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Abstract

The Internet of Things (IoT) is one of today’s fastest growing trends in technology and
lead to a growing number of constrained devices connected to the internet and an increasing
importance of group communication. The device’s constraints present a challenge for security
standards, as they cannot simply be reused for these novel systems. In order to enable secure
group communication in the IoT, a group key management solution must be found that
complies with the limitations arising from the use of low powered embedded systems. The
G-IKEv2 protocol is found to provide a secure key exchange, even though it is not optimized
for the use in IoT networks. A solution is offered by the design of a “minimal G-IKEv2
client” which reduces the proposed G-IKEv2 standard to a minimal subset of messages and
payloads necessary to achieve a secure key exchange.

This work implements the “minimal G-IKEv2 client” on the IoT operating system RIOT
OS. The evaluation tests the implementation in regard to memory requirements as well as
CPU performance - measured by the time needed to handle the exchange - and proves the
feasibility of secure group key distribution on IoT systems.
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1. Introduction

The “Internet of Things”(IoT) is one of today’s fastest growing trends in technology. The
idea behind IoT is providing everyday objects with network capabilities, in order to gain
advantage from real time data. Possible applications of such a network reach from health and
body function monitoring, as implemented by fitness trackers, to large scale infrastructure
or traffic control, as it is used in so called “smart cities”, to improve traffic flows, parking
space and public safety. According to the swedish company Ericsson, IoT makes up for a
total of 5.6 billion internet connected devices today, which is only second to mobile phones
with 7.3 billion devices. It is predicted to surpass mobile phones in the year of 2018 and it is
expected to grow further till 2022 where 18 billion of a total of 29 billion connected devices
are forecasted to be related to IoT [1].

One of the most widespread applications are sensor networks and especially wireless sensor
networks (WSNs). WSNs consist of sensor nodes arranged around a gateway node, which
acts as a border router. Use cases are diverse, some of the most prominent are the monitoring
of smart home solutions or industrial facilities.

The nodes in such networks are usually low power, single purpose embedded devices,
provided with a number of sensors and wireless network capabilities. They may be limited
in terms of processing power, memory capacity, and power usage. As they are often deployed
in difficult to access places and running on battery, a low power consumption resulting in a
longer lifetime is often essential.

WSN operating systems need to face challenges presented by the sensor nodes hardware
heterogeneity and constraints, while trying to provide the capabilities of a full fledged OS
like Linux. An abstraction of the hardware layer is desirable, for allowing the use of portable
libraries and software implementations and being more developer friendly. The dominant
Contiki [2] and TinyOS [3] follow an event driven approach, which allows them to efficiently
handle typical tasks, but limits networking functionality. RIOT OS [4], on the contrary, is
a newly developed IoT focused OS supporting real multi-threading. It was developed with
the goal to provide Linux like features on heterogeneous constrained hardware platforms.

Aside from their advantages, WSNs, as all network connected computer systems, pose
a great risk for data security. The use of a shared medium, like wireless access points,
exposes sensor nodes to a broad attack surface. Applications like a fire protection system
consisting of a net of connected smoke detectors and fire extinguishing units, as well as
pressure control and monitoring system on an oil platform, may be both safety and security
critical. Correct functionality has to be guaranteed at any time and a hostile actor could
cause severe harm if he is able to access the systems network traffic. Because sensor nodes
usually come in the form of low power embedded devices, they have special requirements for
security implementations to adjust to their various constraints.

Existing protocol standards provide a number of security mechanisms enabling secure net-
working for the IoT. The widely used IEEE 802.15.4 [5] standard enables link-layer security
via message authentication codes (MACs) providing confidentiality, integrity, access control
and replay control between two hosts on the data link layer.
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1. Introduction

End-to-end security can be achieved on the network layer by using the IPsec protocol
suite with it’s various adaptions for the IoT like [6] and [7]. [8] describes why and how IPsec
should be used to protect wireless sensor networks. Another popular end-to-end encryption
technology is the Transport Layer Security (TLS) protocol and it’s UDP based derivative
called Datagram Transport Layer Security (DTLS).

One of the biggest challenges presented by large scale sensor networks is the cryptographic
protection of group communication. Sensor nodes in WSNs often need to send their data to
multiple controllers. At the same time a single controller may receive status updates from
various sensors in the network. Using group key management, every member only needs to
establish one secure connection with the key server and then receive and store a single set of
keys, in order to communicate with all group members over a protected channel. Optionally,
for larger networks, the group may be split to several smaller groups (e.G. one group for
every sensor node), in order to prevent a single point of failure.

This thesis describes the implementation of a group key management protocol, adapted
for the requirements of the Internet of Things. The implementation will be built using
RIOT OS, because of it’s support for widely used IoT platforms and embedded libraries. In
addition the protocol will use the IPsec suite for end-to-end encryption because of various
reasons:

• IPsec encryption is not limited to a single transport layer protocol like DTLS and TLS.

• Applications running on a node protected with IPsec do not have to be aware of existing
encryption. This allows to protect applications that were not built with data security
in mind.

• IPsec’s modular architecture makes it easy to exchange the key management protocol
while preserving other functionality

A commonly named downside of IPsec is, that it needs access to the OSs network stack
and therefore needs to run in kernel space, compared to TLS, which runs entirely in user
space. This is not a problem in RIOT due to it’s microkernel architecture, which does not
differentiate between kernel and user space.

Structure of this thesis: Chapter 2 describes the motivation for this work, including a
specification of secure group key management, it’s applications and an analysis of various
protocols which leads to the final protocol choice for the implementation.

The background required for the further chapters is described in Chapter 3. It will give a
more in depth explanation of technologies used in IoT networks, including the most impor-
tant protocol standards like 6LoWPAN and IEEE 802.15.4. Section 3.2 gives an overview
of RIOT OS and the features used for the implementation, especially the GNRC network
stack. Section 3.3 will explain IPsec’s mechanisms and how the different IPsec databases
and protocols work together.

“Requirements of G-IKEv2 for RIOT” (Chapter 4) derives a number of requirements for
a system implementing G-IKEv2 on RIOT OS. These include both functional requirements,
like the availability of cryptographic functions, as well as non-functional requirements, de-
scribing minimal limits for necessary resources like memory or CPU power.

2



Chapter 5 defines a “minimal G-IKEv2 client” protocol combining features of G-IKEv2
with the adaptions for constraint devices of the “minimal IKEv2 initiator implementation”.
The resulting protocol is optimized for IoT devices and compatible with all G-IKEv2 server
implementations.

Chapter 6 describes the implementation of the “minimal G-IKEv2 client” for RIOT OS
in detail, including the full feature scope and limitations. Section 6.1 describes the imple-
mentation of the used IPsec databases. Then the implementation’s configuration setup is
explained. Section 6.3 treats RIOT’s network packet API which is used to build G-IKE
messages as well as the structure of the message processing functions used in the implemen-
tation. In the following, the configuration setup, and finally the protocol handler structure
are illustrated in detail. In Section 6.5 several problems encountered during the implemen-
tations including solutions are presented. Finally the used external libraries are described
in Section 6.6.

A summary of the evaluation of the implementation including an analysis of the actual
memory requirements and the protocol’s performance on a number of selected embedded
systems is given in Chapter 7. This chapter will assess the implementations in regards to
the requirements found in Chapter 4.

Chapter 8 reevaluates the findings and contributions of the thesis and provides an outlook
for future work necessary to use the minimal G-IKEv2 client in a productive environment.

The result of this work has been published in the form of an academic paper called “Secure
Group Key Distribution in Constrained Environments with IKEv2”. Throughout this thesis
several chapters will refer to this paper. It can be found in it’s full extent in Appendix A.
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2. Motivation

This section illustrates the tasks of secure group communication, how it can be achieved and
when it should be used. Section 2.1 deals with the features a group key management protocol
must provide to guarantee secure group communication. In Section 2.2 the applications of
secure group communication and when it should be used over traditional peer-to-peer key
management are explained. Finally, Section 2.3 treats the existing group key management
solutions in regard to suitability for the tasks derived in Section 2.1.

2.1. Secure group communication

Secure group communication involves several aspects such as the management of the groups
keys, the groups security policies as well as the data handling.

These tasks are typically implemented using a cryptographic protocol suite. Similar to
secure point-to-point communication, protocol suites might use different protocols for group
management and data handling. The advantage of such an architecture is the reusability of
common functionality. In the case of IPsec, for example, the key exchange protocol may be
exchanged for a group based approach (G-IKEv2, GDOI) while the transport protocol (e.g.
ESP) can be used without the need to make adaptions.

[9] defines a framework of security services a secure group key management protocol should
provide to enable secure communication. Appendix A further summarizes these to a subset
of security features that is found mandatory for secure group communication - with regard
to constrained networks:

Identity Management: The management of group members unique identity which is re-
quired for further management operations such as authorization management or group
membership operations.

Authorization and Authentication Infrastructure (AAI): Provides a mechanism for nodes
to proof their identity (Authorization), as well as the management of the nodes rights
in the group (Authentication). Authorization is either achieved by a pre-shared secret
only known by the group manager and a number of selected nodes, or by a public-key
infrastructure.

Group Key Management: A mechanism to selectively distribute keys to authorized group
members, enabling them to take part in the group communication and protect the
groups traffic.

Group Management: The provision of group membership operations, like join, leave and
group creation/destruction.

Security: Achieved by using cryptographic functions providing confidentiality and sender
authentication. Dynamic groups may raise special security requirements allowing new
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2. Motivation

group members to only access future communication (backward secrecy) and not al-
lowing former group members access to future communication (forward secrecy).

2.2. Use Cases

Constrained devices are often used in complex network environments, a typical example
being WSNs. Network nodes may be divided into several groups, either defined by a common
function, local proximity, or by their level of authorization. The following scenarios highlight
common cases where group key management may be used and how it is superior to a point-
to-point key management approach.

2.2.1. Group key protected unicast communication

WSNs commonly consist of a single central controller and several constrained nodes like sen-
sors, periodically communicating their current status to the controller. The communication
uses traditional IP unicast, all nodes only communicate with the controller not with each
other.

A group key solution may be preferred over 1-to-1 key management to reduce memory
usage and complexity for the controller. The sensors and the controller may form a protected
group and communicate using a single set of group keys k. In contrast to the use of a 1-to-1
key management the controller will only have to store k, instead of m ∗ k where m is the
number of sensor nodes reporting their status to the controller. A disadvantage of the group
key solution is that a single compromised node enables an attacker to decrypt the whole
groups communication.

2.2.2. Multicast communication

In dynamic WSNs single nodes may need to send generated data, for example sensory input,
to various receivers that will further process the input. This can be achieved by forming
a multicast group. Receiver nodes can “subscribe” to the sensors output by joining the
corresponding multicast group.

To limit access and provide security for the groups communication the multicast group
members additionally form a protected group securing the multicast groups communication.
Hostile nodes are still able to join the multicast group and receive encrypted group messages.
However, they won’t be allowed group access by the group key management server and are
thus unable to decrypt received messages.

2.3. G-IKEv2 protocol choice

A comprehensive analysis of existing group key management approaches and their appli-
cability to constrained systems has been done as part of the paper “Secure Group Key
Distribution in Constrained Environments with IKEv2” which can be found in Appendix A
This section is an excerpt from section II of this paper.
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2.3. G-IKEv2 protocol choice

2.3.1. Related Work

During the past decade, several research activities on key distribution in different areas have
been carried out [10]. It started with the key distribution for mobile networks (e. g. UMTS,
GPRS, etc.), followed by activities to share keys in wireless sensor networks, while considering
constrained environments. Salgarelli et al. [11] provide a solution for a wireless key exchange
and authentication protocol, which has been compared to current approaches such as the
Extensible Authentication Protocol (EAP [12]) and Transport Layer Security (TLS [13]).
Although this work focuses on wireless networks and mobility, it still requires 12 messages
to distribute a pair of keys. Additionally, it is not designed for multicast key distribution,
which is essential when talking about group communication.

Group key distribution itself has been studied in [14], which resulted in a couple of stan-
dardization activities. Rafaeli et al. [14] survey a set of approaches for secure group key
distribution (GKD). According to their analysis, there are three different types of GKDs:
centralized, decentralized and distributed GKD protocols. Most of the protocols considered
are rather mathematical schemes than networking protocols, but nevertheless some of them
are included in actual group management protocols, such as the Group Domain of Inter-
pretation (GDOI) [15]. Although all of these approaches specify the possibility of secure
(group) key distribution (also in constrained networks), none of them had been properly im-
plemented, distributed or evaluated against the requirements in constrained environments
such as 1) highly resource constraint devices, 2) highly distributed and 3) globally connected.

In the following, recent activities with the goal of a DTLS-based multicast solution for
low latency networks [16] are analyzed and the most commonly used protocol (GDOI) and
its potential replacement G-IKEv2 are explained (more on G-IKEv2 can be found in sec-
tion 3.3.6). Additionally, the concept behind hierarchical and distributed GKMs and their
applicability in constrained networks is detailed.

Centralized Group Key Management

Centralized key distribution is the most obvious way of managing group keys as it leaves
the complexity and trust to a single system. Most of the commonly used protocols (DTLS,
GDOI, Kerberos, etc.) are designed on top of centralized systems. However, the concept
of centralization inherits some natural difficulties, such as weak scalability, especially when
only one server manages a geographically distributed network. In general, the larger a group
gets, the more complex becomes its management and the resulting operations. This makes
many centralized group key management concepts not feasible for constrained environments.

Decentralized Group Key Management

Decentralized key distribution still sticks to the concept of a central server, but splits the
group in administrative domains for both management operations and key exchanges. Ad-
ditionally, it distributes the workload over more devices and thus eases the key calculations
on the client side. On the other hand, the decentralized concept requires strong trust re-
lationships, which is a showstopper for many use cases where administrative domains can
change frequently and devices are potentially physically accessible by arbitrary persons. As
exemplary standards, GDOI and G-IKEv2 (see below) are able to use decentralized schemes
for group key derivation.

7



2. Motivation

Table 2.1.: Comparison of existing group key exchange mechanisms

Feature /Requirement DTLS GDOI G-IKEv2 Decentralized Distributed

Group Management
↪→ Join Unicast 8 4 4 4 4

↪→ Join Multicast 4 4 4 4 4

↪→Leave Unicast 8 (4)a (4)a 4 4

↪→Leave Multicast 8 (4)a (4)a 4 4

Security
↪→ in general (4) (4)b 4 4 4

↪→Forward Secrecy 8 4c 4c (4) 4

↪→Backward Secrecy 8 4c 4c 4 4

Applicability
↪→Link Local 8 8 4 8 8

↪→Broadcast Domain 8 8 4 4 4

↪→LAN 4 4 4 4 4

↪→WAN 4 4 4 (4) 8

Lightweight:
↪→ Implementation 4 8 4 8 8

↪→Memory/Storage 4 (4) 4 8 8

↪→Networking (4) 8 4 (4) 8

↪→ Standardized for IoT 4 8 (4) 8 8

legend: 4 addressed by design (4) partially addressed 8 not addressed by design
a Leave is only supported by the GKM server
b based on obsoleted IKEv1
c with logical key hierarchy (LKH)

Distributed Group Key Management

Distributed concepts remove any kind of management server, thus, every member of the
group holds the complete state of the group. This approach produces additional network
load and compute operations for re-keying every time a group management operation is
performed. Thus, these concepts work well in closed and ”stable“ environments such as
wireless sensor networks, but they obviously do not scale to a large extent.

DTLS-based

The IETF internet draft on Security for Low-Latency Group Communication [16] describes
secure multicasting by using DTLS in low latency networks. The focus is the distribution of
symmetric keys, which are also used for authentication and thus limiting the achievable level
of security. Nevertheless, the draft designs a system including a key distribution center and
authorization server, but it does not consider issues of forward and backward secrecy and
re-keying. Additionally, no group management operations are considered, despite joinGroup-
operations. Due to the design choice to use DTLS, the applicability is limited to local and
wide area networks, but excludes possibility to be used on lower ISO/OSI-Layers. On the
other hand, with RFC 7925 [17] DTLS is adjusted to comply with the needs and constraints
of IoT devices.

8



2.3. G-IKEv2 protocol choice

IPsec based (GDOI and G-IKEv2)

With multicast usually being an IP specific use case, the choice of IPsec for security seems
natural. GDOI [15] was the first standardized protocol for securing multicast. It is a central-
ized protocol, but with the possibility of using hierarchical key distributions mechanism such
as logical key hierarchy (LKH). However, due to the network overhead during key exchanges
(7 messages) and using the obsolete IKEv1 as the underlying protocol, a replacement is
inevitable. That said, G-IKEv2 [18] is currently proposed as a new standard for group key
management. Using IKEv2 reduces the number of messages during key exchange to only
4, making it easier adoptable for constrained devices. Additionally, with RFC 7815 IKEv2
is specified for the use in IoT [6] and recommended for the key exchange in IEEE 802.15.4
(Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (WPANs)) networks.

2.3.2. Summary and choice of a protocol

Table 2.1 shows the findings of this section and evaluates related work against four categories
of requirements:

Group Management describes the ability to manage groups for multicast and unicast, both
of which are considered subsets of n : m-communication patterns.

Security evaluates on the security of a given solution in general and adds a special focus on
forward and backward secrecy.

Applicability considers if a solution can be used in link local networks (e. g. radio networks)
or broadcast domains (e. g. in self organizing WSNs) – both being ISO/OSI layer II
networks – or local area networks (LAN, environments requiring local routing) or wide
area networks (WAN) where global routing is required.

Lightweight shows if a solution can be found suitable for constrained devices in terms of their
limitations (complexity of the implementation, limited CPU power, memory / storage
capacities, network resources). Additionally, it is assessed on the availability of a
specification specific to constrained devices and environments.

To conclude, G-IKEv2 is suited best for the area of application of this work. With its
underlying protocol IKEv2 already being adopted (RFC 7815 [6]) and used in constrained
environments and its flexibility to be extended by concepts of decentralized and distributed
group key distribution schemes, it represents a good choice.
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3. Background

This chapters purpose is to introduce the reader to the necessary prerequisites for this work.
The first section will explain the IoT and more specifically sensor network environment in
both hardware and software. The second part will introduce the basic functionalities and
architecture of RIOT OS, on which this work’s implementation depends. IPsec and it’s
protocols will be treated in the last section. The focus will be the IKEv2 protocol and it’s
derivative, the “minimal IKEv2 initiator implementation”, which this work heavily depends
upon.

3.1. Internet of Things

As there is no single clear definition for the IoT, for this work it is understood as a network of
interconnected objects, sensors and smart devices with the ability to exchange information
using network capabilities. The size of an IoT network can span from small “personal
networks”, containing smart devices like trackers and mobile phones, up to big wireless
sensor networks monitoring power plants, hospitals or cities. The Applications of this kind
of sensor networks include energy management, infrastructure management, medical usage
and industrial manufacturing in the so called Industry 4.0.

3.1.1. Network standards

A number of protocols have been proposed by a cooperation [19] of the IEEE 802 and the
IETF, in an effort to standardize IoT networking. Figure 3.1 shows a comparison of a
traditional wireless IP network stack and a the typical IoT stack.

The leading physical and link layer protocol is the IEEE 802.15.4 [5] standard. It defines
low-rate wireless personal area networks (LR-WPANs), that, in contrast to the much faster
IEEE 802.11 Wireless LAN standard [20], sacrifice speed, at the gain of power efficiency.
This makes it the ideal protocol for battery powered devices. Another popular wireless
technology used in IoT networks is the Bluetooth Low-Energy standard.

Regarding network layer encapsulation IP based approaches are gaining popularity com-
pared to older proprietary non-IP standards like ZigBee [21] or Z-wave [22]. The dominant
IP based protocols are the 6LoWPAN [23] and 6TiSCH [24] standards, proposed by the cor-
responding IETF working groups. 6LoWPAN defines efficient transmission of IPv6 packets
over LR-WPANs, as defined by the 802.15.4 standard. Efficiency is achieved by applying
header compression to transmitted IPv6 packets. 6TiSCH defines an IPv6 implementation
based on the Timeslotted Channel Hopping mode (TSCH) added in the IEEE 802.15.4e [25]
MAC amendment. IPv6 is preferred over IPv4 because of it’s better scalability and the
consequent redundancy of NAT solutions.

Network layer routing is commonly handled by the Routing Protocol for Low-Power and
Lossy Networks (RPL) [26]. On the Transport layer UDP is preferred over TCP because it
does not require a handshake which adds network overhead.
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Figure 3.1.: A traditional IP protocol stack compared to the IoT stack

3.1.2. Multicast

Another technology used to reduce the overall network traffic and the nodes energy con-
sumption is the IP multicast. Multicast is a form of group communication and has several
advantages over the traditional IP unicast in environments where a single message addresses
several nodes. Contrary to communication via unicast messages a multicast message sent
to more than one host only needs to pass each link between two nodes once and thus saves
bandwidth and battery. [27] shows that the use of multicast in WSNs using the 6LowPAN
protocol may reduce the nodes energy consumption drastically compared to using unicast
messages. However while multicast works with groups and defines several group management
operations it does not provide a way to limit membership and assure confidentiality of com-
munication because any node in a network may join any multicast group using the ICMPv6
protocol. As there is no native authorization/authentication management, confidentiality of
the groups communication can only be achieved using an external cryptographic suite like
IPsec, to encrypt and protect the groups traffic, with keys, which are selectively distributed
to authenticated group members.

3.2. RIOT

RIOT is a real time operating systems designed for use in IoT and sensor networks. It
was originally developed by a cooperation of Freie Universität Berlin, HAW Hamburg and
INRIA under the LGPLv2.1 License. RIOT implements a modular microkernel architecture,
supports native multi-threading and a standard ANSI-C and C++ API. Table 1 shows a
comparison of RIOT’s features with similar OSs used in sensor networks in terms of Memory
requirement, C support, Multi-threading capabilities and Real-Time support.
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OS Min RAM Min ROM C Support C++ Support Multi-Threading Modularity Real-Time

Contiki <2kB <30kB • × • • •
Tiny OS <1kB <4kB × × • × ×
Linux ∼1MB ∼1MB X X X • •
RIOT ∼1.5KB ∼5KB X X X X X

Table 3.1.: (X)Full Support, (•)Partial Support, (×)No Support, Source: [4]

3.2.1. Reasons for choosing RIOT

Developing for RIOT brings several advantages compared to it’s competitors:

• Microkernel Architecture: The microkernel architecture makes RIOT a very favourable
choice especially for an IPsec implementation. One of the most prominent arguments
against using IPsec in favor of TLS is IPsecs need to operate on the kernel level in
order to maintain control on layer 3. This is not a problem in RIOT’s microkernel
architecture where the whole GNRC network stack runs in user space.

• Small memory footprint: Despite being having a lot of capabilities and a powerful
scheduler RIOT has a low memory footprint. It requires less than 5KB of ROM and
less than 1.5KB of RAM for a basic application.

• API compatibility with existing Libraries: Because of RIOTs standard C and C++
compatibility it allows the use of powerful external libraries. The implementation
presented in chapter 6 uses this feature for external cryptographic libraries like micro-
ecc.

• Native port: The native port is a virtual hardware platform that uses system calls
and signals to emulate hardware at the API level. A RIOT stack compiled to native
can be run as a normal process in *NIX environments which allows for most of the
development to be done on a Linux system before porting it to the target Hardware.

• Hardware Support: RIOT comes with hardware support for many platforms, including
MSP430, ARM7, Cortex-M and x86 architectures. Further RIOT has builtin driver
support for a number of radio transceivers, sensors and other peripherals.

3.2.2. Generic (GNRC) Network Stack

RIOT’s network stack Generic (GNRC) Network Stack implements a full featured IoT pro-
tocol stack. It’s modular architecture makes different protocol implementations easily inter-
changeable while it has a low memory footprint and is optimized for low power consumption.
In order to provide this modularity, GNRC runs every module in a single thread with a own
message queue. These threads communicate over RIOTs built in Inter Process Communica-
tion (IPC) module. The communication interface used between GNRC’s modules is called
“netapi”. In order to receive packets from the network device, GNRC modules use the net-
work registry (netreg), a database that manages which module receives which packet type.
netreg allows modules to subscribe to a certain packet type for outgoing as well as incoming
packets. A module will then handle the received package by for example appending the
corresponding header and then passing it back to the netreg with it’s updated type.

Most IoT network standard protocols (see Section 3.1.1) are already implemented in GNRC
itself, others can be included in the form of external kernel modules.
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3.3. IKEv2 and IPsec

The “Security Architecture for the Internet Protocol” (IPsec) [28] is a security protocol suite
designed to protect IP traffic on the network layer. It consists of two traffic security pro-
tocols: Authentication Header (AH) [29]. and Encapsulating Security Payload (ESP) [30].
Both Protocols work with so called Security Associations (SAs), which are established and
maintained by a key management protocols like Internet Key Exchange [31] and stored in
the security association database (SAD).

3.3.1. Modes of operation

Internet

IPsec Transport Mode

IPsec protected path
Host A Host B

(a) Scenario for IPsec in Transport Mode.

Internet

IPsec Tunnel Mode

IPsec protected path
Host A Host B

(b) Endpoint to Endpoint Tunnel

Internet

IPsec Tunnel Mode

IPsec protected path

Host A

Host B

Protected Subnet
IPsec Security 

Gateway

Extremity of the tunnel Extremity of the tunnel

(c) Endpoint to Gateway Tunnel

Internet

IPsec Tunnel Mode

IPsec protected path

Host A

Protected Subnet
IPsec Security 

Gateway

Host B

Protected Subnet
IPsec Security 

Gateway

Extremity of the tunnel Extremity of the tunnel

(d) Gateway to Gateway Tunnel

Figure 3.2.: Scenarios for IPsec Modes [7]

IPsec supports two modes of Operation: Transport Mode and Tunnel Mode. Both can be
used by AH as well as ESP.

The Transport Mode (Figure 3.2a) is used for Endpoint-to-Endpoint or Endpoint-to-
Gateway encryption. The original IP packet header stays unchanged with the exception
of the next payload field, which is changed to AH or ESP. The IP payload is replaced by the
corresponding encrypted packet. The original protocol stack stays intact.

Tunnel Mode is designed for Gateway-to-Gateway (Figure 3.2d) or Endpoint-to-Gateway
(Figure 3.2c) security, but can also be used for Endpoint-To-Endpoint (Figure 3.2b) commu-
nication. The original IP packet is not modified in any way, and AH or ESP are constructed
around it. A new IP header is prepended, containing the IPsec packet as payload. The
receiving Gateway can unpack the full original IP packet and route it to the receiving end-
point.

3.3.2. Transport protocols

IPsec provides two transport security protocols: Authentication Header (AH) and Encapsu-
lating Security Payload (ESP). Both may be used alone, combined or in a nested fashion.
Authentication Header is used to provide connection-less integrity and data origin authenti-
cation for IP datagrams. It can optionally provide replay protection using the sliding window
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technique. AH protects as much of the IP header as possible, with the only exception be-
ing mutable fields that might be altered in transit like the flags and fragment offset fields.
Encapsulating Security Payload can be used to provide confidentiality, data origin authen-
tication, connection-less integrity, replay protection and traffic flow confidentiality. While
ESP offers an “integrity only” and a “confidentiality only” mode, it typically employs both
of those services. The anti-replay service can only be used if the integrity service is active.
Traffic flow confidentiality will, opposed to the one offered by AH, only work in modes where
the ultimate source or destination addresses are hidden (e.G. Tunnel mode).

3.3.3. Security Associations

IPsec uses the concept of Security Associations (SA) to describes how outgoing and incoming
packets need to be processed, which encryption/authentication algorithms to use and which
keys to use. Each SA describes the negotiated security features for a single connection
protected with either AH, ESP or IKE.

Security Associations are typically established using a key management protocol like IKE
and are saved in the Security Association Database (SAD). A SA contains a 32 bit Secu-
rity Parameter Index (SPI) which serves as a unique identifier for the SA, the source and
destination IP addresses, an identifier for the corresponding protocol (AH/ESP), the cur-
rent sequence number, a number of algorithms and keys for authentication, integrity and
encryption, the SAs lifetime and the used IPsec mode. A special kind of SA is the IKEv2
SA. It differs from the transport protocol SAs, as it describes not a simplex, but a duplex
connection and it’s SPI is a 16 Byte value. An IKE SA has to store twice the keys an AH
or ESP SA, as it needs to provide one set of keys for each direction of traffic.

3.3.4. IPsec Databases

IPsec specifies two databases to store control information, the Security Policy Database
(SPD) stores Security Policies stating which and how security services should be provided to
IP packets. A security policy is defined by a Traffic Selector (TS). Each TS may contain a
source and destination IP address, a domain name and the used Transport Layer Protocol.
It may also include a Port which allows to specify IPsec protection for a specific application
running on a host. In addition to the traffic selector each Security Policy contains the
IPsec protocol used on the connection, the used protocol mode, additional parameters like
the policies lifetime and an action (discard, secure or bypass) which defines how incoming
packets are treated. The second database used is the Security Association Database (SAD)
that stores negotiated SAs. Each entry in the SAD is associated to an entry in the SPD. A
ESP or AH SA holds the specific information necessary to secure a single simplex connection.
Figure 3.3 shows how SA, SP and TS work together. Due to a difference in format, systems
providing an IKEv2 implementation require an additional SAD for internally used IKE SAs.

3.3.5. IKEv2

In order to protect their communications both participants need to have a common SA.
Only if both peers use the same algorithms with the same keys they are able to decrypt each
others traffic. The used SA may be statically configured for both hosts, or negotiated by a
key management protocol.
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Figure 3.3.: IPsec Databases [7]

The Protocol commonly used to establish SAs is called Internet Key Exchange (IKE) [31]
in it’s current version referred to as IKEv2. It performs mutual authentication between
two hosts and establishes an IKE SA for secure communication between these two. This
SA can be used to derive ESP and AH security associations in order to provide end-to-end
encryption. In the IKEv2 protocol all communication consists of pairs of messages, a request
and a response, named Exchanges. The first two exchanges IKE SA INIT and

IKE AUTH are used to establish the IKE SA and are therefore mandatory. They have
to be performed before any other exchange takes place. IKE SA INIT initiates the secure
channel, negotiates cryptographic algorithms, exchanges nonces and Diffie-Hellman values
and allows the responder to request a certificate for authentication. After the first exchange
both parties derive cryptographic keys used to protect their following IKE communication.
The IKE AUTH exchange authenticates initiator and responder by either shared secret or
asymmetric cryptography via certificates, integrity protects the first exchange, and optionally
allows the negotiation of a child SA.

After a secure authenticated channel is established both peers may exchange control infor-
mation with the Informational exchange or derive new child SAs with the CREATE CHILD SA
exchange.

[6] describes a minimal subset of the IKEv2 protocol used by the initiator, designed for the
use in constrained nodes such as embedded devices. The minimal node acts as the initiator
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and supports only the IKE SA INIT and IKE AUTH exchanges and their required payloads.
Authentication is accomplished using a preshared key. The child SA must be established
during the AUTH exchange. The minimal IKEv2 implementation is able to interoperate
with all IKEv2 responder implementations that are compliant with [31].

3.3.6. Group-IKEv2

The G-IKEv2 protocol [18] is currently proposed as a new standard for group key manage-
ment. It is strongly related to IKEv2 and is used to establish secure group communications
in contrast to IKEv2 that only allows to negotiate SAs for secure point to point communi-
cation. Groups are managed by the Group Controller/Key Server (GCKS), who represents
the responder in the initial IKE exchange. The initiator who wants to join a group is called
Group Member (GM). The initial IKE SA INIT exchange and mutual key generation is
the same as in IKEv2, the following GSA AUTH exchange authenticates GM and GCKS,
integrity protects the initial exchange and additionally allows the GM to request group mem-
bership to a specific group. The GCKS validates the GMs authorization to join the group
and responds with the Group SA policy and the group keys. The GM can now communicate
with other group members protecting its traffic with the shared keys.
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4. Requirements of G-IKEv2 for RIOT

A system implementing secure group communication via G-IKEv2 on an IoT platform needs
to fulfill a number of requirements in order to be able to provide the security services de-
fined in Chapter 2 without limiting the devices main functionality. The requirements can
be grouped in two categories: Functional requirements, describing features a implementa-
tion must provide, and the underlying Non-functional requirements, defined by resources a
constrained system must provide for an implementation to function properly. It should be
noted that a full requirements analysis is not in the scope of this work.

4.1. Functional requirements

In order to fulfill the security services introduced in Chapter 2, as well as the use cases in
Section 2.2, an implementation will have to offer a number of mandatory functions. The
most basic functional requirements is the ability to communicate over some form of network.
IPsec’s key management protocols use UDP as transport protocol, thus a network stack
providing OSI layers 1 to 4 is required. These requirements can be considered fulfilled if the
system runs RIOT OS and is equipped with some form of network functionality.

In order to guarantee a secure nonce as well as a secure Diffie-Hellman value the minimal
client needs to have a reliable source of randomness, whether it is a hardware random number
generator or a sufficiently seeded secure pseudorandom function.

4.1.1. Cryptographic requirements

Secure communication requires the use of a number of cryptographic functions and algo-
rithms in order to guarantee confidentiality, source authentication and other desired mech-
anisms. A G-IKEv2 implementation must support at least one encryption algorithm, one
integrity protection algorithm a random number function and a Diffie-Hellman group. An
enumeration of all algorithms supported by IKEv2 and G-IKEv2 can be found in [32].

[6] defines a subset of relevant algorithms including the Advanced Encryption Standard
(AES) [33], in cipher block chaining (CBC) mode or counter with CBC-mode (CCM), as
encryption algorithm. HMAC-SHA1 as pseudorandom function, AES-XCBC and HMAC-
SHA1 as integrity algorithms and the 1536 and 2048 MODP Diffie-Hellman groups. As an
addition the ECP Diffie-Hellman groups described in [34] should also be considered due to
their performance advantages and small key sizes. It is also noteworthy that since the release
of [6] SHA1 has been broken by [35] and should thus be replaced by a stronger alternative
like SHA256.

4.2. Non-functional requirements

Resource requirements can be divided into CPU requirements, memory requirements, which
are further divided into RAM and Flash requirements, and energy requirements.
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Table 4.1.: Memory need of different ciphers

Cipher-Suite IKE SA INIT GSA AUTH Key length (2 per SA)

Fixed Size 88 B 98 B —

Encryption:
- AES128-CBC — + 16 B + 15 Ba 16 B
- AES256-CBC — + 16 B + 15 Ba 32 B

Integrity:
- SHA1-96 — + 12 B 20 B
- SHA256-160 — + 16 B 32 B
- AES-XCBC-96 — + 12 B 16 B

Combined:
- AES128-CCM - 8 B b + 8 B + 8 Ba 19 B
- AES256-CCM - 8 Bb + 8 B + 8 Ba 35 B
- AES128-GCM - 8 Bb + 8 B + 8 Ba 19 B
- AES256-GCM - 8 Bb + 8 B + 8 Ba 35 B

PRF:
- SHA1-96 — + 20 B —
- SHA256-160 — + 32 B —

DH Group:
- ECP256 + 64 B — —
- curve25519 + 64 B — —
- 2048MODP + 256 B — —

a a maximum of +x B for padding need to be added
b packet size is reduced by the size of the Integrity Proposal

20



4.2. Non-functional requirements

4.2.1. CPU requirements

The CPU requirements strongly depend on the negotiated cipher suite. The use of stronger
cryptographic algorithms usually comes at the expense of processing power to generate cipher
text. At the very minimum the CPU should be able to handle network operations and at
the same time be able to calculate all cryptographic algorithms mentioned in Section 4.1.1
without breaking eventual real time guarantees. It should be noted that the encryption and
integrity algorithms need to be calculated for every network packet while the pseudorandom
and Diffie-Hellman calculation only happen once per initiated exchange.

[36] benchmarks various microcontrollers, as they are used in IoT, using widespread crypto-
graphic algorithms including AES128, SHA1 and RSA. Real time guarantees are considered
fulfilled if a threshold of 300ms for cryptographic operations is not exceeded. They come to
the result that “[...] symmetric ciphers, for example, AES, are fast enough to be implemented
into security solutions that run on constrained devices [...]” and further “security solutions
based on asymmetric cryptographic operations, for example, RSA, ECDH, [...] need more
time to execute”.

4.2.2. Memory requirements

The flash memory needs to provide enough space for the implementation including the
necessary environment providing network functionality and other necessary functions (e.G.
RIOT and external cryptographic libraries). RIOT itself has a minimum requirement for
5 KB ROM. The total requirement for the implementation can not be predicted, as a number
of modules and libraries will add overhead.

The biggest items in the systems RAM are the network buffer, the SAD, and the stack.
The network buffer is used to store incoming and outgoing network packets before they are
further processed. Every G-IKEv2 implementation must be able to handle network packets
of 1280 Bytes size [18]. This is therefore the lower limit of the network buffers memory
requirement, assuming that, at any point in time, only one packet is stored in the buffer.
The actual packet size depends on the used cryptographic algorithms as well as their key
lengths. Table 4.1 shows the impact of different cryptographic algorithms and key lengths
on the size of the IKE SA INIT and GSA AUTH packets. The same can be applied to the
SADs size as each SA contains a set of keys. The implementation must be able to store at
least one IKE SA for the initial exchange and rekeying as well as one TEK SA for the use
in ESP or AH.

Further, it should be considered that some RIOT modules may add additional stacks,
buffers and other forms of memory overhead.

4.2.3. Energy Requirements

Sensor nodes may be running on battery, while being required to function for several years
without maintenance, in order to be feasible. Aside from the systems scheduler, one of
the most severe energy consumers is the network stack. As a solution, most IoT network
standards are optimized for low power consumption, which is achieved by minimizing network
packets’ sizes as well as their quantity. A G-IKEv2 implementation for energy constrained
systems should thus sustain energy efficiency by reducing network traffic during the key
exchange and group negotiation to a minimum.
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4.3. Summary

Table 4.2.: Minimal requirements for a system implementing G-IKEv2

Functional Requirements

RIOT OS Support
Network Functionality
Cipher Suite

- Encryption
- Integrity
- PRF
- Diffie-Hellman

Source of Randomness

Non-functional Requirements

Flash Memory
RAM
Processor Performance
Energy Efficiency

Based on a simple analysis of the mandatory security services of a group key management
protocol, combined with the common use cases, a number of requirements for a system
implementing G-IKEv2 on RIOT OS have been worked out. A summery can be found in
Table 4.2.
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5. Minimal G-IKEv2 Protocol Design

This chapter describes a minimal subset of the Group-IKEv2 protocol adjusted to the needs
and limitations of embedded systems and the IoT. The resulting protocol combines the
functions of the G-IKEv2 protocol with the considerations for constrained systems of [6].

G-IKEv2, like GDOI, uses UDP port 848, because, same as IKEv1 and IKEv2, they serve
the same function and can be distinguished by the version number in the IKE header. Similar
to IKEv2, all unicast communications consist of a pair of messages called an “exchange”.
Because of GIKEv2 being a reliable protocol every request requires a response. The initiator
must retransmit a request until it receives a response or deems the IKEv2 SA failed. Messages
sent using multicast from the GCKS must not be replied by the GM.

The presented protocol only supports the two initial exchanges of the G-IKEv2 protocol,
which are used to establish a secure channel and join a group. Additionally it can handle the
GSA REKEY messages from the server which are used to change a SAs key’s or attributes.
Other exchanges and messages, like the informational exchange, are omitted. Group ma-
nagement operations other than a group join are not supported due to the constraints of the
targeted clients, which do not need to create or delete groups. The “GM registration” opera-
tion is performed during the GSA AUTH exchange, as the separate GSA REGISTRATION
exchange is not in the scope of the minimal protocol, similar to the miminal IKEv2 where
the negotiation of the transport SA must happen during the IKE AUTH exchange. Leaving
a group is handled from the group members by deleting the local SAs.

Only mandatory payloads that are explicitly mentioned in the following are part of the
protocol, other payloads, like the Notify payload, simply are ignored. Despite the absence
of a number of features, an implementation of this minimal G-IKEv2 protocol should be
compatible with any implementation compliant with [31].

5.1. Secure Channel Establishment

Figure 5.1 illustrates the minimal exchanges necessary to establish a mutual IKE SA. Each
message is preceded by a IKEv2 header, it contains two Security Parameter Indexes (SPIs),
one for the responder and one for the initiator, a IKEv2 version number, the message ID
and exchange type, and various flags. Only the SPIs are used to match an incoming Packet
to it’s corresponding SA, IP addresses and ports must not be used.

In order to authenticate each other, the Group Controller / Key Server (GCKS) and
Group Member (GM) need to share an authentication key over a secure channel.

5.1.1. IKE SA INIT

The initial exchange called IKE SA INIT is identical with IKEv2’s initial exchange. In the
minimal protocol, the initiator sends a Security Association SA, a Key Exchange KE and a
nonce Ni payload. The SA payload contains exactly one proposal stating the cryptographic
algorithms and the Diffie-Hellman group the initiator supports for the IKE SA, securing the
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Figure 5.1.: Simplified G-IKEv2 exchange for minimal implementations. [37]

following exchanges. In total 4 algorithms need to be negotiated: an encryption algorithm,
an integrity algorithm, a Diffie-Hellman group and a pseudorandom function (PRF). The KE
payload contains a Diffie-Hellman value, used to generate a shared secret between GM and
GCKS. The values group should match the group proposed in the SA payload. Ni contains
a random value called nonce.

The GCKS responds with a SA payload containing the received proposal, a KE payload
containing the server’s Diffie-Hellman value gr and it’s own nonce Nr. The GM validates the
received proposal and then proceeds to generate the shared Diffie-Hellman secret gir with
the server’s value.

5.1.2. Generating Keying Material

With the PRF negotiated in the IKE SA INIT exchange and the nonces and Diffie-Hellman
values exchanged, both parties are able to generate secure keying material, used to protect
the consecutive exchanges. The minimal client supports only cryptographic algorithms using
fixed-size keys where a randomly chosen value of the size can be used as key.

In the first step a quantity called SKEYSEED is computed from a combination of the
nonces and the Diffie-Hellman shared secret known from the first exchange:

SKEY SEED = prf (Ni|Nr, g
ir)

The SKEYSEED is further used to generate the keys securing the following communication.
Because the generated keying material is usually longer than PRFs output, keys are read
from the prf+ function, that outputs a consecutive byte stream using PRF in cipher block
chaining mode. It is defined as follows (| indicates concatenation):
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5.2. Group rekeying

prf+(K,S) = T1|T2|T3|T4|...

where:

T1 = prf (K,S|0x01)

T2 = prf (K,T1|S|0x02)

T3 = prf (K,T2|S|0x03)

T4 = prf (K,T3|S|0x04)

The keys are consecutively read from the output like this:

SKd|SKai|SKar|SKei|SKer|SKpi|SKpr = prf+(SKEY SEED,Ni|Nr|SPIi|SPIr)

For each negotiated algorithms, two keys are derived. Each key secures only a single
direction of traffic. SKai and SKar are the integrity algorithm keys, SKei and SKer are
used to encrypt packets and SKpi and SKpr are used to generate the authentication values.
SKd is used in IKEv2 to generate child SAs. It has no use in G-IKEv2, but is still derived
in order to preserve compatibility.

5.1.3. GSA AUTH

The GSA AUTH exchange authenticates the previous messages and allows the GM to join a
group. It consists of a single SK payload, containing an IDr, AUTH, GSA and KD payload.
All payloads inside the SK payload are encrypted and integrity protected by the keys derived
in the previous step.

The GM asserts its identity in the ID i payload. A identification value usually contains a
IPv6 address identity, alternatively an arbitrary string may be used. The AUTH payload
proves knowledge of the shared secret corresponding to ID i and additionally integrity pro-
tects the content of the first message. The IDg payload signals the wish to register for a
group by stating the groups identity (usually a multicast group IP).

The GCKS responds with it’s own identity in the IDr payload and authentication and
integrity protection of the IKE SA AUTH response in the AUTH payload. The minimal
client usually does not need to check the IDr, because it only knows one shared secret. A
server proving knowledge of this secret can be trusted in any case. If the server authorizes the
GM to be part of the requested group, it sends the GSA policy and KD payloads, providing
the GM with the SAs and corresponding keying material for the group it registered for.
The GSA policy contains used security algorithms and other SA attributes of at least one
Data-security SA (TEK) and optionally one rekey SA (KEK), used for the groups rekeying.

At this point the GM can securely communicate with other group members using the TEK
SAs and handle the servers GSA REKEY request with the KEK SA. The established IKE
SA is no longer used and may be deleted in order to save memory.

5.2. Group rekeying

The G-IKEv2 Rekey is a protected multicast message, sent by the GCKS, in order to inform
group members of changed group SA attributes, keys or both. It is protected by the groups
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KEK SA and contains at least a GSA, a KD and an AUTH payload. The GSA and KD
payloads may contain a KEK payload updating the existing KEK and keys and a TEK
payload creating a new TEK SA. The AUTH payload authenticates the GCKS. It should be
generated using asymmetric cryptography like a digital signature. Unlike the AUTH value
in the GSA AUTH exchange a shared secret can not provide source authentication because
the secret is known to all group members. The message is sent to multiple GMs using IP
multicast and thus does not require a response. Anti-replay protection is achieved by just
accepting message IDs higher than the current KEK SA message ID.
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The minimal G-IKEv2 client is implemented in the C programming language as an ex-
ternal RIOT module. It makes use of the GNRC network stack and especially GNRC’s
packet buffer. The module includes a working configuration using cryptographic algorithms
available in RIOTs system modules, or via RIOTs packet interface, as well as a minimal
implementation of a SAD that can be used to interface with eventual ESP or AH modules.
The module can be seamlessly integrated into GNRC using the netapi. The implementation
does not use any dynamic memory allocations to preserve RIOTs real-time nature and to
guarantee a clearly defined memory limit.

6.1. IPsec Databases

1 // Insert SA into database
2 ikev2 sa t ∗ikev2 sad insert(ikev2 sa t ∗sa);
3

4 // Get SA with given SPI from database
5 ikev2 sa t ∗ikev2 sad get(uint64 t spi i, uint64 t spi r);
6

7 // Delete SA with given SPI from database
8 int ikev2 sad delete(uint64 t spi i, uint64 t spi r);

Code 6.1: ikev2 sad.h

The implementation includes two Security Association Databases: an IKEv2 SAD, used
only internally in the G-IKE module to store the initial and KEK SAs, and an IPsec SAD,
storing the TEK SAs received from the GCKS.

The reason two different databases are used is the different structure of IKEv2 and IPsec
SAs, as well as the different scope of the two. IKEv2 SAs have a SPI value of two times 8
byte, once for the initiator and once for the responder. Additionally they need to store two
key sets, one for each direction. TEK SA SPIs are 4 byte in total and each type of key has
to be stored only once, as they protect only a single direction of traffic.

Both SADs consist of an array of statically allocated memory who’s size can be configured
at compile time. The IKEv2 SAD has a pre-configured size to store two SAs, one initial IKE
SA and one KEK SA. The IPsec SAD is configured to store one TEK SA by default. Each
database has a simple API supporting insert, get and delete operations. Inside the database,
memory is managed with the help of a linked list first free sa containing free segments of
data in the database. In the following the basic functions of the IKEv2 SAD API (shown
in Code 6.1) are explained. The IPsec SAD API works similarly, with the exception of the
different SPI format.
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ikev2 sad insert(ikev2 sa t ∗sa): returns a pointer to the first element of first free sa and con-
sequently removes it from the list. If a pointer to a SA is passed in sa the corresponding
structure is copied into the database, otherwise an uninitialized ikev2 sa t is returned.

ikev2 sad get(uint64 t spi i, uint64 t spi r): iterates the array until a SA sharing the SPIs is
found and returns a pointer to the corresponding SA, otherwise NULL is returned.

ikev2 sad delete(uint64 t spi i, uint64 t spi r): calls ikev2 sad get() and when a SA is returned
deletes it from the database by inserting it into first free sa.

6.2. Configuration

The usage of the module requires some configuration to be able to build a secure channel
and negotiate SAs. The configuration settings are stored in a configuration file config.h and
are compiled into the module. Configuration at runtime is not supported.

Configuration parameters include the GCKS IP address and port, identification data used
for the ID payloads, a shared secret used for authentication and the available cipher suite.
The minimal implementation comes with a pre-configured cipher suite using AES128 for
encryption, SHA1-96, SHA1-160 or SHA-256 for integrity and as pseudorandom function
and the SECP256R1 Diffie-Hellman group. A more detailed description of available algo-
rithms and the supporting libraries can be found in section 6.6. Additionally various other
sizes, including the number of SAs in the SADs and the nonce length, are declared in the
configuration file.

The cryptographic algorithms proposed in the IKE SA INIT request can be selected by
passing the corresponding constants in the Makefile or setting them in the configuration file.

6.3. Networking

This section deals with the minimal G-IKEv2 client’s networking functions. The first sub-
section summarizes RIOT’s network packet API, the second subsection describes the basic
structure of packet processing functions used throughout the implementation.

6.3.1. Packet structure

GNRCs packets are stored in a packet buffer pktbuf, in the form of a linked list of packet
snip (gnrc pktsnip t) structures, where each represents either header or payload of a packet.
A gnrc pktsnip t contains a pointer to the next element of the list, a pointer to it’s data,
it’s length, it’s nettype and the number of users. These structures, as well as their data,
are stored in a statically allocated pktbuf array. An example for such a packet can be seen
in Figure 6.1 It depicts a UDP packet containing an UDP payload data segment, an UDP
header and an IPv6 header in a list of three packet snips.

Packet snips are initialized with a call to the gnrc pktsnip add() function which takes the
packets next element, a data array, the packet size and the protocol type as an argument
and returns a pointer to the newly allocated structure. Internally, this initialization leads to
two calls of the packet buffer’s allocation function. The first call returns the first segment in
the buffer, big enough to hold the gnrc pktsnip t structure. The second call does the same for
the packets data segment. Consequently RIOTs network packets are stored in no particular
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Figure 6.1.: Example of a packet in GNRCs packet buffer [38]

order in the pktbuf. When the packet is not needed anymore it can be freed recursively, by
calling the gnrc pktsnip release() function, passing the head of the linked list as input.

Received network packets come in the form of a single element linked list containing the
full packet data. A packet handler will use the gnrc pktbuf mark() function, which marks a
number of bytes in a packet and appends it as a new element to the linked list. This way
the packet is split into headers and payloads, for further processing.

6.3.2. Message processing
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substructure2 build()
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payload2 build()
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(a) msg build() structure
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(b) msg handle() structure

Figure 6.2.: Handle and build function structure for an example message

The message processing is done in a hierarchical way. A message processing function
calls the underlying payload processor, which eventually call substructure processors. This
structure helps minimizing the code base and promotes reusability. Common patterns, for
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example the generic payload header, might be used in more than one message or payload.
Handle and build functions for a generic example packet are shown in Figure 6.2. Functions
are called in order, from top to bottom. Indentation visualizes the hierarchical call structure.

The message build function start building the last payload in the message in a new packet
snip and appends every further payload as new head to the list. Lastly the generic G-IKE
message header is appended. The payload build functions work the same way as the message
build function, only on a lower level in the payload hierarchy. An example for a build function
is shown in Section 6.4.2, where the sa init build() function is explained step by step.

Message handlers work contrary to the build functions. The message is parsed from the
first to the last payload, using the gnrc pktbuf mark() function to split the single packet snip
into a linked list of headers and payloads which are then parsed and further processed.

6.4. G-IKEv2 Client Structure

In the following the clients structure, including setup, sending of the initial message and the
overall protocol handling, is explained in procedural order.

6.4.1. Initial setup

1 void gikev2 run() {
2 /∗ Initialize SADs ∗/
3 ipsec sad init();
4 ikev2 sad init();
5

6 /∗ Initialize Diffie−Hellman Context ∗/
7 dh context t ∗dh ctxt;
8 dh ctxt = init dh ctxt();
9

10 /∗ Initialize SA ∗/
11 ikev2 sa t ∗sa = ikev2 sad insert(NULL);
12 ikev2 sa init(sa, config, dh context);
13

14 /∗ Generate AUTH key∗/
15 sha1 context auth key ctxt;
16 uint8 t auth key[PRF DIGEST SIZE];
17 sha1 init hmac(&auth key ctxt, SHARED SECRET, strlen(SHARED SECRET));
18 sha1 update(&auth key ctxt, KEYPAD, strlen(KEYPAD));
19 sha1 final hmac(&auth key ctxt, auth key);
20

21 /∗Initialize AUTH values with AUTH key∗/
22 sha1 init hmac(&sa−>auth i.auth ctxt, auth key, PRF DIGEST SIZE);
23 sha1 init hmac(&sa−>auth r.auth ctxt, auth key, PRF DIGEST SIZE);

Code 6.2: gikev2 run(): Security Association setup

Before starting the protocol exchange, various components need to be set up. Code 6.2
shows the initialization steps necessary before starting the protocol handler. First the two
SADs need to be initialized by creating the linked list of free elements. After a random Diffie-
Hellman key is generated the first IKEv2 SA is inserted into the IKEv2 SAD containing the
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25 // Initialize message handling
26 static msg t msg q[MES QUEUE SIZE];
27 msg init queue( msg q, MES QUEUE SIZE);
28 gnrc netreg entry me reg = { .demux ctx = GIKEV2 PORT,
29 .pid = thread getpid()};
30 gnrc netreg register(GNRC NETTYPE UDP, &me reg);
31

32 // Build and send IKE SA INIT
33 gnrc pktsnip t∗ pkt;
34 sa init build(pkt, sa);
35 gikev2 pkt send(pkt);
36

37 // Handle incoming messages
38 while (1) {
39 pkt = gikev2 msg recv();
40 gikev2 message handle(pkt);
41 }

Code 6.3: gikev2 run(): Network setup

newly created Diffie-Hellman values and the identities and cipher suite read from config.h.
After the SA is set up, the authentication key is generated from the shared secret, set in the
configuration file and the fixed KEYPAD. The key is used to initialize the authentication
value hashes for initiator and responder.

The GIKEv2 module is integrated into GNRC via the network registry (netreg) module
(Code 6.3). Network messages received from the netreg are transmitted via the kernels IPC
message interface, which requires a message queue to be set up (lines 26-27).

In order to receive network messages from the netreg module, the GIKEv2 module needs
to register it’s thread to the netreg database. This is done creating a netreg entry containing
the threads process ID pid and the demux context. The demux context is a rule used to
distinguish packets of the same nettype. UDP packets are distinguished by their ports, thus
GIKEv2s netreg entry demux context is the GIKEV2 PORT.

6.4.2. IKE SA INIT request

After the IKEv2 SA and networking are initiated, the IKE SA INIT is built from the con-
figured cipher suite. Packets are built from back to forth, as described in Section 6.3.2.

Code 6.4 shows the sa init build() function. After the random nonce is generated the pack-
ets payloads are built from back to forth. The nonce and KE payloads are straightforward
as they only consist of a byte string containing the nonce or Diffie-Hellman value and a fixed
header. The sa payload build() function iteratively builds the proposal substructure from the
cipher suite defined in config.h. Finally the fixed IKEv2 header is attached containing the
SAs SPI, the exchange type (IKE SA INIT) and the overall length of the packet.

6.4.3. Protocol handler loop

Code 6.5 shows the simplified structure of the gikev2 message handle() function. After the
message header is parsed, the corresponding SA is looked up from the database using the
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1 gnrc pktsnip t ∗sa init build(gnrc pktsnip t ∗pkt, ikev2 sa t ∗sa)
2 {
3 prng read(sa−>nonce i, NONCE LENGTH);
4

5 pkt = nonce payload build(pkt, PL NONE sa−>nonce i, NONCE LENGTH);
6 pkt = ke payload build(pkt, PL NONCE, sa−>dh ctxt);
7 pkt = sa payload build(pkt, PL KE, sa−>proposals, sa−>proposal num);
8 pkt = gikev2 hdr build(pkt, sa−>spi i, sa−>spi r, PL SA,
9 IKE SA INIT, false, false,

10 true, 0, gnrc pkt len(pkt)+IKE HDR SIZE);
11 return pkt;
12 }

Code 6.4: sa init build()

1 int gikev2 message handle(gnrc pktsnip t ∗buf) {
2 ikev2 hdr t hdr;
3 size t len = buf−>size;
4

5 /∗Parse generic G−IKE header∗/
6 gikev2 hdr handle(buf, &hdr);
7

8 ikev2 sa t ∗sa = ikev2 sad get( byteorder ntohll(hdr.i spi),
9 byteorder ntohll(hdr.r spi)

10 );
11

12 /∗ Handle messages ∗/
13 if (hdr.ex type == IKE SA INIT && sa−>state == IKE SA INIT) {
14 if(sa init handle(buf, sa)) return EXIT ERROR;
15 gnrc pktsnip t ∗req;
16 gsa auth payloads build(req, sa);
17 gikev2 pkt send(pkt)
18 } else if (hdr.ex type == GSA AUTH && sa−>state == GSA AUTH) {
19 gsa auth handle(buf, sa);
20 } else if (hdr.ex type == GSA REKEY && sa−>state == GSA REKEY) {
21 gsa auth handle(buf, sa);
22 } else {
23 return EXIT UNKNOWN PAYLOAD;
24 }
25 return EXIT SUCCESS;
26 }

Code 6.5: Message Handler

1 int cipher encrypt cbc( cipher t ∗cipher,
2 uint8 t iv[IV LEN],
3 uint8 t ∗input,
4 size t input len,
5 uint8 t ∗output )

Code 6.6: cipher encrypt cbc() definition
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Initial Auth Rekey
IKE SA INIT GSA AUTH
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Figure 6.3.: Security association state machine

SPIs from the message header. Next the message is passed to a handler function, depending
on the SAs state and the exchange type set in the header. Handler functions follow the
scheme described in Section 6.3.2. The SAs states are defined by the expected response
message. Figure 6.3 shows the SAs states in a simple state machine. In total three states
can be distinguished corresponding to the IKE SA INIT, GSA AUTH and GSA REKEY
exchanges. States are changed by successfully handling the expected response. After the
response was handled, the client builds and sends the following request. The initial IKE SA
starts in the Initial state and reaches the Rekey state after the GSA AUTH was successfully
handled. When the final SA state is reached, the implementation is caught in a loop, only
handling GSA REKEY Messages. KEK SAs received from the server always are in the Rekey
state.

6.5. Complications

This section deals with complications and hardships found during the implementation pro-
cess. Several changes to RIOT have been necessary in order to function properly.

6.5.1. Encrypting packets in the packet buffer
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Figure 6.4.: Packet from Figure 6.1 after the udp header packet snip was merged

The packet buffer’s structure has several advantages in terms of memory efficiency as it
reduces packet duplication and removes the necessity to move or copy data in the packet
buffer. A main downside of this, however, is, that it is not compatible with most crypto-
graphic library APIs, including RIOTs own Crypto module. Code 6.6 shows the definition
of the Crypto modules cipher encrypt cbc() encryption function. The function expects an
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arbitrary length byte array as input data and an array of the same length for the output
as argument. Consequently, encrypting a GNRC packet is not possible, as long as it con-
tains more than one packet snip. It can be worked around, without changes to RIOT, by
aggregating the linked list’s data segments in one consecutive buffer outside the pktbuf. This
would, however, in the worst case require a second buffer the size of pktbuf and thus destroy
all previous efforts of memory efficiency and render the packet buffer itself useless.

A solution is the introduction of a new packet buffer API function gnrc pktbuf merge()

, which merges a linked list of packet snips to a single packet snip pointing to a newly
allocated pktbuf segment, containing the former list’s data in a continuous memory segment.
The downside is a loss of control information as there is no way to keep the information,
stored in the lost packet snip descriptors. When used for encrypting or hashing the packet
this should not be a problem as the encrypted or hashed packets rarely have to be modified
afterwards. Moreover this solution still requires a pktbuf of twice the size of the largest
packet, but it does, in contrast to an external memory segment, integrate well into the
GNRC API. An example of a “merged” packet can be seen in Figure 6.4. It shows the UDP
packet from Figure 6.1 after pktbuf merge() was applied to the second element of the list. The
packet contains the same data as in it’s original form, the UDP header and data segments
are stored in a single gnrc pktsnip t.

6.5.2. Stack size

The implementation was mostly built using the virtual RIOT environment described in
Section 3.2. Deploying the finished build on hardware systems turned out to lead to several
problems. RIOT’s default stack size for Cortex-M0 CPUs of 1024 Byte is too small for the
implementation and results in randomly seeming RIOT kernel panics. As a workaround the
stack size is increased to 2048 Byte.

6.6. Supporting modules and libraries

In order to provide a compatible cipher suite the implementation uses several RIOT modules,
as well as external cryptographic libraries. In the following, various compatible libraries for
the “minimal G-IKEv2 client” are described:

Hashes [39] RIOT’s internal hashes module defines several cryptographic hash functions
including SHA1 and SHA256. Both are preconfigured and can be used in the imple-
mentation by setting the corresponding flags in the Makefile.

Crypto [40] RIOT’s crypto module provides an AES-128 and 3DES implementation for the
use in several cipher modes, including ECB, CTR and CBC. The “minimal G-IKEv2
client” is configured to use the AES-128 in CBC mode. Counter based modes can not
be used in the protocol as sharing the counter would require an additional payload to
be handled.

micro-ecc [41] As RIOT’s internal modules do not provide any support for the Diffie-
Hellman exchange the implementation by default uses the micro-ecc library, using
RIOT’s package interface. It provides a number of elliptic curve Diffie-Hellman groups
allowed for the use in IKEv2. The default configuration uses the secp256r1 group.
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In addition to the currently used libraries, a number of other compatible libraries can be
used to provide further cryptographic functions, with some adaptions in the code. Notable
libraries providing more features include:

tweetnacl [42] This library is available over the package interface and should be considered
for providing the curve25519 [43] Diffie-Hellman group, which is well suited for the
use in constraint systems, because it’s low processing requirements and short keys.

wolfssl [44] A multi-purpose embedded cryptographic engine that is currently being ported
to RIOT OS . It provides several elliptic curve Diffie-Hellman groups, hash functions,
encryption functions and hash based random number generators.
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In order to evaluate the implementation, a testbed, containing different embedded systems
with varying levels of constraints, is set up in Section 7.1. The most limiting sizes are
measured, including memory requirements of the implementation as well as the time needed
to process the key exchange. Finally the findings are evaluated against the requirements
found in Chapter 4 The evaluation of the implementation has been published in the form of
a research paper. The paper is, in it’s full form, appended in Appendix A.

7.1. Test setup

The implementation was tested on three popular hardware platforms with different levels of
constraints. Table 7.1 shows a technical overview of the chosen platforms. All platforms are
supported by RIOT OS and can be equipped with a compatible network device.

Arduino Architecture Clock Speed Flash Memory SRAM

UNO ATmega328 16 MHz 32 KB 2 KB
M0 Pro ARM Cortex-M0+ 48 MHz 256 KB 32 KB
Due ARM Cortex-M3 84 MHz 512 KB 96 KB

Table 7.1.: Available Arduino boards in testbed

In the used testbed the three Group Members (GMs) need to negotiate group membership
for a pre configured group with a Group Controller / Key Server (GCKS). An overview of the
setup is presented in Figure 7.1 The performed exchange is explained in detail in chapter 5.
The devices are authenticated with the pre-shared secret method, which is pre-configured
on all devices. The Arduino boards are equipped with Espressif ESP82661 WiFi modules.

The cryptographic cipher suite proposed by the clients consists of the following algorithms
provided either by RIOT or by packets available over the package interface (modules are
RIOT modules, libraries are external):

• AES128-CBC for encryption (Crypto module)

• HMAC-SHA256 for integrity (Hashes module)

• HMAC-SHA1 as pseudorandom function (Hashes module)

• SECP256R1 Diffie-Hellman group (micro-ecc library)

The nonces have a size of 32 Byte and are generated with the periph hwrng module on
the Arduino Due, which is equipped with a hardware random number generator (RNG),
and using the tinymt32 [45] pseudorandom number generation algorithm on the other two
devices.
1https://espressif.com/en/products/hardware/esp8266ex/overview
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Figure 7.1.: Test setup

7.2. Results

The most relevant results from the tests - in regards to the practicability of secure group key
management on the chosen systems - are the memory requirement and the CPU performance
for the minimal G-IKEv2 exchange. The use of only static memory in the implementation
allows for a very precise analysis of the minimal memory requirement. The implementations
performance is measured by the time necessary to process the performed exchanges.

7.2.1. Memory

Table 7.2.: Memory required for the minimal G-IKEv2 client

Feature Required Memory

RIOT kernel (incl. stack) 2,560 Byte
RIOT IPv6 stack 1,024 Byte
RIOT UDP stack 1,024 Byte
RIOT net cache 928 Byte
RIOT packet buffer 1,280 Byte
IKE SA ∼ 210 Byte
SAD for 1 group membership ∼ 100 Byte
SPD for 1 group membership 40 Byte∑

6,142 Byte

The total minimum RAM requirement of RIOT, including necessary network modules and
the implementation itself, is found to be 6142 Byte. This includes a RIOT (plus G-IKEv2
module) size of 2560 Byte. 1024 Bytes each for the IPv6 and UDP stacks, a packet buffer
of 1280 Byte, and 350 Byte in total for the different SADs. A more precise list of the
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Due M0 Pro Due M0 Pro Due M0 Pro Due M0 Pro

Prepare IKE_SA_INIT Process IKE_SA_INIT Prepare GSA_AUTH Process GSA_AUTH

avg [ms] 1.62 2.62 187.92 421.94 10.29 17.41 6.32 10.53

std. dev. [ms] 0.00 0.00 0.11 0.13 0.00 0.00 0.40 0.00

min [ms] 1.62 2.62 187.72 421.71 10.29 17.41 6.15 10.52

max [ms] 1.62 2.62 188.11 422.18 10.29 17.41 7.26 10.53
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Figure 7.2.: Processing time for G-IKEv2 packets on Arduino M0 and Due [37]

implementations memory requirements can be found in Table 7.2.

This exceeds the Arduino UNO’s RAM capacity by more than double the available RAM
and consequently makes it unusable for the further tests using this setup.

The Arduino M0 as well as the Arduino Due provide 32 Byte and 96 Byte RAM respec-
tively and thus have no problems fitting the minimal configuration.

7.2.2. Performance

The performance analysis could only be performed on the two more powerful boards Arduino
M0 and Arduino Due. Four different steps in the protocol were measured: 1) prepare the
IKE SA INIT in the packet buffer , 2) process of the servers response, measured from the
moment the incoming packet is received, 3) build the GSA AUTH request until it is sent
and finally 4) process the GSA AUTH response. Due to the necessity of manual intervention
during the tests, which makes an automated test setup impossible, 20 measurements have
been made for each device. This is considered an appropriate number as the standard
deviation is negligible in all steps. The results of the measurements can be seen in Figure 7.2.

The most time intensive operation of the exchange is the processing of the IKE SA INIT
request, which contains the calculation of the shared Diffie-Hellman value. This is no sur-
prise as asymmetric cryptographic operations are known to be more CPU expensive than
symmetric ones [46]. In total the Diffie-Hellman calculation makes up for almost 99% of the
time measured for this operation. The Arduino Due needs about 44.5% the time the M0
needs, which is in accordance with their processor’s clock rate difference, shown in table 7.1.

Even though the processing of the IKE SA INIT may violate an eventual real-time thresh-
old, it should be noted that this is a one time step during the connection establishment.
Further messages will rather compare to the GSA AUTH exchange which takes ≈ 17 ms on
the stronger Arduino Due and barely above ≈ 28 ms on the Arduino Zero. Both boards
can thus be considered fulfilling the performance requirement of handling the cryptographic
algorithms without limiting the devices overall functionality.
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7.3. Summary

Two of the three tested devices fulfilled all requirements collected in Chapter 4. An overview
of the tested systems in regards to the requirements is given in Table 7.3. All three devices
are theoretically able to run RIOT, which includes a working network stack. RIOT provides a
compatible cipher suite, which can be further extended using additional libraries available via
RIOT’s package interface. The only board failing the memory requirements, for both Flash
and RAM, is the Arduino Uno. An even more minimal implementation could outsource the
network stack’s software requirements entirely to the network module and thus reduce the
memory requirements even further. Common embedded WiFi modules, like the ESP8266,
theoretically allow this by providing a own IP and UDP implementation. This way even
the Arduino Uno might be able to handle the protocol. However, this has not yet been
practically proven. The CPU requirement can be fulfilled by both, Due and M0, as only the
asymmetric Diffie-Hellman operation, which only takes place once for each group registration,
adds a notable time overhead. The Arduino Uno could not be tested in regards to CPU
performance. Energy requirements are fulfilled by using the “minimal G-IKEv2 client”
protocol which limits network traffic to the minimum by nature.

Table 7.3.: Comparison of the tested devices in regards to the requirements

Functional Requirements Arduino Uno Arduino M0 Arduino Due

RIOT OS Support 4 4 4

Network Functionality ESP8266 ESP8266 ESP8266
Cipher Suite 4 4 4

Encryption AES128 AES128 AES128
Integrity HMAC-SHA256 HMAC-SHA256 HMAC-SHA256
PRF HMAC-SHA1-96 HMAC-SHA1-96 HMAC-SHA1-96
Diffie-Hellman SECP256R1 SECP256R1 SECP256R1

Source of Randomness tinymt tinymt Hardware-RNG

Non-functional Requirements

Flash Memory (≥ 57 KB) 32 KB 256 KB 512 KB
RAM (≥ 6.2 KB) 2 KB 32 KB 96 KB
Processor Performance • 4 4

Energy Efficiency 4a 4a 4a

Total 8 4 4

legend: (4)Full Support, (•)Not tested, (8)No Support
a Fulfilled by using the “minimal G-IKEv2 client” protocol
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With the growing number of Internet of Things (IoT) devices being connected to the internet,
a new kind of networks called wireless sensor networks (WSNs) increasingly gain importance.
Secure group communication brings various requirements compared to traditional point-to-
point communication.

Various secure group key management solutions have been standardized, however, none
of them has been adapted and tested for the use in constrained environments like WSNs.

A list of functional and non-functional requirements for a system implementing the G-
IKEv2 protocol was collected, including cryptographic requirements for securing the com-
munication as well as the underlying resource requirements.

The “minimal G-IKEv2 client” protocol was specified by defining a minimal subset of
the G-IKEv2 protocol for the use in constrained environments. It is compatible with server
implementations compliant to the proposed G-IKEv2 standard and is optimized to support
only the minimal number of messages required to join a group and maintain IPsec security
associations, in order to save processing power and memory.

The protocol was implemented for RIOT OS, an aspiring IoT operating system. It was
deployed and tested on three constrained target systems in order to evaluate the imple-
mentation’s performance and memory usage in regards to the derived requirements. The
tests showed that two out of three tested devices are able to handle the protocol reliably
and without noteworthy time delays. Of these, the most drastic delays are caused by the
shared Diffie-Hellman value, which only needs to be calculated once, for each established
connection. The following exchanges have been performed below a time threshold of 20 ms
with a negligible maximum standard deviation of 0.4 ms. The tests prove that the “minimal
G-IKEv2 client” protocol can be a viable choice for secure group management in sensor
networks.

Future Work While the protocol provides the basic group key management functions neces-
sary for secure communication, it can not be used productively to secure large scale wireless
sensor networks, without further additions. One of the biggest limitations of the current
implementation is the lack of an efficient authentication method. The pre-shared key au-
thentication used for the tests in chapter 7 is only sufficient for small groups of systems
that provide a secure side channel to exchange secrets. This method lacks source authen-
tication in the GSA REKEY exchange, as all group members share one secret. A secure
identity management, as well as an authorization and authentication infrastructure will be
necessary.

Another requirement that arises especially with the use in dynamic groups is the need for
forward and backward secrecy. The G-IKEv2 protocol supports this by using a logical key
hierarchy (LKH) and thereby being able to exclude members from the rekey multicast.
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