
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Monitoring and Mitigating

attacks in the environment of
Software Defined Networks

Christoph Girstenbrei

Alex Marczinek

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Monitoring and Mitigating

attacks in the environment of
Software Defined Networks

Christoph Girstenbrei

Alex Marczinek

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Dr. Nils gentschen Felde
Tobias Guggemos
Daniel Migault (Ericsson)

Abgabetermin: 12. Dezember 2016

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 12. Dezember 2016

. .
(Unterschrift des Kandidaten)

Preface

This thesis is the result of a collaborative work. As such, the source code authored during
this work is the result of joint effort.
In this thesis, chapters written by the other contributor are clearly marked as direct citations.
As chapters 1,3 and 7 have been written by both authors, the author of each paragraph is
marked on the margin.

vii

Abstract

In recent times, Software Defined Network (SDN) have quickly gained popularity. The
opened capabilities and addressing of shortcomings in traditional networks has sparked a lot
of interest. But considering the extent of testing regular networks are over, SDNs have to
make up a lot of ground. Especially due to new attacks on network clients and networks
itself, a reliable and adaptive strategy is necessary. Having insight into the network and
access to reliable information is one of the most important properties of a modern network.
The intent of this thesis is to address the first step of monitoring data, making it available
to other components and alert on possible attacks to enable a reactive and flexible network
in context of an SDN environment. Different techniques of gathering, analyzing and output
data will be proposed and shown with an example implementation. Comparison between
these techniques will present their advantages and disadvantages, providing information on
which tool to choose for which type of data or attack.

Abstract

Software Defined Networks are a technology that is quickly becoming popular. It enables
new network functionality through its standardized interface and the decoupling of the data
and control plane.

Yet, also attacks on networks are as popular as ever, with attacks disrupting the operation
of even large and well prepared companies. These attacks often are Denial of Service attacks.
The architecture of Software Defined Networks also has exploitable vulnerabilities

To help overcome these issues, a detection and mitigation mechanism based on SDN
within a reproducible test environment is proposed. This builds a foundation for research
on monitoring and mitigation in software defined environments.

This test setup is then used for the implementation and evaluation of TCP SYN Flood,
Distributed TCP SYN Flood and Flow Flooding attacks. The results show that by monitor-
ing the network through an Intrusion Detection System and using statistics of the flows, the
attacks can be detected and this information can be used to create flows that are capable of
mitigating the attacks.

Contents

1. Introduction 1

2. Background 3
2.1. Software Defined Networking . 3

2.1.1. Traditional Infrastructure . 3

2.1.2. Why SDN? . 4

2.1.3. SDN Infrastructure . 5

2.1.4. Flows . 6

2.2. Attacks . 8

2.2.1. IP Spoofing . 8

2.2.2. SDN specific attacks . 8

2.2.3. Denial of Service . 10

3. Related Work 13

4. Test Setup 15
4.1. Concept . 15

4.2. Information flow . 16

4.3. Implementation overview . 17

4.3.1. Network design . 17

4.3.2. Monitoring . 18

4.3.3. Mitigation . 18

4.3.4. Manager . 18

4.3.5. Visualization . 19

4.3.6. Component communications . 19

4.4. External software components . 19

4.4.1. Virtual Box . 19

4.4.2. Linux Container . 20

4.4.3. Vagrant . 20

4.4.4. OpenVSwitch . 20

4.4.5. Ryu . 20

4.4.6. Bind9 . 21

4.4.7. Suricata . 21

4.4.8. Redis . 21

4.4.9. ELKG-Stack . 21

4.5. Custom software components . 22

4.5.1. Statshandler . 22

4.5.2. Alerthandler . 22

4.5.3. Controller . 22

4.5.4. SynFlood . 23

xi

Contents

4.6. FlowFlood . 23

4.7. Usage . 23

4.7.1. Setup VM . 23

4.7.2. Controlling the VM . 24

4.7.3. Visualization . 25

4.7.4. Starting attacks . 25

4.7.5. Development guide . 25

4.8. Advantages and disadvantages . 25

4.8.1. Difference to a production environment 26

5. Monitoring 29
5.1. Data Gathering . 30

5.1.1. Packet Capture . 30

5.1.2. Network Metadata . 30

5.1.3. Active Client Monitoring . 31

5.1.4. Comparison . 31

5.2. Data Analysis . 32

5.2.1. Limit . 32

5.2.2. Standard Deviation . 32

5.2.3. Triple Exponential Smoothing . 33

5.2.4. Comparison . 34

5.3. Alerting . 34

5.4. Implementation . 35

5.4.1. Packet Capture . 35

5.4.2. Network Metadata . 36

5.5. Attack Analysis . 37

5.5.1. SYN Flood . 38

5.5.2. Distributed Syn Flood . 40

5.5.3. Flow Table Flooding . 41

5.6. Monitoring conclusion . 45

6. Mitigation 47
6.1. Mitigation concept . 47

6.1.1. Alerts . 48

6.1.2. Alert Handler . 48

6.1.3. Mitigation . 49

6.1.4. Controller Northbound API . 49

6.2. Implementation . 50

6.2.1. Alert Handler . 50

6.2.2. Mitigation . 50

6.2.3. Controller Northbound API . 51

6.3. Mitigation Strategies . 52

6.3.1. TCP SYN flood . 52

6.3.2. Distributed TCP SYN Flood . 54

6.3.3. Flow flooding . 58

6.4. Conclusion . 60

xii

Contents

7. Conclusion and future work 61

A. Controller 63

B. Mitigation component 81
B.1. Documentation . 81
B.2. Source Code Alert Handler . 95
B.3. Source Code Mitigation . 97

C. StatsHandler Documentation 103

D. SynFlood Documentation 119

E. FlowFlood Documentation 129

F. VM Vagrant File 139

G. LXCs Vagrant File 143

Acronyms 151

List of Figures 153

List of Tables 155

Bibliography 157

xiii

1. Introduction

Traditionally, networking technology is a field dominated by the vendors.[JMD14] describes
that each vendor supplies its own proprietary hardware and closed soft- and firmware, offering
little in the way of flexibility, innovation and adaptation to the steadily changing system and
service requirements of enterprises and customers alike. As such, the evolution of networking
technology has been slow, and we have yet to see a major contender arise to topple the status
quo.

One contender that might have the potential to change the current state of networking, is
Software Defined Networking. The defining point of SDN is its decoupled nature, separating
control and packet forwarding functionalities into separate layers and centralizing network
intelligence and state, thereby allowing for increased functionality, automation, control and
programmability [MBR16; ONF14].

OpenFlow is a SDN protocol that has lead to the technology receiving strong interest from
various large companies, such as Facebook, Google and Microsoft[GB14], as well as sparking
interest from research communities [JMD14]. OpenFlow provides standardized interfaces to
communicate with the forwarding devices [McK+08], thus being the basis for an architecture
with a centralized controller.

With this new architecture, the forwarding and routing decisions of the devices can be
programmed by Network Applications through the controller. They run fully in software
and allow every forwarding device to effectively resume responsibilities traditionally handled
by specialized middleboxes, resulting in a very flexible network that can better meet the
demands of current networks.[GB14]

Security in our digital world is a topic everybody has already heard of. Reports of people
managing to compromise or take out the networks of large companies make it to major
newspapers regularly. Examples are the attack on Sony Pictures Entertainment in 2014
[BBC14] or, more recently, the DDoS attack on Dyn, a company proving DNS services, which
brought down large parts of America’s Internet including sites such as Twitter, Netflix and
Reddit, in october this year[Gua16].

Therefore the advent of a rather new networking technology has served as motivation for
exploring the field of security in Software Defined Networks. By using Flows to influence
the way traffic is forwarded through the network and by taking advantage of the advanced
statistics OpenFlow devices can collect, new techniques for detecting threats to the network
are investigated. At the same time Flows provide a vast amount of possibilities to block
malicious packets at the forwarding devices.

To this end, a virtual, OpenFlow based testing environment is created, presented and
subjected to a number of attacks. With a Virtual Machine (VM) as an automated testing
environment, it is possible to set up the same environment repeatedly and reliably. Modeling
a real network as close as possible, Linux Containers (LXCs) are used to simulate network
clients. This allows, in comparison to other approaches like Mininet, for a fully functional
system stack including system services and maximum separation between the simulated
hosts, including the file system. After setting up an environment, attacks can be conducted

1

1. Introduction

and observed, data gathered and the effects measured. After that, a defense strategy can be
established and tested to prove its effectiveness.

To investigate capabilities in an SDN, this thesis takes a look at two different kinds of
attacks. The first kind is attacks commonly found in regular network environments. As the
new network technology has to withstand already existing attacks, it can prove its resistance
to those. The second kind is new attacks that specifically target the infrastructure of the
SDN environment. As the network itself has vulnerabilities, SDNs will have to face and
defend against such attacks.

An attack commonly found in all networks is DDoS (Distributed Denial of Service). The
aim is to try to prevent legitimate users from accessing a service, by consuming all the
available bandwidth or resources of a system and therefore rendering it incapable of serving
the requests of legitimate clients. There is a plethora of tools like Low Orbit Ion Cannon
or Stacheldraht readily available online that allow anyone with hardly any prior knowledge,
to execute a DDoS attack.[Lau+00; ZJT13] Given its ease of execution and effectiveness, it
comes as little surprise that DDoS currently is one of the most common attacks on networks.
[Sec16].

An example for the second category is the so called flow flooding attack. Aiming to
modify and flood the flow tables administered by an SDN controller, this attack carries the
possibility of a widespread impact, resulting in an unstable and unusable network. As it is a
new attack, the tools are not as available compared to Distributed Denial of Service (DDoS)
tools. But as SDN grows in prominence, tools will also be more readily available and mature.
SDN will have to be prepared for these challenges.

The goal of this thesis is to develop an SDN aware application stack, capable of detecting
and mitigating a variety of attacks. In order to achieve this, intermediate steps include the
development and implementation of a test setup to simulate a network. Next, an application
stack is proposed to handle monitoring and mitigation of the same network. Then, different
attacks are executed against the setup to test and prove its capabilities and show its weak
points.

The thesis is organized as follows. In chapter 2 Software Defined Networks and Attacks in
the network are explained in more detail. In chapter 3 related background literature in the
field is discussed. In chapter 4 the implementation of a virtual test environment is discussed
in detail and the tools used in later chapters are introduced. Chapter 5 explores techniques
to monitor traffic in SDN and the detection of attacks. In chapter 6 strategies to defend
against attacks are introduced and mitigation strategies for a selection of Denial of Service
attacks are implemented and evaluated in the environment of the test setup. Finally, chapter
7 draws conclusions.

2

2. Background

This chapter provides a more detailed overview of the core concepts used in this thesis.
More specifically section 2.1 discusses Software Defined Networking and explains why there

is a demand for this technology, how it differs from the networks predominantly in use today
and how those differences are implemented and can improve the status quo.

In section 2.2 attacks in the environment of Software Defined Networks are explored.
Hereby attacks that can also be found in traditional networks are introduced, as well as
attacks that target vulnerabilities of the SDN environment specifically.

2.1. Software Defined Networking

Born from an academic research project, SDN has already had a huge impact on the net-
working industry. Its real success has started with the release of the OpenFlow protocol.
With large companies such as Deutsche Telekom, Facebook, Google, Microsoft, Verizon, and
Yahoo! being responsible for the OpenFlow standard, the technology is advancing rapidly
and while other protocols exist and are being developed, such as ForCES, OpenFlow still
remains the most widely used.[GB14]

The differences, in the infrastructure between an SDN device and a traditional Internet
switch, already show an integral part of the SDN design. To this end, the following gives a
quick overview of the architecture of a traditional switch.

2.1.1. Traditional Infrastructure

Data Plane

Figure 2.1.: Roles of the control, management, and data planes. From [GB14]

3

2. Background

The switching functions can be divided into three categories. As these categories are
capable of horizontal communication with other entities within the same category as well as
vertical communication with other categories, they are usually represented as three planes
as shown in Figure 2.1: the data plane, the control plane and the management plane.

Data Plane

As Goransson et al. mentions, the data plane is comprised of its various ports plus a
forwarding table and is in control of forwarding the received packets, as well as packet
buffering, scheduling and header modifications. The forwarding table contains the rules
dictating how a packet has to be forwarded. Packets, whose header information can be
found in the forwarding table, can be forwarded, and its header, if necessary, modified
without the help from the other planes. However, in the case of yet unknown packets and in
the case of protocol packets, the involvement of the control plane becomes necessary.[GB14]

Control Plane

The main function of the control plane is to keep the forwarding table, which resides in
the data plane, up to date. In order to implement new network policies, the exchange of
management information between devices is necessary. Thus the control plane implements
many control and routing protocols, such as Spanning Tree Protocol (STP), Shortest-Path
Bridging (SPB) and Routing Information Protocol (RIP), necessary for managing the for-
warding table and thus also the topology of the network. One of the most basic but without
a doubt most important is MAC-Learning. On the arrival of a packet the switch learns,
based on the source Media-Access-Control (MAC) address, on which port the device exists
and creates a rule in the forwarding table. Based on this rule, future packets sent to that
MAC address, can be forwarded to the appropriate port. [GB14]

Management Plane

To change the behavior of the aforementioned protocols, the management plane can interact
with the control plane, as well as trigger changes in the data plane, such as changing or
adding entries in the forwarding table. Further it can query statistic and status reports from
the control plane. To make use of these functions, a network administrator uses some sort
of network management protocol. A well known example for such a protocol is the Simple
Network Management Protocol (SNMP).[GB14]

2.1.2. Why SDN?

In comparison to this architecture, where the control plane and data plane is tightly coupled
together inside the device, which was a design choice due to the urge of having very resilient
networks, SDN takes a different approach. SDN breaks this vertical integration by taking
the control plane off the device.

The reasons behind this decision lie in the issues that the old highly decentralized archi-
tecture causes. As a study conducted by Benson et al. shows, the networks have become
increasingly complex to manage [BAM09]. Given this complexity, it is only a natural conse-
quence that misconfigured devices are a common occurrence.

4

2.1. Software Defined Networking

As a single misconfigured device can already have a severe impact on network perfor-
mance, network administrators have tried to facilitate the management by using specialized
hardware, so called middleboxes. A middlebox performs a single task, e.g. a firewall or deep
packet inspection.[Kre+15] This takes away the burden of having to implement the policy
by configuring the network device directly. However, as discussed in [She+12], they have to
be configured through vendor specific commands which, combined with the large amount of
middleboxes used, only shifts the problem instead of solving it.

2.1.3. SDN Infrastructure

As mentioned previously, the control plane has been separated from the data plane.

This results in an architecture with three separate layers, as depicted in Figure 2.2: The
forwarding devices, the SDN controller and the network applications.

In the following, the architecture is presented in more detail in a bottom-up approach.

Figure 2.2.: SDN architecture adapted from [Kre+15]

Forwarding Devices

The devices are simple forwarding devices that only know how to handle incoming packets
by extracting the characteristics, such as MAC address or IP address, from the header of
an incoming packet. This information gets matched against the forwarding table and, if a
matching entry is found, the associated action or actions, such as to forward the packet to
a specific port, sending it to the controller for further inspection, duplicating it and sending
it out on various ports or to simply drop the packet, are executed.[GB14]

Interfaces

The Southbound Interface presents a uniform API for communication between the forwarding
devices and the controller. OpenFlow is currently the most well-known Southbound API and
standardizes the way the controller should interact with the devices.

The Northbound Interface allows the network applications to talk to the controller. Details
of the API are strongly dependent on the controller used. Commonly a REST or an ad-hoc

5

2. Background

API is used.

SDN controller

The controller resides on a remote machine in the network. While logically always a single
entity, he can actually be distributed over multiple machines, allowing for redundancy and
adding stability.

To provide another layer of abstraction, the controller uses a Network Operating System
(NOS) facilitating access to the underlying low-level devices and resources, comparable to
the abstraction an Operating System provides. This is a clear step forward compared to
traditional network management that still relies on low-level interaction with the network
device for configuration and management.

There are various Network Operating Systems available with different properties, using
different programming languages, such as OpendayLight, which is programmed in Java and
uses a distributed controller, or POX, which uses Python as the high-level language and uses
a centralized architecture. However as POX currently does not support the newer OpenFlow
versions, Ryu provides by far more possibilities to configure the forwarding devices and allows
access to most features.

The roles of the controller are the discovery of devices joining or leaving the network and
providing network topology information, as well as managing the flows in the forwarding
tables. These high-level languages, combined with the provided services, make it much easier
for the SDN developer to manage the network and implement new network policies.[Kre+15]

Network Applications

To add additional functionality to the network, services such as MAC-Learning, Routing
or an Intrusion Detection System (IDS) can be added. They are fully implemented in
software and can run on any machine in the network and communicate with the controller
via the Northbound API, through which it can receive alerts, such as a device failure or
information about the load, from the controller. Yet can also receive alerts from external
sources. Usually the network applications reacts based on these alerts and sends commands
to the controller to change the flows of the devices. Thus e.g. an application can receive
an alert about suspicious activity in the network and decide to redirect the traffic to an
application specialized in detailed inspection. [GB14]

2.1.4. Flows

The data structures in an SDN device are the flow tables and they replace the forwarding
table in a traditional device. While at least one flow table is mandatory, there are usu-
ally multiple flow tables available. Flow tables resemble traditional forwarding tables in
functionality, but are more generic than their counterpart.

The individual entries in a flow table are called flows. They each have a priority associated
to them and consist of match fields and actions, as seen in Figure 2.3.

These attributes describe the way a packet or set of packets takes from one endpoint to
another. Packets arriving at the device are matched against the entries of the first flow table
from the highest to the lowest priority. The first entry, whose match field criteria are fully
satisfied is chosen and the actions of that entry are executed.

6

2.1. Software Defined Networking

Figure 2.3.: Flow Table and its match fields and actions. Based on [NG13]

By default all possible match criteria are wild-carded, this means any value fulfills it. The
fields of interest can then be set to only match a specific value or can be partially wild-carded
to match a range of values.

Though the available match fields, e.g. source MAC address and destination IP address,
are depending on the implemented protocol, today most devices offer an extensive amount
of match fields, giving the SDN developer a lot of flexibility and possibilities in forwarding
the traffic. [GB14]

Should no entry match, it is a miss and the packet is discarded. However it is common
practice to include a fully wild-carded entry at the lowest priority, sending a miss to the
controller instead.

Other possible actions of flow entries, amongst others, are forwarding the packet to an
outgoing port, to drop the packet, to send it to another flow table or to a special table
like the group table that provides additional functionality, such as duplicating a packet and
forwarding it to multiple outgoing ports.

Additionally a flow saves statistics about its usage, such as the amount of packets that
has matched to this entry, that can later be queried by the controller.[Kre+15]

7

2. Background

2.2. Attacks

Software Defined Networks can, just as traditional networks, be the target of attacks. De-
nial of Service and Man in the Middle attacks are some of the most prominent examples.
But while these attacks apply to SDNs just as much as to traditional networks, the new
architecture also opens up new attack vectors.

One thing that stands out in SDNs is the controller. With all the management decisions
and the installation of the flow rules relying on the controller, it seems like a prominent
target. It helps that the design of SDN allows for a logically centralized but physically
distributed controller. However, given its remote nature, it still proves to be a potential
bottleneck in the network that can be exploited.

Another security concern is the integrity of the communication on the Southbound and
Northbound Interface. Attackers that manage to tamper with the control packets between
the controller and the switches or even create fake packets from scratch, can gain full control
over the network. Equally important is the communication between the network applications
and the controller on the Northbound. While this interface, depending on the implementa-
tion of the controller, is potentially not quite as powerful, as the Southbound one, an attack
can have the very same consequences.

But not only the management components themselves can be the target of an attacker.
The devices, in particular the flow tables, are of interest too. By tampering packets, an
attacker can attempt to trick the controller into creating malicious flows that destabilize the
whole network. [AX15; LMK16]

In subsection 2.2.2 attacks using these attack vectors are introduced and in subsection 2.2.3
Denial of Service attacks are treated.

2.2.1. IP Spoofing

A security concern, due to the uncontrolled nature of the Internet, is IP Spoofing. As the
source of a packet is not verified[YBX11], it is very easy to forge the IP Address and pretend
to be someone else, just by changing the source IP Address field in the header.[Tan03]

This enables attacks, like the notorious DNS amplification attack, where the attacker
pretends to be the actual target of the attack, causing the DNS server to send large replies
to the victim instead of the actual source of the query.[VE06]

On the other hand it conceals the origin of an attack. Being unable to associate malicious
packets to an IP Address makes it very hard to trace and stop an attack[Tan03].

As such IP Spoofing is a technique, that many attacks rely on, either as a basic requirement
for the attack or as a tool to improve the effectiveness of the attack.

2.2.2. SDN specific attacks

The following shows how the attacks vectors, mentioned previously, can be exploited. To
this end an attack, which targets the flow table of a switch, attacks targeting the services
provided by the controller, and an attack targeting the communication channel is introduced.

Flow Table Flooding

Technically speaking this attack can be classified as a Denial of Service attack. But what
makes this attack unique, is that it targets the flow tables used by the SDN forwarding

8

2.2. Attacks

devices.

By trying to find a pattern in the way the controller installs new flow entries, the attack
tries to launch a stream of packets that generates as many new flow entries as possible. As
the amount of flow entries a flow table can store is limited, this will ultimately lead to the
flow table overflowing and flow entries that are vital to the forwarding of the traffic, can no
longer be installed.

Figure 2.4.: Packet drop due to flow flooding at 100 Mbps. From [KKS13]

Figure 2.4 shows the amount of packet dropped during a flow table flood in regard to the
soft timeout for flows, which determines the amount of time a flow may be inactive before
it is removed automatically. [KKS13]

Controller

[Hon+15] shows an attack that can seriously compromise one of the core features of the SDN
controller. By using a kind of spoofing attack, it misleads the Topology Management Service
of the controller. As the controller automatically checks for hosts that have migrated to a
new location without further verification, packets can be spoofed to trick the controller into
thinking that the target has changed location. Thus future traffic is sent to the attacker’s
location where, for example in the case of a web server, the website could be impersonated.

Another service that is vulnerable is the Link Discovery Service. As the authentication of
the Link Layer Discovery Protocol (LLDP) packets can easily be decoded or reconstructed
from the source code of the controller, fake LLDP packets can be crafted. Through these
packets actually non-existing links can be created between two switches. As the discovery
of a new link also leads to an update of the Shortest Route, this can allow the attacker
to introduce a compromised host into the fake link and perform a Man-In-The-Middle at-
tack.[Hon+15]

9

2. Background

Communication Channel

As discussed in [Shi+13], the communication channel between the switches and the controller
is vulnerable to a saturation attack. As every packet without a matching flow entry is sent
to the controller, this channel can quickly become a bottleneck. A DDoS attack designed to
cause flow table misses can cause the controller to fall behind in handling these misses and
cause the buffer to overflow, resulting in dropped packets. The result is very similar to what
happens in a Flow Table Flood, once the flow table is full.

By placing a device between the controller and the switches, for example through a LLDP
vulnerability, as discussed earlier, the attacker can gain full control of the network. If
Transport Layer Security (TLS) is not implemented the attacker can freely modify or insert
flow rules. As the messages from the switches to the control can be intercepted as well the
controller will not even notice that something is amiss. Even if TLS is used potentially
large parts of the network can be taken down by dropping the packets from the switch and
controller. [BCS13]

2.2.3. Denial of Service

A Denial Of Service (DoS) attack is characterized by the explicit attempt to, as the name
implies, deny access to a targeted system and prevent legitimate users from using the desired
services.

The most common type of DoS attack performed is to flood the target with superfluous
requests until its available bandwidth or resources are fully consumed and it can no longer
handle regular requests, therefore making the service inaccessible.

Another less common method is a vulnerability attack. This attack abuses a vulnerability
in the targeted system and sends malformed packets that lead to the services being unable
to perform their intended purposes.[Lau+00]

Distributed Denial of Service

Figure 2.5.: Components of a DDoS attack. Based on [Lau+00]

10

2.2. Attacks

Most commonly a DoS attack is executed in a distributed fashion and is then called DDoS.

The distributed version is usually executed by a botnet, comprised of computers infected
with malware and orchestrated remotely, under the command of the attacker. As seen
in Figure 2.5, the attacker coordinates the attack, by sending the attack-command to the
master system in the botnet. As a result, the master, who has an overview of the complete
botnet, spreads the command to all the other infected systems, usually called Daemon, who
then execute the actual attack.

The main benefit of using the master and daemon setup is the concealment of the real
culprit behind the attack. While it appears simple to execute the attack, the real work
consists of infiltrating enough systems to build a large botnet and searching for vulnerabilities
or bottlenecks in the victim’s network.

The size of the botnet is often the deciding factor for the success of the attack, as the
bandwidth the attack can generate scales linearly with the size of the botnet. This of course
directly correlates with the amount of resources the attack can consume.[Lau+00]

The main reason why DDoS is even possible, is that the Internet is not designed to
control traffic, but moving packets from source to destination efficiently. This means the
intermediate network only does the minimum effort necessary for transporting the packets.
However, this design allows for DDoS attacks being possible if only one member in the
communication misbehaves, as malicious packets can reach the target without being checked
for integrity.[MR04]

TCP Syn Flood

The TCP protocol relies on a three-way handshake to establish a connection, as shown in
Figure 2.6. The following shows how this three-way handshake can be exploited to make a
system unreachable.

Figure 2.6.: TCP three-way handshake.

On receiving the TCP SYN packet, the receiver replies with a SYN,ACK and waits for the
corresponding ACK to complete the establishment of the connection. However, in the mean
time he has to allocate resources to save the state of the communication with the initiator.

An attacker can abuse this by never sending the final ACK and thus creating a half-open
connection that binds resources of the victim. In a TCP SYN Flood the attacker sends as
many SYN requests as possible in order to exhaust all the available resources, rendering the

11

2. Background

victim unable to answer legitimate connection attempts.[Lem+02]
As shown in [Lem+02], a machine that can have up to 1024 incomplete connections per

socket and uses the standard TCP time out of 511 seconds until it drops unsuccessful con-
nections, can be exhausted very easily.

As the limit of 1024 incomplete connections is reached, the machine drops an old incom-
plete connection to make room for the new connection attempt. If the average time for a
packet to make a round trip is 100ms, a Syn Flood attack with a bandwidth of just 4MB/sec-
ond is enough to completely clear and refill the saved open connections in the mean time.
Thus once the ACK arrives there is no record of the corresponding SYN and the connection
cannot be established.

Distributed TCP Syn Flood

While the attack remains exactly the same as the non distributed TCP Syn Flood, this
attack is far more challenging to defend against.

First of all the use of a botnet makes attacks with an enormous amount of traffic possible.
For example Verisign, a company that offers DDoS protections, reports an attack with a
peak of approximately 60 Gigabits per second at 150 Million packets per second in Q3 2016
[Ver16]. This makes even systems that have a large pool of resources available susceptible
to this attack.

But even more important, the attack packets, especially if combined with IP Spoofing,
can no longer be grouped by source IP Address, where a large amount of SYN requests from
a single source is a very suspicious behavior. This requires a different defense strategy to
mitigate the attack.

12

3. Related Work

Security in Software Defined Networks is a topic that has garnered a lot of interest recently.
The following presents an overview of the literature in the field, related to the work in this
thesis.

The setup used in this thesis is heavily based on LXCs to simulate and separate network
components within the VM. In [GDK], the method of encapsulated VMs is used. This
allows for a more complete component separation, especially by removing the dependency on
a shared kernel across LXCs. As the separation capabilities of LXC technology are sufficient
to simulate multiple network clients and the kernel dependency does not pose a problem in
this setup, the advantages of LXC technology, namely a lightweight isolation approach and
therefore fast startup and reaction times, outweigh the advantage of paravirtualization or
full virtualization.

Introduced by the monitoring concept of OpenFlow itself, new problems arise. One of
them is due to the pull based nature of the protocol, since a gathering component has to
actively collect information from the network. This asks for a balance between detailed mon-
itoring and network overhead, a possible solution for this problem is proposed in [Cho+14].
Implementing an abstraction layer between the SDN controller and network monitoring en-
ables for a more intelligent and adaptive monitoring of components than the one currently
implemented in the setup of this thesis.

Seen from this angle, scalability and distributability of the monitoring logic in large scale
network is necessary. Evaluating the OpenFlow (OF) native approach in comparison with
a strategy based on sFlow is done in [Gio+14]. Demonstrating the problem by overloading
the SDN control plane with monitoring traffic and comparing the results of both methods
with real and high volume traffic, the paper uses an entropy based method to analyze data.
As the network used in this setup is considered small, the issue of overloading the system
with monitoring traffic is not present, especially due to the low network base load. To
implement a similar network on a larger scale successfully, these problems have to be taken
into consideration.

A major problem for the security of networks is IP Spoofing. Yao et al. have proposed a
mechanism based on the OpenFlow architecture that tries to detect spoofed IP Addresses
called VAVE (Virtual source Address Validation Edge). This is an improvement of the
system proposed by IETF, SAVI (Source Address Validation Improvements) [BG13]. By
forming a perimeter of OpenFlow devices around the network, every packet that comes from
a legacy device or from outside of the network is checked. Packets that arrive from outside of
the network with an IP Address that is in the IP Address range of the network can then be
safely declared as spoofed and dropped. While this technique is useful to prevent attackers
from spoofing IP Addresses of systems inside of the network, it cannot prevent any attacks
that rely on mostly spoofing random IP Addresses. [YBX11]

AVANT-GUARD[Shi+13] uses SDN switches as SYN proxies. When receiving SYN re-
quests from a new source, the switch starts the TCP handshake using SYN Cookies. Only
if the client successfully completes the handshake, the switch installs a flow to forward

13

3. Related Work

subsequents packets from that source and completes the handshake with the original des-
tination[Amb+15]. But [Amb+15] also analyzes that AVANT-GUARD is susceptible to a
buffer saturation attack, as the switch has to save state to migrate the TCP handshake to
the destination.

Cui et al. [Cui+16] propose a system based on 4 modules: Attack detection trigger,
detection, traceback and mitigation. They propose a new method to trigger the detection of
an attack. Instead of periodically checking, they monitor the amount of packets sent to the
controller to start the attack detection, which only then starts gathering the flow stats and
searches for malicious entries which trigger mitigation. For their test environment they use
mininet. While mininet is even more lightweight than the virtualization via LXC, mininet
uses a shared file system and PID space. To guarantee a more flexible host environment,
LXC was chosen for this thesis.

14

4. Test Setup

This chapter aims to provide on one hand a high level overview enabling an understanding
of conceptual parts, component interactions and information flow. It shows the basis and
concepts on which the setup is implemented on. After providing a design, it will then on the
other hand show implementation details giving insight into important parts of components.
The parts and software used will be explained and placed in context of the design concept.
At the end, advantages and disadvantages of the setup will be compared.

4.1. Concept

To develop a concept for the test setup, 3 basic goals have to be met. The first one is
detecting and mitigating attacks in an SDN environment. The second goal is grouping every
functionality into encapsulated and movable components following the Single Responsibility
Principle (SRP) [Mar03, pp. 95-98]. This allows a more complex environment and separates
concerns. Third, all communication paths shall be defined clearly, use Ethernet/Internet
Protocol (IP) and be shaped appropriately for the type of information transmitted. This
is especially important in a network environment, as the components are not necessarily
inside the same virtual or physical machine. Communication can happen across different
base media, but the standardization in place by using the IP protocol ensures available
communication everywhere and, if necessary, in between every component. Figure 4.1 shows
the underlying idea in the application design.

switches

Mitigation

Manager

Clients

Monitoring

Application stack

Application logic

Outbound component

Figure 4.1.: Application stack concept

Responsibilities are split into three base parts. The manager actively communicates on

15

4. Test Setup

its southbound interface with switches, which provide the SDN network to clients, and
are considered the outbound components. Components executing application logic do not
communicate with clients directly, only the manager is facing the network side. On its other
side, on its northbound interface, the manager provides communication to the application
logic, making information actively or passively available to dedicated parts and receiving
instructions on how to modify the network. The monitoring components responsibility is to
decide whether available data is an anomaly or regular and legitimate traffic. It has to select
appropriate tools to analyze data provided by the management component and if an attack is
found, an identifiable alert has to be sent to the mitigation component. In summary, its goal
is detection. Mitigation reacts upon a received alert with the goal of providing a mitigation
strategy. Matching reactions have to be available for different alerts and the actions have to
be communicated to the managing component for it to implement changes in the network.

A fourth component can be visualization. This part is not necessary for a working ap-
plication stack, but it can be used to get insight into the running system thus providing
easier use and a smaller feedback loop for human testing. An overview of components and
responsibilities can be seen in table 4.1.

Component Responsibility

Monitoring Analyze data to generate alerts if necessary

Mitigation Decide upon a received alert how to mitigate an attack

Manager Provide a single access point to the network

Visualization Give insight into events generated by the system

Table 4.1.: Responsibilities of application stack components

Combining all components achieves the primary goal of detecting and mitigating attacks
in the SDN environment. Leveraging the three basic concepts keeps components in loose
coupling and high cohesion [SMC74], ensuring distributability and portability.

4.2. Information flow

As stated in section 4.1, communication paths and therefore information flow is a vital part
of the application. In a large network environment, the sheer amount of information possibly
available requires consideration on how to deal with it. In this limited test environment,
data flow management is easier compared to a large one. Figure 4.2 depicts which paths
information takes to enter the system and how it moves inside the system.

16

4.3. Implementation overview

switches

Mitigation

Manager

Clients

Monitoring

Publish

IP packages OpenFlow

http-post

Publish

Visualization

Figure 4.2.: Information flow through the application stack

4.3. Implementation overview

Information flowing into the application stack is always initiated by the manager. This
can be statistical information pulled from a switch or IP packet forwarded by one through
the network. There are two types of data presented to the application stack. In the first
case, IP packets are sent directly to the monitoring component being forwarded by switches.
Second, statistical information is gathered by the management component and relayed to the
monitoring instance. After data entered the application stack, monitoring decides whether to
alert on available information or not to do so. If an alert is generated, it will be received by the
mitigation component. This instance will decide on whether the attack is mitigatable and if
so, it will inform the managing component about what to do, in order to achieve mitigation.
The manager will then install flows according to commands by the mitigation client to
appropriate switches. The logical flow of information and the transportation techniques are
depicted in figure 4.2.

4.3.1. Network design

The design is chosen with a production network in mind, but aiming for simplicity and ease
of use while testing different attacks. Therefore at least two switches are necessary to test
how multiple network entry points, with a number of clients attached, behave. Although
in a production environment there won’t necessarily be a second network available only to
connect the monitoring and mitigation stack, this can be achieved by different techniques
like VLAN and Quality-of-Service controls similar to a non-SDN -network. In this setup an
ideal configuration can be chosen due to no limits concerning available hardware switches
and physical paths. Therefore a complete network separation in two different segments is
implemented, providing a public network to connect all clients to and a private network
providing connectivity to the monitoring and mitigation stack. Though it may be more

17

4. Test Setup

VM

DNS Target

switch0

Mitigation

Manager

switch1

switch
private

Attacker

Transportation

Visualization

Monitoring

Figure 4.3.: Test-setup of the virtual network

difficult, network separation between the public network and the monitoring and mitigation
stack is advisable to minimize the impact in case a system is under attack or compromised.

4.3.2. Monitoring

To analyze any event occurring within the client network, all necessary information gets
forwarded to a monitoring client. The same can then decide to alert if specific conditions are
met to inform a mitigation client. In this setup, two services are working inside the compo-
nent. The first one is Suricata (4.4.7) as an IDS. The other one is the Statshandler(4.5.1).
More details about monitoring internals are described in chapter 5.

4.3.3. Mitigation

After an attack is discovered by the monitoring component, mitigation can communicate
with the manager, trying to mitigate the effects of an attack. Running inside the component
are two instances of the Alerthandler(4.5.2), each one a counterpart to the services running
in monitoring. This is explained in detail inside chapter 6.

4.3.4. Manager

This component provides an interface to the network. Running Ryu (4.4.5) as an SDN con-
troller, it contains the network application. Responsible for sending instructions to switches,

18

4.4. External software components

receiving statistics and requests from them on one hand, it is providing a Hypertext Transfer
Protocol (HTTP) interface for mitigation to control the network as needed on the other.

4.3.5. Visualization

On top of that, a visualization component provides almost real time insights to events hap-
pening within the network. An Elasticsearch-Logstash-Kibana-Grafana-stack(4.4.9) allows
for collection, detailed inspection and visualization of occurring events of almost any type
and source. In contrast to monitoring and mitigation, which are absolutely necessary to sys-
tem functionality, visualization is purely for the ease of use and a faster feedback cycle while
performing tests in this system. It can also be used to see and notice events, making it easy
for a human viewer to correlate between events on different systems. Especially trying to
identify the characteristics to monitor while testing an attack and rechecking if a mitigation
strategy works is much faster, if data is presented almost instantaneously in graph form.

4.3.6. Component communications

Communication between these components happens in two different ways. First, Redis(4.4.8)
enables via its publish/subscribe model high speed data exchange between a single data
source and multiple recipients. This is used to communicate between the monitoring, miti-
gation and visualization component. As a format to exchange data, Extensible Event For-
mat (EVE) is used. The format is natively supported by Suricata(4.4.7), and its JavaScript
Object Notation (JSON) base can be easily parsed. Second, a REST-full API is used to
instruct the network operating system what to do in case of a mitigatable alert. This ties in
with the already provided API and capabilities of Ryu.

ManagerMitigationMonitoring

IDS

statshandler

alerthandler-ids
controller

alerthandler-stats

Redis REST

Figure 4.4.: Flow of alert messages

4.4. External software components

The following components are used in conjunction to form the VM setup of this thesis on
which all tests will be executed. As many components as possible are open source and all
can be used without license fees.

4.4.1. Virtual Box

To ensure encapsulation and portability of the whole test environment, all tests are per-
formed within a Virtual Machine. Enabling simulation of an arbitrary number of devices,

19

4. Test Setup

multiple topologies can be tested inside the VM. Contained are LXCs, switches (Open-
VSwitch (OVS)) and connections between containers via virtual network adapters. To sup-
port a broad range of host platforms, VirtualBox v. 5.0.26 is chosen as a platform indepen-
dent virtualization provider. The base operating system is Ubuntu 16.04 LTS (64bit), both
for the virtual machine and the LXC clients. It is installed automatically.

4.4.2. Linux Container

To simulate multiple network clients within a single machine, LXCs are used. They get
provisioned via Vagrant and connected to OVSs with virtual network adapters. This enables
limiting client resources like available CPUs and RAM via Linux cgroups. Limiting CPU
usage is done in the test setup by constraining a container to one CPU. This works also
on machines with fewer than 9 cores despite having 9 LXCs. Although it is not possible to
truly separate all running processes due to the nature of a single host machine, separation
into one container per functionality allows for the best control possible and follows a micro
service approach.

4.4.3. Vagrant

To achieve repeatable and reliable tests, an automated setup process for the test environ-
ment is necessary. Therefore, Vagrant (1.8.4) is used to automatically provision all virtual
machines and containers. The process handles setup of the VM, all LXCs within the machine
and connection of all parts to a virtual network. During this setup process, different base
images are downloaded from multiple repositories, so Internet access is mandatory. This
implies that all containers are connected to an outside network during their setup. This
connection can be shut down to ensure network encapsulation and to guarantee all packets
sent during the tests will stay within the virtualized network, even if a configuration error is
present. Additionally it is possible to commit the infrastructure as code to a version control
system and use all advantages like branching and resetting to a previous commit.

4.4.4. OpenVSwitch

OpenVSwitch (v. 2.5.0) is used to simulate OpenFlow capable network switches. Every
client is connected to a virtual switch during the setup process. The Networking Operating
System is running as a client to control every switch.

4.4.5. Ryu

The Networking Operating System (NOS) controlling all OpenFlow switches is Ryu. It
is fully open source and provides a well defined API for communication with the switches
in Python. Since Ryu, in the version used for this project (4.5), supports the Open Flow
Protocol up to version 1.5, it is the most suitable choice. In the configuration provided
by the setup process, Ryu controls the two client-facing switches and provides basic layer
2 network functionality by installing appropriate flows. Additionally, some are installed to
duplicate every packet entering the network and send it to a monitoring instance for further
analysis.

20

4.4. External software components

4.4.6. Bind9

Bind9 is used as a Domain Name System (DNS) server. It runs inside the DNS container
and provides its service to all clients connected to the public switches, as known from regular
environments.

4.4.7. Suricata

Suricata is used as a packet analyzer and Intrusion Detection System (IDS). It runs as
a system service inside the monitoring component and listens on a network interface for
incoming IP traffic. It is capable of analyzing different aspects of an IP packet, like it’s
origin, a TCP/UDP port or its contents. Based on the analyzed content, it can generate
alerts if predefined criteria are met. It is manually compiled and not installed from standard
packages as they don’t support the output of alert information into Redis at the time of this
thesis. It was chosen due to its similarities to the widely known IDS Snort and its extended
capabilities compared to the same. More details about how Suricata is used in this setup
are available in subsection 5.4.1. More information about Suricata itself can be found in its
user guide [Her+16].

4.4.8. Redis

Redis is an open source (BSD licensed), in-memory data structure store used as
database, cache and message broker. - [JM16]

As this setup does not only provide monitoring and mitigation functionality, additional mes-
sage distributing problems are introduced. Namely, both visualization and mitigation need
to receive all messages. This raises the problem of a single source and multiple destina-
tions for a given message. Solving this is the publish/subscribe model provided by Redis.
It enables a Redis client to publish messages to a channel without having to deal with the
responsibility of distributing it to all subscribed clients.

The system is configured to forward all messages in memory. This implicitly means, none
are stored on disk by Redis and there is no replay capability. This is not needed in this test
setup, but may be necessary in a more complex environment.

4.4.9. ELKG-Stack

This component stack consists of Elasticsearch, Logstash, Kibana and Grafana. Logstash
is the first component in line, receiving input messages, formatting and storing them in
Elasticsearch. Though there is no capability of doing this in Redis, all transmitted ones
are saved in Elasticsearch. All messages are indexed and made available to query for in
Kibana and Grafana. Kibana can be used with its ’discover’ tab to view the different fields
available within the data. Grafana is configured to set up a dashboard automatically at start
up in order to visualize the change and relationships of different parameters in the system.
More information about Elasticsearch, Logstash and Kibana can be found at the website of
Elasticsearch. Details about Grafana are available at http://grafana.org/. Instructions
how to use the visualization component can be found in subsection 4.7.3.

21

https://www.elastic.co
http://grafana.org/

4. Test Setup

4.5. Custom software components

Many tasks in the application stack can be handled by pre-written, third-party software. But
some components listed in the following chapter are specifically designed, built and tested
for this thesis. All services use Python as their programming language, as it was already
used by Ryu and therefore necessary for the controller. To ensure consistency and ease
of extensibility, all other components were written in Python 3, too. The communication
between components is shown in Figure 4.4.

4.5.1. Statshandler

The Statshandler is an analysis service inside the monitoring component responsible for de-
tecting anomalies in statistical data collected from switches. It is running as a system service
and can be controlled as such. Its source code is located at ./VM/lxcs/main/monitoring/

statistical. More detailed information about its functionality is found in the monitoring
chapter, subsection 5.4.2.

4.5.2. Alerthandler

The Alerthandler is responsible for receiving alerts sent by the monitoring components and
deciding how to mitigate an attack, based on available information. Like Statshandler, it
is running as a system service. It runs inside the mitigation container and its source code
can be found at ./VM/lxcs/main/mitigation. Its functions and internals are described in
more detail in the mitigation chapter, subsection 6.1.2

4.5.3. Controller

The controller is communicating in two different directions. On its northbound API it
enables communication to other systems within the network. In this setup, there are two
main communication channels northbound. Redis is used by the controller itself to insert
statistical data gathered from switches into the application stack. HTTP is used as a second
way of communication by the manager to send instructions to the controller in case an alert
is triggered.

Southbound, the controller connects to all switches using the OpenFlow protocol. Every
time a switch starts, it will announce itself to the controller and waits for instructions from
it in the form of flows on how to handle network traffic. The setup process can be seen in
listing 4.1. More information about the concept of a north-/southbound API and how it is
used in OpenFlow environments is described in section 2.1.3.

22

4.6. FlowFlood

1 return _rest_command

2
3
4 class SwitchController(ControllerBase):

5 _SWITCH_LIST = {}

6 _LOGGER = None

7
8 def __init__(self , req , link , data , ** config):

9 super(SwitchController , self).__init__(req , link , data , ** config)

10 self.waiters = data[’waiters ’]

11
12 @classmethod

Listing 4.1: Register switch

4.5.4. SynFlood

There are multiple tools available capable of executing a Transport Control Protocol (TCP)
SYN flood, but there is a common problem to them. They are built to execute a blunt flood
and don’t provide much control over how the exact procedure of flooding is done or when
to stop. A similar tool, Hping3 can flood a target with SYN packets, but is not able to stop
after a specific amount of packets in flooding mode. These shortcomings are addressed with
this tool, which is capable of executing a precise number of packets sent to a target with or
without spoofed source IP. Though being implemented in Python, the tool was not slower
in this test setup than the in C implemented Hping3.

4.6. FlowFlood

As flow flooding is, compared to SYN flooding, a fairly new attack, no tool was available to
produce packets in exactly the manner necessary to trick the controller into installing flows.
This problem is solved by the FlowFlood implementation. Working in a master/slave fashion,
the program is executed on two different network clients, establishing a TCP connection
and sending a small amount of data via the same. Then, the MAC address of the master
is changed and a new TCP exchange performed. Every time this is done, a new flow is
installed by the system.

4.7. Usage

The virtual machine can be used to simulate the attacks and their effects live. Therefore, a
user and development guide is provided here.

4.7.1. Setup VM

The first step in setting up the testing VM is to ensure VirtualBox is installed. Also, Vagrant
and the Vagrant-vbuest plugin have to be installed. Almost every part of the installation
process needs to download files, so an Internet connection is mandatory.

After changing the working directory in the used shell to ./VM, the installation process
can be started by issuing the Vagrant native command vagrant up . If the shell used during
the installation process is capable of displaying color, the output will be colored. As some

23

https://www.virtualbox.org/
https://www.vagrantup.com/

4. Test Setup

of the installation process happens inside the VM by another instance of Vagrant, the color
coding can be wrong, but in general it is normal to see a lot of green lines, some will be
red and any lines marking different sections within the installation will be purple. Red lines
not necessarily indicate critical errors. For example, output of the curl command will be
marked red, but is not an error. If the vagrant up command exits with an error code, a
critical exception occurred. Additionally, at the end of the installation process, every service
will be checked and displayed as ’running’ or ’broken’. The installation process should,
after installing Vagrant, VirtualBox and switching to ./VM, only involve the following two
commands:

1 vagrant plugin install Vagrant -vbguest

2 vagrant up

Listing 4.2: Setting up VM

All components should be already set up and run after the installation process completes.
This is checked once with a script at the end of the installation process. All necessary
connections and services must be marked with ’Internet’ or ’Running’ and the IP for this
installation is displayed. To check live status of components, either logging into the VM
and rerunning the test script located /home/vagrant/lxcs/test-main.sh or looking at
visualization of Grafana is possible.

4.7.2. Controlling the VM

To get shell access to all components, the Vagrant command vagrant ssh can be used. This
connects the used shell in an ssh equivalent fashion to the Virtual Machine (VM). Inside
it, the sudo command is available without password authentication and necessary for all
further LXC commands.

All standard Linux/Ubuntu 16.04-compatible commands are available. Additionally,
TMUX and VIM are installed. To ensure that containers are in fact started, lxc-ls --fancy

displays a list of running LXCs and their IP addresses. To connect to one of them, the com-
mand lxc-attach -n container-name is available. When logged into the VM, all Linux/Ubuntu
16.04 commands are available inside all LXCs. Some example use cases from within the VM
are shown in listings 4.3 to 4.5.

1 lxc -stop -n monitoring

Listing 4.3: Stopping a container

1 lxc -attach -n mitigation

2 systemctl restart alerthandler -stats

Listing 4.4: Restart a service

1 lxc -attach -n monitoring

2 journalctl -u statshandler -f

Listing 4.5: Following the log output of a service

24

4.8. Advantages and disadvantages

4.7.3. Visualization

To visualize all information produced by the system, two services are in operation. Kibana
is the standard visualization software used in many Elasticsearch-Logstash-Kibana installa-
tions. Using Kibana, all unique fields are visible from the ’Discover’ tab. Kibana is available
via port 81 of the VM, login data is ’kibanaadmin’ as user and ’123’ being the password.
Grafana is used to visualize multiple graphs. It can be used to see time correlated events and
build almost real time insight graphs to display multiple source fields from Elasticsearch.
Grafana is available via port 80 with the login ’admin’ as user and password.

More information about how to configure and use Grafana can be found in its documenta-
tion: http://docs.grafana.org/. Equally, usage information about Kibana can be found
in Kibanas documentation: https://www.elastic.co/guide/en/kibana/current/index.
html.

4.7.4. Starting attacks

An attack is always started from within one of the LXC attackers. All scripts starting an
attack are located in /vagrant/attacker/ and can be executed without any parameters
to use the predefined targets. As these are simple bash scripts, the target can be changed
by modifying the script. For example, to execute a simple DOS attack one would issue the
following commands:

1 lxc -attach -n attackone

2 cd /vagrant/attacker

3 ./ synflood.sh

Listing 4.6: Starting DOS attack

As long as the command is running, a packet flood is visible in Grafana.

4.7.5. Development guide

Extensions and changes to the project should follow the already available directory structure.
All information necessary for a component to offer its service should be located in the
components folder. In case of an LXC this would be ./VM/lxcs/container-name/. To
modify the network behavior, changes to the controller can be made in ./VM/lxcs/main/

manager, either directly to controller.py or by creating new modules.

To create or modify attacks, files in ./VM/lxcs/main/attacker can be added or changed.
Changes to monitoring and mitigation would then happen in ./VM/lxcs/main/mitigation

and/or ./VM/lxcs/main/monitoring.

The development of custom Python modules follows the style guide PEP8 with a line
width of 120 characters. Python 3 is preferred over Python 2 as all current modules are
written in Python 3.

Bash is the used shell scripting language.

4.8. Advantages and disadvantages

This testing environment was chosen due to its advantages. The most prominent is repeata-
bility. Due to the capabilities of Vagrant, the VM can be set up from scratch again and

25

http://docs.grafana.org/
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.python.org/dev/peps/pep-0008/

4. Test Setup

again with one simple command, providing a fresh install of the test setup every single time.
Ensuring the same test environment not only in between test runs, but also across a devel-
opment team, makes testing repeatable and development easy. Even if something inside the
VM stops working, e.g. the virtual hard disk fills up due to too many packet capture files, the
whole machine is simply disposable and set up from scratch in a few minutes. Additionally,
by specifying architecture in text like files, version control is simply done in git, allowing
version controlled architecture and the merging of system features. Using LXCs inside the
VM allows for a full network setup while keeping the most separation possible inside a Linux
machine. With this container based solution, every single LXC runs like a separate machine,
including the possibility used in this setup of running system services via SystemD. Again
using Vagrant, to set everything up, makes it easy to spawn new containers. In summary,
the VM is as invisible as possible to the test setup and every function is run in a container.

Disadvantages of this setup include an incomplete separation of network components.
Though separated, all containers still run on the same hardware sharing the same VM.
This leads to the possibility of unwanted influence from one container to another, e.g. in
disk IO operations. These will still read and write from and to the same disk. Another
disadvantage is a possible scaling issue. This setup is not intended to be used with a lot
of clients, and this problem could only be solved to some degree by providing a larger VM
host. Nevertheless, solutions to the problem would be splitting the VM onto multiple hosts
and connecting them via hardware. Additionally, there are some security concerns discussed
in the following section 4.8.1.

4.8.1. Difference to a production environment

As this setup is a testing environment, it is not production ready. The intent in building
this setup was to provide ease of use and proof of concepts. Therefore, the network and
application design is not transferable to a production environment as there are no physical
distance limitations within a VM. Additionally, some security measures found in a production
environment are not implemented in this setup. To run a similar stack in production, the
setup process and the implemented security measures would have to be adapted to the real
network and the security guidelines in place. A minimal set of changes necessary are the
following.

The setup files now used to set up all LXCs have to be adjusted for at least another
provider, if Vagrant is still used as a setup manager and only the provider changes. After
adjusting the IP addresses and domain names of all containers, the shell part of the setup
process can be used to repeat the installation on a variety of hosts capable of running
Linux/Ubuntu 16.04 and executing a shell script.

All set passwords should be set to secure ones. Neither the VM base machine used as
template, nor theLXC base follows any security guidelines other than the defaults provided
by the Ubuntu operating system. The sudo command can be used without password. Ad-
ditionally, Vagrant mounts shared volumes to all components for the ease of use of sharing
files. These may be replaced by NFS shares if necessary.

There are currently no authentication and authorization processes in place. The communi-
cation via HTTP from mitigation to manager is not secured, a switch to Hypertext Transfer
Protocol Secure (HTTPS) would be necessary. Interaction with Redis also happens unen-
crypted and without authorization by all clients. Likewise, the connection between switches
and manager is also insecure. Secure and proven communication possibilities are available

26

4.8. Advantages and disadvantages

for all these channels so a production ready and security guideline compliant setup can be
built.

An overview of minimum security changes is shown in Table 4.2.

Component Current Setup Secure Setup

Redis Every client with a connection to
the secure switch has access to
Redis

Use stunnel to encrypt communi-
cation[Hab14]

OpenFlow Plain TCP messages to the con-
troller

Switch to secure mode for all
switches and TLS for all commu-
nication[Nyg+14]

HTTP communication Simple HTTP messages between
mitigation and manager

Use TLS for all HTTP traffic

Visualization Plain HTTP and simple pass-
words

Use TLS and change passwords
to secure ones

Identity provider Vagrant SSH with generated keys
and sudo without password

Implement deployment specific
security guidelines

Table 4.2.: Example changes to secure setup

27

5. Monitoring

Manager

Application stack

Application logic

Outbound component

MitigationMonitoring

Figure 5.1.: Monitoring in the concept

As a first step in the pipeline to a successful mitigated attack, a working monitoring
system is key. All further actions require reliable information and alerts to act upon. At the
same time, to keep latency between the start of an attack and mitigation of the same low,
the monitoring system has to operate in real time. In contrast, to take the best informed
decision possible, as much information as possible needs to get analyzed. This means getting
as much relevant information as possible to the component responsible for analyzing it and
having all of it analyzed fast enough to keep up with the network.

In itself, the monitoring component has to fulfill three steps. First in line is to gather data
from external sources to a decoding component and making it available locally. Then the
application logic within monitoring can analyze presented information to decide whether the
last step of alerting mitigation shall be performed. An overview to this behavior is given in
figure Figure 5.2.

The following sections will give insight into different methods and techniques to perform
the steps necessary to generate valid alerts from raw data. First, the concept of the three
phases used will be described, to be followed by a description of what is implemented in the
VM. Then, the three attacks described in section 2.2 are executed and an analysis of the
events is provided.

29

5. Monitoring

Monitoring

Decoding Analysis Alerting
Source Mitigation

Figure 5.2.: Monitoring concept

5.1. Data Gathering

Regardless of the type of data gathering used or the type of data collected, all data has
to arrive at the monitoring component. The following compares three different methods of
collecting data.

5.1.1. Packet Capture

Packet capture can catch every packet injected into the network and forwarded to monitoring.
After decoding the input, statistics can be computed using signatures in the analysis phase.

To generate alerts in a reliable way, the component has to analyze as many potentially
important packets as possible and therefore receive a large number of them. If there is no
filtering previously to decoding the packets, this results in the disadvantage of having to deal
with all packages available. Though it is possible with SDN to do so, it can be a problem
not only for the component itself, but also for other parts of the network involved, to reroute
many packages to a single destination. To minimize this problem, the component can be
placed at already existing network constraints like routers, firewalls or other forwarding
devices.

Physical limitations like bandwidth can cap the amount of packets a component can
receive, especially in situations where traffic floods traverse the network (e.g. DoS attacks).
A client can have direct influence on how many packets have to be processed by monitoring,
so it may be suitable to distribute package capture.

Another issue emerging from the number of packets captured in combination with how
complex and resource intensive the analyzing logic is, is that performance can be a problem.
Due to the constraint of having to keep up with the network traffic, thorough analysis of
every packet may result in the component not being able to capture all following packets,
resulting in missed information. An advantage of having this much source material in its
raw form, namely whole packets, is the flexibility to decide in the analysis phase on any
signatures detectable inside the packet, including payload of any kind. This enables picking
a select number of packet features independent of other ones like e.g. alerting on payload
content independent from source IP address. A sample of possibilities can be seen in the
Suricata documentation [Her+16, 4. Suricata Rules] In summary, packet capture provides
a lot of raw information to the next phase. This is an advantage and a disadvantage at the
same time.

5.1.2. Network Metadata

Network metadata is all data that can be retrieved by gathering information from the network
infrastructure itself. In an SDN environment this is possible using the OpenFlow protocol.

30

5.1. Data Gathering

Every switch can gathers data about its ports and installed flows. Available counters can be
seen in the OpenFlow specifications [Nyg+14, p. 32]. This information can be relayed via
the management component to monitoring and processed to detect anomalies.

A fact to consider when setting up network monitoring via metadata is, that information is
implicitly grouped and filtered by the flows installed. As in OpenFlow a packet is assigned to
a flow via the its match fields, these determine also the granularity of monitoring information
available. In OpenFlow v. 1.5 these can match many header fields including an Ethernet
frame, all available are listed in the OpenFlow specifications [Nyg+14, pp. 77-78]. As a result
of the assignment to a flow, high coupling is present between routing information on one
side and monitoring data on the other. Additionally, the matching capabilities are limited
,the highest OSI layer [ISO, p. 28] protocol fields matchable according to the specification
are TCP/UDP fields on layer 4, meaning it is not possible to monitor anything contained
within TCP/UDP packets or non standard header fields used by other protocols.

An advantage of network metadata monitoring is the offloading of a part of the decoding
process. In such an environment, the local load on the monitoring component is reduced,
as the network already provides information preprocessed and the component itself can
focus mainly on analysis of the presented information. Tying into that advantage is a lower
network load, as fewer packets containing just the information provided by switches, have
to be forwarded to monitoring. Additionally, control over how many packets are sent is with
the network provider, as polling intervals and the number of packets gathered and relayed to
monitoring can be configured by the provider and cannot be influenced directly by a client.
As a summary, monitoring network metadata is receiving statistical data from the network
itself and deciding based on that data if an alert is necessary.

5.1.3. Active Client Monitoring

Monitoring can also happen on the client itself. This requires control over the same and
additional software in place to forward data to the monitoring component. All information
about a single client is thereby implicitly grouped together.

With this method, some of the monitoring workload can be spread across the clients, so
that only important information has to be forwarded to the monitoring component. De-
tecting anomalies involving only a single client could happen within the same, not crossing
the network boundary and without any dependencies to a network. To monitor distributed
information, a solution is to send it data to a centralized monitoring component.

This can happen independently from the network solution chosen, whether it is a regular
network or an SDN approach, as it uses the network only as the transport media and does
not rely on any other features. A drawback of active monitoring is, that in some cases, not
every network component is accessible and it is not possible to install additional software on
it. Should a system be compromised, the information coming from this client may not be
reliable and report inaccurate information to the monitoring component.

In summary, monitoring via an active client setup is a distributed approach with the
possibility to leverage processing power of clients to analyze only preprocessed data centrally.

5.1.4. Comparison

Each method of data collection has its advantages and drawbacks, which shall be compared
in a short summary in Table 5.1 .

31

5. Monitoring

Pro Contra

Packet capture Fine grained overview of all
data in the network

Costly to analyze lots of
data

Network Metadata Overview about data flow-
ing through the network

Only minimal data content
analysis possible

Active Client Monitoring All information from a spe-
cific source combined

Every client has to be
setup separately

Table 5.1.: Comparison of monitoring methods

5.2. Data Analysis

The decision whether to alert on a set of given data or not do so is the main responsibility
and challenge of the analysis phase. Independent of any network technology, this module has
to compare the presented data to values the data should have. The data is already decoded
and there are multiple ways to compute a range of data in which case to generate an alert.
The goal of this phase has to be to generate alerts for as many happening attacks as possible
while not issuing them for valid traffic.

5.2.1. Limit

A rather simple method is a fixed limit of x, converting to a range from {0 ... x} or an
explicit set range {x ... y}. For a number of values, a fixed range may be enough. A number
of monitoring tools widely used like Nagios or Icinga provide this functionality [Tea00]. For
example, if in a known network the number of IP addresses originating from a switch port
is monitored, a range of zero to one IP address per port can be a reasonable limit, if this is
a port known to have only one client attached to it.

5.2.2. Standard Deviation

A slightly more complex method is computing an allowed range for the next value. This
can be done by computing the standard deviation over a number of last received data points
n, and generate an alert, as soon as a new value is outside of the range computed by the
equation from Figure 5.3. However, the technique can not work without any data or with
rapidly and suddenly changing values. The data rate on a main connection link, forwarding
a lot of packets, could be monitored this way. If an almost constant rate with only marginal
deviations is expected, then this method can give a lower and upper bound on which to alert
on.

top = x+ 2 ∗ σn (5.1)

bottom = x− 2 ∗ σn (5.2)

x: Last measured value, σ: Standard deviation, n:Number of values to calculate σ over

Figure 5.3.: Range by standard deviation

32

5.2. Data Analysis

5.2.3. Triple Exponential Smoothing

A third possible way is to use Triple Exponential Smoothing (TES) [Fil+13, p. 6.4.3.5]. This
method combines three smoothing equations as seen in Figure 5.4 to compute a forecast of
values.

St = α
yt
It−L

+ (1− α)(St−1 + bt−1) OVERALL SMOOTHING (5.3)

bt = γ(St − St−1) + (1− γ)bt−1 TREND SMOOTHING (5.4)

It = β
yt
St

+ (1− β)It−L SEASONAL SMOOTHING (5.5)

Ft+m = (St +mbt)It−L+m FORECAST (5.6)

y: Observation α: Estimated overall smoothing constant

S: Smoothed observation β: Est. trend smoothing constant

b: Trend factor γ: Est. seasonal smoothing constant

I: Seasonal index t: Index denoting time period

F : Forecast at m periods ahead

Figure 5.4.: TES. Based on [Fil+13][6.4.3.5]

A range of accepted values can then be computed in multiple ways, a simpler one would
be e.g. by allowing a fixed percentage deviation as shown in Figure 5.5.

top = Ft+1 ∗ 1, 1 (5.7)

bottom = Ft+1 ∗ 0, 9 (5.8)

F : forecast at time period t

Figure 5.5.: Range by fixed percentage

The advantage of this method is that it encompasses multiple ways a value could change
over time and adapts to those changes. Then again, this is the most resource intensive
method presented here. A second disadvantage is, that in order to compute an initial trend
required for the forecast, at least one complete season of data has to be available. Depending
upon a season length, this may be quite an amount of data necessary.

33

5. Monitoring

5.2.4. Comparison

As each data gathering method, every analyzing technique has its advantages and disadvan-
tages too. Table 5.2 shows a summarized comparison between the presented possibilities.

Pro Contra

Limit Simple to set, fast to implement,
few resources required

Rigid, unresponsive to change

Standard Deviation Adaptive, few prerequisites Only suitable for slowly chang-
ing values

TES Most adaptive and comprehen-
sive

One season of data necessary,
most computing resources used

Table 5.2.: Comparison of analyzing methods

As some methods could counteract disadvantages of others, a combination of approaches
is possible. For example, when using TES to monitor the bandwidth used on a connection,
it may be feasible to set a maximum as a first check to alert on. The limit could alert if used
capacity is higher than 95% of the link capacity and save computing resources in this case,
while, if this limit is not hit, TES could still check for an acceptable bandwidth use.

5.3. Alerting

As the last step in this component, the alerting phase is responsible for communicating
results. As there is only communication happening in the case of an alert, it has to fulfill
the following criteria.

• Reliability

• Speed

• Lucidity

As the communication channel for alerting is empty unless there is an alert, it is crucial
to receive every sent packet and not miss a single one. A reliable and proven protocol has
to be chosen to ensure a solid communication path.

To keep latency low, speed is an important part too. Especially in a situation where an
attack is already detected, and presumably still active, the information about this attack
has to be received by the mitigation component as fast as possible. This is true for all kind
of attacks, but notably in any flooding attack a malicious network client uses every chance
it has got to insert packets.

A last but nonetheless important criteria is lucidity. This encompasses, that a message
received by another component has to be identifiable unambiguously, must be parsable fast
and contain every bit of information necessary without being overloaded. The recipient
should be able to decode a message without the necessity to compute additional information
in an intermediate stage. With the only input being the alert message, the recipients should
be able to use the presented input in combination with its own information.

Existing software, like e.g Prelude OSS, uses Intrusion Detection Message Exchange For-
mat (IDMEF) [Deb+07] to communicate alerting information [Sys15]. This format leverages

34

5.4. Implementation

Extensible Markup Language (XML) via TCP as its transportation provider to communicate
a range of information.

5.4. Implementation

The VM described in chapter 4 implements a selection of the depicted functionality. This
chapter explains in detail the implementation concerning the monitoring component, its
Linux Container (LXC) and how it interacts with its surroundings.

To keep a separation of concerns, both monitoring channels are used as independent system
services and can operate without any dependency to each other. It is possible, without
changes to the application logic itself, to extrude one of the services into another location
and reroute its traffic without affecting the other one. A depiction of the implementation
internals of the monitoring component is shown in Figure 5.6.

Monitoring

Switches

Mitigation
Suricata

StatsHandlerJSON via Manager

Raw Packages

JSON via Redis

Figure 5.6.: Monitoring implementation

5.4.1. Packet Capture

Suricata is used to implement packet capture and analysis. It is used as an IDS, reading
every packet arriving at the Network Interface Card (NIC) of the LXC. All three steps
depicted in Figure 5.2 are handled by Suricata.

To get packets to the LXC, every switch in the network is, at startup, instructed to
duplicate every packet and send one to its destination and the other to the monitoring
instance. The subsequent decoding process is done from raw packets, making data available
for the analysis phase. Suricata as a signature based IDS uses rules to decide when to alert.
An example rule is shown in Listing 5.1.

1 alert udp 192.168.127.15 any -> $HOME_NET 1 (msg:"Malicious Host"; GID :1;

sid :60000003; rev :002; flow: stateless;threshold: type both , track by_src ,

count 500, seconds 10;)

Listing 5.1: Example Rule

The rule generates an alert, if the host 192.168.127.15 sends more than 500 packets within
10 seconds from any port to any host in the ’HOME NET’ at port 1. After the generation
of an alert, it is published in JSON format to the Redis instance making it available for
consumption by other components.

This implementation was chosen due to its simplicity. Suricata is able to handle all phases
of the monitoring component. It is easy to configure and proves itself fast enough in the
attack analysis section 5.5. The output format JSON was chosen due to its wide spread use.

35

sec:suricata

5. Monitoring

The output path of Redis enables this test setup to send the alert messages to more than one
recipient and interfaces with the statistics Suricata is configured to produce. A drawback to
this way of implementing the forwarding is, that internally the packet number is doubled.
An attacker therefore can generate double the pressure to the network, although packets
have different target clients. Another problem is that IP spoofing is not detected. If the
attacker uses a spoofed IP, the monitoring instance generates an alert containing this false
IP. In this implementation, Suricata has no information about which OVS port a packet is
sourced from.

5.4.2. Network Metadata

OVS supports the collection of metadata as specified in the OpenFlow specifications. All
client network switches are probed by the manager for statistics, and they deliver back values
about every port and the flows installed. A sample excerpt from a statistics message as sent
by a switch can be seen in Listing 5.2.

1 "1": {

2 "rx_packets": 1909,

3 "tx_bytes": 100862 ,

4 "tx_errors": 0,

5 "properties": [

6 {

7 "OFPPortStatsPropEthernet": {

8 "collisions": 0,

9 "rx_crc_err": 0,

10 "type": 0,

11 "rx_frame_err": 0,

12 "rx_over_err": 0,

13 "length": 40

14 }

15 }

16],

17 "tx_packets_delta": 0,

18 "rx_dropped": 0,

19 "rx_errors_delta": 0,

20 "length": 120,

21 "tx_bytes_delta": 0,

22 "tx_dropped_delta": 0,

23 "duration_sec": 500,

24 "tx_errors_delta": 0,

25 "rx_bytes_delta": 0,

26 "duration_nsec": 212000000 ,

27 "rx_dropped_delta": 0,

28 "rx_errors": 0,

29 "rx_packets_delta": 0,

30 "rx_bytes": 5999847 ,

31 "tx_packets": 1644,

32 "tx_dropped": 0

33 },

Listing 5.2: Sample port statistics

In case of this implementation the controller additionally calculates delta-values to pre-
vious fetched statistics as seen in lines 17 to 24 at Listing 5.3. As these values are already
available inside the NOS, it is easier to calculate them within the controller and then pass
them on to the monitoring instance to easily analyze differences in historical values.

36

5.5. Attack Analysis

1 # Default value for mitigation flows

2 table_id = 0

3 if REST_COOKIE in data:

4 cookie = data[REST_COOKIE]

5 else:

6 cookie = 0

7 if REST_COOKIEMASK in data:

8 cookie_mask = data[REST_COOKIEMASK]

9 else:

10 cookie_mask = 0

11 if REST_IDLETIMEOUT in data:

12 idle_timeout = data[REST_IDLETIMEOUT]

13 else:

14 idle_timeout = 0

15 if REST_HARDTIMEOUT in data:

16 hard_timeout = data[REST_HARDTIMEOUT]

17 else:

18 hard_timeout = 0

19 if cmd == ’OFPFC_DELETE ’:

20 self.ofctl.delete_flow(priority=priority , table_id=table_id ,

match=match , command=command_obj ,

21 cookie=cookie , cookie_mask=cookie_mask)

22 else:

23 self.ofctl.add_flow(priority=priority , table_id=table_id , match=match ,

action_list=action_list ,

24 hard_timeout=hard_timeout , idle_timeout=idle_timeout ,

command=command_obj ,

25 cookie=cookie , cookie_mask=cookie_mask)

26 self.logger.info(

27 "Added mitigation flow: {}{}{}{}{}{}".format(priority , table_id , match ,

action_list ,

28 hard_timeout , idle_timeout), extra=self.sw_id)

29 details = ’Performed %s’ % cmd

Listing 5.3: Statistics gathering

The analysis phase is then executed by the Statshandler running within the monitoring
LXC. There, thresholds are implemented that get tested against received values. If a value
surpasses a limit, an alert is published. This is done via Redis in JSON format again for
the same reasons mentioned before. As there was no software available solving this exact
problem, the implementation was done manually. This allowed for the most flexibility and
a seamless integration into the application stack. A second drawback is a time issue. The
Statshandler component does only get data every 5 seconds. This means, in a worst case,
the delay between the start of an attack and its detection is at least 10 seconds. Compared
to an IDS, which gets packets as fast as the network can forward them, this is slower.

5.5. Attack Analysis

The following sections will analyze three different attacks and for each one multiple ways to
detect the it. Each of the methods will have its advantages and drawbacks highlighted to be
able to compare them against each other.

All attacks implemented are performed on a freshly set up VM. Inside of it, they will
be launched and monitoring data will be gathered. This data is used as a source for shown
figures and to compare methods.

37

5. Monitoring

5.5.1. SYN Flood

Starting simple, the first example looked at is a DoS attack originating from a single host.
After connecting to the LXC ’attackone’, it can be started with the command shown in
Listing 5.4.

1 /vagrant/attacker/ping -flood/SynFlood.py -s 10.10.10.3 -t 10.10.10.4 -n 5000000

-p r -P 80

Listing 5.4: Starting a DoS attack

Suricata

Figure 5.7 shows an unmitigated dos attack originating from a single host machine, attackone
in the test setup. The attack was performed with 5 000 000 packets sent in 72.30 seconds
(≈ 69 000pps) by the attacker. In this test, the mitigation component was shut down, to
allow the full attack to spread through the network.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 10 20 30 40 50 60 70 80 90 100
 0

 5000

 10000

 15000

 20000

Pa
ck

et
s

Pa
ck

et
 D

ro
ps

Time/s

Packets Packet Drops

Figure 5.7.: DoS attack without any mitigation

If the attack stays unmitigated, Suricata starts loosing packets in its analysis phase. The
monitoring instance is flooded with packets and starts dropping them in order to analyze
new ones as can be seen in Figure 5.7. Detecting a SYN flood is possible using Suricata.
The goal in catching the attack is, to identify the traffic and host from which it originates.
The rule used to achieve this is shown in Listing 5.5. In summary, this rule generates an
alert, if the following conditions are met: There where more than 500 packets from the same
source IP address within the last 10s having any source and destination IP, any TCP ports
and their TCP SYN flag set. In case all conditions are met, an alert with the id 10 000 003
is generated.

1 alert tcp $HOME_NET any -> $HOME_NET any (flags: S; msg:"Syn flood detected";

GID :1; sid :10000003; rev :001; flow: stateless;threshold: type both , track

by_src , count 500, seconds 10;)

38

5.5. Attack Analysis

Listing 5.5: DoS Rule attack

With a rule like in Listing 5.5, it is possible to pin a single attacker precisely. The alert
generated contains every identifying value of the attack. These are source ip, destination ip,
TCP source port and TCP destination port, in Listing 6.2, a full alert message can be seen.
The method using a simple limit is sufficient for this set up. Regular clients pulling a test
page from the web server running on the ’target’ LXC do not surpass this limit. Though it
is not adaptive, it is enough as the regular traffic is known.

Statshandler

A second method in detecting a DoS attack is using statistical analysis. The Statshandler
service within the instance is monitoring all switch ports. This allows the detection of
an unusual behavior of client ports, but gives no insight in what traffic is sent. As seen
in Listing 5.2, a number of different metrics are available, but none of them contain any
information about what was transmitted other than the number of valid Ethernet frames.
To get this information, a flow based analysis has to be used. The flow has to match the
attack characteristics as close as possible. It would resemble the Suricata rule loosely without
containing information about the rate of packets. A possible implementation would be, to
leverage multiple tables in the OVSs. Then, the first table can contain matching rules, some
catching every SYN packet per port and one, matching every other packet. All rules forward
the packets to table two, which outputs all packets to their destinations. This setup would
allow counting all TCP SYN packets within one flow per port. An overview to this setup is
shown in Figure 5.8.

Table 1

Package

Matches

Table 2
SYN

Package SYN Rule

ALL Rule

ALL Rule
Matches

Figure 5.8.: Flow of alert messages

With this information present, the statistic analyzer can compare the number of SYN
packets on a single port to its logic and, if necessary, generate an alert containing the source
OVS port and the information that the attack is a SYN flood. The alert therefore does
not contain every information about the attack. TCP source, TCP destination port, and
both source IP and destination IP are missing. This is an advantage compared to a solution
monitoring ports only, as the link between a heightened packet count and TCP SYN packets
is present. Compared to using Suricata, this can not detect the target IP or the TCP
destination port used. These informations are used by mitigation in subsection 6.2.2 to
generate an alert.

39

5. Monitoring

5.5.2. Distributed Syn Flood

A distribution across multiple hosts brings more challenges to the network and to the moni-
toring component. The main difference for catching such a distributed attack is the missing
characteristics of a fixed source IP address and a single OVS source port.

Suricata

In the setup present, Suricata is fast enough to issue multiple alerts in the same way as done
for a single source SYN flood, as there are only a few hosts. But as soon as these attackers
are using spoofed IPs, this is equal to a lot more hosts, at least in the informations available
to Suricata. Additionally, for the IDS to detect the attack, a threshold of 500 packets per
10 seconds has to be surpassed. Using the rule shown in Listing 5.5, this may never be the
case if attackers never surpasses the limit with one of the spoofed IPs. Additionally, this
generates a lot of load on Suricata, as it tries to count SYN packets issued for every IP
individually. To circumvent this problem, the rule shown in Listing 5.6 is used. The two
changes compared to Listing 5.5 are ’sid’ and ’track by dst’. This instructs Suricata to count
sent SYN packets for every IP destination instead of every IP source address.

1 alert tcp $HOME_NET any -> $HOME_NET any (flags: S; msg:"Syn flood detected";

GID :1; sid :10000004; rev :001; flow: stateless;threshold: type both , track

by_dst , count 500, seconds 10;)

Listing 5.6: DDoS Suricata Rule

The effects on Central Processing Unit (CPU) usage and an unmitigated attack using
spoofed IPs is shown in Figure 5.9. In both cases, using track by_src and track by_dst, the
CPU usage increases to 100%, shifted in time as Suricata processes packets. As the IDS
reaches full load, it starts to drop packets and is not able to keep up with the flood of
information. During the process, packet count drops down to 0, as the monitoring instance
cannot handle the load and produces inaccurate packet counts. After the attack ends, CPU
usage levels drop back to normal again.

The important difference is that when using track by_dst, Suricata is fast enough to detect
the attack and issue multiple alerts before it starts to drop packets and run out of computing
resources. In case of this implementation, Suricata therefore is fast enough to detect the
attack multiple times. This can be seen in Figure 5.10.

In summary, Suricata is capable of detecting the attack, but cannot keep up with it for a
large amount of time.

Statshandler

One way to solve the problems of Suricata is using the Statshandler component. As it
receives its information from the OVS infrastructure, it doesn’t have to decode all packets
first. Presented with a statistics summary, the decoding process is limited to parsing the
JSON message and it can start its analysis phase right away. In Figure 5.11 an attack
executed with the same parameters as in Figure 5.9 is shown, but without Suricata and the
mitigation stage running.

This shows, that Statshandler can generate alerts more reliable than Suricata in case of
a distributed SYN flood attack with spoofed IPs. The instance is not involved with the
packets transmitted directly and can act through the attack constantly. It is slower though,

40

5.5. Attack Analysis

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100 120 140 160
 0

 0.2

 0.4

 0.6

 0.8

 1
Pa

ck
et

s

CP
U

 U
sa

ge
/p

ct

Time/s

CPU Packets

Figure 5.9.: SYN Flood with track by_dst

as it has to wait for switch statistics to arrive while Suricata is able to react as soon as viable
packets arrive.

The implementation uses a similar fixed limit as Suricata does. An alert is generated, if
more than 500 packets are received and transmitted on a port within the 5 seconds time
window after which new statistics are received from the controller. To detect ports that insert
many packets into the network, this limit is sufficient. Even if not only IPs are spoofed and
there truly are multiple clients inserting packets, the Statshandler relays more than one alert
with a limit-surpassing port.

In this use case enough, it bears some problems. As the Statshandler can not differentiate
between the type of packets, it is possible that if multiple ports send many packets, the
Statshandler will not only report the ports sending SYN packets, it will also state all other
ones.

Combination

To achieve the goal of detecting attacking hosts precisely, the two methods stated earlier can
be combined. If Suricata and the Statshandler run in parallel, information from both services
is available. Combining the destination IP, destination TCP port and set TCP SYN flag
from Suricata and source OVS port from Statshandler narrows the packets identified as part
of the attack further down. It still is possible that legitimate traffic is blocked if it is inserted
into the network at the same port as used by an attacker and its target is also the attacked
host. But communication flowing from a non-involved source, spiking network traffic at a
OVS port to to be forwarded to a different destination will not be blocked. Combining both
approaches is therefore the best solution, adding up the advantages from both methods.

5.5.3. Flow Table Flooding

As a, in contrast to DoS and DDoS, unique attack to SDN, flow flooding is more challenging
than other attacks. The following sections will show that Suricata has its difficulties in

41

5. Monitoring

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160
 0

 0.2

 0.4

 0.6

 0.8

 1

CP
U

/p
ct

Al
er

ts

Time/s

CPU Alerts

Figure 5.10.: SYN Flood with alerts

dealing with the attack, due to its SDN nature. The Statshandler can work more efficiently
due to its capability of interfacing with the information available in the SDN infrastructure.

Suricata

As Suricata can not access the information available in the SDN directly, it can perform two
classes of actions. One approach, is to inspect every packet in the network for content that
possibly results in more flows. On one hand this depends heavily on the implementation of
how flows are generated and on the other hand on how this implementation is exploited. If
a common denominator can be found to identify packets generating flows, this characteristic
can be searched for and an alert can be generated if suspicious behavior is detected. As in
this implementation, the attacker and its partner are sending packets back and forth having
the content ping and pong, Suricata can match for this package content and issue an alert as
soon as these packets are detected. This is achieved with the rules shown in Listing 5.7.

1 alert tcp any any -> any any (msg:"Flow flood detected"; GID:1; sid :10000006;

rev :001; content:"|70 69 6E 67|";)

2 alert tcp any any -> any any (msg:"Flow flood detected"; GID:1; sid :10000007;

rev :001; content:"|70 6F 6E 67|";)

Listing 5.7: Flow flood rule

This method relies solely on packet content and a known signature of the attack. If this
is the case, it can generate alerts as soon as a matching packet is detected. In this imple-
mentation, this can be as soon as the first packet containing ping arrives at the monitoring
instance.

A second way of detecting a flow flood with an IDS would be by watching for missing
traffic. If a known host has a constant amount of traffic and manipulation is happening
inside the flow tables, communication to this host may break down. This difference in packets
transmitted can be seen by an IDS with the rule proposed in Listing 5.8. As Suricata is
currently missing a feature for matching below instead of above a threshold in its rule set,

42

5.5. Attack Analysis

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90
 0

 0.2

 0.4

 0.6

 0.8

 1
Pa

ck
et

s

Al
er

ts

Time/s

Packets Alerts

Figure 5.11.: SYN Flood with Statshandler

—

this is not currently implemented.

1 alert tcp $HOME_NET any -> $HOME_NET any (msg:"Flow flood detected"; GID:1;

sid :10000008; rev :001; threshold: type both , track by_dst , count !500,

seconds 10;)

Listing 5.8: Flow flood rule

In summary, Suricata is barely able to detect a flow flooding attack. It is missing the
capabilities to measure values directly linked to the attack or has to rely on detecting a very
specific and already known signature.

Statshandler

Having access to the internal statistics of the SDN will be a key advantage of Statshandler
to detect flow flooding as shown in this section. As with every statistics message sent from
the manager to monitoring, a list of installed flows and their statistics is provided, the main
value used in this implementation is the number of flows installed to a switch. In case of
this rather static test setup, the number of active flows is not varying more than by a few.
Therefore, a simple limit on how many more flows are active during the last time period is
sufficient. In ??, a flow flooding attack can be seen with alerts generated by the statistic
component.

This implementation uses the OFPAggregateStats provided by Ryu to receive a compact repre-
sentation of active flows. Sorted by switch and port, this allows easy detection of maliciously
used OVS ports. An example part of such a statistic message received is shown in Listing 5.9

43

5. Monitoring

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.2

 0.4

 0.6

 0.8

 1

Ac
tiv

e
Fl

ow
s

Al
er

ts

Time/s

Active Flows Alerts

Figure 5.12.: Flow flood with Statshandler

—

1 "port_aggregate": {

2 "0000362 b2e9f7f44": {

3 "1": [

4 {

5 "OFPAggregateStatsReply": {

6 "flags": 0,

7 "type": 2,

8 "body": {

9 "OFPAggregateStats": {

10 "byte_count": 0,

11 "flow_count": 0,

12 "packet_count": 0

13 }

14 }

15 }

16 }

17]

18 }

19 }

Listing 5.9: Port aggregate statistics message

In comparison to Suricata, this is a superior approach. The Statshandler uses fewer
resources because there is no package analysis done. Therefore no packages have to be
rerouted, the SDN controller only requests statistical information every time interval. There
is no dependency to an attack implementation, as soon as a port misbehaves, it is detected.
Additionally, the OVS port is specified precisely, therefore even techniques like IP spoofing
don’t impact the detection. In summary, the uncovering of attacks targeted at SDN specific
components requires methods specifically built for this purpose, which Statshandler is.

44

5.6. Monitoring conclusion

5.6. Monitoring conclusion

Though the concept of SDN heavily influences every phase of the monitoring process, the
single largest contact point of this component with the network is its gathering phase. The
way data flows to the component and the type of data that is available to it is specific to
a Software Defined Network (SDN) and sufficient to monitor the network. Data present in
regular networks like packets per port are also available.

Additionally, SDN provides additional data to give more insight on what paths are used in
the network. Both of these are available from a single access point or the single point can be
configured to sent information to the monitoring instance. This ease of use is an advantage
compared to regular setups.

In its analysis phase, proven techniques can be used to analyze the available standard
information and new data can be used to detect anomalies. IDSs already in use still have
their place in the network, providing additional information and further analysis of packets.
As can be seen with the implemented attacks, the component can analyze and detect more
traditional attacks like DDoS as well as new and SDN specific ones like flow flooding.

To output results, the SDN provides a solid foundation and a reliable and configurable
way to get the information the next component, the mitigation instance.

45

6. Mitigation

Manager

Monitoring

Application stack

Application logic

Outbound component

Mitigation

Figure 6.1.: Mitigation in the concept

For mitigation there exist two very different approaches: A proactive mitigation strategy
tries to reduce the probability of a successful DDoS attack, by employing techniques like
Ingress filtering to preemptively block an attack. On the other hand there is a reactive mit-
igation strategy that tries to detect an ongoing attack and actively mitigate that particular
attack.[DBP05]

Flows are a great way to mitigate attacks. However proactively blocking traffic in a
network is for most attacks just not feasible. Especially when considering that a network
will most of the time be operating normally. Therefore, as the goal was to explore the
capabilities of SDN, the proposed mitigation component uses a reactive approach that can
take full advantage of SDN.

As shown in figure 6.1 it fits conceptually between the Monitoring and Management com-
ponent.

6.1. Mitigation concept

Figure 6.2 shows the process of the mitigation.
The first phase of a successful reactive mitigation, is a trigger that starts the mitigation

process and provides the information necessary to handle the ongoing attack. A central
database manages all the alerts generated in the network and an Alert Handler, as introduced

47

6. Mitigation

Mitigation component

Alert Handler Mitigation
Alerts

Receive
Alerts

Monitoring Controllerparsed
Alert install Flow

instruction

Figure 6.2.: Concept of the mitigation component

in subsection 6.1.2, subscribes to this database to receive the alerts of interest. These alerts
serve as the trigger, as well as the source for all the information needed.

Once such an alert is received, the second phase starts. Based on the information provided
the appropriate countermeasures have to be chosen from the set of implemented mitigation
strategies. In section 6.3 a selection of such mitigation strategies is introduced and imple-
mented.

Finally in the last stage the countermeasures that are implemented via instructions for
the creation of flow entries are sent to the controller, who based on these instructions will
implement the flow entries on the required devices. In subsection 6.1.4, this is introduced in
more detail.

6.1.1. Alerts

First and foremost an alert must be assignable to a problem or an attack in the network.
To this end a unique ID, called the Signature ID, is embedded into every alert. Additionally
the system that has issued the alert is added. To reliably reconstruct when the alert was
raised a timestamp is included as well.

With just this information it is already clearly described what the issue is. However, it is
yet unclear where the problem is and who is involved. Based on the Signature ID and source
of the alert, there is a set of information the Mitigation module expects to be informed about.
This can be information such as the ID of the switch, where an issue has been detected, the
IP Address of the victim or the attacker, the port of the switch under attack, or the TCP
port that is targeted.

6.1.2. Alert Handler

The Alert Handler is a module that takes care of receiving the alerts for the Mitigation
module.

The alerts are divided into multiple channels. As such for example the Intrusion Detection
Systems publishes its alerts to a different channel than the system doing statistical monitor-
ing. For each channel the Mitigation module wants to receive the alerts from an instance of
this module is created. This instance is responsible for creating a connection to the database
and subscribe to the alert channel. Now every alert that is published to the subscribed alert
channel is also sent to that instance of the Alert Handler.

After receiving a message it is checked, if it is an alert, and the alert is forwarded to the
mitigation module.

48

6.1. Mitigation concept

6.1.3. Mitigation

In the mitigation module all the alerts coming from the various Alert Handlers are handled.

The Signature ID is extracted from every alert and looked up in the set of available
mitigation strategies. Naturally, as this module is specialized in handling attacks, based on
a predefined mitigation strategy, only alerts with a known Signature ID can be handled.

If a mitigation strategy is available further actions depend on this strategy. It can be that
the information from a single alert is enough to immediately deploy countermeasures, but
the information provided from a single alert might also be insufficient for that type of attack.
In this case the information contained in the alert is stored together with the timestamp.
When the alerts containing the missing information, potentially from different systems and
alert channels, are received, the time difference between the arrival of the alerts is calculated.
To assure that these alerts are related to the same event only if this falls within the specified
range of tolerance the countermeasures are constructed. The countermeasures consist of
instructions for the creation or deletion of flows.

The first step to add flows is to create the match fields. This specifies the criteria for which
packets to act upon. The values for these fields are mainly supplied by the information
gathered from the alerts. Common criteria are related to the target of the attack or the
source of the attack, such as the MAC Address or IP Address, or the origin of the attack in
the network, such as the port of the switch.

The next step is to define the action of the flow. For example the packets can be dropped
immediately or sent to another system for further inspection. Next additional parameters can
be specified, such as the soft or hard timeout. A soft timeout deletes the flow automatically
after a set time of inactivity, while a hard timeout automatically deletes the flow after the
set time, independent of activity. The priority of the flow is another parameter of interest.
Usually the highest priority is desired, as this assures that the mitigation flow is the first to
match the packet. If it was the case that a flow with a higher priority matches the packet
first, the packet would be handled by that flow and would never match the mitigation flow,
rendering it completely ineffective.

Finally the switches, the flow should be installed on, are specified. This can either be the
ID of a switch or a keyword to specify a set of switches, such as every switch or the switches
on the perimeter of the network.

These instructions are then handed over to the Northbound API of the controller.

6.1.4. Controller Northbound API

The Northbound API of the controller provides an API for Network Applications to interact
with the controller. As such it also enables the Mitigation module to implement flows on
the switches.

To install flow entries on the flow tables the instructions provided have to be translated
into OpenFlow commands that can be sent out on the Southbound API of the controller.
As for the mitigation of the attacks a powerful API is necessary the translation should be as
generic as possible. To simplify the creation of the instructions default values for parameters
that are not explicitly set are defined here.

Also the keywords for the set of switches, the flow entries are to be installed on, have to
be translated into the corresponding set of actual switches.

49

6. Mitigation

6.2. Implementation

This chapter shows how the concept introduced above is realized.
The mitigation component is run as a service on a LXC that is dedicated to mitigation

and the modules are implemented fully in python and run as a system service.

6.2.1. Alert Handler

The central database that manages the alerts is Redis that was introduced in subsection 4.4.8.

1 [Unit]

2 Description=Alerthandling service

3 After=syslog.target network.target

4
5 [Service]

6 Type=simple

7 ExecStart =/usr/bin/python3 /vagrant/mitigation/AlertHandler.py -r 10.20.0.6 -k

switch -stats

8
9 [Install]

10 WantedBy=multi -user.target

Listing 6.1: Alert Handler Service Configuration File

For every instance of the alert handler a configuration file, as shown in listing 6.1, is
provided. Line 7 shows the command line arguments that are used for the configuration. ”-r
10.20.0.6” specifies the IP Address of the Redis server to connect to and ”-k switch-stats”
the name of the alert channel to subscribe to. Currently there are two channels used and
as such two instances of this module are started. One for the ”switch-stats” channel that
provides the alerts from the statistical monitoring and the other for the ”suricata” channel
that provides alerts from the Intrusion Detection System Suricata.

Through the subscribe/publish method used by Redis alerts, sent to one of the channels,
are immediately passed to the subscribed Alert Handler. Afterwards they are sent via a
RESTful API to the Mitigation module.

The full source code for this module can be found in section B.2.

6.2.2. Mitigation

The mitigation module sets up a HTTP Server that receives the alerts from the Alert Han-
dler.

1 {’host’: ’monitoring ’, ’event_type ’: ’alert’,

2 ’timestamp ’: ’2016 -11 -26 T13 :05:25.720206+0100 ’,

3 ’alert’: {’signature ’: ’Syn flood detected ’, ’severity ’: 3, ’gid’: 1, ’rev’: 1,

’signature_id ’: 10000003} ,

4 ’proto’: ’TCP’,

5 ’src_ip ’: ’10.10.10.3 ’, ’src_port ’: 1234,

6 ’dest_ip ’: ’10.10.10.4 ’, ’dest_port ’: 21}

Listing 6.2: Extract from an alert generated by Suricata

Listing 6.2 shows an alert generated by Suricata. As the alerts are in JSON format they
are first translated into a python dictionary.

From that dictionary the Signature ID of the alert is extracted and the appropriate miti-
gation strategy is found and finally the flow instructions are created.

50

6.2. Implementation

1 # Create action: Output packet on a port

2 action[’cmd’] = ’OFPActionOutput ’

3 # Paramaters of the action

4 params[’port’] = 2

5 action[’params ’] = params

6 # Add action to the list of actions

7 actions[’action ’] = action

8 # parameters of the OFPMatch object

9 match[’in_port ’] = 1

10 match[’eth_dst ’] = ’00:00:00:00:00:02 ’

11 # Put dictionary together

12 data[’cmd’] = ’OFPFC_ADD ’

13 data[’actions ’] = actions

14 data[’match’] = match

15 # Specify additional settings

16 data[’priority ’] = 1

17 data[’table_id ’] = 0

18 # Send to controller for all switches

19 send_post(data , ’http ://10.20.0.8:8080/ switch/all’)

Listing 6.3: Flow installation on the Northbound API

In listing 6.3 the creation of a flow, such as used in MAC-Learning, via the Northbound
API is depicted. This flow matches all packets arriving at port 1 with the destination MAC-
Address ”00:00:00:00:00:02” and forwards them to port 2. Also the command to add the
flow ”OFPFC ADD”, the priority ”1” and the number of the flow table ”0” is specified.
Finally it is sent to the controller via a RESTful API. To do this the dictionary from above
is translated into JSON and sent via a POST to the URL ”http://10.20.0.8:8080/switch/all”,
with 10.20.0.8 being the IP Address of the controller. If it shall only be installed on a specific
switch the ”all” keyword has to be replaced with the ID of the switch.

The full source code for this module can be found in section B.3.

6.2.3. Controller Northbound API

On the controller the keyword or ID is resolved into the set of switches the instructions are
to be installed on. As the controller keeps a dictionary with all the switches in the network
it is just a matter of looking up the ID or in the case of the ”all” keyword to just use every
switch in the dictionary. As more advanced keywords were not needed for the mitigation
strategies presented later on the ”all” keyword is the only one implemented.

1 actions = [parser.OFPActionOutput (2)]

2 instruction = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS ,actions)]

3 match = parser.OFPMatch(in_port=1, eth_dst =00:00:00:00:00:02)

4 mod = parser.OFPFlowMod(datapath=self.dp , priority=1,table_id=0, match=match ,

instructions=instruction)

5 self.dp.send_msg(mod)

Listing 6.4: Flow installation on the Southbound API

Then these instruction are parsed into OpenFlow commands. For example listing 6.3 is
translated to the commands shown in listing 6.4.

Again a packet that arrives on port 1 with the MAC Address ”00:00:00:00:00:02” as
destination shall be forwarded to port 2. To achieve this a list of actions is created. In this
case the only action is ”OFPActionOutput(2)”: Send the packet out on port 2. Then this

51

6. Mitigation

list of actions is passed to an instruction function that causes these actions to be applied
immediately once the flow is matched.

To configure what the flow matches to a OFPMatch(in port=1, eth dst=00:00:00:00:00:02)
object is created: Match every packet that arrives on port 1 with the destination MAC
Address 00:00:00:00:00:02.

Finally a FlowModification object is created and information, such as the priority of the
flow and which table to insert the flow into, is added. Here the default values for MAC
Learning flows are chosen.

This object is then sent to the switch, where the flow will be inserted into the flow table.

For the interested reader: Appendix A line 379 shows the method used to parse the
dictionary into the OpenFlow commands.

6.3. Mitigation Strategies

In the following the mitigation of three Denial of Service attacks is explored and evaluated.
As Denial of Service attacks are one of the main security concerns in any network and are
sufficient to demonstrate the mitigation concept introduced, the mitigation of other attacks
is left open for future work.

First the concept for the mitigation of the attack is introduced, then the concept is im-
plemented and finally the effectiveness is evaluated.

6.3.1. TCP SYN flood

A technique unique to SDN is the use of flows to apply reactive packet filtering. While a
traditional firewall can filter packets as well, it has to be placed on the ingress point of the
network. As a result it cannot filter any traffic originating from within that network, as
those packets do not pass the firewall. As such it is completely useless against attackers
with physical access to the network.[Hu+14] With SDN every switch or router can be used
to enforce the packet filtering rules, eliminating any entry points that remain unguarded.

A simple TCP SYN flood originates from only one attacker and can be stopped quite
easily. Once the attack has been detected and the IP Address of the attacker has been
identified a rule to drop these packets is enough to stop it.[Edd06]

In a SDN environment this is achieved, by setting up a flow with a higher priority than
the routing flows, to make sure this flow is the first to get matched and the packet does not
get forwarded beforehand. The matching criteria are set to any TCP packet with the source
IP Address of the attacker and the destination IP Address of the victim. As action dropping
the packet is set.

Implementation of the mitigation strategy

Figure 6.3 shows the flow of events from when a TCP SYN Flood attack is launched against
the network until it is mitigated.

Once Monitoring has detected the attack an alert from Suricata, such as the one shown in
listing 6.2, is sent to the Mitigation module. This alert contains the information that there
is a TCP SYN Flood going on and the IP Address of the attacker and the victim.

52

6.3. Mitigation Strategies

Attacker Switch Victim Monitoring Mitigation Manager
Syn Flood

Syn Flood
Mirror Tra�c

Alert

Mitigate

Install Flows

Ti
m

e

Figure 6.3.: Process of a TCP SYN Flood Mitigation

�o
w

en

tr
y

match �elds
eth_type = ipv4, ip_proto = tcp
src_ip = attacker, dest_ip = victim

drop packet

action

Figure 6.4.: Mitigation flow for a TCP SYN Flood

As this is already enough information to mitigate this attack a flow entry, such as shown
in figure 6.4 that stops the attack is assembled immediately and sent to the controller, who
propagates it to all the switches in the test setup.

In order to remove the flow again and not keep the flow in the flow table forever, potentially
even accumulating too many flow entries at some point, a hard timeout is added. This
value specifies the amount of time after which the flow is removed from the switch again
automatically. Another reason for not keeping the flow forever is that the IP Address might
be reassigned and thus it might end up blocking legitimate traffic. For test purposes a hard
timeout of 20 seconds was chosen. But in a real environment a longer timeout is probably
more beneficial.

Once the flow has been implemented the first switch of the test setup, the packets arrive
at, drops all the packets of the attacker and the SYN Flood packets no longer arrive at the
victim.

Evaluation

To evaluate the mitigation strategy a TCP SYN Flood script is started on the attacker
LXC with the target LXC as destination. During the attack there is no additional traffic
generated in the network.

In order to get data, to compare the performance of the mitigation strategy to, the miti-
gation module is disabled first. Afterwards the same attack is started once again. But this
time the mitigation module is enabled.

Figure 6.5 shows the amount of packets arriving at the Monitoring component during the
attack. As the resolution of the packet logging is 3 seconds the graph shows the amount of
packets that arrived in the last 3 seconds.

The curve with active mitigation shows clearly that after a short burst of packets arriving
the attack is detected and successfully mitigated, as all the packets are dropped.

Every approximately 20 seconds there is small spike, where a few packets can be detected

53

6. Mitigation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80

Pa
ck

et
s/

3s

seconds

Unmitigated Mitigated

Figure 6.5.: Network load during a TCP SYN flood with and without mitigation

again. These spikes align perfectly with the hard timeout of the mitigation flows. Thus rep-
resenting the packets arriving during the time the mitigation flow is automatically removed
and the attack being detected and mitigated once more, as can be seen clearly in figure 6.6.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80
 0

 0.5

 1

 1.5

 2

Pa
ck

et
s/

3s

Al
er

ts

seconds

Alert Mitigated

Figure 6.6.: Alerts during mitigated TCP SYN Flood

6.3.2. Distributed TCP SYN Flood

Once the attacker uses a large enough botnet, or especially if he is using IP Spoofing, to
forge the source IP Address, the mitigation strategy presented above is no longer capable of
defending against the attack.

With spoofed IP Addresses the alerts used previously do no longer trigger, as it relied

54

6.3. Mitigation Strategies

on many SYN packets coming from a single IP Address. But while the IDS cannot provide
information about the source of the attack it can still detect the destination IP Address and
the TCP ports under attack.

However, the monitoring component is able to detect the switch and port, the attack is
originating from, by monitoring the statistics of the flow tables similar to the technique used
in [Cui+16]. This information can be used to drop the traffic at the ingress switch. It is
important to install the flow only on the ingress switch, as the flow rules are not as finely
granulated, as is the case with a TCP SYN Flood originating from only a single source.

As a result installing such a flow on all devices might block a lot of legitimate traffic to
the target.

Implementation of the mitigation strategy

Attackers Switch Victim Monitoring Mitigation Manager
Spoofed
Syn Flood

Mirror Tra�c

Alert

Mitigate

Install Flows

Ti
m

e

Spoofed
Syn Flood

Flow stats

Alert

Figure 6.7.: Process of a Distributed TCP SYN Flood Mitigation

In comparison to the simple TCP SYN Flood, shown in figure 6.3, the main difference
in the process of mitigating the distributed attack, depicted in figure 6.7, lies in the alerts
triggering the mitigation.

The alert, received from Suricata, is pretty similar to the one displayed in listing 6.2. The
only real difference is that the Signature ID now signals a Distributed TCP SYN Flood and,
while there is still a source IP Address listed in the alert, it is only one of the many IP
Addresses used for the attack.

1 {’pps’: 0.0, ’event_type ’: ’alert ’, ’critical ’: 500, ’sensor ’: ’statshandler ’,

2 ’switch ’: ’0000 ee132ef17348 ’, ’alert’: {’signature_id ’: ’10000004 ’},

3 ’port’: ’4’, ’timestamp ’: ’2016 -11 -30 T17 :27:44.418396+0100 ’}

Listing 6.5: Alert generated by statistical monitoring

The other part of the information is provided through the alert generated by the statistical
monitoring. Such an alert, generated during an attack, is listed in listing 6.5. From this
alert the information on which switch, identified by the unique ID ”0000ee132ef17348”, and
on which port the attack (4) is arriving at can be extracted.

Figure 6.8 depicts the workflow for creating the Mitigation flow. Once a corresponding
alert arrives the alert is saved. If an alert from Suricata and from the statistical monitoring
has arrived within a predefined time frame, for this implementation a time frame of 5 seconds

55

6. Mitigation

Save Alert

Suricata Alert

Statistical Alert
Both Alerts arrived
 within x seconds

Create
Mitigation Flow

send to controller
 for switch y

in_port=attacked port,
eth_type = ipv4, ip_proto=tcp
ipv4_dst = victim
tcp_dst = attacked tcp port

drop

Figure 6.8.: Workflow for the mitigation of a Distributed TCP SYN Flood

was chosen, the mitigation flow is assembled from the information contained in both alerts
and sent to the identified switch.

Evaluation

To simulate a Distributed TCP SYN Flood the attack is launched from 2 machines simul-
taneously. Additionally all the source IP Addresses of the SYN packets are spoofed. While
the amount of machines used is not representative for a botnet that might be used in a real
attack, given the limited resources available in a virtual machine and by using spoofed IPs,
it should nevertheless be representative.

To test if the attack is able to prevent clients from establishing a TCP connections with
the victim, a webserver is installed on the LXC of the victim.

Figure 6.9.: Querying the webserver during an attack

Figure 6.9 shows attempts to query the webserver during the attack. None of the requests
manage to successfully establish a connection, proofing that the attack was successful.

Figure 6.10 shows the amount of packets originating from the attack. Without any miti-
gation it stays at about 10 000 packets per 3 seconds. The dashed line shows the attack with
the mitigation strategy discussed above implemented. As the mitigation module has to wait
for the alert from the statistical monitoring, which only receives statistical information from
the switches every 5 seconds, the mitigation takes a bit longer.

This can be seen better in figure 6.11. Once the attack starts, Suricata is able to detect the
target of the attack very quickly and raises an alert. But the alert from the statistical alert
still takes some to time to arrive. The hard timeout for the mitigation flow is 20 seconds
again, as can be seen by looking at the duration between the 2 peaks, where packets arrive
again. As the attack has been executed from two machines that are connected to different

56

6.3. Mitigation Strategies

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60

Pa
ck

et
s/

3s

seconds

Unmitigated Mitigated

Figure 6.10.: Network load during a distributed TCP SYN flood with and without mitigation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70 80
 0

 0.5

 1

 1.5

 2

Pa
ck

et
s/

3s

Al
er

ts

seconds

Mitigated Alert Suricata Alert Stats

Figure 6.11.: Alerts during mitigated Distributed TCP SYN Flood

ports on the switch.

As the switch still receives packets on the attacked port, monitoring continues to generate
alerts even though the packets are dropped. This has the advantage that if the attack is still
ongoing, while the flow is deleted through the hard timeout, the alert coming from Suricata
can immediately reinstall the flow.

It is to be noted that after the attack has been mitigated the webserver is reachable once
again. Thus showing that the mitigation was effective.

57

6. Mitigation

6.3.3. Flow flooding

As a Denial of Service attack, this attack shares some inherent similarities with a Distributed
TCP SYN Flood. To overflow the flow tables the attacker manipulates packets, usually
through or combined with spoofing.

Therefore to mitigate the attack these malicious packets have to be dropped before they
can cause a flow rule to be created. As most likely malicious flows have already been created
before the mitigation was active these flows have to be removed from the flow table again.

The mitigation component can detect the switch under attack and determine the port the
attack is originating from. However, as the attacker does not necessarily target a specific
device it is difficult to narrow down the attack. As such before the attack destabilizes the
whole network, a first step is to drop all packets arriving on that port. As the rules for the
flow creation that are abused may vary from system to system a further analysis of abusable
flow creation rules is advisable and the mitigation and detection can be custom tailored
to drop only packets that could abuse these vulnerabilities. Thus reducing the amount of
legitimate traffic being blocked

After closing the port all flows originating from that port are removed.

Implementation of the mitigation strategy

The detection for this attack is handled by the statistical monitoring. The alert that is
received for this kind of attack contains only the information that a Flow flood was detected,
the flow table of which switch is filled with malicious flows, and from which port the attack
is coming from. Similar to the alert in listing 6.5.

Based on this information the flow to drop the packets is created and sent to the controller.
The flow matches every packet that arrives on that port and drops it. As a hard timeout
for the flow 20 seconds is chosen again. Thus effectively closing the port for 20s.

Now that the creation of additional superfluous flow entries has been halted the flow
entries with in port=”closed port” are to be removed. To prevent the mitigation flow from
being deleted a cookie has to be used.

1 data[’cookie ’] = 0x0000000000000001

2 data[’cookie_mask ’] = 0x000000000000000f

Listing 6.6: Setting cookies on flows

Listing 6.6 shows how to set the cookie. To remove the other flows instead of the ”OF-
PFC ADD” command ”OFPFC DELETE” is used and the same matching criteria are used
again (in port=”closed port”). But the cookie ”0x0000000000000000” is set, while the mask
stays the same. This results in all flows without a cookie set and a match containing the
port to be removed from the flow table.

Evaluation

First a flow flooding attack was started to take a look at the effect of the attack on the
network. Figure 6.12 shows that as the maximum number of 184 flows was reached the
response time went up steadily. A look at the CPU load of the controller also showed that
as soon as the flow flood was started the load went up to 85%, reaching a steady 100% as
the flow table was full. This effect was expected as the controller itself has to handle every

58

6.3. Mitigation Strategies

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80 90
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

m
s

seconds

Flows Response time

Figure 6.12.: Response time during flow flooding attack

single packet, when no flow rule can be installed. Thus eventually being overwhelmed by
the amount of packets that arrive. Even without any load on the network the response time
in the network went up from averaging 0.13 ms to 18 ms, showing the overhead introduced
through having the controller handle the packets.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120
 0

 0.5

 1

 1.5

 2
Al

er
ts

seconds

Alert Flows

Figure 6.13.: Mitigation of a flow flooding attack

Afterwards the attack was launched again, while the mitigation strategy, presented above,
was applied. Figure 6.13 shows that the generation of the flows was stopped before the flow
table was even full. Only the last attack has been able to almost fill the flow table. But as
the malicious flows are immediately removed again even if the attack manages to flood the
table the controller functionality is restored.

59

6. Mitigation

6.4. Conclusion

A mitigation module was proposed that can handle various attacks based on alerts. In that
context it was shown that flows serve as a powerful and versatile tool for the mitigation of
attacks. Through the use of alerts and the Alert Handler, the module can be easily extended
to handle alerts from various sources.

To install flows via the Northbound interface a powerful API was implemented that pro-
vides nearly the same functionality as if creating the flow instructions directly on the con-
troller, by translating a python dictionary with a syntax closely related to the one used on
the Southbound API into the respective OpenFlow commands.

The usability of the module has been shown by providing a mitigation strategy for a TCP
SYN Flood, its distributed counterpart and a Flow Flooding attack. The results show that
the mitigation module is able to quickly mitigate the attacks.

60

7. Conclusion and future work

An application stack for detection and mitigation of attacks in SDN was proposed and
demonstrated. For the implementation of the application stack a test environment that
can produce reproducible results was realized through a virtual machine based on a LXC
architecture that is provided through vagrant. The test environment was then used to
evaluate the proposed detection and mitigation mechanism.

A way of enhancing the testing environment can be to implement more caching capabilities.
As a significant amount of the setup process is dependent on having access to the Internet,
caching more downloaded packages can speed up the process and provide a faster to use setup.
Additionally, the testing workflow could be enhanced by automating the data exported from
the visualization instance. While sufficient graphs are available in Grafana to provide insight
into the live status of the system, this could ease the workflow of generating high quality
plots for further use. To move more into the direction of a production ready setup, security
policies have to be enforced and components tested against real traffic. Parameter tuning
has to be done and the network layout adapted to the new environment.

The monitoring instance used exemplifies the combination of using software already devel-
oped and originally running in a traditional network, and new one specifically developed for
the analysis of SDN related data. It proves that already established ways of monitoring data
can be used along with new methods to achieve detection of an attack. Both of these can
provide valuable information on SDN specific and nonspecific attacks to be used together in
order to defend against them.

Improving upon the monitoring component could be done in the future in two main direc-
tions. To enable it to detect more complicated and variable attacks, the analysis phase could
be extended and already existing detection enhanced. Doing this can involve implementation
of new logic to detect attack vectors or exchanging the stiff limit based implementation for
a more flexible and adaptive one.

Though this would introduce more load to the instance, the second option could be to
add an additional phase. This phase could be a lightweight component looking for any
suspicious behavior and inserting a full monitoring instance into the path of traffic only
after such behaviour is detected. This would improve resource usage by eliminating a lot of
analysis time now spent on regular packets.

In the mitigation chapter a concept for mitigating attacks through the use of flows was
introduced. This was achieved by creating flow rules from the information provided from the
alerts raised by the monitoring module that block the attack. This was successfully proven
on the example of three attacks.

A TCP SYN Flood attack was mitigated by installing a flow that blocks packets from the
attacker on the way to the victim. While it was shown that the proposed mitigation blocks
the attack, an attacker could spoof the IP Address of a system in the network to cause
the mitigation to block the traffic of that system. To prevent this it might prove useful to
implement source verification, such as VAVE [YBX11].

In the next step a Distributed TCP SYN Flood was tackled. Through the use of infor-

61

7. Conclusion and future work

mation provided by the flow statistics the ingress switch was identified and the malicious
packets could be stopped, as soon as they entered the network. A known problem is that
high traffic can be mistaken for a SYN flood attack. As the controller is written with sup-
port for up to OpenFlow version 1.4, matching the SYN flag in a TCP packet was not yet
possible. As such supporting OpenFlow version 1.5 and matching on the SYN flag is a task
that remains open.

Finally a Flow Flooding attack was mitigated. However more extensive research in regard
to flow rules used in a production environment that are susceptible to this attack is to be
done. This could also provide further insight on how the mitigation flows can be grained
more finely to avoid blocking legitimate clients from accessing the network.

The goal set in chapter 1 to develop an SDN aware application stack has been reached
and proven its capabilities while using the test setup, which was also implemented during
the process. Further works can use this as a base to build upon.

62

A. Controller

1 # Copyright (C) 2013 Nippon Telegraph and Telephone Corporation.
2 #
3 # Licensed under the Apache License, Version 2.0 (the ”License”);
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE−2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software

10 # distributed under the License is distributed on an ”AS IS” BASIS,
11 #WITHOUTWARRANTIESORCONDITIONSOFANYKIND, either express or
12 # implied.
13 # See the License for the specific language governing permissions and
14 # limitations under the License.
15
16 import logging
17 import struct
18 import socket
19 import redis
20 import time
21
22 import json
23 from webob import Response
24
25 from threading import Timer
26
27 from ryu.app.wsgi import ControllerBase
28 from ryu.app.wsgi import WSGIApplication
29 from ryu.base import app manager
30 from ryu.controller import dpset
31 from ryu.controller import ofp event
32 from ryu.controller.handler import MAIN DISPATCHER
33 from ryu.controller.handler import set ev cls
34 from ryu.exception import OFPUnknownVersion
35 from ryu.exception import RyuException
36 from ryu.lib import dpid as dpid lib
37 from ryu.lib import hub
38 from ryu.lib import mac as mac lib
39 from ryu.lib import addrconv

63

A. Controller

40 from ryu.lib.packet import packet
41 from ryu.lib.packet import arp
42 from ryu.lib.packet import ethernet
43 from ryu.lib.packet import ether types
44 from ryu.ofproto import ether
45 from ryu.ofproto import ofproto v1 3
46 from ryu.ofproto import ofproto v1 4
47
48 UINT32 MAX = 0xffffffff
49 UINT64 MAX = 0xffffffffffffffff
50
51 ARP = arp.arp. name

52
53 OFP REPLY TIMER = 1.0 # sec
54
55 SWITCHID PATTERN = dpid lib.DPID PATTERN + r’ | all’
56
57 COOKIE DEFAULT ID = 0
58
59 REST COMMAND RESULT = ’command result’
60 REST RESULT = ’result’
61 REST DETAILS = ’details’
62 REST OK = ’success’
63 REST NG = ’failure’
64 REST ALL = ’all’
65 REST SWITCHID = ’switch id’
66 REST COMMAND = ’cmd’
67 REST MATCH = ’match’
68 REST COOKIE = ’cookie’
69 REST COOKIEMASK = ’cookie mask’
70 REST ACTIONS = ’actions’
71 REST ACTION = ’action’
72 REST PARAMS = ’params’
73 REST PRIORITY = ’priority’
74 REST TABLEID = ’table id’
75 REST IDLETIMEOUT = ’idle timeout’
76 REST HARDTIMEOUT = ’hard timeout’
77
78 IP MONITORING = ’10.10.10.5’
79 IP SWITCHARP = ’10.10.10.99’
80 REDIS HOST = ’10.20.0.6’
81 REDIS PORT = 6379
82
83 DELAY CONNECTION = 5.0 # sec
84
85 STATS POLL RATE = 5 # sec
86

64

87
88 class NotFoundError(RyuException):
89 message = ’Switch SW is not connected. : switch id=%(switch id)s’

90
91
92 class RestSwitchAPI(app manager.RyuApp):
93 OFP VERSIONS = [ofproto v1 4.OFP VERSION]

94
95 CONTEXTS = {’dpset’: dpset.DPSet,
96 ’wsgi’: WSGIApplication}
97
98 def init (self, ∗args, ∗∗kwargs):
99 super(RestSwitchAPI , self). init (∗args, ∗∗kwargs)

100
101 SwitchController.set logger(self.logger)

102
103 wsgi = kwargs[’wsgi’]

104 self.waiters = {}
105 self.data = {’waiters’: self.waiters}
106
107 mapper = wsgi.mapper

108 wsgi.registory[’SwitchController’] = self.data

109 requirements = {’switch id’: SWITCHID PATTERN}
110
111 #No vlan data
112 path = ’/switch/{switch id}’
113 mapper.connect(’switch’, path, controller=SwitchController ,

114 requirements=requirements ,

115 action=’get data’,

116 conditions=dict(method=[’GET’]))

117 mapper.connect(’switch’, path, controller=SwitchController ,

118 requirements=requirements ,

119 action=’set data’,

120 conditions=dict(method=[’POST’]))

121
122 mapper.connect(’switch’, path, controller=SwitchController ,

123 requirements=requirements ,

124 action=’delete data’,

125 conditions=dict(method=[’DELETE’]))

126
127 @set ev cls(dpset.EventDP, dpset.DPSET EV DISPATCHER)

128 def datapath handler(self, ev):

129 if ev.enter:

130 SwitchController.register switch(ev.dp, self.waiters)

131 else:

132 SwitchController.unregister switch(ev.dp)

133

65

A. Controller

134 @set ev cls(ofp event.EventOFPPacketIn , MAIN DISPATCHER)

135 def packet in handler(self, ev):

136 SwitchController.packet in handler(ev.msg)

137
138 def stats reply handler(self, ev):

139 msg = ev.msg

140 dp = msg.datapath

141
142 if dp.id not in self.waiters or msg.xid not in self.waiters[dp.id]:

143 return

144 event, msgs = self.waiters[dp.id][msg.xid]

145 msgs.append(msg.to jsondict())

146 if ofproto v1 3.OFP VERSION == dp.ofproto.OFP VERSION or ofproto v1 4.OFP VERSION

== dp.ofproto.OFP VERSION:

147 more = dp.ofproto.OFPMPF REPLY MORE

148 else:

149 more = dp.ofproto.OFPSF REPLY MORE

150
151 if msg.flags & more:

152 return

153 del self.waiters[dp.id][msg.xid]

154 event.set()

155
156 # for OpenFlow version1.0
157 @set ev cls(ofp event.EventOFPFlowStatsReply , MAIN DISPATCHER)

158 def stats reply handler v1 0(self, ev):

159 self. stats reply handler(ev)

160
161 # for OpenFlow version1.2+
162 @set ev cls(ofp event.EventOFPStatsReply , MAIN DISPATCHER)

163 def stats reply handler v1 2(self, ev):

164 self. stats reply handler(ev)

165
166 @set ev cls(ofp event.EventOFPPortStatsReply , MAIN DISPATCHER)

167 def port stats reply handler(self, ev):

168 self. stats reply handler(ev)

169
170 @set ev cls(ofp event.EventOFPAggregateStatsReply , MAIN DISPATCHER)

171 def aggregate stats reply handler(self, ev):

172 self. stats reply handler(ev)

173
174
175 def rest command(func):
176 def rest command(∗args, ∗∗kwargs):
177 try:

178 msg = func(∗args, ∗∗kwargs)
179 return Response(content type=’application/json’,

66

180 body=json.dumps(msg))

181
182 except SyntaxError as e:

183 status = 400

184 details = e.msg

185 except (ValueError , NameError) as e:

186 status = 400

187 details = e.message

188
189 except NotFoundError as msg:

190 status = 404

191 details = str(msg)

192
193 msg = {REST RESULT: REST NG ,
194 REST DETAILS: details}
195 return Response(status=status, body=json.dumps(msg))

196
197 return rest command

198
199
200 class SwitchController(ControllerBase):
201 SWITCH LIST = {}
202 LOGGER = None

203
204 def init (self, req, link, data, ∗∗config):
205 super(SwitchController , self). init (req, link, data, ∗∗config)
206 self.waiters = data[’waiters’]

207
208 @classmethod

209 def set logger(cls, logger):

210 cls. LOGGER = logger

211 cls. LOGGER.propagate = False

212 hdlr = logging.StreamHandler()

213 fmt str = ’[RT][%(levelname)s] switch id=%(sw id)s: %(message)s’

214 hdlr.setFormatter(logging.Formatter(fmt str))

215 cls. LOGGER.addHandler(hdlr)

216
217 @classmethod

218 def register switch(cls, dp, waiters):

219 dpid = {’sw id’: dpid lib.dpid to str(dp.id)}
220 try:

221 switch = Switch(dp, cls. LOGGER , waiters)

222 except OFPUnknownVersion as message:

223 cls. LOGGER.error(str(message), extra=dpid)

224 return

225 cls. SWITCH LIST.setdefault(dp.id, switch)

226 cls. LOGGER.info(’Join as switch.’, extra=dpid)

67

A. Controller

227 # Try to setup connection to Monitoring after x seconds
228 t = Timer(DELAY CONNECTION , switch.connect monitoring)

229 t.start()

230
231 @classmethod

232 def unregister switch(cls, dp):

233 if dp.id in cls. SWITCH LIST:

234 cls. SWITCH LIST[dp.id].delete()

235 del cls. SWITCH LIST[dp.id]

236
237 dpid = {’sw id’: dpid lib.dpid to str(dp.id)}
238 cls. LOGGER.info(’Leave switch.’, extra=dpid)

239
240 @classmethod

241 def packet in handler(cls, msg):

242 dp id = msg.datapath.id

243 if dp id in cls. SWITCH LIST:

244 switch = cls. SWITCH LIST[dp id]

245 switch.packet in handler(msg)

246
247 #GET /switch/{switch id}
248 @rest command

249 def get data(self, req, switch id , ∗∗ kwargs):
250 return self. access switch(switch id , ’get data’, req)

251
252 #POST /switch/{switch id}
253 @rest command

254 def set data(self, req, switch id , ∗∗ kwargs):
255 return self. access switch(switch id , ’set data’, req)

256
257 #DELETE /switch/{switch id}
258 @rest command

259 def delete data(self, req, switch id , ∗∗ kwargs):
260 return "Not implemented"

261
262 def access switch(self, switch id , func, req):

263 rest message = []

264 switches = self. get switch(switch id)

265 try:

266 param = req.json if req.body else {}
267 except ValueError:

268 raise SyntaxError(’invalid syntax %s’, req.body)

269 for switch in switches.values():

270 function = getattr(switch, func)

271 data = function(param)

272 rest message.append(data)

273

68

274 return rest message

275
276 def get switch(self, switch id):

277 switches = {}
278
279 if switch id == REST ALL:

280 switches = self. SWITCH LIST

281 else:

282 sw id = dpid lib.str to dpid(switch id)

283 if sw id in self. SWITCH LIST:

284 switches = {sw id: self. SWITCH LIST[sw id]}
285
286 if switches:

287 return switches

288 else:

289 raise NotFoundError(switch id=switch id)

290
291
292 class Switch(dict):
293 def init (self, dp, logger, waiters):

294 super(Switch, self). init ()

295 self.dp = dp

296 self.dpid str = dpid lib.dpid to str(dp.id)

297 self.sw id = {’sw id’: self.dpid str}
298 self.logger = logger

299
300 self.monitoring port = None

301
302 self.port data = PortData(dp.ports)

303
304 self.history = {}
305
306 self.mac to port = {}
307
308 self.ofctl = OfCtl.factory(dp, logger)

309
310 self.setup basic flows()

311
312 self.redis instance = self.setup redis()

313
314 self.monitor thread = hub.spawn(self. monitor , waiters)

315
316 def monitor(self, waiters):

317 ”””Requesting statistic messages from switches at STATSPOLLRATE
318
319 :param waiters: the switches to request stats from
320 ”””

69

A. Controller

321
322 while True:

323 stats = self.request stats(waiters)

324 message = {
325 ’event type’: ’statistics’,

326 ’statistics’: stats[’statistics’],

327 }
328 self.redis instance.publish(’switch−stats’, json.dumps(message))
329 hub.sleep(STATS POLL RATE)

330
331 def setup redis(self, retry=0, max retries=30):

332 try:

333 redis instance = redis.StrictRedis(host=REDIS HOST , port=REDIS PORT , db=0)

334 except redis.exceptions.ConnectionError as e:

335 if retry < max retries:

336 self.logger.warning("Retrying connections to database for the {}
time".format(retry + 1),

337 extra=self.sw id)

338 time.sleep(2)

339 redis instance = self.setup redis(retry=retry + 1)

340 else:

341 raise e

342
343 return redis instance

344
345 def connect monitoring(self):

346 # Send ARP Request to get MAC−Address of Monitoring
347 self.send arp request(IP SWITCHARP , IP MONITORING)

348 self.logger.info(’Send ARP request (flood)’, extra=self.sw id)

349
350 def delete flows(self, table id):

351 # Delete all flows in Table
352 # Used to delete old flows before monitoring was connected
353 ofproto = self.dp.ofproto

354 parser = self.dp.ofproto parser

355 match = parser.OFPMatch()

356 inst = []

357 mod = parser.OFPFlowMod(self.dp, 0, 0, table id , ofproto.OFPFC DELETE , 0, 0, 1,

ofproto.OFPCML NO BUFFER ,

358 ofproto.OFPP ANY , ofproto.OFPG ANY , 0, 0, match, inst)

359 self.dp.send msg(mod)

360
361 def setup basic flows(self):

362 ofproto = self.dp.ofproto

363 parser = self.dp.ofproto parser

364
365 # Table Miss Entry

70

366
367 match = parser.OFPMatch()

368 actions = [parser.OFPActionOutput(ofproto.OFPP CONTROLLER ,

369 ofproto.OFPCML NO BUFFER)]

370 self.ofctl.add flow(0, 0, match, actions)

371
372 # Make sure our ARP replies are sent to the controller
373
374 match = parser.OFPMatch(arp tpa=IP SWITCHARP , eth type=2054)

375 actions = [parser.OFPActionOutput(ofproto.OFPP CONTROLLER ,

376 ofproto.OFPCML NO BUFFER)]

377 self.ofctl.add flow(3, 0, match, actions)

378
379 def delete(self):

380 self.logger.info(’Stopped switch’, extra=self.sw id)

381
382 def get data(self, data, waiters):

383 parser = self.dp.ofproto parser

384 msg = "Not implemented" #TODO return load statistics
385 return {REST SWITCHID: self.dpid str ,
386 REST COMMAND RESULT: msg}
387
388 def set data(self, data):

389 parser = self.dp.ofproto parser

390 ofp = self.dp.ofproto

391 msgs = []

392 try:

393 if REST COMMAND in data:

394 action list = []

395 cmd = data[REST COMMAND]

396 command obj = getattr(ofp, cmd)

397 if REST MATCH in data:

398 matches = data[REST MATCH]

399 match = parser.OFPMatch(∗∗matches)
400 else:

401 match = parser.OFPMatch()

402 if REST ACTIONS in data:

403 actions = data[REST ACTIONS]

404 if REST ACTION in actions:

405 for k, v in actions.items():

406 if REST COMMAND in v:

407 cmd = v[REST COMMAND]

408 action obj = getattr(parser, cmd)

409 else:

410 details = "No action Command found"

411 raise ValueError(details)

412 if REST PARAMS in v:

71

A. Controller

413 params = v[REST PARAMS]

414 action list.append(action obj(∗∗params))
415 else:

416 details = "No Parameters provided for %s" % cmd

417 raise ValueError(details)

418 else:

419 details = "No action found in actions"

420 raise ValueError(details)

421 if REST PRIORITY in data:

422 priority = data[REST PRIORITY]

423 else:

424 # Default value for mitigation flows
425 priority = 32768

426 if REST TABLEID in data:

427 table id = data[REST TABLEID]

428 else:

429 # Default value for mitigation flows
430 table id = 0

431 if REST COOKIE in data:

432 cookie = data[REST COOKIE]

433 else:

434 cookie = 0

435 if REST COOKIEMASK in data:

436 cookie mask = data[REST COOKIEMASK]

437 else:

438 cookie mask = 0

439 if REST IDLETIMEOUT in data:

440 idle timeout = data[REST IDLETIMEOUT]

441 else:

442 idle timeout = 0

443 if REST HARDTIMEOUT in data:

444 hard timeout = data[REST HARDTIMEOUT]

445 else:

446 hard timeout = 0

447 if cmd == ’OFPFC DELETE’:

448 self.ofctl.delete flow(priority=priority , table id=table id , match=match,

command=command obj ,

449 cookie=cookie, cookie mask=cookie mask)

450 else:

451 self.ofctl.add flow(priority=priority , table id=table id , match=match,

action list=action list ,

452 hard timeout=hard timeout , idle timeout=idle timeout ,

command=command obj ,

453 cookie=cookie, cookie mask=cookie mask)

454 self.logger.info(

455 "Added mitigation flow: {}{}{}{}{}{}".format(priority, table id , match,
action list ,

72

456 hard timeout , idle timeout), extra=self.sw id)

457 details = ’Performed %s’ % cmd

458 else:

459 raise ValueError("No command found")

460 msg = {REST RESULT: REST OK , REST DETAILS: details}
461 except ValueError as err msg:

462 msg = {REST RESULT: REST NG , REST DETAILS: str(err msg)}
463 msgs.append(msg)

464 return {REST SWITCHID: self.dpid str ,
465 REST COMMAND RESULT: msgs}
466
467 def request stats(self, waiters):

468 stats = {}
469 stat replies = {}
470 stat replies[’port aggregate’] = {}
471 stat replies[’port aggregate’][self.dpid str] = {}
472 for send port in self.port data.values():

473 send port = send port.port no

474 stat replies[’port aggregate’][self.dpid str][send port] =

self.ofctl.get all flow aggregate(send port ,

475 waiters)

476 # flows = self .ofctl .get all flow(waiters)
477 # if flows:
478 # flows = self .ofctl .get all flow(waiters)[0]
479 # stat replies[’flow ’] = {}
480 # stat replies[’flow ’][self .dpid str] = flows
481 portstats = {}
482 ports = self.ofctl.get all port(waiters)

483 if ports:

484 ports = self.ofctl.get all port(waiters)[0]

485 for msg in ports[’OFPPortStatsReply’][’body’]:

486 msg = msg[’OFPPortStats’]

487 port no = msg[’port no’]

488 del msg[’port no’]

489 # Calculate deltas
490 msg[’rx bytes delta’] = self.get port delta(msg, port no , ’rx bytes’)

491 msg[’rx dropped delta’] = self.get port delta(msg, port no , ’rx dropped’)

492 msg[’rx errors delta’] = self.get port delta(msg, port no , ’rx errors’)

493 msg[’rx packets delta’] = self.get port delta(msg, port no , ’rx packets’)

494 msg[’tx bytes delta’] = self.get port delta(msg, port no , ’tx bytes’)

495 msg[’tx dropped delta’] = self.get port delta(msg, port no , ’tx dropped’)

496 msg[’tx errors delta’] = self.get port delta(msg, port no , ’tx errors’)

497 msg[’tx packets delta’] = self.get port delta(msg, port no , ’tx packets’)

498 portstats[port no] = msg

499 stat replies[’port’] = {}
500 stat replies[’port’][self.dpid str] = portstats

501 stats[’statistics’] = stat replies

73

A. Controller

502 return stats

503
504 def get port delta(self, msg, port, field):

505 new value = msg[field]

506 if port in self.history:

507 if field in self.history[port]:

508 old value = self.history[port][field]

509 self.history[port][field] = new value

510 return (new value − old value) / STATS POLL RATE

511 else:

512 self.history[port][field] = new value

513 return new value / STATS POLL RATE

514 else:

515 self.history[port] = {}
516 self.history[port][field] = new value

517 return new value / STATS POLL RATE

518
519 def packet in handler(self, msg):

520 pkt = packet.Packet(msg.data)

521 eth = pkt.get protocol(ethernet.ethernet)

522
523 if not eth:

524 self.logger.warning("Non ethernet Packet received!", extra=self.sw id)

525 return

526 arp p = pkt.get protocol(arp.arp)

527 if arp p:

528 self. packetin arp(msg, arp p)

529 ofproto = self.dp.ofproto

530 parser = self.dp.ofproto parser

531 in port = msg.match[’in port’]

532
533 if eth.ethertype == ether types.ETH TYPE LLDP:

534 # ignore lldp packet
535 return

536 dst = eth.dst

537 src = eth.src

538
539 # self .logger.info(”Packet in [src:%s] [dst:%s] [in port:%s]”, src, dst, in port,
540 # extra=self .sw id)
541
542 self.mac to port[src] = in port

543
544 if dst in self.mac to port:

545 out port = self.mac to port[dst]

546 else:

547 out port = ofproto.OFPP FLOOD

548

74

549 # self .logger.info(”Additional [out port:%s]”, out port,
550 # extra=self .sw id)
551
552 # Check if Monitoring is connected and packet not already being forwarded to

Monitoring
553 if self.monitoring port is not None and out port != self.monitoring port and \
554 in port != self.monitoring port and out port != ofproto.OFPP FLOOD:

555 match = parser.OFPMatch(in port=in port , eth dst=dst)

556 if out port == in port:

557 # Only duplicate to monitoring but do not forward
558 actions = [parser.OFPActionGroup(group id=0)]

559 else:

560 actions = [parser.OFPActionGroup(group id=0), parser.OFPActionOutput(out port)]

561
562 inst = [parser.OFPInstructionActions(ofproto.OFPIT APPLY ACTIONS ,

563 actions)]

564
565 mod = parser.OFPFlowMod(datapath=self.dp, priority=1,

566 table id=0, match=match, instructions=inst)

567 self.dp.send msg(mod)

568 else:

569 if out port == in port:

570 #Do not forward packets to the in port (only caused by duplicated packet
forwarding?)

571 self.logger.info("Illegal rule?: in port: [%s], mac dst: [%s]−> out port:

[%s]",

572 in port , out port , dst, extra=self.sw id)

573 return

574 actions = [parser.OFPActionOutput(out port)]

575
576 if out port != ofproto.OFPP FLOOD:

577 match = parser.OFPMatch(in port=in port , eth dst=dst)

578 self.ofctl.add flow(1, 0, match, actions)

579
580 data = None

581 if msg.buffer id == ofproto.OFP NO BUFFER:

582 data = msg.data

583
584 out = parser.OFPPacketOut(datapath=self.dp, buffer id=msg.buffer id ,

585 in port=in port , actions=actions, data=data)

586 self.dp.send msg(out)

587
588 def packetin arp(self, msg, header):

589
590 if header.opcode == arp.ARP REPLY:

591 src ip = header.src ip

592 dst ip = header.dst ip

75

A. Controller

593 src mac = header.src mac

594 srcip = ip addr ntoa(src ip)

595 dstip = ip addr ntoa(dst ip)

596 if dst ip == IP SWITCHARP and src mac in self.mac to port:

597 out port = self.mac to port[src mac]

598 self.monitoring port = out port

599 # Delete old flows in table 0
600 self.delete flows(0)

601 # Setup basic flows again
602 self.setup basic flows()

603 log msg = ’Receive ARP request from [%s] to switch port [%s].’ \
604 ’ Setting up duplicate packet flow to port [%s]’

605 self.logger.info(log msg , srcip, dstip, out port , extra=self.sw id)

606 # Setup Group 0 for packet duplication to Monitoring port
607
608 parser = self.dp.ofproto parser

609 ofproto = self.dp.ofproto

610
611 actions = [parser.OFPActionOutput(port=out port)]

612
613 buckets = [parser.OFPBucket(actions=actions)]

614
615 req = parser.OFPGroupMod(datapath=self.dp, command=ofproto.OFPGC ADD ,

616 type =ofproto.OFPGT ALL , group id=0, buckets=buckets)

617
618 self.dp.send msg(req)

619
620 def send arp request(self, src ip , dst ip , in port=None):

621
622 # Send ARP request from all ports.
623 for send port in self.port data.values():

624 if in port is None or in port != send port.port no:

625 src mac = send port.mac

626 dst mac = mac lib.BROADCAST STR

627 arp target mac = mac lib.DONTCARE STR

628 inport = self.ofctl.dp.ofproto.OFPP CONTROLLER

629 output = send port.port no

630 self.ofctl.send arp(arp.ARP REQUEST , src mac , dst mac , src ip , dst ip ,

631 arp target mac , inport, output)

632
633
634 class PortData(dict):
635 def init (self, ports):

636 super(PortData, self). init ()

637 for port in ports.values():

638 data = Port(port.port no , port.hw addr)

639 self[port.port no] = data

76

640
641
642 class Port(object):
643 def init (self, port no , hw addr):

644 super(Port, self). init ()

645 self.port no = port no

646 self.mac = hw addr

647
648
649 class OfCtl(object):
650 OF VERSIONS = {}
651
652 @staticmethod

653 def register of version(version):

654 def register of version(cls):

655 OfCtl. OF VERSIONS.setdefault(version, cls)

656 return cls

657
658 return register of version

659
660 @staticmethod

661 def factory(dp, logger):

662 of version = dp.ofproto.OFP VERSION

663 if of version in OfCtl. OF VERSIONS:

664 ofctl = OfCtl. OF VERSIONS[of version](dp, logger)

665 else:

666 raise OFPUnknownVersion(version=of version)

667
668 return ofctl

669
670 def init (self, dp, logger):

671 super(OfCtl, self). init ()

672 self.dp = dp

673 self.sw id = {’sw id’: dpid lib.dpid to str(dp.id)}
674 self.logger = logger

675
676 def add flow(self, priority , table id , match, action list=None, hard timeout=0,

idle timeout=0, command=0, cookie=0,

677 cookie mask=0):

678 # Abstract method
679 raise NotImplementedError()

680
681 def send arp(self, arp opcode , src mac , dst mac ,

682 src ip , dst ip , arp target mac , in port , output):

683 # Generate ARP packet
684
685 ether proto = ether.ETH TYPE ARP

77

A. Controller

686 hwtype = 1

687 arp proto = ether.ETH TYPE IP

688 hlen = 6

689 plen = 4

690
691 pkt = packet.Packet()

692 e = ethernet.ethernet(dst mac , src mac , ether proto)

693 a = arp.arp(hwtype, arp proto , hlen, plen, arp opcode ,

694 src mac , src ip , arp target mac , dst ip)

695 pkt.add protocol(e)

696 pkt.add protocol(a)

697 pkt.serialize()

698
699 # Send packet out
700 self.send packet out(in port , output, pkt.data, data str=str(pkt))

701
702 def send packet out(self, in port , output, data, data str=None):

703 actions = [self.dp.ofproto parser.OFPActionOutput(output, 0)]

704 self.dp.send packet out(buffer id=UINT32 MAX , in port=in port ,

705 actions=actions, data=data)

706 #TODO: ?Packet library convert to string
707 # if data str is None:
708 # data str = str(packet.Packet(data))
709 # self .logger.debug(’Packet out =%s’, data str, extra=self .sw id)
710
711 def send stats request(self, stats, waiters):

712 self.dp.set xid(stats)

713 waiters per dp = waiters.setdefault(self.dp.id, {})
714 event = hub.Event()

715 msgs = []

716 waiters per dp[stats.xid] = (event, msgs)

717 self.dp.send msg(stats)

718
719 try:

720 event.wait(timeout=OFP REPLY TIMER)

721 except hub.Timeout:

722 del waiters per dp[stats.xid]

723
724 return msgs

725
726
727 @OfCtl.register of version(ofproto v1 4.OFP VERSION)
728 class OfCtl v1 4(OfCtl):
729 def init (self, dp, logger):

730 super(OfCtl v1 4 , self). init (dp, logger)

731

78

732 def add flow(self, priority , table id , match, action list=None, hard timeout=0,

idle timeout=0, command=0, cookie=0,

733 cookie mask=0):

734 datapath = self.dp

735 ofproto = datapath.ofproto

736 parser = datapath.ofproto parser

737
738 if command == 0:

739 command = ofproto.OFPFC ADD

740
741 inst = [parser.OFPInstructionActions(ofproto.OFPIT APPLY ACTIONS ,

742 action list)]

743
744 mod = parser.OFPFlowMod(datapath=datapath, priority=priority ,

745 table id=table id , match=match,

746 instructions=inst, hard timeout=hard timeout ,

747 idle timeout=idle timeout , command=command, cookie=cookie,

cookie mask=cookie mask)

748 datapath.send msg(mod)

749
750 def delete flow(self, priority , table id , match, command, cookie, cookie mask):

751 ofp = self.dp.ofproto

752 ofp parser = self.dp.ofproto parser

753
754 inst = []

755
756 flow mod = ofp parser.OFPFlowMod(self.dp, cookie, cookie mask , table id , command,

757 0, 0, priority, ofp.OFPCML NO BUFFER , ofp.OFPP ANY ,

758 ofp.OFPG ANY , 0, 0, match, inst)

759 self.dp.send msg(flow mod)

760 self.logger.info(’Delete flow [cookie=0x%x]’, cookie, extra=self.sw id)

761
762 def get all flow(self, waiters):

763 ofp = self.dp.ofproto

764 ofp parser = self.dp.ofproto parser

765
766 match = ofp parser.OFPMatch()

767 stats = ofp parser.OFPFlowStatsRequest(self.dp, 0, 0, ofp.OFPP ANY ,

768 ofp.OFPG ANY , 0, 0, match)

769 return self.send stats request(stats, waiters)

770
771 def get all port(self, waiters):

772 ofp = self.dp.ofproto

773 ofp parser = self.dp.ofproto parser

774
775 stats = ofp parser.OFPPortStatsRequest(self.dp, 0, ofp.OFPP ANY)

776 return self.send stats request(stats, waiters)

79

A. Controller

777
778 def get all flow aggregate(self, port, waiters):

779 ofp = self.dp.ofproto

780 ofp parser = self.dp.ofproto parser

781
782 match = ofp parser.OFPMatch(in port=port)

783
784 stats = ofp parser.OFPAggregateStatsRequest(self.dp, 0, ofp.OFPTT ALL ,

ofp.OFPP ANY , ofp.OFPG ANY , 0, 0, match)

785 return self.send stats request(stats, waiters)

786
787
788 def ipv4 text to int(ip text):
789 if ip text == 0:

790 return ip text

791 assert isinstance(ip text , str)

792 return struct.unpack(’!I’, addrconv.ipv4.text to bin(ip text))[0]

793
794
795 def ip addr ntoa(ip):
796 return socket.inet ntoa(addrconv.ipv4.text to bin(ip))

797
798
799 def mask ntob(mask, err msg=None):
800 try:

801 return (UINT32 MAX<< (32 − mask)) & UINT32 MAX
802 except ValueError:

803 msg = ’illegal netmask’

804 if err msg is not None:

805 msg = ’%s %s’ % (err msg , msg)

806 raise ValueError(msg)

80

B. Mitigation component

B.1. Documentation

81

Alert Handler Documentation
Release 1.0.0rc0

Alex Marczinek

Dec 11, 2016

CONTENTS:

1 Usage Documentation 1
1.1 Requirements . 1
1.2 Standalone Usage . 1
1.3 System Service . 1

2 Welcome to Mitigation’s documentation! 3

3 Usage Documentation 5
3.1 System Service . 5

4 Documented Modules 7
4.1 AlertHandler . 7
4.2 Mitigation . 8

Python Module Index 9

i

ii

CHAPTER

ONE

USAGE DOCUMENTATION

This module can be used in two ways. First, it can be run in as a standalone piece of software, described in
standalone. Further usage can happen through installing the script as a system service, more in system_service.

This module connects to a Redis Database. As Redis uses multiple channels, there can be multiple instances of
this module be runninc concurrently, listening to different channels. Messages received from the Redis channel
are then parsed and forwarded to the Mitigation module.

1.1 Requirements

Required to run this script is at least Python 3.4 and the package ‘redis’ (‘pip install redis’).

1.2 Standalone Usage

The script can be run in standalone mode using the following options:

• -l : The loglevel for the application

• -r : The IP of the Redis instance to connect to

• -p : The port of the Redis instance

• -k : The key/channel to subscribe to

• -d : The database in Redis to subscribe to, usually 0

1.3 System Service

Usage as a system service can happen, a service file for usage with systemd is provided in ./miti-ids.service and
./miti-stats.service. Copying this file to /etc/systemd/system/ enables systemd to start the script. After a ‘systemctl
daemon-reload’ it can be started with ‘systemctl start <service-name>’ and enabled at boot with ‘systemctl enable
<service-name>’.

The usage in the .service file is the same as described in standalone.

1

Alert Handler Documentation, Release 1.0.0rc0

2 Chapter 1. Usage Documentation

CHAPTER

TWO

WELCOME TO MITIGATION’S DOCUMENTATION!

3

Alert Handler Documentation, Release 1.0.0rc0

4 Chapter 2. Welcome to Mitigation’s documentation!

CHAPTER

THREE

USAGE DOCUMENTATION

This module runs as a system service, as described in system_service2.

It creates an HTTP server for a RESTFul API with the purpose of receiving the alerts from the AlertHandler

Based on these alerts a Mitigation strategy is chosen and implemented via the Northbound API of the controller.

3.1 System Service

Usage as a system service can happen, a service file for usage with systemd is provided in ./miti-mit.service.
Copying this file to /etc/systemd/system/ enables systemd to start the script. After a ‘systemctl daemon-reload’ it
can be started with ‘systemctl start miti-mit’ and enabled at boot with ‘systemctl enable miti-mit’.

5

Alert Handler Documentation, Release 1.0.0rc0

6 Chapter 3. Usage Documentation

CHAPTER

FOUR

DOCUMENTED MODULES

In the following sections, the modules contained within the AlertHandler and Mitigation project will be docu-
mented.

4.1 AlertHandler

AlertHandler.setup_redis(ip, port, key, retry=0, max_retries=30)
This will connect to a Redis instance and return the connection object.

Establishing a stable connection with a Redis instance is the goal. Therefore, the method will retry at most
max_retries times.

Parameters

• ip – The IP of the Redis server to connect to.

• port – The port on which Redis is running.

• key – The redis channel/key to subscribe the a PubSub object to.

• max_retries – The maximum number of retries after which connection attempts
will fail.

• retry – The current number of retries executed.

Returns A set of (redis_instance, pubsub)

AlertHandler.parseargs()
Parsing arguments passed

Using the built in argparse module, passed arguments are parsed. Simply calling this method is sufficient,
the results will be returned.

Returns A namespace object containing all parsed arguments

AlertHandler.parse_message(message)
This will parse the messages received from Redis.

Parses the message received from Redis and sends alert messages to the mitigation module. The alerts are
sent to http://127.0.0.1:9000/store.json

Parameters message – The message received from Redis.

AlertHandler.main()
The main method.

First, arguments passed to the system are parsed. Then, logging is set up. The connection to redis is
established by calling setup_redis() and the main event loop started.

Returns The system exit code

7

Alert Handler Documentation, Release 1.0.0rc0

4.2 Mitigation

Mitigation.main()
The main method.

Logging is setup and the HTTP server is started.

Returns The system exit code

class Mitigation.MyServer(request, client_address, server)
The HTTP Server receiving the alerts from Alert Handler

do_POST()
Handles the POST messages and passes them to mitigation

mitigate(parsed_alert: dict)
Selects a mitigation strategy based on the Signature ID from the alert.

Depending on the strategy a flow instruction is created, that is then sent to the controller via a POST
to 10.20.0.8:8080

Parameters parsed_alert – The alert from the Alert Handler as a python dictionary

Returns True if the attack was mitigated False if it could not mitigate the attack

8 Chapter 4. Documented Modules

PYTHON MODULE INDEX

a
AlertHandler, 7

m
Mitigation, 8

9

B.2. Source Code Alert Handler

B.2. Source Code Alert Handler

1 import argparse
2 import json
3 import logging
4 import sys
5 import time
6
7 import redis
8
9 from src.tools import setup logging , send post

10
11
12 def parseargs():
13 ”””Parsing arguments passed
14
15 Using the built in argparse module, passed arguments are parsed. Simply calling this

method is sufficient ,
16 the results will be returned.
17
18 :return: A namespace object containing all parsed arguments
19 ”””
20
21 loglevel = {
22 ’debug’: logging.DEBUG,

23 ’info’: logging.INFO,

24 ’warning’: logging.WARNING,

25 ’error’: logging.ERROR,

26 ’critical’: logging.CRITICAL ,

27 }
28
29 parser = argparse.ArgumentParser()

30 parser.add argument(’−l’, ’−−loglevel’, help=’Loglevels to output: debug, info,
warning, error, critical’,

31 default=’info’, choices=loglevel.keys())

32 parser.add argument(’−r’, ’−−redis’, help=’Redis instance to query for alerts’,
required=True)

33 parser.add argument(’−k’, ’−−key’, help=’Key to subscribe to in redis’,
default=’suricata’)

34 parser.add argument(’−p’, ’−−port’, help=’Port to bind to, default is 6379’,
default=6379, type=int)

35 parser.add argument(’−d’, ’−−database’, help=’Database number to subscribe to’,
default=0, type=int)

36 args = parser.parse args()

37
38 # Validating arguments

95

B. Mitigation component

39 args.loglevel = loglevel[args.loglevel]

40 return args

41
42
43 def setup redis(ip, port, key, retry=0, max retries=30):
44 ”””This will connect to a Redis instance and return the connection object.
45
46 Establishing a stable connection with a Redis instance is the goal. Therefore, the

method will retry at most
47 max retries times.
48
49 :param ip: The IP of the Redis server to connect to.
50 :param port: The port on which Redis is running.
51 :param key: The redis channel/key to subscribe the a PubSub object to.
52 :param max retries: The maximum number of retries after which connection attempts

will fail .
53 :param retry: The current number of retries executed.
54 :return: A set of (redis instance, pubsub)
55 ”””
56
57 try:

58 redInstance = redis.StrictRedis(host=ip, port=port, db=0)

59 pubsub = redInstance.pubsub()

60 pubsub.subscribe(key)

61 except redis.exceptions.ConnectionError as e:

62 if retry < max retries:

63 logging.warning("Retrying connections to database for the {} time".format(retry
+ 1))

64 time.sleep(2)

65 pubsub = setup redis(ip, port, key, retry=retry + 1)

66 else:

67 raise e

68
69 return pubsub

70
71
72 def parse message(message):
73 ”””This will parse the messages received from Redis.
74
75 Parses the message received from Redis and sends alert messages to the mitigation

module.
76 The alerts are sent to http://127.0.0.1:9000/store.json
77
78 :param message: The message received from Redis.
79 ”””
80 data = message[’data’]

81 if type(data) == int:

96

B.3. Source Code Mitigation

82 return

83
84 received json = json.loads(data.decode())

85 if received json[’event type’] == ’alert’:

86 logging.info("Received alert :\n{}".format(received json))
87 send post(received json , ’http://127.0.0.1:9000/store.json’)

88
89
90 def main():
91 ”””The main method.
92
93 First, arguments passed to the system are parsed. Then, logging is set up. The

connection to redis is established
94 by calling setup redis() and the main event loop started.
95
96 :return: The system exit code
97 ”””
98 args = parseargs()

99 setup logging(args.loglevel)

100
101 pubsub = setup redis(args.redis, args.port, args.key)

102 try:

103 while True:

104 message = pubsub.get message()

105 if message is None:

106 time.sleep(0.1)

107 else:

108 parse message(message)

109 except KeyboardInterrupt:

110 logging.info("Crtl+C Pressed. Shutting down.")

111 pubsub.close()

112 return 0

113
114
115 if name == " main ":

116 sys.exit(main())

B.3. Source Code Mitigation

1 #!/usr/bin/env python
2 import datetime
3 import sys
4 import json
5 import logging
6 import signal

97

B. Mitigation component

7
8 from http.server import BaseHTTPRequestHandler , HTTPServer
9

10 from src.tools import setup logging , send post
11
12 ETH TYPE IPv4 = 2048
13
14 IP PROTO ICMP = 1
15 IP PROTO TCP = 6
16
17 hostName = "localhost"
18 hostPort = 9000
19
20
21 class MyServer(BaseHTTPRequestHandler):
22 ”””TheHTTP Server receiving the alerts from Alert Handler”””
23 suricata alert = {}
24 stats alert = {}
25
26 def do POST(self):

27 ”””Handles the POST messages and passes them to mitigation”””
28 if self.path == ’/store.json’:

29 length = self.headers[’content−length’]
30
31 data = self.rfile.read(int(length))

32 data = data.decode()

33 print("Got message: {}".format(data))
34 received json = json.loads(data)

35
36 self.send response(200, ’OK’)

37 self.end headers()

38
39 self.mitigate(received json)

40
41 def mitigate(self, parsed alert: dict):

42 ”””Selects a mitigation strategy based on the Signature ID from the alert.
43
44 Depending on the strategy a flow instruction is created, that is then sent to the

controller via
45 a POST to 10.20.0.8:8080
46
47 :param parsed alert: The alert from the Alert Handler as a python dictionary
48 :return: True if the attack was mitigated False if it could not mitigate the attack
49 ”””
50
51 assert type(parsed alert) == dict

52 alert = parsed alert[’alert’]

98

B.3. Source Code Mitigation

53 sid = str(alert.get(’signature id’, "0"))

54 try:

55 if sid == "10000001" or sid == "10000002":

56 #ICMP
57 return "ICMP: do nothing"

58 elif sid == "10000003":

59 logging.info(’TCP SYN Flood Attack detected’)

60 # Parameters:
61 hard timeout = 20

62 #SYN Flood
63 src = parsed alert["src ip"]

64 dst = parsed alert["dest ip"]

65 match = dict()

66 match[’ipv4 src’] = src

67 match[’eth type’] = ETH TYPE IPv4

68 match[’ipv4 dst’] = dst

69 match[’ip proto’] = IP PROTO TCP

70 data = dict()

71 data[’cmd’] = ’OFPFC ADD’

72 data[’hard timeout’] = hard timeout

73 data[’match’] = match

74 post result = send post(data, ’http://10.20.0.8:8080/switch/all’)

75 logging.info(

76 ’Handled SYN Flood (Target: {dst}, Attacker: {src}): Drop packets for
{timeout}s. [{post}]’.format(

77 dst=dst, src=src, timeout=hard timeout , post=post result))

78 return True

79 elif sid == "10000004":

80 if ’host’ in parsed alert and parsed alert[’host’] == "monitoring":

81 # Alert from Suricata
82 self.suricata alert[’timestamp’] = parsed alert[’timestamp’]

83 self.suricata alert[’dest ip’] = parsed alert[’dest ip’]

84 self.suricata alert[’dest port’] = parsed alert[’dest port’]

85 elif ’sensor’ in parsed alert and parsed alert[’sensor’] == "statshandler":

86 # Alert from Statistical Monitoring
87 self.stats alert[’timestamp’] = parsed alert[’timestamp’]

88 self.stats alert[’switch’] = parsed alert[’switch’]

89 self.stats alert[’port’] = parsed alert[’port’]

90 else:

91 logging.error(’Unknown Alert Source’)

92 return False

93
94 if ’timestamp’ in self.suricata alert and ’timestamp’ in self.stats alert:

95 logging.info(’Found possible DDoS Syn Attack’)

96 time suricata = datetime.datetime.strptime(self.suricata alert[’timestamp’],

97 "%Y−%m−%dT%H:%M:%S.%f%z")

99

B. Mitigation component

98 time stats = datetime.datetime.strptime(self.stats alert[’timestamp’],

"%Y−%m−%dT%H:%M:%S.%f%z")
99 time delta = abs((time suricata − time stats).total seconds())

100 logging.debug("Having a timedelta of {} seconds".format(time delta))
101 if time delta < 5:

102 # Parameters:
103 hard timeout = 20

104 #SYN Flood
105 switch = self.stats alert[’switch’]

106 port = self.stats alert[’port’]

107 dest ip = self.suricata alert[’dest ip’]

108 dest port = self.suricata alert[’dest port’]

109 match = dict()

110 match[’tcp dst’] = int(dest port)

111 match[’eth type’] = ETH TYPE IPv4

112 match[’ipv4 dst’] = dest ip

113 match[’ip proto’] = IP PROTO TCP

114 match[’in port’] = int(port)

115 data = dict()

116 data[’cmd’] = ’OFPFC ADD’

117 data[’hard timeout’] = hard timeout

118 data[’match’] = match

119 post result = send post(data, ’http://10.20.0.8:8080/switch/’ + switch)

120 logging.info(’Handled Distributed SYN Flood (Target: {dst}, Port:
{dst port}):’ \

121 ’ Drop packets on port {port} on switch{switch} for {timeout}s.
[{post}]’ \

122 .format(dst=dest ip , dst port=dest port , port=port, switch=switch,

123 timeout=hard timeout , post=post result))

124 return True

125 #DDoS Syn Flood
126 return True

127 elif sid == "10000005":

128 # Flow flood mitigation
129 logging.info(’Flow Flood Attack detected’)

130 # Parameters:
131 hard timeout = 20

132 #SYN Flood
133 switch = parsed alert[’switch id’]

134 port = parsed alert[’bad port’]

135 match = dict()

136 match[’in port’] = int(port)

137 data = dict()

138 data[’cmd’] = ’OFPFC ADD’

139 data[’hard timeout’] = hard timeout

140 data[’match’] = match

141 data[’cookie’] = 0x0000000000000001

100

B.3. Source Code Mitigation

142 data[’cookie mask’] = 0x000000000000000f

143 post result = send post(data, ’http://10.20.0.8:8080/switch/’ + switch)

144 # Delete malicious flow entries
145 data[’cmd’] = ’OFPFC DELETE’

146 data[’cookie’] = 0x0000000000000000

147 data[’cookie mask’] = 0x000000000000000f

148 post result2 = send post(data, ’http://10.20.0.8:8080/switch/’ + switch)

149 logging.info(’Handled Flow Flood:’ \
150 ’ Drop packets {match} on port {port} on switch {switch} for

{timeout}s. [{post}]’ \
151 .format(match=match, port=port, switch=switch,

152 timeout=hard timeout , post=post result))

153 logging.info(’Handled Flow Flood:’ \
154 ’ Delete Flows on port {port} on switch {switch} for {timeout}s.

[{post}]’ \
155 .format(port=port, switch=switch,

156 timeout=hard timeout , post=post result2))

157 return True

158 elif sid == "20000001":

159 # Test for statistical monitoring module
160 logging.info("Statistical Test: do nothing")

161 return False

162 else:

163 logging.error("SignatureID: {} is not handled".format(sid))
164 return False

165 except LookupError as e:

166 return e.args

167
168
169 def main():
170 ”””The main method.
171
172 Logging is setup and the HTTP server is started.
173
174 :return: The system exit code
175 ”””
176 signal.signal(signal.SIGTERM, signal term handler)

177 setup logging(logging.INFO)

178 myServer = HTTPServer((hostName , hostPort), MyServer)

179 logging.info(’Server starting bound to {}:{}’.format(hostName, hostPort))
180 try:

181 myServer.serve forever()

182 except KeyboardInterrupt:

183 shutdown()

184 return 0

185
186

101

B. Mitigation component

187 def shutdown():
188 myServer.server close()

189 logging.info(’Server shut down’)

190 sys.exit(0)

191
192
193 def signal term handler(signal, frame):
194 shutdown()

195
196
197 if name == ’ main ’:

198 sys.exit(main())

102

C. StatsHandler Documentation

103

Statshandler Documentation
Release 1.0.0rc0

Christoph Girstenbrei

Dec 11, 2016

CONTENTS:

1 Usage Documentation 1
1.1 Requirements . 1
1.2 Standalone Usage . 1
1.3 System Service . 1

2 Development Guide 3
2.1 New Analyzer . 3

3 Documented Modules 5
3.1 Statshandler . 5
3.2 src.Monitoring . 6
3.3 src.Analyzers . 6
3.4 src.redis . 8

Python Module Index 11

i

ii

CHAPTER

ONE

USAGE DOCUMENTATION

This module can be used in two ways. First, it can be run in as a standalone piece of software, described in
standalone. Further usage can happen through installing the script as a system service, more in system_service.

1.1 Requirements

Required to run this script is at least Python 3.4 and the package ‘redis’ (‘pip install redis’).

1.2 Standalone Usage

The script can be run in standalone mode using the following options:

• -r : The IP of the Redis instance to connect to

• -p : The port of the Redis instance

• -k : The key/channel to subscribe to

• -d : The database in Redis to subscribe to, usually 0

• -a : The critical value (int) when to alert if a port surpasses this in transmitting packages

• -e : Ports not to alert on, usefull for backbone ports transmitting lots of data

• -s : Switch, if statistics should be sent to Redis or not

If the statistics data is published to the Redis channel ‘switch-stats’, running the script can be as ease as running:
./StatsHandler.py -r <IP>

1.3 System Service

Usage as a system service can happen, a service file for usage with systemd is provided in ./statshandler.service.
Copying this file to /etc/systemd/system/statshandler.service enables systemd to start the script. After a ‘systemctl
daemon-reload’ it can be started with ‘systemctl start statshandler’ and enabled at boot with ‘systemctl enable
statshandler’.

The usage in the .service file is the same as described in standalone.

1

Statshandler Documentation, Release 1.0.0rc0

2 Chapter 1. Usage Documentation

CHAPTER

TWO

DEVELOPMENT GUIDE

This software is written with extensibility in mind. It tries to follow the Single Responsibility Principle (Robert
C. Martin) and making it easy, to develop e.g. a new analyzer for a piece of statistics.

After finishing the setup process, there are three main phases to Statshandler. Receiving and preprocessing mes-
sages into available in-memory data. After that, the analysis phase takes place. At last, alerts generated are
published. There is an optional forth phase, in which statistics are published to Redis, too.

2.1 New Analyzer

The main extension capability is in the analysis phase, providing a new analyzer to be able to find new attacks.

To develop a new analyzer, it can be added to the src.Analyzer module. It must inherit from
src.Analyzer.BaseAnalyzer and build on that. There are three necessary steps in the subclass: - set an alerting
function while calling the __init__ method of the superclass - override the analyze method with a custom one -
Adding the class to Statshandler.initiate:to_initiate

Setting the alerting function can be done like this: super(MyAnalyzer, self).__init__(alerter=self._alert_limiter,
limit=limit) There are three different alering functions implemented at the moment, each requiring their own set
of arguments. These are specified in their method documentation.

All analyzers are initiated at startup. Therefore, the new analyzer has to be added to the list Statshan-
dler.initiate:to_initiate with the following Syntax: [(MyAnalyzer, (argument1,)), ...]. Then, a analyzer will
be instantiated during startup with the arguments provided in the argument set.

All analyzing logic has to start in the analyze method, as it is called automatically by the rest of the program while
running in the mainloop.

3

Statshandler Documentation, Release 1.0.0rc0

4 Chapter 2. Development Guide

CHAPTER

THREE

DOCUMENTED MODULES

In the following sections, the modules contained within the Statshandler project will be documented.

3.1 Statshandler

StatsHandler.setup_logging(loglevel, set_streamhandler=True)
Set up basic logging functionality.

This method sets up default logging facilities using the built in logging module. A default loglevel can be
set, and the decision whether to log to a file switched on and of.

Parameters

• loglevel – The loglevel that will end up in the outputed logs

• set_streamhandler – If set, a file will be created named
/var/log/statshandler/statshandler.log

StatsHandler.parseargs()
Parsing arguments passed

Using the built in argparse module, passed arguments are parsed. Simply calling this method is sufficient,
the results will be returned.

Returns A namespace object containing all parsed arguments

StatsHandler.mainloop(pubsub, redis_instance, redis_channel, gather_stats, analyzers)
The main event loop

Parameters

• pubsub – The redis publish-subscribe object from setup_redis.

• redis_instance – The redis instance itself.

• redis_channel – The redis channel/key to publish to

• gather_stats – A boolean whether to gather statistics or not

• analyzers – A list of instantiated analyzers being derivatives from Analyz-
ers.BaseAnalyzer

StatsHandler.main()
The main method.

First, arguments passed to the system are parsed. Then, logging is set up. The connection to redis is
established by calling setup_redis() and the main event loop started.

Returns The system exit code

5

Statshandler Documentation, Release 1.0.0rc0

3.2 src.Monitoring

src.Monitoring.analyze(statistics, analyzers)
Analyzing the provided stats to alert on.

Parameters

• statistics – The data in a dictionary to analyze

• analyzers – A list of tripples in the following format: (analyzer: callable, arguments:
list, filter: str)

Returns A list of alerts to publish

src.Monitoring.collect_port_stats(statistics)
Gathering statistics about OVS ports.

Parameters statistics – A dictionary to fetch statistics from.

Returns A list of statistics gathered.

src.Monitoring.collect_portaggregate_stats(statistics)
Gathering statistics on flows used on ports.

Parameters statistics – A dictionary to fetch statistics from.

Returns A list of statistics gathered.

src.Monitoring.collect_stats(statistics, collectors)
Applying a list of callable collectors to the statistics message.

Parameters

• statistics – A dictionary of received statistics.

• collectors – A list of callables in the format [(callable, (argument1,),filter), ...].

Returns A list of statistics gathered.

3.3 src.Analyzers

All available analyzers are shown here.

First, a base class is provided to give other analyzers a standardize whay of checking for setting up an alerting
mechanism and generating alert messages.

class src.Analyzers.BaseAnalyzer(alerter, **alerter_setup)

__init__(alerter, **alerter_setup)
A basis for other analyzers to inherit from.

Providing three different alerting methods, namely a limit, a range and a standard deviation, all sub-
classes can use this reference implementation.

Parameters

• alerter – choose an alerting method like self._alert_limiter,For a chosen alerter,
additional values have to be set. These are specified in their method documentation.

• alerter_setup – additional arguments needed to set up the alerter. These differ
for alerters and are specified in their method documentation.

_alert_limiter(value)
Generating an alert by comparing to a simple limit.

Necessary to use this alerter is to specify a limit when instantiating the class by providing the con-
structor with limit=<n>.

6 Chapter 3. Documented Modules

Statshandler Documentation, Release 1.0.0rc0

As called, an alert is generated if value is smaller than self.limit. Internally, this reverts to the range
alerter, as a limit can be expressed with a bottom value of - infinity and a top value of limit.

Parameters value – The newest value.

Returns True, if an alert is necessary.

_alert_range(value)
Generating an alert by comparing value to a given range of valid data.

Necessary to use this alerter is to specify a top and bottom limit when instantiating the class. This is
done by providing the constructor with top=<n> and bottom=<m>; n and m have to be floats.

This alerts, if value is _not_ inside the range. If value is either supremum or infimum of the range, no
alert is generated. For example, let value = 5.0. For bottom = 4.0 and top = 5.0, no alert is generated.
If value changes to 5.1, an alert is generated.

Parameters value (float) – The new value to compare against.

Returns True, if value not in [bottom, ..., top]

_alert_standard_dev(new_value)
Generating an alert by checking against a range based on the standard deviation.

Necessary to use this alerter is to specify last_n values and a multiplier. Last_n must be an integer
and is used to determine, how many last values to keep. A range is then determined by computing
the mean of this n last values. Adding and subtracting the standard deviation of the list of last values
multiplied by the set multiplier gives a range of mean +- (m * standard_dev). A new value is only
added to the list of last values, if it does not generate an alert.

Parameters new_value – The newest value to check against.

Returns True, if new_value is not in mean +- (m * standard_dev).

analyze(new_statistics)
The analyze method to be overridden by all subclasses.

This method is called by the program logic, to get a list of alerts back if any are present. It _needs_ to
be overriden in all subclasses.

Parameters new_statistics – The newest statistics gathered as a dictionary.

Returns A list of alerts.

generate_alert_message(signature_id, additional_info={})
Base method to generate alert messages

A signature is the minimum necessary to be able to identify an alert. Additional information can be
passed as a dictionary to be merged into the alert message returned.

Parameters

• signature_id – An ID to identify the alert.

• additional_info – A dictionary of additional information.

Returns A combined alert message ready to be used in the output phase.

class src.Analyzers.PortsAnalyzer(limit, excluded_ports=[])

__init__(limit, excluded_ports=[])
This analyzer can handle single port statistics using a limit as alerter.

Parameters

• limit – The limit to alert on.

• excluded_ports – A list of ports not to produce alerts for.

3.3. src.Analyzers 7

Statshandler Documentation, Release 1.0.0rc0

analyze(new_statistics)
Single port statistics are analysed here.

For every switch and every port, statistics are gathered and alerts generated if a port surpasses the
limit value with its rx_packets_delta. This is counting packets received by each port, even if no flow
matched against them or a flow matched, but they were dropped.

Parameters new_statistics – The collected statistics on one Port.

class src.Analyzers.PortAggregateAnalyzer(limit)

__init__(limit)
This analyzer can handler aggregated statistics combining port and flow information based on a limiter.

Parameters limit – The limit to alert on.

analyze(new_statistics)
Aggregated port statistics about used flows per port are analysed here.

For every switch and every port on them the limit value is checked against the flow_count usage of
this port.

Parameters new_statistics – The dictionary containing raw statistics.

3.4 src.redis

src.redis.setup_redis(ip, port, key, max_retries=30, retry=0)
This will connect to a Redis instance and return the connection object.

Establishing a stable connection with a Redis instance is the goal. Therefore, the method will retry at most
max_retries times.

Parameters

• ip – The IP of the Redis server to connect to.

• port – The port on which Redis is running.

• key – The redis channel/key to subscribe the a PubSub object to.

• max_retries – The maximum number of retries after which connection attempts
will fail.

• retry – The current number of retries executed.

Returns A set of (redis_instance, pubsub)

src.redis._fetch_message(pubsub)
Fetching a single message from redis.

This fetches a single message and ensures, it has a valid data field.

Parameters pubsub – The pubsub object created by setup_redis to fetch the message from.

Returns A complete and data filled message.

Return type Python dict

src.redis._parse_message(message)
Parsing a message to get its valuable parts.

A message received from Redis contains information in json format and metadata from Redis, extracting
the data is done here.

Parameters message – Raw message received from redis.

Returns A dictionary containing parsed data

8 Chapter 3. Documented Modules

Statshandler Documentation, Release 1.0.0rc0

src.redis.get_statistics(pubsub)
Returning a fully processed Redis message.

Parameters pubsub – The pubsub object created by setup_redis to fetch the message from.

Returns A received and parsed message.

src.redis.publish_messages(messages, redis_instance, channel)
Publish a list of messages via Redis.

Parameters

• messages – A list of json-dumpable messages to send.

• redis_instance – The instance to publish the messages to.

• channel – The Redis channel to publish to.

Returns

3.4. src.redis 9

Statshandler Documentation, Release 1.0.0rc0

10 Chapter 3. Documented Modules

PYTHON MODULE INDEX

s
src.Analyzers, 6
src.Monitoring, 6
src.redis, 8
StatsHandler, 5

11

D. SynFlood Documentation

119

SynFlood Documentation
Release 1.0.0rc0

Christoph Girstenbrei

Dec 09, 2016

CONTENTS:

1 Usage Documentation 1
1.1 Requirements . 1
1.2 Usage . 1

2 Documented Modules 3
2.1 SynFlood . 3

Python Module Index 5

i

ii

CHAPTER

ONE

USAGE DOCUMENTATION

This script is intended to be used as a testing tool to perform SYN flood attacks against a known host.

1.1 Requirements

Required to run this script is at least Python 3.4.

1.2 Usage

The script can be run in standalone mode using the following options:

• -l : Setting the loglevel to one of {critical,warning,error,debug,info}

• -s : The source IP address to use or ‘r’ for random to spoof the address

• -t : The target IP address to attack

• -p : The source TCP port to use or ‘r’ for random to switch TCP port for every connection

• -P : The destination TCP port to use or ‘r’ for random to switch TCP port for every connection

• -n : The number of packages to send to the target

• -w : The wait period in between packages in milliseconds

To attack a <target> IP with 1000000 packages from different TCP source ports to TCP port 80, the following can be
used: ./SynFlood.py -s r -t <target> -n 1000000 -p r -P 80

1

SynFlood Documentation, Release 1.0.0rc0

2 Chapter 1. Usage Documentation

CHAPTER

TWO

DOCUMENTED MODULES

In the following sections, the modules contained within the SynFlood project will be documented.

2.1 SynFlood

This software is based on a script developed by Silver Moon. The following is the original copyright message:

Syn flood program in python using raw sockets (Linux)

Silver Moon (m00n.silv3r@gmail.com) source is http://www.binarytides.com/
python-syn-flood-program-raw-sockets-linux/

SynFlood.parseargs()
Parsing arguments passed

Using the built in argparse module, passed arguments are parsed. Simply calling this method is sufficient, the
results will be returned.

Returns A namespace object containing all parsed arguments

3

SynFlood Documentation, Release 1.0.0rc0

4 Chapter 2. Documented Modules

PYTHON MODULE INDEX

s
SynFlood, 3

5

E. FlowFlood Documentation

129

FlowFlood Documentation
Release 1.0.0rc0

Christoph Girstenbrei

Dec 09, 2016

CONTENTS:

1 Usage Documentation 1
1.1 Requirements . 1
1.2 Usage . 1

2 Documented Modules 3
2.1 FlowFlood . 3
2.2 src.netio . 4

Python Module Index 5

i

ii

CHAPTER

ONE

USAGE DOCUMENTATION

This script is intended to perform attacks in an SDN environment. It generates Flows in a MAC-learning SDN switch
by performing a TCP handshake and sending a package back and forth.

1.1 Requirements

Required to run this script is at least Python 3.4.

1.2 Usage

The script can be run in standalone mode using the following options:

• -l : Setting a loglevel from one of {info,debug,error,critical,warning}

• -m : Running in master mode.

The simplest setup is having one instance running with -m as master and one without.

1

FlowFlood Documentation, Release 1.0.0rc0

2 Chapter 1. Usage Documentation

CHAPTER

TWO

DOCUMENTED MODULES

In the following sections, the modules contained within the Statshandler project will be documented.

2.1 FlowFlood

FlowFlood.setup_logging(loglevel, set_streamhandler=True)
Set up basic logging functionality.

This method sets up default logging facilities using the built in logging module. A default loglevel can be set,
and the decision whether to log to a file switched on and of.

Parameters

• loglevel – The loglevel that will end up in the outputed logs

• set_streamhandler – If set, a file will be created named
/var/log/statshandler/statshandler.log

FlowFlood.parseargs()
Parsing arguments passed

Using the built in argparse module, passed arguments are parsed. Simply calling this method is sufficient, the
results will be returned.

Returns A namespace object containing all parsed arguments

FlowFlood.mainloop(args)
The main event loop.

If this is running as the master, the MAC address is changed, a socket set up and a connection is waited for. As
a connection is established, one package is received and one sent.

If this is running in slave mode, connection to master is attempted. On success, a package is sent and one
received.

Parameters args – Argumentes passed to the script.

FlowFlood.main()
The main method.

First, arguments passed to the system are parsed. Then, logging is set up. The mainloop is then started, to run
until keyboard interrupt.

Returns The system exit code

3

FlowFlood Documentation, Release 1.0.0rc0

2.2 src.netio

src.netio.setup_socket()
Creating a TCP socket.

Returns A TCP socket.

src.netio.rand_mac()
Generating a random MAC address in private MAC address space.

Returns The random MAC as a string.

src.netio.change_hwaddr(interface=’eth1’)
Changing the MAC on interface.

Parameters interface – The one to change the MAC on.

src.netio.setup_socket_master(src_ip)
Setting up a server socket.

This sets up a server socket listening on address src_ip and a random port.

Parameters src_ip – The ip to bind to.

Returns A server socket.

src.netio.yld_port()
To generate a series of random ports, this returns a generator.

Returns A generator object returning ints from 1025 to 32768

src.netio.next_port()
Giving back the next port as an integer.

Returns Integer form 1025 to 32768.

src.netio.stable_connect(sock, dst_ip, dst_port)
Establishing a tcp connection to dst_ip.

This method tries to connect to a TCP socket, catching many exceptions possibly occuring during this operations.

Parameters

• sock – The socket to use to connect via.

• dst_ip – The IP to connect to.

• dst_port – The port to connect to.

src.netio.clear_arp(ip)
Clearing the arp cache of the host.

Parameters ip – IP that gets deleted

Returns The return code of the arp clearing command

4 Chapter 2. Documented Modules

PYTHON MODULE INDEX

f
FlowFlood, 3

s
src.netio, 4

5

F. VM Vagrant File

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3
4 # All Vagrant configuration is done below. The "2" in Vagrant.configure

5 # configures the configuration version (we support older styles for

6 # backwards compatibility). Please don ’t change it unless you know what

7 # you ’re doing.

8 Vagrant.configure (2) do |config|

9 # The most common configuration options are documented and commented below.

10 # For a complete reference , please see the online documentation at

11 # https :// docs.vagrantup.com.

12
13 # Every Vagrant development environment requires a box. You can search for

14 # boxes at https :// atlas.hashicorp.com/search.

15 config.vm.box = "bento/ubuntu -16.04"

16 config.vm.box_version = "2.2.9"

17 #config.vm.synced_folder ".", "/ vagrant"

18
19 # Disable automatic box update checking. If you disable this , then

20 # boxes will only be checked for updates when the user runs

21 # ‘vagrant box outdated ‘. This is not recommended.

22 config.vm.box_check_update = false

23
24 # Create a forwarded port mapping which allows access to a specific port

25 # within the machine from a port on the host machine. In the example below ,

26 # accessing "localhost :8080" will access port 80 on the guest machine.

27 #config.vm.network "forwarded_port", guest: 80, host: 8080

28 #config.vm.network "forwarded_port", guest: 81, host: 8081

29
30 # Create a private network , which allows host -only access to the machine

31 # using a specific IP.

32 config.vm.network "private_network", ip: "192.168.33.10"

33
34 # Create a public network , which generally matched to bridged network.

35 # Bridged networks make the machine appear as another physical device on

36 # your network.

37 # config.vm.network "public_network"

38
39 # Share an additional folder to the guest VM. The first argument is

40 # the path on the host to the actual folder. The second argument is

41 # the path on the guest to mount the folder. And the optional third

42 # argument is a set of non -required options.

43 # config.vm.synced_folder "../ data", "/ vagrant_data"

44 config.vm.synced_folder ".", "/ vagrant"

45
46 # Provider -specific configuration so you can fine -tune various

47 # backing providers for Vagrant. These expose provider -specific options.

48 # Example for VirtualBox:

49 #

50 config.vm.provider "virtualbox" do |vb|

51 # Display the VirtualBox GUI when booting the machine

52 # vb.gui = true

53 #

54 # # Customize the amount of memory on the VM:

55 vb.cpus = 12

56 vb.memory = "8192"

139

F. VM Vagrant File

57 end

58 #

59 # View the documentation for the provider you are using for more

60 # information on available options.

61
62 # Define a Vagrant Push strategy for pushing to Atlas. Other push strategies

63 # such as FTP and Heroku are also available. See the documentation at

64 # https :// docs.vagrantup.com/v2/push/atlas.html for more information.

65 # config.push.define "atlas" do |push|

66 # push.app = "YOUR_ATLAS_USERNAME/YOUR_APPLICATION_NAME"

67 # end

68
69 # Enable provisioning with a shell script. Additional provisioners such as

70 # Puppet , Chef , Ansible , Salt , and Docker are also available. Please see the

71 # documentation for more information about their specific syntax and use.

72 config.vm.provision "shell", inline: <<-SHELL

73
74 PURPLE = ’\033[0;35m’

75 NC= ’\033[0m’ # No Color

76 # Update system

77 printf "${PURPLE}|---------- Updating ---------|${NC}"

78
79 sudo timedatectl set -timezone Europe/Berlin

80 sudo cp /vagrant/sources_pre.list /etc/apt/sources.list

81 sudo apt -mark hold grub -pc

82 sudo apt -get update

83 sudo apt -get upgrade -y

84 sudo apt -get install -y -q tmux vim htop tofrodos curl

85 sudo apt -get install -y -q lxc

86
87 # Install OpenvSwitch

88 sudo apt -get install -y -q openvswitch -switch

89
90 # Install Vagrant

91 printf "${PURPLE}|---------- Installing Vagrant ---------|${NC}"

92 /vagrant/load_vagrant.sh

93 sudo dpkg -i vagrant_1 .8.5 _x86_64.deb

94 sudo vagrant plugin install vagrant -lxc

95
96 # Loading Cache

97 /vagrant/load_cache.sh

98
99 # Adding bridge to ovs

100 printf "${PURPLE}|---------- Adding ovs bridge ---------|${NC}"

101 sudo ovs -vsctl add -br switch0

102 sudo ovs -vsctl add -br switch1

103 sudo ovs -vsctl add -br switch -private

104
105 #Create Patch between switch0 and switch1

106 printf "${PURPLE}|---------- Patching switches ---------|${NC}"

107 sudo ovs -vsctl add -port switch0 patch0 -1 -- set interface patch0 -1 type=patch

options:peer=patch1 -0

108 sudo ovs -vsctl add -port switch1 patch1 -0 -- set interface patch1 -0 type=patch

options:peer=patch0 -1

109
110 # Adding veth -pair

111 printf "${PURPLE}|---------- Adding veth -pair ---------|${NC}"

112 ip link add ovs -acc type veth peer name ovs -ins

113 ip link add ovs -acc -priv type veth peer name ovs -ins -priv

114
115 # Setting up outside port

116 printf "${PURPLE}|---------- Outside Port ---------|${NC}"

117 ifconfig ovs -acc 10.10.10.10/16

118 ifconfig ovs -acc -priv 10.20.0.10/16

119 ifconfig ovs -acc up

120 ifconfig ovs -acc -priv up

140

121
122 # Setting up inside port

123 printf "${PURPLE}|---------- Inside Port ---------|${NC}"

124 ovs -vsctl add -port switch0 ovs -ins

125 ovs -vsctl add -port switch -private ovs -ins -priv

126 ifconfig ovs -ins up

127 ifconfig ovs -ins -priv up

128
129 # Allow access from internal network to external

130 printf "${PURPLE}|---------- IpTables -> Inet ---------|${NC}"

131 sudo iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE

132
133 #Connect eth0 to port and configure dhclient

134 printf "${PURPLE}|---------- Set OVS Version ---------|${NC}"

135 ovs -vsctl set bridge switch0

protocols=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13 ,OpenFlow14 ,OpenFlow15

136 ovs -vsctl set bridge switch1

protocols=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13 ,OpenFlow14 ,OpenFlow15

137 ovs -vsctl set bridge switch -private

protocols=OpenFlow10 ,OpenFlow11 ,OpenFlow12 ,OpenFlow13 ,OpenFlow14 ,OpenFlow15

138
139
140 # Copying the lxc -configs

141 printf "${PURPLE}|---------- Copy lxc configs via unison ---------|${NC}"

142 mkdir lxcs

143 cp -r /vagrant/lxcs/* lxcs

144
145 # Copy files to unix

146 printf "${PURPLE}|---------- Chmod files ---------|${NC}"

147 sudo su

148 cd /home/vagrant/lxcs/

149 chmod +x ifup ifdown lxc.conf ifup1 ifdown1

150 chmod +x /home/vagrant/lxcs/

151
152 printf "${PURPLE}|---------- Converting files ---------|${NC}"

153 fromdos -v ifup ifdown lxc.conf ifup1 ifdown1 ifup -private ifdown -private

test -main.sh main/resolv.conf

154 find . -name "*.sh" | xargs fromdos -v

155 find . -name "*. yaml" | xargs fromdos -v

156 find . -name "*. rules" | xargs fromdos -v

157 cp lxc.conf /etc/init/

158
159 # Starting Vagrant container

160 printf "${PURPLE}|---------- Starting container ---------|${NC}"

161 cd /home/vagrant/lxcs/main

162 sudo vagrant up dns redis

163 sudo vagrant up

164
165 # Forward Ports

166 printf "${PURPLE}|---------- Forward Ports ---------|${NC}"

167
168 ip= ’10.20.0.9 ’

169 # Grafana

170 iptables -t nat -A PREROUTING -i enp0s8 -p tcp --dport 80 -j DNAT --to $ip :3000

171 # Kibana

172 iptables -t nat -A PREROUTING -i enp0s8 -p tcp --dport 81 -j DNAT --to $ip:80

173 # Flooding Port

174 iptables -t nat -A PREROUTING -i enp0s8 -p tcp --dport 1234 -j DNAT --to

10.10.10.4:80

175
176 # Setting controller

177 printf "${PURPLE}|---------- Setting OVS controller ---------|${NC}"

178 sudo ovs -vsctl set -controller switch0 tcp :10.10.10.8:6633

179 sudo ovs -vsctl set -controller switch1 tcp :10.10.10.8:6633

180
181 # Install monitoring

141

F. VM Vagrant File

182 wget -qO - https :// artifacts.elastic.co/GPG -KEY -elasticsearch | sudo apt -key

add -

183 sudo apt -get install -y apt -transport -https

184 echo "deb https :// artifacts.elastic.co/packages /5.x/apt stable main" | sudo tee

-a /etc/apt/sources.list.d/elastic -5.x.list

185 sudo apt -get update && sudo apt -get install metricbeat

186 cp /vagrant/lxcs/main/metricbeat.yml /etc/metricbeat/

187 systemctl start metricbeat

188 systemctl enable metricbeat

189
190 # Disable Standalone mode

191 #sudo ovs -vsctl set -fail -mode switch0 secure

192 #sudo ovs -vsctl set -fail -mode switch1 secure

193
194 # Limit the size of the flow table

195 sudo ovs -vsctl -- --id=@ft create Flow_Table flow_limit =200

overflow_policy=refuse -- set Bridge switch0 flow_tables =0=@ft

196 sudo ovs -vsctl -- --id=@ft create Flow_Table flow_limit =200

overflow_policy=refuse -- set Bridge switch1 flow_tables =0=@ft

197
198 # Deactivating default LXC -bridge

199 sudo ifconfig lxcbr0 down

200 #sudo brctl delbr lxcbr0

201
202 # Activating file sync

203 sudo chmod a+rx /home/vagrant/lxcs/sync -files.sh

204 sudo cp /home/vagrant/lxcs/sync -files.service /etc/systemd/system/

205 sudo systemctl daemon -reload

206 sudo systemctl enable sync -files

207 sudo systemctl start sync -files

208
209 # Deactivating syn cookies

210 sudo sysctl -w net.ipv4.tcp_syncookies =0

211 sudo systemctl restart networking

212
213 # Saving Cache

214 /vagrant/save_cache.sh

215
216 /home/vagrant/lxcs/test -main.sh

217
218 printf "Machine deployed ."

219
220 SHELL

221 end

142

G. LXCs Vagrant File

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3
4 # IP-Table #

5 # DNS | 10.0.3.61 , 10.10.10.2

6 # attackone | 10.0.3.68 , 10.10.10.3

7 # Manager | 10.0.3.14 , 10.10.10.8 , 10.20.0.8

8 # Mitigation | 10.0.3.187 , 10.20.0.7

9 # Monitoring | 10.0.3.119 , 10.10.10.5 , 10.20.0.5

10 # Redis | 10.0.3.245 , 10.20.0.6

11 # Target | 10.0.3.162 , 10.10.10.4

12 # ELK | 10.20.0.9

13
14
15
16 Vagrant.configure ("2") do |config|

17
18 config.vm.define "dns" do |dns|

19 dns.vm.hostname = "dns"

20 dns.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

21
22 dns.vm.provider :lxc do |lxc , override|

23 lxc.container_name = "dns"

24 lxc.customize ’start.auto ’, ’1’

25 lxc.customize ’start.delay ’, ’3’

26 lxc.customize ’network.type ’, ’veth ’

27 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup1 ’

28 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown1 ’

29 lxc.customize ’network.veth.pair ’, ’dns1eth1 ’

30 lxc.customize ’network.flags ’, ’up’

31 lxc.customize ’network.ipv4 ’, ’10.10.10.2/16 ’

32 lxc.customize ’group ’, ’onboot ’

33 lxc.customize ’cgroup.cpuset.cpus ’, ’0’

34 end

35
36 dns.vm.provision "shell", inline: <<-SHELL

37
38 # Custom configuration here!

39 sudo timedatectl set -timezone Europe/Berlin

40 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

41 ip route de default

42 ip route add default via 10.10.10.10

43 ping -c 2 8.8.8.8

44 ping -c 2 www.google.de

45 sudo apt -get update

46 sudo apt -get install -y bind9 dnsutils

47 sudo sed -i ’s|nameserver 8.8.8.8| nameserver 10.10.10.2| ’ /etc/resolv.conf

48 sudo cp -f /vagrant/dns/named.conf.options /etc/bind

49 sudo cp -f /vagrant/dns/named.conf.local /etc/bind

50 sudo mkdir /etc/bind/zones

51 sudo cp /vagrant/dns/db.sdn.local /etc/bind/zones

52 sudo cp /vagrant/dns/db .10.10.10 /etc/bind/zones

53 sudo systemctl start bind9

54 SHELL

55 end

56

143

G. LXCs Vagrant File

57 config.vm.define "target" do |target|

58 target.vm.hostname = "target"

59 target.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

60
61 target.vm.provider :lxc do |lxc , override|

62 lxc.container_name = "target"

63 lxc.customize ’start.auto ’, ’1’

64 lxc.customize ’start.delay ’, ’3’

65 lxc.customize ’network.type ’, ’veth ’

66 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup1 ’

67 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown1 ’

68 lxc.customize ’network.veth.pair ’, ’target1eth1 ’

69 lxc.customize ’network.flags ’, ’up’

70 lxc.customize ’network.ipv4 ’, ’10.10.10.4/16 ’

71 lxc.customize ’group ’, ’onboot ’

72 lxc.customize ’cgroup.cpuset.cpus ’, ’1’

73 end

74
75 target.vm.provision "shell", inline: <<-SHELL

76
77 # Custom configuration here!

78 sudo timedatectl set -timezone Europe/Berlin

79 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

80 ip route de default

81 ip route add default via 10.10.10.10

82 ping -c 2 8.8.8.8

83 ping -c 2 www.google.de

84 sudo apt -get install -y -q tcpdump iperf

85 cp /vagrant/resolv.conf /etc

86 sudo apt -get update

87 sudo apt -get install -y nginx

88 sudo systemctl enable nginx

89 sudo systemctl start nginx

90 sudo cp /vagrant/target/BA.mp4 /var/www/html

91 sudo cp /vagrant/target/index.nginx -debian.html /var/www/html

92
93 SHELL

94 end

95
96 config.vm.define "attackone" do |attackone|

97 attackone.vm.hostname = "attackone"

98 attackone.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

99
100 attackone.vm.provider :lxc do |lxc , override|

101 lxc.container_name = "attackone"

102 lxc.customize ’start.auto ’, ’1’

103 lxc.customize ’start.delay ’, ’3’

104 lxc.customize ’network.type ’, ’veth ’

105 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup ’

106 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown ’

107 lxc.customize ’network.veth.pair ’, ’attackone1eth1 ’

108 lxc.customize ’network.flags ’, ’up’

109 lxc.customize ’network.ipv4 ’, ’10.10.10.3/16 ’

110 lxc.customize ’group ’, ’onboot ’

111 lxc.customize ’cgroup.cpuset.cpus ’, ’2’

112 end

113
114 attackone.vm.provision "shell", inline: <<-SHELL

115
116 # Custom configuration here!

117 sudo timedatectl set -timezone Europe/Berlin

118 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

119 ip route de default

120 ip route add default via 10.10.10.10

121 ping -c 2 8.8.8.8

122 ping -c 2 www.google.de

144

123 sudo apt -get install -y -q iperf iptables tcpdump ethtool

124 cp /vagrant/resolv.conf /etc

125
126 #sudo ethtool -K eth1 gro off

127 #sudo ifconfig eth1 promisc

128
129 SHELL

130 end

131
132 config.vm.define "attacktwo" do |attacktwo|

133 attacktwo.vm.hostname = "attacktwo"

134 attacktwo.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

135
136 attacktwo.vm.provider :lxc do |lxc , override|

137 lxc.container_name = "attacktwo"

138 lxc.customize ’start.auto ’, ’1’

139 lxc.customize ’start.delay ’, ’3’

140 lxc.customize ’network.type ’, ’veth ’

141 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup ’

142 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown ’

143 lxc.customize ’network.veth.pair ’, ’attacktwo1eth1 ’

144 lxc.customize ’network.flags ’, ’up’

145 lxc.customize ’network.ipv4 ’, ’10.10.10.6/16 ’

146 lxc.customize ’group ’, ’onboot ’

147 lxc.customize ’cgroup.cpuset.cpus ’, ’3’

148 end

149
150 attacktwo.vm.provision "shell", inline: <<-SHELL

151
152 # Custom configuration here!

153 sudo timedatectl set -timezone Europe/Berlin

154 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

155 ip route de default

156 ip route add default via 10.10.10.10

157 ping -c 2 8.8.8.8

158 ping -c 2 www.google.de

159 sudo apt -get install -y -q iperf iptables tcpdump ethtool

160 cp /vagrant/resolv.conf /etc

161
162 #sudo ethtool -K eth1 gro off

163 #sudo ifconfig eth1 promisc

164 SHELL

165 end

166
167 config.vm.define "monitoring" do |monitoring|

168 monitoring.vm.hostname = "monitoring"

169 monitoring.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

170
171 monitoring.vm.provider :lxc do |lxc , override|

172 lxc.container_name = "monitoring"

173 lxc.customize ’start.auto ’, ’1’

174 lxc.customize ’start.delay ’, ’3’

175 lxc.customize ’network.type ’, ’veth ’

176 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup ’

177 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown ’

178 lxc.customize ’network.veth.pair ’, ’monit1eth1 ’

179 lxc.customize ’network.flags ’, ’up’

180 lxc.customize ’network.ipv4 ’, ’10.10.10.5/16 ’

181 lxc.customize ’network.type ’, ’veth ’

182 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup -private ’

183 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown -private ’

184 lxc.customize ’network.veth.pair ’, ’monit1eth2 ’

185 lxc.customize ’network.flags ’, ’up’

186 lxc.customize ’network.ipv4 ’, ’10.20.0.5/16 ’

187 lxc.customize ’group ’, ’onboot ’

188 lxc.customize ’cgroup.cpuset.cpus ’, ’4’

145

G. LXCs Vagrant File

189 end

190
191 monitoring.vm.provision "shell", inline: <<-SHELL

192 PURPLE = ’\033[0;35m’

193 NC= ’\033[0m’ # No Color

194 # Standard Base Config

195 printf "${PURPLE}|---------- Monitoring: Base setup ---------|${NC}"

196 sudo timedatectl set -timezone Europe/Berlin

197 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

198 sudo ip link set down eth2 && sudo ip link set up eth2

199 ip route del default && ip route add default via 10.20.0.10

200 sudo apt -get install -y iperf

201 sudo apt -get update

202 sudo apt -get install -y ethtool

203 sudo apt -get install -y python3 -pip

204 sudo pip3 install --upgrade pip

205 sudo pip3 install -r /vagrant/monitoring/statistical/requirements.txt

206
207 # Configure for packet sniffing

208 printf "${PURPLE}|---------- Monitoring: Promisc ---------|${NC}"

209 sudo ethtool -K eth1 gro off

210 sudo ifconfig eth1 promisc

211
212 # Install & configure Suricata

213 printf "${PURPLE}|---------- Monitoring: Suricata ---------|${NC}"

214 apt install -y software -properties -common

215 sudo add -apt -repository -y ppa:oisf/suricata -stable

216 sudo apt -get update

217 sudo apt -get -y install suricata

218 sudo systemctl stop suricata

219 sudo cp /vagrant/monitoring/local.rules /etc/suricata/rules/

220 sudo cp /vagrant/monitoring/suricata.yaml /etc/suricata/

221 sudo sed -i ’s/IFACE=eth0/IFACE=eth1/’ /etc/default/suricata

222 sudo sed -i ’s/LISTENMODE=af-packet/LISTENMODE=pcap/’ /etc/default/suricata

223
224 sleep 2

225 sudo systemctl enable suricata

226 sudo systemctl start suricata

227
228 sleep 2

229
230 systemctl restart suricata

231
232 cp /vagrant/monitoring/statistical/statshandler.service /etc/systemd/system/

233 systemctl daemon -reload

234 systemctl enable statshandler

235 systemctl start statshandler

236 cp /vagrant/resolv.conf /etc

237 SHELL

238 end

239
240 config.vm.define "redis" do |redis|

241 redis.vm.hostname = "redis"

242 redis.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

243
244 redis.vm.provider :lxc do |lxc , override|

245 lxc.container_name = "redis"

246 lxc.customize ’start.auto ’, ’1’

247 lxc.customize ’start.delay ’, ’3’

248 lxc.customize ’network.type ’, ’veth ’

249 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup -private ’

250 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown -private ’

251 lxc.customize ’network.veth.pair ’, ’redis1eth1 ’

252 lxc.customize ’network.flags ’, ’up’

253 lxc.customize ’network.ipv4 ’, ’10.20.0.6/16 ’

254 lxc.customize ’group ’, ’onboot ’

146

255 lxc.customize ’cgroup.cpuset.cpus ’, ’5’

256 end

257
258 redis.vm.provision "shell", inline: <<-SHELL

259 # Custom configuration here!

260 sudo timedatectl set -timezone Europe/Berlin

261 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

262 sudo ip link set down eth1 && sudo ip link set up eth1

263 ip route del default && ip route add default via 10.20.0.10

264
265 /vagrant/redis/setup -redis.sh

266
267
268 SHELL

269 end

270
271 config.vm.define "elk" do |elk|

272 elk.vm.hostname = "elk"

273 elk.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

274
275 elk.vm.provider :lxc do |lxc , override|

276 lxc.container_name = "elk"

277 lxc.customize ’start.auto ’, ’1’

278 lxc.customize ’start.delay ’, ’3’

279 lxc.customize ’network.type ’, ’veth ’

280 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup -private ’

281 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown -private ’

282 lxc.customize ’network.veth.pair ’, ’elk1eth1 ’

283 lxc.customize ’network.flags ’, ’up’

284 lxc.customize ’network.ipv4 ’, ’10.20.0.9/16 ’

285 lxc.customize ’group ’, ’onboot ’

286 lxc.customize ’cgroup.cpuset.cpus ’, ’6’

287 end

288
289 elk.vm.provision "shell", inline: <<-SHELL

290 # Custom configuration here!

291 sudo timedatectl set -timezone Europe/Berlin

292 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

293 sudo ip link set down eth1 && sudo ip link set up eth1

294 ip route del default && ip route add default via 10.20.0.10

295
296 printf "${PURPLE}|---------- Monitoring: Copy elk setup ---------|${NC}"

297 cd /home/vagrant/

298 cp /vagrant/elk/*.sh ./

299 # Make files executable

300 sudo chmod +x *.sh

301
302 # Install & configure elk stack

303 printf "${PURPLE}|---------- Monitoring: ELK setup ---------|${NC}"

304 sudo ./setup -elk.sh

305 sudo ./configure -grafana.sh

306
307 SHELL

308 end

309
310 config.vm.define "manager" do |manager|

311 manager.vm.hostname = "manager"

312 manager.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

313
314 manager.vm.provider :lxc do |lxc , override|

315 lxc.container_name = "manager"

316 lxc.customize ’start.auto ’, ’1’

317 lxc.customize ’start.delay ’, ’3’

318 lxc.customize ’network.type ’, ’veth ’

319 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup ’

320 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown ’

147

G. LXCs Vagrant File

321 lxc.customize ’network.veth.pair ’, ’mane1eth1 ’

322 lxc.customize ’network.flags ’, ’up’

323 lxc.customize ’network.ipv4 ’, ’10.10.10.8/16 ’

324 lxc.customize ’network.type ’, ’veth ’

325 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup -private ’

326 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown -private ’

327 lxc.customize ’network.veth.pair ’, ’mane1eth2 ’

328 lxc.customize ’network.flags ’, ’up’

329 lxc.customize ’network.ipv4 ’, ’10.20.0.8/16 ’

330 lxc.customize ’group ’, ’onboot ’

331 lxc.customize ’cgroup.cpuset.cpus ’, ’7’

332 end

333
334 manager.vm.provision "shell", inline: <<-SHELL

335
336 # Custom configuration here!

337 sudo timedatectl set -timezone Europe/Berlin

338 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

339 sudo ip link set down eth1 && sudo ip link set up eth1

340 ip route del default && ip route add default via 10.20.0.10

341 echo "install iperf"

342 sudo apt -get install -y iperf

343 echo "Installing Ryu ..."

344 LC_ALL=C

345 sudo apt -get update

346 sudo apt -get install -y python3 -dev

347 sudo apt -get install -y python3 -pip

348 sudo apt -get install -y python3 -eventlet

349 sudo apt -get install -y python3 -routes

350 sudo apt -get install -y python3 -webob

351 sudo apt -get install -y python3 -paramiko

352 sudo pip3 install --upgrade pip

353 sudo pip3 install --upgrade six

354 sudo pip3 install redis

355 sudo pip3 install hiredis

356 sudo pip3 install ryu

357 sudo pip3 install --upgrade tinyrpc

358 cp /vagrant/manager/controller.py ./

359
360 cp /vagrant/manager/controller.service /etc/systemd/system/

361 systemctl daemon -reload

362 systemctl enable controller

363 systemctl start controller

364 cp /vagrant/resolv.conf /etc

365 SHELL

366 end

367
368 config.vm.define "mitigation" do |mitigation|

369 mitigation.vm.hostname = "mitigation"

370 mitigation.vm.box = "developerinlondon/ubuntu_lxc_xenial_x64"

371
372 mitigation.vm.provider :lxc do |lxc , override|

373 lxc.container_name = "mitigation"

374 lxc.customize ’start.auto ’, ’1’

375 lxc.customize ’start.delay ’, ’3’

376 lxc.customize ’network.type ’, ’veth ’

377 lxc.customize ’network.script.up ’, ’/home/vagrant/lxcs/ifup -private ’

378 lxc.customize ’network.script.down ’, ’/home/vagrant/lxcs/ifdown -private ’

379 lxc.customize ’network.veth.pair ’, ’mit1eth1 ’

380 lxc.customize ’network.flags ’, ’up’

381 lxc.customize ’network.ipv4 ’, ’10.20.0.7/16 ’

382 lxc.customize ’group ’, ’onboot ’

383 lxc.customize ’cgroup.cpuset.cpus ’, ’8’

384 end

385
386 mitigation.vm.provision "shell", inline: <<-SHELL

148

387 # Custom configuration here!

388 sudo timedatectl set -timezone Europe/Berlin

389 sudo sed -i ’s|nameserver 10.0.3.1| nameserver 8.8.8.8| ’ /etc/resolv.conf

390 sudo ip link set down eth1 && sudo ip link set up eth1

391 ip route del default && ip route add default via 10.20.0.10

392
393 sudo apt -get update

394 sudo apt -get install -y iperf

395 sudo apt -get install -y python3 -pip

396 sudo pip3 install --upgrade pip

397 sudo pip3 install --upgrade requests hiredis redis

398
399 cp /vagrant/mitigation/miti*. service /etc/systemd/system/

400 systemctl daemon -reload

401 systemctl enable miti -stats

402 systemctl start miti -stats

403 systemctl enable miti -ids

404 systemctl start miti -ids

405 systemctl enable miti -mit

406 systemctl start miti -mit

407 SHELL

408 end

409 end

149

Acronyms

CPU Central Processing Unit

TLS Transport Layer Security

DNS Domain Name System

DoS Denial Of Service

DDoS Distributed Denial of Service

EVE Extensible Event Format

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection System

IP Internet Protocol

JSON JavaScript Object Notation

LXC Linux Container

MAC Media-Access-Control

NIC Network Interface Card

NOS Network Operating System

OF OpenFlow

OVS OpenVSwitch

SDN Software Defined Network

SNMP Simple Network Management Protocol

SRP Single Responsibility Principle

TCP Transport Control Protocol

TES Triple Exponential Smoothing

TLS Transport Layer Security

VM Virtual Machine

XML Extensible Markup Language

151

List of Figures

2.1. Roles of the control, management, and data planes. From [GB14] 3
2.2. SDN architecture adapted from [Kre+15] . 5
2.3. Flow Table and its match fields and actions. Based on [NG13] 7
2.4. Packet drop due to flow flooding at 100 Mbps. From [KKS13] 9
2.5. Components of a DDoS attack. Based on [Lau+00] 10
2.6. TCP three-way handshake. 11

4.1. Application stack concept . 15
4.2. Information flow through the application stack 17
4.3. Test-setup of the virtual network . 18
4.4. Flow of alert messages . 19

5.1. Monitoring in the concept . 29
5.2. Monitoring concept . 30
5.3. Range by standard deviation . 32
5.4. TES. Based on [Fil+13][6.4.3.5] . 33
5.5. Range by fixed percentage . 33
5.6. Monitoring implementation . 35
5.7. DoS attack without any mitigation . 38
5.8. Flow of alert messages . 39
5.9. SYN Flood with track by_dst . 41
5.10. SYN Flood with alerts . 42
5.11. SYN Flood with Statshandler . 43
5.12. Flow flood with Statshandler . 44

6.1. Mitigation in the concept . 47
6.2. Concept of the mitigation component . 48
6.3. Process of a TCP SYN Flood Mitigation . 53
6.4. Mitigation flow for a TCP SYN Flood . 53
6.5. Network load during a TCP SYN flood with and without mitigation 54
6.6. Alerts during mitigated TCP SYN Flood . 54
6.7. Process of a Distributed TCP SYN Flood Mitigation 55
6.8. Workflow for the mitigation of a Distributed TCP SYN Flood 56
6.9. Querying the webserver during an attack . 56
6.10. Network load during a distributed TCP SYN flood with and without mitigation 57
6.11. Alerts during mitigated Distributed TCP SYN Flood 57
6.12. Response time during flow flooding attack . 59
6.13. Mitigation of a flow flooding attack . 59

153

List of Tables

4.1. Responsibilities of application stack components 16
4.2. Example changes to secure setup . 27

5.1. Comparison of monitoring methods . 32
5.2. Comparison of analyzing methods . 34

155

Bibliography

[Amb+15] Moreno Ambrosin et al. “Lineswitch: Efficiently managing switch flow in software-
defined networking while effectively tackling dos attacks”. In: Proceedings of the
10th ACM Symposium on Information, Computer and Communications Secu-
rity. ACM. 2015, pp. 639–644.

[AX15] Izzat Alsmadi and Dianxiang Xu. “Security of software defined networks: A
survey”. In: computers & security 53 (2015), pp. 79–108.

[BAM09] Theophilus Benson, Aditya Akella, and David A Maltz. “Unraveling the Com-
plexity of Network Management.” In: NSDI. 2009, pp. 335–348.

[BBC14] BBC. Sony Pictures computer system hacked in online attack. 2014. url: http:
//www.bbc.com/news/technology-30189029 (visited on 11/21/2016).

[BCS13] Kevin Benton, L Jean Camp, and Chris Small. “Openflow vulnerability assess-
ment”. In: Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking. ACM. 2013, pp. 151–152.

[BG13] Marcelo Bagnulo and Alberto Garcia-Martinez. “SAVI: The IETF standard in
address validation”. In: IEEE Communications Magazine 51.4 (2013), pp. 66–
73.

[Cho+14] S. R. Chowdhury et al. “PayLess: A low cost network monitoring framework
for Software Defined Networks”. In: 2014 IEEE Network Operations and Ma-
nagement Symposium (NOMS). May 2014, pp. 1–9. doi: 10.1109/NOMS.2014.
6838227.

[Cui+16] Yunhe Cui et al. “SD-Anti-DDoS: Fast and efficient DDoS defense in software-
defined networks”. In: Journal of Network and Computer Applications 68 (2016),
pp. 65–79.

[DBP05] Thomas Dubendorfer, Matthias Bossardt, and Bernhard Plattner. “Adaptive
distributed traffic control service for DDoS attack mitigation”. In: 19th IEEE
International Parallel and Distributed Processing Symposium. IEEE. 2005, 8–
pp.

[Deb+07] H. Debar et al. The Intrusion Detection Message Exchange Format. Language.
Online. RFC. Internet Engineering Steering Group, Mar. 2007. url: https:
//tools.ietf.org/html/rfc4765.

[Edd06] Wesley M Eddy. “Defenses against TCP SYN flooding attacks”. In: The Internet
Protocol Journal 9.4 (2006), pp. 2–16.

[Fil+13] James J. Filliben et al. Engineering Statistics Handbook. National Institute of
Standards and Technology. Oct. 2013. url: http://www.itl.nist.gov/

div898/handbook//index.htm.

[GB14] Paul Goransson and Chuck Black. Software Defined Networks: A Comprehensive
Approach. Elsevier, 2014.

157

http://www.bbc.com/news/technology-30189029
http://www.bbc.com/news/technology-30189029
http://dx.doi.org/10.1109/NOMS.2014.6838227
http://dx.doi.org/10.1109/NOMS.2014.6838227
https://tools.ietf.org/html/rfc4765
https://tools.ietf.org/html/rfc4765
http://www.itl.nist.gov/div898/handbook//index.htm
http://www.itl.nist.gov/div898/handbook//index.htm

Bibliography

[GDK] Tobias Guggemos, Vitalian Danciu, and Dieter Kranzlmüller. “Schichtung virtueller
Maschinen zu Labor-und Lehrinfrastruktur”. In: Gesellschaft für Informatik eV
(GI) publishes this series in order to make available to a broad public recent
findings in informatics (ie computer science and informa-tion systems), to doc-
ument conferences that are organized in co-operation with GI and to publish the
annual GI Award dissertation. P. 35.

[Gio+14] Kostas Giotis et al. “Combining OpenFlow and sFlow for an effective and scal-
able anomaly detection and mitigation mechanism on SDN environments”. In:
Computer Networks 62 (2014), pp. 122–136.

[Gua16] The Guardian. Major cyber attack disrupts internet service across Europe and
US. 2016. url: https://www.theguardian.com/technology/2016/oct/21/
ddos-attack-dyn-internet-denial-service (visited on 11/21/2016).

[Hab14] Itamar Haber. Using stunnel to Secure Redis. English. Mar. 2014. url: https:
//redislabs.com/blog/using-stunnel-to-secure-redis.

[Her+16] Andreas Herz et al. Suricata User Guide. OISF. 2016. url: https://suricata.
readthedocs.io/en/latest/rules/index.html.

[Hon+15] Sungmin Hong et al. “Poisoning Network Visibility in Software-Defined Net-
works: New Attacks and Countermeasures.” In: NDSS. 2015.

[Hu+14] Hongxin Hu et al. “FLOWGUARD: building robust firewalls for software-defined
networks”. In: Proceedings of the third workshop on Hot topics in software de-
fined networking. ACM. 2014, pp. 97–102.

[ISO] ’ISO/IEC’. Information technology - Open Systems Interconnection - Basic Ref-
erence Model: The Basic Model. ISO/IOC. url: http://standards.iso.org/
ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498- 1_1994(E)

.zip.

[JM16] Damian Janowski and Michel Martens. redis.io. English. 2016. url: http://
redis.io/.

[JMD14] Yosr Jarraya, Taous Madi, and Mourad Debbabi. “A survey and a layered taxon-
omy of software-defined networking”. In: Communications Surveys & Tutorials,
IEEE 16.4 (2014), pp. 1955–1980.

[KKS13] Rowan Klöti, Vasileios Kotronis, and Paul Smith. “Openflow: A security analy-
sis”. In: 2013 21st IEEE International Conference on Network Protocols (ICNP).
IEEE. 2013, pp. 1–6.

[Kre+15] Diego Kreutz et al. “Software-defined networking: A comprehensive survey”. In:
Proceedings of the IEEE 103.1 (2015), pp. 14–76.

[Lau+00] Felix Lau et al. “Distributed denial of service attacks”. In: Systems, Man,
and Cybernetics, 2000 IEEE International Conference on. Vol. 3. IEEE. 2000,
pp. 2275–2280.

[Lem+02] Jonathan Lemon et al. “Resisting SYN Flood DoS Attacks with a SYN Cache.”
In: BSDCon. Vol. 2002. 2002, pp. 89–97.

[LMK16] Wenjuan Li, Weizhi Meng, and Lam For Kwok. “A survey on OpenFlow-based
Software Defined Networks: Security challenges and countermeasures”. In: Jour-
nal of Network and Computer Applications 68 (2016), pp. 126–139.

158

https://www.theguardian.com/technology/2016/oct/21/ddos-attack-dyn-internet-denial-service
https://www.theguardian.com/technology/2016/oct/21/ddos-attack-dyn-internet-denial-service
https://redislabs.com/blog/using-stunnel-to-secure-redis
https://redislabs.com/blog/using-stunnel-to-secure-redis
https://suricata.readthedocs.io/en/latest/rules/index.html
https://suricata.readthedocs.io/en/latest/rules/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://redis.io/
http://redis.io/

Bibliography

[Mar03] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003. isbn: 0135974445.

[Mar16] Alex Marczinek. Mitigation of attacks in the environment of Software Defined
Networks. PDF. Dec. 2016.

[MBR16] Louis Marinos, Adrian Belmonte, and Evangelos Rekleitis. ENISA Threat Land-
scape 2015. 2016.

[McK+08] Nick McKeown et al. “OpenFlow: enabling innovation in campus networks”. In:
ACM SIGCOMM Computer Communication Review 38.2 (2008), pp. 69–74.

[MR04] Jelena Mirkovic and Peter Reiher. “A taxonomy of DDoS attack and DDoS
defense mechanisms”. In: ACM SIGCOMM Computer Communication Review
34.2 (2004), pp. 39–53.

[NG13] Thomas D Nadeau and Ken Gray. SDN: software defined networks. ” O’Reilly
Media, Inc.”, 2013.

[Nyg+14] Anders Nygren et al. OpenFlow Switch Specification Version 1.5.0 (Proto-
col version 0x06). PDF. Dec. 2014. url: https://www.opennetworking.

org/images/stories/downloads/sdn- resources/onf- specifications/

openflow/openflow-switch-v1.5.0.noipr.pdf.

[ONF14] ONF. SDN Architecture Overview. Tech. rep. Open Networking Foundation
(ONF), Nov. 2014.

[Sec16] Calyptix Security. Top 7 Network Attack Types in 2016. 2016. url: http :

//www.calyptix.com/top-threats/top-7-network-attack-types-2016/

(visited on 08/10/2016).

[She+12] Justine Sherry et al. “Making middleboxes someone else’s problem: network
processing as a cloud service”. In: ACM SIGCOMM Computer Communication
Review 42.4 (2012), pp. 13–24.

[Shi+13] Seungwon Shin et al. “AVANT-GUARD: scalable and vigilant switch flow ma-
nagement in software-defined networks”. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM. 2013, pp. 413–424.

[SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. “Structured design”. In: IBM
Systems Journal 13.2 (1974), pp. 115–139. issn: 0018-8670. doi: 10.1147/sj.
132.0115.

[Sys15] CS Communication & Systems. Prelude OSS — The Open Source Reference.
Online. 2015. url: http://www.prelude-siem.com/en/products/prelude-
oss/.

[Tan03] Matthew Tanase. “IP spoofing: an introduction”. In: Security Focus 11 (2003).

[Tea00] Nagios Plugins Team. Nagios Plugin Development Guidelines. Nagios Enter-
prises. 2000. url: https://nagios-plugins.org/doc/guidelines.html.

[VE06] Randal Vaughn and Gadi Evron. “DNS amplification attacks”. In: Go online to
http://www. isotf. org/news/DNS-Amplification-Attacks. pdf (2006).

159

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
http://www.calyptix.com/top-threats/top-7-network-attack-types-2016/
http://www.calyptix.com/top-threats/top-7-network-attack-types-2016/
http://dx.doi.org/10.1147/sj.132.0115
http://dx.doi.org/10.1147/sj.132.0115
http://www.prelude-siem.com/en/products/prelude-oss/
http://www.prelude-siem.com/en/products/prelude-oss/
https://nagios-plugins.org/doc/guidelines.html

Bibliography

[Ver16] Verisign. Q3 2016 DDoS trends report: UDP Flood Attacks make up 49 percent of
attacks. 2016. url: https://blog.verisign.com/security/q3-2016-ddos-
trends-report-udp-flood-attacks-make-up-49-percent-of-attacks/

(visited on 11/26/2016).

[YBX11] Guang Yao, Jun Bi, and Peiyao Xiao. “Source address validation solution with
OpenFlow/NOX architecture”. In: 2011 19th IEEE International Conference
on Network Protocols. IEEE. 2011, pp. 7–12.

[ZJT13] Saman Taghavi Zargar, James Joshi, and David Tipper. “A survey of defense
mechanisms against distributed denial of service (DDoS) flooding attacks”. In:
IEEE Communications Surveys & Tutorials 15.4 (2013), pp. 2046–2069.

160

https://blog.verisign.com/security/q3-2016-ddos-trends-report-udp-flood-attacks-make-up-49-percent-of-attacks/
https://blog.verisign.com/security/q3-2016-ddos-trends-report-udp-flood-attacks-make-up-49-percent-of-attacks/

	Introduction
	Background
	Software Defined Networking
	Traditional Infrastructure
	Why SDN?
	SDN Infrastructure
	Flows

	Attacks
	IP Spoofing
	SDN specific attacks
	Denial of Service

	Related Work
	Test Setup
	Concept
	Information flow
	Implementation overview
	Network design
	Monitoring
	Mitigation
	Manager
	Visualization
	Component communications

	External software components
	Virtual Box
	Linux Container
	Vagrant
	OpenVSwitch
	Ryu
	Bind9
	Suricata
	Redis
	ELKG-Stack

	Custom software components
	Statshandler
	Alerthandler
	Controller
	SynFlood

	FlowFlood
	Usage
	Setup VM
	Controlling the VM
	Visualization
	Starting attacks
	Development guide

	Advantages and disadvantages
	Difference to a production environment

	Monitoring
	Data Gathering
	Packet Capture
	Network Metadata
	Active Client Monitoring
	Comparison

	Data Analysis
	Limit
	Standard Deviation
	Triple Exponential Smoothing
	Comparison

	Alerting
	Implementation
	Packet Capture
	Network Metadata

	Attack Analysis
	SYN Flood
	Distributed Syn Flood
	Flow Table Flooding

	Monitoring conclusion

	Mitigation
	Mitigation concept
	Alerts
	Alert Handler
	Mitigation
	Controller Northbound API

	Implementation
	Alert Handler
	Mitigation
	Controller Northbound API

	Mitigation Strategies
	TCP SYN flood
	Distributed TCP SYN Flood
	Flow flooding

	Conclusion

	Conclusion and future work
	Controller
	Mitigation component
	Documentation
	Source Code Alert Handler
	Source Code Mitigation

	StatsHandler Documentation
	SynFlood Documentation
	FlowFlood Documentation
	VM Vagrant File
	LXCs Vagrant File
	Acronyms
	List of Figures
	List of Tables
	Bibliography

