no tree rebalancing mecha-
nism is yet implemented.

4.1.2 Rekey SA
To add rekeying functionality to the existing GCKS implementation, a new class called
kek_policy is introduced. It is associated with a specific group and is responsible for
holding and maintaining the data needed for building GSA_REKEY messages. It keeps track
of the kek_message_id counter which is incremented in every GSA_REKEY message and
provides for protection against replay attacks. The class also maintains the integrity key
used for signing the messages and provides functions to add or remove members from its
group. For that it holds a reference to an interface type, kek_mgmt_alg, which represents
a generic abstraction for all KEK management algorithms. Listing 4.1 shows an excerpt
from the interface definition. When members are added to or removed from a group,
the corresponding methods in kek_policy call their counterpart in kek_mgmt_alg and
let the underlying implementation decide how to handle the request and in which way a
new KEK is possibly created. At the moment only one implementation of this interface
exists, lkh_kek_mgmt_alg. This class encapsulates a LKH tree and figure 4.1 shows a
class diagram of the part of the GCKS implementation in Strongswan which is relevant
for the rekeying functionality. The part framed in blue is result of the existing work of
[2]. The part in the middle shows the structure of the rekey SA related module, as it
has just been described, while visualizing its interconnections to both the existing group
management module as well as the LKH module.

22

4.1 Strongswan

struct kek_mgmt_alg_t {
/**
* Get the current KEK. The caller receives a copy of the key
*/

chunk_t (*get_kek)(kek_mgmt_alg_t *this);

/**
* Add a group member
*/

kd_substructure_t *(*add_member)(kek_mgmt_alg_t *this, uint32_t
member_id , uint64_t spi_i, uint64_t spi_r);

/**
* Remove a group member
*/

bool (*remove_member)(kek_mgmt_alg_t *this, kd_substructure_t **,
uint32_t member_id , uint64_t spi_i, uint64_t spi_r);

/**
* Get the KEK management algorithm type
*/

gikev2_kek_management_type (*get_algorithm_type)();

/**
* Renews the current KEK without changing group membership
*/

bool (*renew_kek)(kek_mgmt_alg_t *this, kd_substructure_t **,
uint64_t spi_i, uint64_t spi_r);

};

Listing 4.1: KEK management algorithm interface

4.1.3 Initialization

Upon initialization of the Strongswan IKE daemon, the group manager, group and
group member structures are built and initialized as described in [2]. Additionally,
the KEK policy for each group is initialized, which in turn initializes the according
KEK management algorithm. The current version assigns the LKH KEK management
algorithm to each group. The KEK policy generates an KEK integrity key with respect
to the chosen integrity algorithm.

4.1.4 Group security association creation

When a group member successfully authenticated itself at the GCKS and is added to the
group, the GSA_AUTH response contains policies and keys needed by the group member
in order to build up the data security SAs and the rekey SA. From the GM’s point of
view, its registration SA is completed into a group security association (GSA, see 2.1.4).
That is, in addition to the existing registration SA, also the data SA and rekey SA get

23

4 Implementation

LKH

group
management

rekeying

<<Interface>>
kek_management_algorithm

+ add_member(group_member)
+ remove_member(group_member)
+ replace_kek()
+ get_kek()

lkh_kek_management_algorithm

group_manager

group_member

+ member_id

mgmt_alg

kek_policy

+ kek_msg_id

+ add_member(group_member)
+ remove_member(group_member)
+ get_kek()

lkh_tree

+ depth

+ get_free_node(): lkh_node

lkh_node

+ node_id

+ exclude_node()

root_node

lkh_key

+ key_handle
+ key_data

+ encrypt_with(lkh_key)

keynode

parent

left_child

parent

right_child

lkh_tree

group

+ group_id

Figure 4.1: Strongswan GCKS architecture

established. From the GM’s point of view, this completes its GSA and makes it able
to securely communicate with the group. As this procedure differs considerably from
the semantics of the IKE_AUTH response. Both responses authenticate the previously
generated IKE SA but while GSA_AUTH as described completes the GSA, IKE_AUTH is
used to also create a so called child SA, a unicast SA between the initiator and responder.
Due to these notable differences, a new task is created in Strongswan, called GSA_CREATE.
This task and the existing CHILD_CREATE task normally responsible for creating the first
IPSec child SA (see [13] for more information) are mutually exclusive.

24

4.1 Strongswan

4.1.5 Payload generation

The G-IKEv2 draft extensively makes use of the concept of IKEv2 transform attributes,
specified in [13], section 3.3.5. A transform attribute essentially specifies how a key-
value pair is serialized into IKEv2 payloads. The key has a fixed length of 15 bits
and the value can have any length, but if the size of the value is at most 2 bytes,
an improved and more efficient serialization mechanism is used. IKEv2 specifies the
use of transform attributes only in one context, namely to add additional attributes to
transform substructures such as the definition of which algorithms to use within an IKE
or IPSec SA. However, in G-IKEv2 transform attributes are used in various contexts and
are often used to encapsulate complete payload substructures. In Strongswan, different
payloads are implemented as classes which all inherit from the generic payload type.
Each payload subtype contains a set of rules defining how its contained attributes and
data should be serialized or parsed. Those rules might even contain rules which specify
that some of their contained attributes should be serialized or parsed as nested payloads
of a given type. The generator class in Strongswan is used to serialize payload structures
to be able to send a message to the remote peer. The generator is given the outermost
payload object and it then serializes data based on different sets of rules which are
defined for each payload type. In the existing generator implementation, whenever a
transform attribute is encountered, it is only able to serialize those by serializing the
transform attribute header and then the value as a chunk of bytes. To be able to
serialize transform attributes containing nested payload substructures, another option
has been added. A flag in the transform attribute payload type determines whether its
value is a nested payload substructure. The generator checks this flag and if it is set,
it proceeds to serialize the nested payload by processing its payload rules. Figure 4.2
shows the adapted control flow in the generate_payload function. The parts drawn in
green had to be added to support nested payload substructures.

4.1.6 Multicast address handling

For testing purposes the IPv6 multicast address ff02::1 which represents all nodes on a
link, was used. With the standard configuration of Strongswan, it was not possible to
send rekey messages from the GCKS to the group members using ff02::1 as source ad-
dress. The reason for this is that the socket-default plugin used by Strongswan does not
explicitly set the outbound interface which should be used for sending packets, before
passing the arguments to the Linux system function sendmsg(). This led to sendmsg()
fail with EINVAL which stands for invalid argument. After setting the configuration op-
tion charon.plugins.socket-default.set_sourceif to ”1”, sending rekey messages
worked.

4.1.7 Member registration

As soon as a member joins the group (it passes the authentication step) a new group KEK
is generated and sent to the group members over the existing rekey SA via a GSA_REKEY

25

4 Implementation

Fetch payload rules

All rules
processed? yes

return

no

Fetch next payload

Is Payload
type A?

yes

no

Generate payload A

Is Payload
type B?

yes

no

Generate payload B

generate_payload()

Generate transform
attribute

Contains
nested

payload?

no

yes

Generate normal
transform attribute

Fetch nested payload

Figure 4.2: Payload generation process

message. A future version of the implementation would also renew the current TEK(s)
and include those within the GSA_REKEY message. Afterwards the successful GSA_AUTH
response is sent to the new GM containing the LKH key array (and including the new
KEK) and would in future also include the new TEK(s). By renewing the group KEK
before a group member is added, backward access control is ensured. As the new GM
does not receive the old KEK, it cannot use that to decrypt rekey messages it might
have recorded before and thus get access to the old TEK(s).

26

4.2 RIOT

4.1.8 Member eviction
For the operator of the GCKS it should be possible to administratively evict hostile
members from their respective group. Sending commands to Strongswan from the com-
mand line or other programs is possible by means of the Stroke plugin. This plugin
presents a command line interface to the user which he can invoke by calling the ipsec
stroke command. Available commands allow for investigating internal program state of
the charon daemon, initiating or manipulating IKE SAs. To be able to evict registered
members from groups, a new command, evict, has been implemented. It requires two
parameters to be given, the first one is the ID of the respective group and the second
one is the ID of the member within that group. The following figure shows the example
output of a command which evicts the member with ID 6 from the group with ID 2:

ipsec stroke evict 2 6
Successfully evicted member 6 from group 2
#

4.2 RIOT
A fully working G-IKEv2 implementation with rekey and LKH support mainly needs
three different types of databases which need to be held in memory during runtime,
two of which are security association databases (SADs). A SAD contains a set of SA
entries, that is, security related properties and parameters such as cryptographic keys
or information about the cryptographic algorithms used. The needed databases are:

• IKE SAD

• Rekey SAD

• LKH key storage

Theoretically, the LKH key storage could be embedded into the rekey SAD. But from
an architectural point of view, it makes sense to keep the G-IKEv2 rekey related module
separate from the LKH module. However, the LKH storage arrays are still referenced
from within the rekey SA entries.

As RIOT targets mainly platforms with very small amount of RAM, all components of
the G-IKEv2 rekey implementation which are dealing with persistent state that needs to
be held in memory during runtime, are designed to use only statically allocated memory.
That is, at runtime no dynamic memory is allocated on the heap and thus, memory
allocation at runtime can be predicted very accurately. Hence, platforms with sufficient
RAM for use with G-IKEv2 can be selected easily. However, the size of the rekey SAD
and LKH key storage is still configurable and therefore scalability is still maintained.

4.2.1 Static memory block allocator
Tobias Heider integrated an implementation of a static memory block allocator into
RIOT [9]. The implementation consists of an API to allocate and free memory blocks

27

4 Implementation

of a fixed size up to a configurable maximum number of blocks. The size of one block
as well as the number of available blocks are both configured at compile time. Notably
both allocating and freeing blocks are executed in constant time. Also the control
structure has a constant size independent of the configured number of available blocks.
It works by storing a pointer to the next free block at the top of each free block itself.
The first free block is pointed to by the static control structure. Allocating chunks is
done by advancing the first_free pointer and returning the block which the pointer
referenced beforehand. Freeing chunks is done by setting the first_free pointer to
the block which is freed and store the previous first_free pointer into that block
itself. The exact procedure is depicted in the left column of figure 4.3. In summary
the implementation provides a lightweight and fast solution for use cases where dynamic
allocating and freeing of fixed-size memory chunks is needed. However, it is not possible
to iterate over the used blocks e.g. for searching a specific block as the used blocks don’t
reference each other. Thus, an improved version of the static memory block allocator
has been implemented. In addition to storing pointers to the free nodes, each used block
is prepended with a pointer to the next used block. Essentially, a second linked list
structure is created which contains all used blocks. Figure 4.3 shows the differences
between the existing implementation and the improved version.

4.2.2 IKE SAD

The IKE SAD holds information about the IKE SA which serves as the registration SA
in G-IKEv2. It is implemented by means of the static memory block allocator described
in 4.2.1. As for incoming (G-)IKEv2 packets the SAD needs to be searched for entries
corresponding to the SPIs specified in the packet header, the improved version of the
allocator as described in 4.2.1 is used to be able to iterate over all allocated SAD entries.
The linked list structure being used for that is shown in listing 4.3. Most parts of the
IKE SAD already existed as a result of Tobias Heiders preliminary work. However, to add
proper support for the threaded architecture of the implementation, which is described in
4.2.5, a few changes have been introduced. Firstly, the current state which a SA is in at a
given moment is stored in a newly introduced field. The allowed states are described in
listing 4.2. This allows for correctly identifying which action has to be taken to correctly
establish and authenticate the IKE SA. A newly allocated IKE SA starts in state NEW, as
soon as the IKE_SA_INIT request is sent, the state is changed to CONNECTING. After the
response to the initial exchange has been processed and a GSA_AUTH request has been
sent, the state is set to WAIT_AUTH and a correctly established and authenticated IKE
SA finally is in state ESTABLISHED.

4.2.3 Rekey SAD

The rekey SAD is implemented in a similar way as the IKE SAD. An entry in the rekey
SAD is represented by a structure described in listing 4.4. This structure contains the
SPIs identifying the SA, information about the used encryption and integrity algorithms
as well as the message ID of the last received multicast GSA_REKEY message for protection

28

4.2 RIOT

0 1 2 3 4 5

first_free

0 1 2 3 4 5

first_free

0 1 2 3 4 5

first_free

0 1 2 3 4 5

first_free

0 1 2 3 4 5

first_free

0 1 2 3 4 5

first_free

nextnext next

0 3 4 5

first_free

next

1

0 2 3 4 5

first_free

nextnext

1

next

first_used

first_used

first_used

first_used

2

initialize();

alloc(); alloc(); alloc();

free(1); free(2);

alloc(); alloc();

Existing version Improved versionOperation

Figure 4.3: Improved static memory block allocator

typedef enum {
NEW,
CONNECTING ,
WAIT_AUTH ,
ESTABLISHED ,
DELETING

} ikev2_sa_state_t;

Listing 4.2: IKE SA possible states

against replay attacks. Additionally, the used KEK management type is stored as well
as some general purpose storage which can be used by the KEK management algorithm
to point to its internal structures (as done with the LKH management algorithm) or can
be used to store the group KEK itself, if no KEK management algorithm is used.

29

4 Implementation

typedef struct sad_entry {
struct sad_entry *next;
ikev2_sa_t sa;

} sad_entry_t;

Listing 4.3: IKE SAD entry structure

typedef struct {
uint64_t spi_i;
uint64_t spi_r;
uint16_t kek_mgmt_type;
uint16_t integrity_algorithm;
uint16_t encryption_algorithm;
uint16_t encryption_keylen_bytes;
uint8_t kek_integrity_key[INTEGRITY_KEY_MAXLEN];

uint16_t kek_msg_id;
union {

uint8_t data[REKEY_SA_PRIVATE_BYTES];
void *ptr;

} private;
} rekey_sa_t;

Listing 4.4: G-IKEv2 Rekey SA structure

4.2.4 LKH database

The LKH database introduces the concept of a keystore. A keystore is a chunk of
memory together with functions to add, delete or replace keys within that chunk. The
API is kept generic and not restricted to be used with G-IKEv2 only. It is possible
to use multiple keystores simultaneously, for example to handle multiple rekey SAs of
multiple group memberships, the process of allocating or freeing keystores as needed is
implemented by the means of the static memory block allocator. As the associated
rekey SAs store pointers to the LKH keystore they use, an iteration mechanism over
all currently allocated keystores is not needed. Thus the existing, basic version of the
allocator is used. The number of LKH keystores which can be used as well as the size
of each keystore are configured statically by means of preprocessor directives.

The API is kept simple and contains functions to allocate a new, empty keystore as
well as deallocating a keystore which won’t be used anymore. Functions to insert new
keys into a keystore, retrieve a key from the keystore as well as replace a key in the
keystore have been implemented. As the LKH algorithm strongly suggests replacing
existing keys is done by decrypting newly received keys, a function that replaces a key
within a keystore by decrypting a ciphertext given as parameter with another key in
that keystore is introduced. The overview of available functions is show in listing 4.5.

30

4.2 RIOT

lkh_keystore_t *lkh_keystore_get(
uint16_t key_size ,
uint8_t key_metadata_size

);

void lkh_keystore_free(
lkh_keystore_t *

);

int lkh_key_get(
lkh_keystore_t *,
uint8_t index,
lkh_key_t *key

);

int lkh_key_add(
lkh_keystore_t *,
uint16_t key_id,
void *key_metadata ,
uint8_t *key_data ,
lkh_key_t *target_key

);

int lkh_key_update_at_index(
lkh_keystore_t *,
uint8_t index,
uint8_t decryptor_index ,
uint16_t encr_alg ,
uint16_t encr_keylen_bytes ,
uint8_t *new_key_ciphertext

);

Listing 4.5: RIOT LKH functions

4.2.5 G-IKEv2 Thread
Due to the GCKS-initiated GSA_REKEY exchanges which can arrive at any point in time
and also to support proper handling of other exchanges initiated by remote peers, a new
threaded architecture was set up in contrast to the synchronous program flow in the
existing implementation. Since RIOT OS supports creating multiple execution threads,
a dedicated thread for (G-)IKEv2 related processing and communication is created, in
the following denoted as G-IKEv2 thread. The main component of the thread is an
event loop which uses the standard RIOT interprocess communication mechanism to
process control requests or incoming data. There are three types of events which will be
processed by the G-IKEv2 thread.

Network packets Those are incoming network messages destined to the G-IKEv2 port
848.

31

4 Implementation

G-IKEv2
Thread

Initialization

Wait for message

Process message

Network

User/Application Message Queue

RIOT
IPC

IKE/G-IKE messages

Control requests

Timed events

Enqueue

IKE SADRekey SAD

Figure 4.4: G-IKEv2 thread structure

User/application control requests Those are commands issued interactively by the user
or by an application running on the target. Might be used to establish/delete a
GSA or show information about the current entries in the IKE or rekey SAD.

Timed events This category stands for events, which can be used to delete half open
SAs after a timeout was reached without receiving a response from the GCKS.
However, in the current version those are not yet implemented.

As soon as a RIOT application wants to initiate a G-IKEv2 connection, it calls a library
function and passes IKE related parameters to it. The function starts the G-IKE thread,
if it is not yet running and then delivers a connection initiation request message to it,
using RIOTs IPC mechanism. The G-IKEv2 thread then builds the payloads needed for
the IKE_SA_INIT request, allocates a new IKE SA in the SAD, sends the IKE_SA_INIT
request and sets the SA’s state to CONNECTING, as described in 4.2.2. Thereafter, the
thread returns to an idle state, waiting for either control requests or a response from
the GCKS. When a GSA_AUTH response is received from the GCKS, it is parsed and
processed. When the client registered successfully at the GCKS, the corresponding
entry in the rekey SAD is populated. When a multicast GSA_REKEY message is received
from the GCKS, its corresponding rekey SAD entry is searched and used for updating
the respective keys. The thread itself functions completely stateless, all state is preserved
in the IKE SAD and the Rekey SAD. Figure 4.4 depicts the control flow in the G-
IKEv2 thread. Its structure makes it easy to extend its functionality and for example
add support for other protocols such as normal IKEv2.

32

5 Evaluation

A test scenario is set up on the basis of which the implementation is then evaluated
against the previously defined requirements, especially the non-functional requirements
such as computing time or memory usage characteristics. The evaluation focuses on the
GM part implemented in RIOT, as the platforms on which it is designed to be used have
strong constraints and thus need more sophisticated analysis.

5.1 Test scenario
The implementation was tested on the very popular hardware platform Arduino Due.
The Arduino Due is equipped with an ARM Cortex-M3 microcontroller which operates
at a clock speed of 84 MHz. It has 96 KiB of available memory and 512 KiB of available
Flash memory. Network interconnection is realized with a Keyestudio Ethernet Shield
which supports Ethernet with a maximum data rate of 100 MBit/s. IPv6 fragmentation
support in RIOT is enabled by including the module gnrc_ipv6_ext_frag. This module
is used to support GSA_REKEY messages larger than an Ethernet MTU (1500 Bytes). The
GCKS is running as a daemon on a Linux based virtual machine (VM). AES in CBC
mode with a key length of 128 bits is used for all cryptographic operations as specified
in [3]. The used Strongswan configuration can be found in Appendix A.

5.2 Results
This section shows the results of the measurements performed and evaluates them in
relation to the requirements.

5.2.1 Memory

The memory usage of the G-IKEv2 implementation together with LKH is composed
of its individual modules. There is also memory usage which can only indirectly be
attributed to the G-IKEv2 implementation itself but is still necessary for it to work
correctly, namely the GNRC packet buffer. Due to the inefficient specification of how
LKH keys are updated via GSA_REKEY messages (see 3.6 for more information), those
messages can become quite big. 1 However, those message still need to be stored in the
GNRC packet buffer. Due to a slight inefficiency in the current implementation when
the encrypted GSA_REKEY message is decrypted, the decrypted contents is put in a buffer

1An Ethernet frame size of 1490 Bytes has been observed during evaluation for a GSA_REKEY message
replacing keys for a LKH tree of depth 8.

33

5 Evaluation

Table 5.1: Memory usage
Component Memory usage (Bytes)
LKH key storage 194
IKE SAD 1,036
Rekey SAD 140
G-IKEv2 thread stack + message queue 2,574
GNRC packet buffer 8,192∑

12,136

separately allocated from the packet buffer, which increases the needed space. Future
versions could easily switch to in-place decryption and thus save space on the packet
buffer.

Complete GSA_REKEY parsing support using a tree depth of 6 (supporting up to 64
members) has been confirmed working with the configuration displayed in table 5.1. Both
the Rekey SAD and the IKE SAD were configured to support the storage of one SA or
one group membership, respectively. As the RIOT kernel itself, specific modules and
the different network stack protocols (UDP/IPv6) also consume memory, in practice a
microcontroller needs more memory than the calculated total of 12 KiB. This specific
configuration described in the table has a total memory consumption of 18 KiB and
as such should be possible to run on other microcontrollers equipped with at least that
amount of memory.

5.2.2 Computation effort

Table 5.2 shows an overview of the performance metrics measured on the previously
described Arduino Due platform. Each value in the table is the computed average of five
samples measured. Only the average is given, since each individual measurement did not
deviate from the average by more than 0.3%. Thus, only providing the average value
is sufficient enough, as its significance is very high. The following metrics are measured
and evaluated:

GSA_AUTH The time needed to completely process a GSA_AUTH response is listed in
this column.

GSA_REKEY - worst case The values in this column quantify the time the device
needed for completely processing a GSA_REKEY message in the worst possible case.
That is, the rekey message was sent as a result of excluding the direct sibling group
member. In that case, the GM has to replace each key in its LKH storage except
for the leaf node.

GSA_REKEY - best case These values show the time the device needed for processing
a GSA_REKEY message in the best case. That is, within the binary LKH key tree,
the group member does not reside in the half in which the excluded group member

34

5.3 Summary

Table 5.2: Computation time measurements
Tree depth Max group size GSA_AUTH (µs) GSA_REKEY (µs)

worst case best case
4 16 4,333 3,475 2,133
5 32 4,526 4,627 2,131
6 64 4,697 6,199 2,148
7 128 4,863 7,917 2,145
8 256 5,083 10,050 2,147
9 512 5,200 12,252 2,153
10 1024 5,454 14,930 2,152

was positioned. In this case, only one additional decryption operation is needed,
which is decrypting the root key with the respective child key the group member
possesses.

5.2.3 Interpretation

Overall it can be stated that the group member LKH implementation on RIOT OS is
very efficient for even large groups supporting more than 1000 group members. The time
needed for processing the GSA_AUTH response only slightly increases with a higher tree
depth. The reason for this is that other than decrypting the response itself, no more
cryptographic operations need to be performed on the provided keys. They just need
to be copied into an appropriate place within the LKH module. The best case scenario
when handling a GSA_REKEY message is clearly not depending on the tree depth, as the
computational effort always stays the same, that is in any case only the new root key
has to be decrypted using the corresponding left or right child key. As expected, the
most expensive operation is the worst case GSA_REKEY message handling. There the
group member needs to perform d − 1 additional cryptographic operations for a LKH
tree of depth d. Every key along the path to the root key needs to be decrypted using
the respective preceding key. However, even with a LKH tree depth of 10, which supports
a large group with 1024 possible members, the time needed to process a GSA_REKEY
message is just about 15ms. Thus, even large dynamic groups with multiple members
joining or leaving the group every second, can be supported on a low end platform like
the Arduino Due.

5.3 Summary
Table 5.3 compares the result of the implementation against the previously defined func-
tional and non-functional requirements. Nearly all of them could be fulfilled, but two
remarks have to be made. Firstly, the LKH key tree generation and management mech-
anism as implemented currently is not very sophisticated. The tree is initialized with a
fixed depth and the tree is fully populated with freshly generated keys. Group members

35

5 Evaluation

Table 5.3: Summary of the requirements
Functional requirements
Protocol conformity Xa

Multicast messaging X
LKH key tree generation and management X
LKH array storage and management X
Replay protection Xb

Member eviction user interface X
Non-functional requirements
low computation effort X
efficient RAM usage X
scalability X
extensibility X

aCould not be verified due to the absence of another LKH
implementation in G-IKEv2

bImplicitly fulfilled since specified in G-IKEv2

respectively their keys can be replaced easily, but the tree structure is fixed after initial-
ization. Improvements could be made in terms of lazy generation of the keys just as they
are needed or by implementing re-balancing mechanisms which could serve a sparsely
populated group more efficiently. Although being already quite efficient, also the RAM
usage of the GM implementation still has room left for improvements. As stated above,
several decryption operations could be shifted towards in-place decryption which would
render the need for an additional buffer allocation on the packet buffer obsolete.

36

6 Conclusion and future work

This work showed that an implementation of a multicast group rekeying mechanism
based on the G-IKEv2 protocol and the hierarchical group key management algorithm
LKH is capable of being used even on lower end devices such as an Arduino Due with
less than 100MHz of clock speed and less than 100 KiB of memory.

As described in section 3.6 and also noted in [5] the way replaced LKH keys are sent to
the group members, as standardized in G-IKEv2, is quite inefficient. By integrating the
alternative approach which greatly reduces message sizes into the G-IKEv2 specification,
the implementations for both Strongswan and RIOT could adopt and provide for more
efficient group rekeying.

Future iterations of the implementation could add improvements in the way the LKH
key tree is managed in the Strongswan implementation. Currently, the tree is created
with a fixed depth at the startup of the Strongswan daemon. It supports the maximum
number of group members but performs poorly in sparsely populated groups, as for those
groups to improve efficiency, the height of the tree could be reduced.

Currently, LKH is the only group key management algorithm which is officially in-
cluded in the standardization of G-IKEv2 protocol. But there exist more algorithms
with even lower networking overhead than LKH has, such as OFT and CAKE. The
adoption of the G-IKEv2 protocol would greatly benefit from adding a standardization
of those algorithms.

37

Appendix A: Strongswan configuration
sample

Listing 1: ipsec.conf

ipsec.conf - strongSwan IPsec configuration file

Set a default IKE proposal
conn %default

ike=aes128-sha1-prfsha1-ecp256

GROUP-IKE GROUP 1 DEFINITION
conn GIKE-G000001

left=ff02::1
right=ff02::1
authby=psk
auto=add

GROUP-IKE GROUP 1 MEMBER DEFINITIONS
conn GIKE-G000001MEMBER000001

left=fe80::1
GM address
right=fe80::b863:d4ff:fe1a:65a2
authby=psk
auto=add
GM identification
rightid=keyid:12345678

conn GIKE-G000001MEMBER000002
left=fe80::1
GM address
right=fe80::626e:ff:fe77:1e21
authby=psk
auto=add
GM identification
rightid=keyid:abcdefgh

39

Appendix A: Strongswan configuration sample

Listing 2: ipsec.secrets

ipsec.secrets - strongSwan IPsec secrets file
#
keyid:abcdefgh : PSK "supersecret"
keyid:12345678 : PSK "supersecret"

40

List of Figures

2.1 Multicast security architecture . 3

2.2 G-IKEv2 communication sequence . 6
2.3 Keys provided to H at group join . 7
2.4 LKH key tree after exclusion of F . 8
2.5 Secure Lock message construction . 11
2.6 From [11]: Ternary tree structure to manage the keys and to reduce the

calculation effort by withdrawal . 12

3.1 Layout of a IPv6 packet in the GNRC packet buffer 17

4.1 Strongswan GCKS architecture . 24
4.2 Payload generation process . 26
4.3 Improved static memory block allocator 29
4.4 G-IKEv2 thread structure . 32

41

Bibliography

[1] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann, M. Lenders, H. Petersen,
K. Schleiser, T. C. Schmidt, and M. Wählisch. RIOT: An Open Source Oper-
ating System for Low-End Embedded Devices in the IoT. IEEE Internet of Things
Journal, 5:4428–4440, 2018.

[2] W. Engelbrecht. Group Key Management with Strongswan. http://www.
mnm-team.org/pub/Fopras/enge18/, 2018. retrieved on October 08, 2019.

[3] S. Frankel, S. Kelly, and R. Glenn. The AES-CBC Cipher Algorithm and Its Use
with IPsec. https://tools.ietf.org/html/rfc3602. Accessed: 2019-11-12.

[4] C. Guang-Huei and C. Wen-Tsuen. Secure Broadcasting Using the Secure Lock,
1989.

[5] T. Guggemos, K. Streit, M. Knüpfer, N. Felde, and P. Hillmann. No Cookies,
just CAKE: CRT based Key Hierarchy for Efficient Key Management in Dynamic
Groups. In International Conference for Internet Technology and Secured Transac-
tions, pages 25–32, 12 2018.

[6] T. Hardjono and B. Weis. Multicast Group Security Architecture. https://tools.
ietf.org/html/rfc3740, 2004. retrieved on September 22, 2019.

[7] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). https://tools.
ietf.org/html/rfc2409, 2011. retrieved on November 13, 2019.

[8] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Ar-
chitecture. https://tools.ietf.org/html/rfc2094, 1997. retrieved on April 4,
2019.

[9] T. Heider. memory array allocator. https://riot-os.org/api/group__sys_
_memarray.html. retrieved on November 13, 2019.

[10] T. Heider. Minimal G-IKEv2 implementation for RIOT OS. http://www.
mnm-team.org/pub/Fopras/heid17, 2017. retrieved on October 08, 2019.

[11] P. Hillmann, M. Knüpfer, and G. Dreo Rodosek. CAKE: Hybrides Gruppen-
Schlüssel-Management Verfahren. 10. DFN-Forum Kommunikationstechnologien,
Lecture Notes in Informatics (LNI), 2017.

[12] L. Jing and Y. Bo. Collusion-Resistant Multicast Key Distribution Based on Ho-
momorphic One-Way Function Trees, 2011.

43

http://www.mnm-team.org/pub/Fopras/enge18/
http://www.mnm-team.org/pub/Fopras/enge18/
https://tools.ietf.org/html/rfc3602
https://tools.ietf.org/html/rfc3740
https://tools.ietf.org/html/rfc3740
https://tools.ietf.org/html/rfc2409
https://tools.ietf.org/html/rfc2409
https://tools.ietf.org/html/rfc2094
https://riot-os.org/api/group__sys__memarray.html
https://riot-os.org/api/group__sys__memarray.html
http://www.mnm-team.org/pub/Fopras/heid17
http://www.mnm-team.org/pub/Fopras/heid17

Bibliography

[13] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet Key Exchange
Protocol Version 2 (IKEv2). https://tools.ietf.org/html/rfc7296, 2014. re-
trieved on October 30, 2019.

[14] M. Lenders. Analysis and Comparison of Embedded Network Stacks, 2016.

[15] D. A. McGrew and A. T. Sherman. Key Establishment in Large Dynamic Groups
Using One-Way Function Trees, 1998.

[16] A. Steffen. strongSwan: The new IKEv2 VPN Solution. https://www.strongswan.
org/docs/LinuxTag2007-strongSwan.pdf, 2007.

[17] D. M. Wallner, E. J. Harder, and R. C. Agee. Key Management for Multicast: Issues
and Architectures. https://tools.ietf.org/html/rfc2627, 1999. retrieved on
April 4, 2019.

[18] B. Weis, S. Rowles, and T. Hardjono. The Group Domain of Interpretation. https:
//tools.ietf.org/html/rfc6407, 2011. retrieved on November 13, 2019.

[19] B. Weis and V. Smyslov. Group Key Management using IKEv2. https://tools.
ietf.org/html/draft-yeung-g-ikev2-16, 2019. retrieved on November 13, 2019.

44

https://tools.ietf.org/html/rfc7296
https://www.strongswan.org/docs/LinuxTag2007-strongSwan.pdf
https://www.strongswan.org/docs/LinuxTag2007-strongSwan.pdf
https://tools.ietf.org/html/rfc2627
https://tools.ietf.org/html/rfc6407
https://tools.ietf.org/html/rfc6407
https://tools.ietf.org/html/draft-yeung-g-ikev2-16
https://tools.ietf.org/html/draft-yeung-g-ikev2-16

	Introduction
	Background and related work
	Secure multicast communication
	Registration security association
	Data security association
	Rekey security association
	Group security association

	G-IKEv2
	GSA_AUTH
	GSA_REKEY
	KEK management algorithm

	Logical key hierarchy
	Member join
	Member leave
	Security properties

	Related Work
	OFT
	Secure Lock
	CAKE

	Concept
	Requirements analysis
	Functional requirements
	Non-functional requirements

	Architecture
	Design decisions
	RIOT
	Memory management

	Strongswan
	Memory management
	Member eviction

	Improve rekeying efficiency

	Implementation
	Strongswan
	LKH
	Rekey SA
	Initialization
	Group security association creation
	Payload generation
	Multicast address handling
	Member registration
	Member eviction

	RIOT
	Static memory block allocator
	IKE SAD
	Rekey SAD
	LKH database
	G-IKEv2 Thread

	Evaluation
	Test scenario
	Results
	Memory
	Computation effort
	Interpretation

	Summary

	Conclusion and future work
	Appendix A: Strongswan configuration sample
	List of Figures
	Bibliography

