
Technische Universität München

Fakultät für Informatik

Bachelorarbeit in Wirtschaftsinformatik

Automated Fault Recovery Planning

in Cloud Computing

Pavlo Kerestey

Technische Universität München

Fakultät für Informatik

Bachelorarbeit in Wirtschaftsinformatik

Automated Fault Recovery Planning

in Cloud Computing

Automatisierte Planung der Fehlerbehebung

in Cloud Computing

Author: Pavlo Kerestey
Supervisor: Prof. Dr. Heinz-Gerd Hegering
Advisor: Dipl.-Inf. Liu Feng

Dipl.-Ing. Johannes Watzl
Date: February 15, 2010

I assure the single handed composition of this bachelor thesis only supported by declared
resources.

Garching, den 15. Februar 2010 Pavlo Kerestey

vii

Abstract

This work investigates the applicability of the automated planning approaches to fault
management in cloud computing implementations on the infrastructure as a service level.
A decision support solution for the fault management in cloud computing is examined to
identify the possibility of the automation of fault recovery in large scale cloud computing
deployments.

Cloud computing is a fairly new topic with increased industrial interest. Cloud computing
services are popular due to their flexible resource allocation and optimal economic usage.
This allows to avoid under- and over-utilization of the computing resources and makes
planning and management less cost-intensive task. At present, no good cloud comput-
ing management solution for fault recovery exists, which makes cloud computing services
unattractive to many potential users. As mistakes do happen in every system it must be
possible for a cloud service provider to guarantee that the terms of provisioning will not
be breached even when faults happen. This can be achieved by automating error-prone
and time-consuming tasks. Therefore the aim of the fault recovery solution examined in
this work is the time minimization of complete service recovery.

To diminish the problem, an automated planning approach in the field of artificial in-
telligence is chosen as a solution. In addition, this work is based on operation research
studies. The aim is to create a prototype of a decision support solution, which will help
to lessen the complexity of fault recovery and also the expenses for the whole fault ma-
nagement. A system and its services should recover from different kinds of faults using
fast and a systematic composition of recovery plans. A scenario will be created in coop-
eration with internet and computing provider Global Access GmbH and cloud computing
provider Zimory GmbH to prove the usefulness of the solution. The aim is a machine
aided improvement of IT service availability.

This work explores existing approaches of automated planning and uses planning applica-
tions in grid computing. It targets the analysis of the applicability of automated planning
approaches for the fault management in cloud computing. An automated planning algo-
rithm is examined and a prototype is implemented for a scenario to prove that functionality
of the planning system is given.

viii

Contents

Abstract vii

1. Introduction 1
1.1. Cloud Computing . 1

1.1.1. Infrastructure as a Service . 1
1.1.2. Platform as a Service . 2
1.1.3. Software as a Service . 4

1.2. Automated Planning . 4
1.2.1. Types of automated planning . 5
1.2.2. Representations of planning . 5

2. Scenario 7
2.1. Model . 7
2.2. Problem Statement . 8
2.3. Requirement analysis . 9

3. Automated planning as a solution 11
3.1. Planning Techniques . 11

3.1.1. Graphplan . 12
3.1.2. Hierarchical Task Network - Informed Search 12

3.2. System design . 13
3.3. Data types and data structure . 14
3.4. Algorithm . 15

4. Implementation 21
4.1. Implementation . 21
4.2. Evaluation . 23

4.2.1. Hardware and software setup for evaluation 24
4.2.2. Evaluation procedure . 24

5. Related work 29

6. Outlook and future work 31

Bibliography 35

A. Appendix 37
A.1. Planner: Planner.py . 37
A.2. Planner: Knowledge.py . 40
A.3. Planner: tests/test-planner.py . 48
A.4. Planner: runtests.py . 49
A.5. Data: tasks.json . 49
A.6. Data: description.json . 51

x Contents

A.7. Data: status.json . 52

1. Introduction

1.1. Cloud Computing

The definition of cloud computing changes rapidly. New concepts are often called cloud
computing and there is no commonly agreed definition of cloud computing at the moment.
The ACM SIGCOMM article “A Break in Clouds: Towards a cloud definition” provides
the most exact definition of this term which is also used in this work:

“Clouds are a large pool of easily usable and accessible virtualized resources
(such as hardware, development platforms and/or services). These resources
can be dynamically reconfigured to adjust to a variable load (scale), allowing
also for an optimum resource utilization. This pool of resources is typically
exploited by a pay-per-use model in which guarantees are offered by the In-
frastructure Provider by means of customized SLAs.” [19]

There are three levels of abstraction in cloud computing such as infrastructure as a service,
platform as a service and software as a service, which can be grouped together or examined
as standalone paradigms. To provide an overview each of them is described separately.

1.1.1. Infrastructure as a Service

Infrastructure as a Service (IaaS) is the lowest level of abstraction that is provided as
a service (figure 1.1). Infrastructure services are used to built higher level services, or
bundled together by service providers.

Infrastructure providers manage a large set of computing resources, such as
storage and processing capacity. Through virtualization, they are able to split,
assign and dynamically resize these resources to build ad-hoc systems as de-
manded by customers. They deploy the software stacks that run their services.
This is the Infrastructure as a Service (IaaS) scenario[19].

The typical service is a provision of an environment for so called virtual machines1. An
instance of such a virtual machine can host an operating system and is therefore a good
instrument for building a customized infrastructure upon it. The economical difference

1A virtual machine is a tightly isolated software container that can run its own operating systems and
applications as if it was a physical computer. A virtual machine behaves exactly like a physical computer
with its own virtual (i.e., software-based) CPU, RAM hard disk and network interface card (NIC).[9].

2 1. Introduction

Hardware
Ressources

Infrastructure as a service
a service level, which is provides computing hardware and networking
ressources usually combined to a grid for better scalability and
provided using virtualization. The
provision of the services is bound
to service level agreements.
The users of the services are
billed only for the used ressources.

Application platform as a service
combination of virtualized infrastructure and data
services with ability to develop, test, deploy and
maintain applications in a scalable runtime
environment enables provision of platform
services.

Software as a service
Applications, that are run on remote servers and
provided for usage over internet via internet browser
may be called software as a service. Typically such
applications are hosted on some kind of scalable
platform. Example of such applications are online
documents editing or online video editing.

Figure 1.1.: This image shows the hierarchy of three levels of cloud computing services - software
as a service, platform as a service and infrastructure as a service.

between the usage of an ordinary infrastructure and the virtual infrastructure in the cloud
is that the payment is made only for the used resources.

Well-known IaaS Providers are 3Tera with the AppLogic Grid OS [1], Amazon with Elastic
Compute Cloud [2], and RightScale [6]. Software solutions which are used to create a cloud
computing infrastructure VMWare vCloud [8], Eucalyptus open source and enterprise
editions [3], and Xen Cloud Platform [10] can be pointed out as some well-known examples.

1.1.2. Platform as a Service

Some applications can be grouped together by common execution environment proper-
ties. Performance of such applications can be optimized by building a unified platform,
which would run the applications. This platform can then be optimized to handle such
performance bottlenecks as a database access, limited CPU or memory resources. Instead
of supplying a virtualized infrastructure, providers can offer a software platform where
applications run on. The sizing of the hardware resources demanded by the execution of
the services is made in a transparent manner. This is denoted as Platform as a Service
(PaaS) figure 1.1. [19]

To optimize the maintenance of such platforms, they are usually built by using flexible
infrastructure. Usage of IaaS for this cause provides all benefits of virtual infrastructure
like flexible resource allocation or scalable resource usage. Creating infrastructure for such
platforms is the main topic of this work, therefore existing examples are examined.

1.1. Cloud Computing 3

A well-known platform service is the Google App Engine. It is a platform for python
and java applications. These applications run inside dedicated environments consisting
of runtime environments and a database. The environments are also capable of resource
scaling to specific needs.

Another example of PaaS is Heroku. It provides a runtime environment to run Ruby
applications. An overview of their platform is depicted on figure 1.2.

DB

DynoDyno Dyno

DB

DynoDyno Dyno

Routing Mesh

Load Balancer

Cache

Replication

4

3

2

1

5

Application User

request

Figure 1.2.: Heroku platform architecture. [4]

Platforms are built to optimize the performance of a runtime environment for applica-
tions. Heroku is built specifically for web applications which deal with users requesting
applications’ content. It uses different machines to handle these requests during different
phases of their processing. The first phase of a request is to find out by which application
should the request be processed. This is handled by servers which receive these requests
first. (figure 1.2 1), managing DNS, load balancing and fail-over scenarios. This layer is
tuned for high performance and handles only requests, encryption and compression.

The next phase in request processing is querying the cache (figure 1.2 2). Every request
passes through it and if requested content is available in the cache, which results in cache
providing the content immediately to the user. Such a request is thus never processed by
an application.

In order to run the application, Heroku uses dynos (figure 1.2 4). These are runtime
environments for applications and are created as delimited processes. They are spread
across a grid and an application maintainer may use several to increase performance of
her or his application. The number of used dynos can be increased or decreased, it takes
2 seconds to start one.

4 1. Introduction

Before being processed by a dyno, a request routing is handled by a routing mesh (fig-
ure 1.2 3) which enables load balancing of the requests between dynos that belong to the
same application. In case a dyno becomes unstable a new dyno is launched. The routing
mesh will then route all requests to the new dyno.

Heroku provides a SQL database for every application to store persistent data (figure 1.2 5).
It is replicated to provide better access performance and stability. The application main-
tainer is not forced to use it. A database hosted by another provider can be used as
well.

PaaS uses different machines to perform certain tasks and these machines can be dynam-
ically deployed in great numbers to handle higher loads. To avoid high costs of under-
utilization of the infrastructure these machines are running on, they must be constantly
monitored. Idle machines must be detected and stopped and faulty or hung-up machines
should be replaced. In case the system receives higher load, new machines must be de-
ployed to handle this load. Using virtual infrastructure with an automated management
system would make such platforms maintainable.

1.1.3. Software as a Service

There are services hosted in cloud systems which are of potential interest to a wide variety
of users. These services are alternatives to local run applications such as word processors,
picture viewers and video players to name a few. Provision of such applications is called
Software as a Service (SaaS) figure 1.1. [19]

Many modern web applications are forms of SaaS. They do not need to be installed, are
configurable to personal needs of the users and are provided over internet. Most of such
applications are built similarly and can therefore be deployed on an application platform.
This allows to take benefit of all the qualities of a platform including flexible scalability
and stability.

1.2. Automated Planning

The management of large scale infrastructures will at some point require that certain tasks
will be automated. The aim of this work is to find a solution for automating the search
for actions which have to be executed to recover a faulty infrastructure. This task will be
achieved by examining automated planning.

Planning is the reasoning side of acting. It is an abstract, explicit deliberation
process that chooses and organizes actions by anticipating their expected out-
comes. This deliberation aims at achieving as best as possible some pre-stated
objectives. Automated planning is an area of Artificial Intelligence (AI) that
studies this deliberation process computationally.[16]

A motivation for automated planning is designing information processing tools that give
access to planning resources. For example an operation of recovering from an outage in
a large infrastructure may involve a large number of actors. Deployment of the right
amount of machines in the right environment and managing the availability of services
at the same time relies on careful planning. This is time constrained and it demands
immediate decisions which must be supported by a planning tool. A planning resource
that is seamlessly integrated with management tools used by a system administrator could
be of great support in handling constraints and offering alternate recovery plans not yet
considered. The system is able to point out critical actions and show constraints that are
needed to be relaxed to achieve a best possible solution.

1.2. Automated Planning 5

Since there are various types of actions in general, there are various forms of planning as
well. Examples include path and motion planning, perception planning and information
gathering, navigation planning, manipulation planning, communication planning, and sev-
eral other forms of social and economic planning. Certain aspects of these planning forms
will be used to create a planning domain useful in this work.

1.2.1. Types of automated planning

Path and motion planning is concerned with the synthesis of a geometric path from a
starting position in space to a goal and of a control trajectory along that path that spec-
ifies the state variables in the configuration space of a mobile system, such as a truck, a
mechanical arm, a robot, or a virtual character.

Perception planning is concerned with plans involving sensing actions for gathering in-
formation. It arises in tasks such as modeling or identifying environments and objects,
localizing through sensing a mobile system, or more generally identifying the current state
of the environment. Data gathering is a particular form of perception planning which is
concerned not with sensing but instead with querying a system: e.g., testing a faulty de-
vice in diagnosis or searching databases distributed over a network. The issues are which
queries to send where and in what order.

Navigation planning combines the two previous problems of motion and perception plan-
ning in order to reach a goal or to explore an area. The purpose of navigation planning
is to synthesize a policy that combines localization primitives and sensor-based motion
primitives, e.g., visually following a road until reaching some landmark, moving along
some heading while avoiding obstacles, and so forth.

Manipulation planning is concerned with handling objects, e.g., to build assemblies. A
plan might involve picking up an object from its marked sides, returning it if needed,
inserting it into an assembly, and pushing lightly till it clips mechanically into position.

Communication planning arises in dialog and in cooperation problems between several
agents, human or artificial. It addresses issues such as when and how to query needed
information and which feedback should be provided.

1.2.2. Representations of planning

To understand algorithms solving automated planning problems, we examine three differ-
ent ways to represent them.

In a set-theoretic representation, each state of the world is a set of propositions, and each
action is a syntactic expression specifying which propositions belong to the state in order
for the action to be applicable and which propositions the action will add or remove in
order to make a new state of the world.[16]

In a classical representation, the states and actions are like the ones described for set-
theoretic representations except that first-order literals and logical connectives are used
instead of propositions. This is the most popular choice for restricted state-transition
systems.[16]

In a state-variable representation, each state is represented by a tuple of values of n state
variables (X1, ..., Xn), and each action is represented by a partial function that maps this
tuple into another tuple of values of the n state variables. This approach is especially
useful for representing domains in which a state is a set of attributes that range over finite
domains and whose values change over time.[16]

In our solution attempt we will use the state-variable representation adopted to the plan-
ning domain.

6 1. Introduction

2. Scenario

In this chapter a scenario based on PaaS is provided, which serves as a basis for further
discussions. According to the presented scenario the research problem is derived. First a
cloud computing infrastructure is examined which allows to provide a platform for develop-
ment, deployment and maintenance of different distributed applications. We then identify
the problems regarding stability and maintenance which arise in such infrastructure. In
the end requirements for a solution of the problem are defined.

2.1. Model

Legend

Worker
stage 3

Worker
stage 4

Worker
stage 2

Worker
stage 2

Worker
stage 1

Worker
stage 1

Worker of
type 2 Database

Load
balancer Database

Cache Worker of
type 1

Replicated
database

Replicated
database

Worker Worker

Load
balancer

Load
balancer

Web application Pipe application Third application

11

22

33

44

55

76

98

1210

1211

virtual
machine

type

virtual
application

A virtual machine of a
certain type run in a
virtual application

Virtual application containing
one or more virtual machines

Figure 2.1.: A schematic overview of a virtual infrastructure, which hosts several virtual machines
represented by squares. Virtual machines are grouped into three virtual applications:
web application, pipe application and some third application

As shown on figure 2.1 we examine an infrastructure, which allows the deployment of
different distributed applications with several virtual machines. To avoid cluttering of the

8 2. Scenario

overview, only 6 virtual machines per virtual application are shown, although the number
of virtual machines per application is not limited to this amount. The depicted scheme
shows different layers where the virtual machines can be placed.

The main purpose of a platform is to serve an application as stable as possible. When
an application user requests computation or data retrieval, the virtual machines will have
to evenly distribute the load of such requests. In a web application such requests will be
handled by a load balancer first (fig 2.1 1). This request will then be routed to a least
loaded worker instance (fig 2.1 3), and the latter will processes the request. It is likely that
the worker instance has to access persistent data stored in a database to retrieve data or
to perform computations (fig 2.1 3, 12).

Different applications may have several types of machines. These applications can be built
using different architectures. They may for instance have certain types of data to deal
with. Data, which should be stored securely and its loss must be avoided at all costs, have
to be replicated throughout several database server instances. Big amounts of data, where
consistency is not as important as access speed, can be stored in a sharded manner – i.e.
split over different database servers and retrieved in parallel.

The infrastructure can also be built on top of different resource providers. They may have
different terms of SLA, different capacities as well as different prices. These factors have
to be considered when deploying virtual machine instances for various applications.

2.2. Problem Statement

The infrastructure is so complex, that faults may occur on several levels. These faults if
not serious, may lead to sluggish response times or in severe cases even to unresponsiveness
of the systems and violations of the SLAs’. An example of an outage in Amazon’s elastic
compute cloud1 shows that any aspect of the application infrastructure, can cause a major
failure if complex architecture is insufficiently planned.

On order to examine faults, which may occur to virtual machine instances and to the
infrastructure as a whole, an example of a web application from the scenario (figure 2.1) is
examined. The load balancer (figure 2.1 1) is the entry point for every incoming request. If
it fails to route the request to the right worker instance (figure 2.1 2), one of the latter has to
perform more computation tasks to handle the requests and therefore will be under higher
load. The overall performance may therefore deteriorate and if a threshold is reached,
the routing failure will lead to an overload of application instances which then results in
unresponsiveness.

The applications may also contain software bugs. If such faults are hidden they are difficult
to correct. They may lead to unpredictable behaviors and application unresponsiveness
and finally deterioration of the overall performance of the system. The problem could be
solved by replacing the unhealthy instances with new ones, but for a customer this process
can be expensive in terms of time and cost.

The availability of connectivity to the services is an issue as well. It is always possible, that
a cloud computing providers has technical difficulties. The virtual machine instances of the
affected applications have to be migrated to other resource providers of the same system,
whereas each provider supplying different levels of availability and SLA’s. Therefore there
are several target choices for the migration.

1On January 2. 2010, all of the specialized, high-capacity Amazon EC2 instances that run Heroku service
became unavailable. Amazon routing device in its Virginia data center experienced failure. The service
was recovered in an hour.[7]

2.3. Requirement analysis 9

The growing scale and the complexity of such infrastructures makes it difficult to man-
ually construct resource allocation plans. Even if such plan can be found, in case of a
failure, different users and customers have different requirements on provided resources
and system uptime. The problem arises in making deployment decisions, which optimally
distribute the resource usage, is a time-expensive management task that requires signifi-
cant amounts of expertise knowledge. Even if the knowledge is available, it is difficult to
foresee and evaluate all possibilities and behaviors of the system and manually plan an
optimal provisioning scenario. It is also difficult to deal with constantly changing number
of virtual resource providers. This may be the case when the demand for the resources
is rapidly changing. The deployment decisions have to be calculated precisely where not
only the price, but also the availability and performance of the provided resources has to
be taken into account.

In particular, it is even more difficult to react to a fault in a constantly changing infrastruc-
ture. If a failure occurs, the mean time of recovery depends on the system administrator’s
knowledge. If the knowledge is insufficient on a certain level, or there are no experience
on particular topic, the recovery process may take more time than needed. Thus leads to
a breach of SLA’s.

In summary the problem with virtual infrastructure provision can be derived from the
following observations:

• A system is complex and error prone.

• A fault of one single component in the system may lead to a ripple effect2, by which
the whole system becomes unstable in an unpredictable amount of time and may
eventually lead to unresponsiveness and SLA violation.

• The availability of a system depends on how prompt a service fault is identified and is
largely related to expert knowledge of the system’s administrator performing system
repair. The general formula of calculating availability is given by: availability =

MTBF
MTBF+MTTR [20] Where MTBF is Mean Time Between Failure and MTTR is Mean
Time To Repair.

• The dynamic nature and the possible multi organizational deployment of the infras-
tructure makes it complicated to create an optimal solution which would include
interests of all parties - i.e. provider, customer and user.

• The same dynamic nature causes an unpredictable recovery process where the relia-
bility of the recovered system is questionable.

• The knowledge needed for recovery is often spread between different parties or even
unavailable. This is critical for decision-making during a fault recovery process.

• The knowledge management is a very time- and cost-intensive task.

• The planning of a fault recovery process in a timely- and cost-effective manner is an
complicated management activity.

2.3. Requirement analysis

To effectively provide virtual infrastructure services, a decision support system is needed,
which quickly and dynamically determines a failure recovery plan. The system must be
aware of the provided resource landscape, the reliability as well as the costs, the used
amount of resources by the deployed applications and of the application load.

2The ripple effect measures impact, or how likely it is that a change to a particular module may cause
problems in the rest of a program.[12]

10 2. Scenario

As mentioned before, the mean time to a system recovery relies largely on human exper-
tise. To provide reliable services, efficiency gains on fast root cause determination and
on automatic recovery plan creation as a suggestion for the system administrator or au-
tomated actor have to be achieved. This way he would be able to promptly react to a
system outage.

To tackle the problem of finding reasonable provision scenario in this environment, an
automated decision support system [DSS] can be developed, which will compute the factors
of different recovery scenarios.

After a fault event occurred in the given infrastructure, a complete description of what fault
happened should be available to the DSS. It must then be able to quickly determine the
actions, which must be performed by a system administrator or some automated system
to recover from the error in the shortest period of time.

The DSS should include following aspects:

• determination of a reasonable recovery plan for an outage.

• ability to monitor the recovery process executed by an external agent and adopt the
proposed recovery plan to the changing requirements.

• saving the knowledge from the recovery into a centralized knowledge repository for
reuse.

• ability to retrieve the knowledge in a human readable format, to use, edit and improve
it.

There are several reasons to develop a decision support system. The problem of quick com-
munication of the information concerning outages could be targeted by a central knowledge
base specifically created for this problem type.

Another reason for a decision support system is because the recoveries from failures are
often error prone due to tight time frames. This makes such recovered systems unstable and
their latter behavior unpredictable resulting in further outages and even causing instability
of the whole system. It is difficult to foresee all complications of an outage and all effects
of a recovery given only a small time frame to act.

Additionally a decision support system would be a good provider knowledge management
and would perform in predictable amount of time. The more knowledge contributors
will fill up the knowledge database, the more reliable the system will prove itself. The
algorithms should allow better utilization of existing management knowledge and fast
retrieval of the data as well as recovery plan generation for infrastructures of any scale.

3. Automated planning as a solution

3.1. Planning Techniques

The task of coming up with a sequence of actions that will achieve a goal is
called planning. [18]

The main part of the required system, is to find a sequence of actions, an actor will execute
on a system to recover from failure. Since we face a planning problem, we have to take a
look for the right planning algorithm, which would meet our needs. Here, we will discuss
the planning techniques and choose the best suited approach of solving the problem.

The simplest planning algorithm, would be solving a problem by using a search-based or
logical planning agent. These approaches, though, perform insufficiently, when facing large
and complex real-world planning problems[18]. Therefore the topic of this section discusses
some improvements and alternative search concepts to the standard search algorithms like
A∗, which would allow to scale up and perform in environments that are beyond the limits
of determinism and being fully observable, finite, static (changes happen only when agent
act) and discrete. The problem, to be solved is non-static (The system constantly changes
it’s load independently from the agent). This means that advanced search techniques have
to be used.

To use any of the algorithms, some definitions are presented. Every system can be rep-
resented using states. A state is a set of true propositions. The propositions, which are
not in the set are considered false. These are so called close world assumptions used to
solve the problem. A state can be changed to some other state, when some logical actions
are performed on the assumptions of a state. The actions may be performed only if ac-
tion preconditions are met. The preconditions are also a set of propositions which hold.
The actions produce effects, which are taken over to the state description. Consider an
infrastructure with 2 running virtual machines as an example. The state of such system
would be represented as a set of propositions [running1&running2]. This state may be
changed by applying stop operation to the machine no 2. The operation can be similar
to stop(2, precondition : [running2], effect : []). The resulting status after the operation
would be [running1] since the effect set is empty.

Once the current state of the system and the goal are described, there are two ways of
performing search. Forward state-space search, which is also called progression planning
starts off from an initial state and tries to find a sequence of actions which would lead to

12 3. Automated planning as a solution

a goal state, also defined at the beginning of the search. A Backward state-space search
would do the opposite, searching from the goal state back to the initial state. This is
sometimes called regression planning.

A distinction has to be made between totally ordered planning and partially ordered
planning. The forward and backward searched are forms of totally ordered plan search.
In a partial ordered planning, the planner would work on the “obvious” or “important”
decisions first and not chronologically as it is done by the totally ordered planner.

3.1.1. Graphplan

For better results on partial and total space-search planning one would usually have an
idea to use heuristics. These are usually inaccurate and therefore a special data structure
is used to improve heuristics estimates called planning graph. The planning graph has to
be spanned before the search for the plan is made.

The graph consists of a sequence of levels that correspond to time steps in the
plan, where level 0 is the initial state. Each level contains a set of literals and
a set of actions. Roughly speaking, the literals are all those that could be true
at that time step, depending on the actions executed at preceding time steps.
Also roughly speaking, the actions are all those actions that could have their
preconditions satisfied at that time step, depending on which of the literals1

actually hold. [...] The number of steps on the planning graph provides a good
estimate of how difficult it is to achieve a given literal from the initial state.[18]

On one hand planning graphs are used for heuristic estimation. On the other, they can
also be used to directly extract a plan from. This is done using a so called Graphplan
algorithm. It includes two main steps which alternate within a loop. It checks if all goal
propositions are present in the current level with no mutual exclusion links between any
pair of them. Mutual exclusion links mean, that one proposition negates the possibility
of existence of another proposition. This may happen if one action negates an effect of
another action, one of the effects of one action is the negation of a precondition of the
other and one of the preconditions of one action is mutually exclusive with a precondition
of the other. So if there are no mutex links between the actions, then a solution might exist
within the current graph and the algorithm tries to extract that solution. If the previous
is not the case, it expands the graph by adding the actions for the current level and the
state propositions for the next level. The process continues until either a solution is found
or it is learned that no solution exists. This way the Graphplan algorithm processes the
planning graph, using a backward search to extract a plan. It allows some partial ordering
among actions.

The Graphplan algorithm, although being fast at finding optimal solution does not suit our
problem well, because it is still slow compared to finding some plan using HTN method.

3.1.2. Hierarchical Task Network - Informed Search

Aforementioned basic representations show what actions do, but they cannot show how
long an action takes or even when an action occurs, except that it is before or after another
action. To solve our problem of constantly changing nature, however, the planner needs to
know when the actions begin and end. Here we discuss hierarchical task network planning.
It is another approach to the planning, which is based on dealing with complexity using
hierarchical decomposition.

1literals - here propositions

3.2. System design 13

In HTN planning, the initial plan, which describes the problem, is viewed as a very high
level description of what is to be done. Plans are refined by applying action decomposi-
tions. Each action decomposition reduces a high level action to a partially ordered set of
lower-level actions. Action decomposition, therefore, embodies knowledge about how to
implement actions. The process continues until only primitive actions remain in the plan.
General descriptions of action decomposition methods are stored in a plan repository, from
which they are extracted and instantiated to fit the needs of the plan being constructed.
[18]

One may notice, that HTN plan creation is only as good as the quality of the knowledge
base is. So it may happen that the planner won’t find any solution if the problem didn’t
appeared before. Also the writing of the knowledge base may be more complicated than
just defining classical propositions.

On the other hand the availability of consistent knowledge base allows implementations
of the HTN planning algorithm to produce first usable actions much faster compared to
the the Graphplan, where the Graph must be expanded completely to know if a solution
exists at all.

The problem of complicated repository creation may be targeted using smart crowd sourc-
ing strategies and automated tools, which can convert actions performed on a system to
recover from failure into the methods for the HTN planner.

3.2. System design

Knowledge Base:
Tasks and

System description

Monitoring

Planner

Notification

Recieve plan
on demand

Executing agent

System status
Recovery plan

Status
Available

tasks

1

2
5

3

6

4

Figure 3.1.: Deployment view of the architecture of the planner. The monitoring system (2) re-
ceives the status of the infrastructure (1) and writes the data into the status database
(3). In case of a system failure identification by the monitoring agent, the planner
(4) is immediately notified. This triggers plan generation. Planner receives the
system description and available tasks on the system as well as the current system
status from the knowledge base (5) and the status database (3) respectively. It then
produces a plan used by automated or human actors (6).

The overall structure of the application is fairly simple. As one can see on Figure 3.1,
there are only two components, which define the whole software solution. One shows the

14 3. Automated planning as a solution

+ string ID
+ int cpu
+ int mem
+ int hdd
+ List services

Virtual_machine

+ string ID
+ Hash ressources
+ costs

Cluster
0..1*

+ string ID

Status

*
1

*

1

Figure 3.2.: Status of the virtual infrastructure environment. Provided by monitoring system.

status and the solution to the application user and the second does the planning. The
application architecture is service oriented, so that other applications or components can
be easily implemented. Knowledge, status and definition data of the system are kept
separately in files using JSON2 format.

3.3. Data types and data structure

The data, which our application depends on, can be classified by its source into four sets.
First set includes the data provided by the monitoring system (figure 2.1 - Monitoring)
represents the current status of the system (figure 3.2). An evaluation of this data can
reveal faults in the system. If it indicates to a flaw, the data is used as a starting point for
the search for a recovery plan. The evaluation of the system contains different attributes,
which may indicate a fault in a virtual machine or the infrastructure. It shows idle,
overloaded, hung-up, missing and stopped virtual machines as well as an evaluation value
used in the planning algorithm.

The second and the third set includes the data provided by the administrator of the system.
It is the description of the system and the set of tasks available to the system (figure 3.3).
It consists of a set of parameters and thresholds, which depict a healthy system. One
part of the description is information about sets of virtual machines, which are deployed
together for performing some task. Here we will refer to such sets as virtual applications.
The description of virtual applications can be further refined by assigning different types
to different virtual machines that act in different roles. For example a virtual application,
which is running to provide a blogging system needs some virtual machines, which will
handle load balancing of the incoming requests, it needs some virtual machines to process
the requests, and it needs some machines to store the data so it is available to every user.
This virtual application would consist of three types of virtual machines - load balancer,
worker and a database. The description of virtual applications and the virtual machine
types within consists of the threshold for the maximum mean load of cpu and memory. and
the maximum amount of used space on the hard disks. It also contains the information
about services, which must be running on a virtual machine. If all of the above criteria are
met, then the virtual machine of a particular type is considered healthy. The description
also consists of the information on available virtualized hardware resources, which can host
the virtual machines. These resources can be grouped together to define a set of clusters.
It may be useful when dealing with multitenant resources.

Another part of the description provided by the administrator is set of tasks, which can
be performed on a system and the operations which can be executed to complete the tasks

2JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is based on a subset
of the JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON
is a text format that is completely language independent but uses conventions that are familiar to
programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and
many others. These properties make JSON an ideal data-interchange language. [5]

3.4. Algorithm 15

String ID

Virtual Application

+ string ID
+ Hash max-
threshold
+ List services
+ int amount

Virtual machine
type

0..*0..1

Figure 3.3.: Description of the system. Available clusters and normal state of running applica-
tions. Provided by administrator.

+ string name
+ List[Hash] preconditions
+ List operations
+ string vmtype

Abstract task

+ string ID
+ List[Hash] precontitions
+ string todo

task
0..1*

Figure 3.4.: Tasks, which can be executed in the environment. Provided by administrator.

(figure 3.4). The tasks can be of two types - decomposable and atomic tasks. Decomposable
tasks consist of atomic tasks or other decomposable tasks. Recursive tasks are to be
avoided. Both types of tasks contain a set of preconditions which have to be met to
be able to perform the task. The preconditions of atomic tasks may only refer to the
parameters of the virtual machines whereas the preconditions of decomposable tasks may
only refer to the attributes of the evaluation of the system.

The last data set is the plan, created by the planner as a result of the planning operation
(figure 3.5). It consists of a set of tasks which should be performed to recover from an
error and the estimate of resulting system. The tasks are the same as the one available to
the system, but they are ordered by the time of execution. The estimate is a set of virtual
machines and their states by the moment of recovery.

3.4. Algorithm

The main part of the proposed solution is the search algorithm. It is a combination of the
first-best search and HTN planning algorithms. The HTN planning algorithm would find
a solution if the tasks which would solve the problem are defined in the knowledge base.
If the tasks are not found in the knowledge base, the first-best search is run to try to find
a recovery solution. The data flow overview of the system can be examined on figure 3.6
for better understanding of the context.

We will implement the search algorithm in a recursive function dig, which takes two pa-
rameters - a status, for which the solution has to be found and the list of tasks already
performed to reach the status. The initial value of the tasks list should be an empty list
(Algorithm 1line 1).

The Algorithm starts off by defining an empty list for all the states which can be generated
from current status by applying tasks from the knowledge base on the infrastructure and on
the virtual machines (Algorithm 1 lines 2). On the line 3 the algorithm gets the evaluation
of the current status, so it can compare it with evaluations of the upcoming states and
prune the ones, which evaluation value is greater, meaning they contain more failures. This
way the search space will be reduced. Two nested loops find all the possible states, which
can be derived from the current state along with the tasks needed to get to the derived
status, and add them to the statuslist defined on line 2. The outer loop iterates over
virtual machines in the current status (line 4) and the inner loop iterates over available
tasks for every virtual machine (line 6). Derived states are produced by applying every

16 3. Automated planning as a solution

+ string ID
+ List(Task) tasks

Plan

+ string status_id

Effect0..10

Figure 3.5.: Recovery plan and predicted resulting system after a plan is found. Provided by
planner.

Algorithm 1 first best search planner with heuristic estimate evaluation.

1: function dig(status, tasklist)
2: statuslist← []
3: currenteval← evaluate(status)
4: for vm in status do
5: tasks← gettasks(vm)
6: for task in tasks do
7: if task is decomposable then
8: refine task
9: for t in refined task do

10: newstatus← apply(t, vm)
11: end for . new status with the changed vm
12: else
13: newstatus← apply(task, vm) . new status with the changed vm
14: end if
15: neweval← evaluate(newstatus)
16: appended← tasklist + task
17: if neweval = 0 then
18: return appended
19: else
20: statuslist← statuslist + (newstatus, appended)
21: end if
22: end for
23: end for
24: filter statuslist for evaluation ≤ currenteval
25: if statuslist is empty then
26: rase SolutionNotFoundError
27: end if
28: sort statuslist ascending on value of evaluation
29: try:
30: return dig(state, tasklist[0])
31: if S thenolutionNotFoundError catched
32: process next possible solution
33: end if
34: end function

3.4. Algorithm 17

Infrastructure

Monitoring
module

Planner
module

Status
database

Knowledge
base

Execution
module

Administrator

Monitoring
data

Status

Notification
 alert

precalculated
plan plan

Tasks,
System
description

StatusActions

Knowledge
base

module

Tasks,
System
description,
evaluations

Figure 3.6.: Data flow scheme showing types of data required and produced by different parts of
the planning system.

task that meets its preconditions from the knowledge base onto every virtual machine.
The decomposable tasks have to be refined first before they can be applied (line 8). If in
the course of the loop execution a solution is found, it is immediately returned (line 18).
When the generation of the derived states is complete, the algorithm prunes the states,
which evaluation is greater than that of the current status (line 24). The list with the
states is then sorted ascending on the value of each state (line 28). The dig function is
then called recursively with the first item of the status list as the best option and the
tasks, which lead to the status, as parameters.

The evaluation algorithm which is used in the search is implemented as weighted estima-
tion. It is computed as a weighted sum of different indicators of the faulty system and can
be expanded by the administrator at any time. The indicators are missing, hung-up, idle
and stopped virtual machines per virtual application as well as virtual applications with
high load. The number of missing virtual machines is calculated from the number of the
virtual machines in the application description. Machines where one of the mean perfor-
mance metrics of CPU or memory are over the threshold set in the application description
are marked as hung-up. Idle and stopped virtual machines are found by their performance
metrics and the running status. Overloaded applications are the ones, where one of the
mean metrics calculated over all of the machines within the application is greater than the
threshold in the application description. The weight is a multiple of the number of avail-
able tasks. The hung-up virtual machines have the highest weight followed by the number
of overloaded virtual applications. The missing virtual machines in an applications have
the third highest weight and all the other indicators count with the weight of 1. The result
of the evaluation is a structure, which contains all the parameters as well as the evaluation
value (figure 3.7).

18 3. Automated planning as a solution

Algorithm 2 first best search planner with heuristic estimate evaluation.

1: function evaluate(status)
2: for vm in status do
3: if vm is running then
4: add cpu, mem, hdd values to mean counters
5: if cpu too high or mem too high or hdd too high then
6: value← value + 50 . hung-up machine identified
7: end if
8: if cpu too low or mem too low or hdd too low then
9: value← value + 1 . idle machine identified

10: end if
11: if not all services on a vm are running then
12: value← value + 50 . hung-up machine identified
13: end if
14: deployed← deployed + 1
15: else
16: value← value + 1 . stopped machine identified
17: end if
18: end for
19: calculate mean counters
20: if mean counters over threshold then
21: value← value + 20 . overloaded application identified
22: end if
23: value← (amount needed −deployed) ∗ 10 . identified missing machines
24: return value
25: end function

3.4. Algorithm 19

+ string status_id
+ int value
+ List<Virtual_machine> overload
+ List<Virtual_machine> hungup
+ List<Virtual_machine> missing
+ List<Virtual_machine> idle
+ List<Virtual_machine> stopped

Evaluation

Figure 3.7.: Evaluation object, returned by the evaluate(status) function.

Data from
administrator.
tasks

Data from
planner

Data from monitoring
system.

Data from administrator.
Description

VM Type

clusterVirtual
Application

belongs
to

vapp

vmtype vm

Evaluation
1

N

1

1
N

1

status

1

precond

todo

Virtual
Machine Cluster

Abstract task

Task

Effects

leads_to

vm

cluster

consists
of

Solution

1N

N
N
N

precond
type

precond
app

N

N

M

M

N

M

M

N

N

MN

1

Status

1 1

1

1

Figure 3.8.: Data structure representing the dependencies and connections between the entities
that represent different aspects of the system. Application and type of the virtual
machines are part of the cloud description. The tasks are part of the solution knowl-
edge base and they have to be defined by an administrator together with the cloud
description. The status of virtual machines and clusters are provided by the moni-
toring agent. Solution and the estimated effects are created by the planner.

20 3. Automated planning as a solution

4. Implementation

4.1. Implementation

The implementation is done using python programming language. The benefit of this is
that the programming of the algorithm is done quickly. The language allows usage of
functional programming methods, which makes the writing of optimized code for multi-
processor environment fairly simple. The implementation uses psyco module to improve
performance 1. Psyco makes the interpreter compile the code before the program execu-
tion. Usually python would compile the statements when it reaches them. Alone the usage
of the psyco module makes the application runtime up to five times faster.

The result of the implementation is a framework, which can be extended to the needs of a
concrete scenario. This shows possibility of interoperability of different modules and the
ease of the extensibility of the implementation. The whole implementation was created
with support of unit testing tools and we followed the test-driven development method.
This produces good code quality and allows its secure alternation. A short overview of
implementation of critical system parts is given by examining following examples.

The beginning of the planning cycle is an identification of a failure by the monitoring
module. It constantly updates its knowledge about the status of the infrastructure. For
example the status of a virtual machine in the infrastructure is of following structure:

{

"some unique string id":{

"cluster": "1",

"type": "application",

"vapp": "Lsc10w",

"cpu": 34,

"mem": 25,

"hdd": 70,

"running": 1,

"services": ["nginx", "app"]

}

}

1http://psyco.sourceforge.net

http://psyco.sourceforge.net

22 4. Implementation

It is important to denote, that the unique id can be any string which identifies the virtual
machine. An evaluation of this status can identify faults. For example determination of
all the needed services of the virtual application on a virtual machine is implemented in
following way:

if (not len(

set(params[vmtype][’services’]) - set(metr[’services’])

) == 0):

hungup[vapp][vmtype].append(vm)

evalue += 5 * 10

The query is performed on a set subtraction operation. The result is the set of services
which are not running. If the result set is not empty, the value will be increased and the
hungup variable gets a mark that a machine is hanging. If in the course of evaluation
a fault has been determined, the monitoring module writes the status of the monitored
infrastructure into the status database and notifies the planner.

The planner gets all the needed information - already mentioned status, tasks and de-
scriptions. Tasks are implemented as string which point to operations in the code. An
illustration of stopping a machine:

def stop(self, **kwargs):

params = kwargs[’params’]

env = kwargs[’env’]

machine = env[params[’id’]]

machine[’running’] = 0

return env

Parameters is are represented as a generic hash params. It must contain an ID of the
machine that should be stopped. The env variable represent the current status of the
infrastructure.

The knowledge module contains a mapping function of operation names to operation
functions:

self._operations_ = {

"start": self.start,

"stop": self.stop,

...

"delete": self.delete

}

The apply() function in the knowledge deals with transforming the virtual machine by an
operation function. It copies the environment before applying the operation function so
that it does not alter the data provided in the parameters.

def apply(self, operation, **kwargs):

params = kwargs[’params’]

env = copy.deepcopy(kwargs[’env’])

return self._operations_[operation](params = params, env = env)

The Search algorithm then applies the operations recursively on each new environment
and searches for a first solution which can be found and returns it.

4.2. Evaluation 23

Figure 4.1.: Initial screen of the user interface showing the current status of the infrastructure
with 5 virtual machines. The red bar shows overloaded value of the cpu. grey bars
indicate that the virtual machine is shut off.

newenv = self.knowhow.apply(task[’todo’],

params = params,

env = env)

evaluation = self.knowhow.evaluate(newenv)[’value’]

...

if evaluation <= 0: return todos, newenv

The result contains a set of tasks to be performed on the infrastructure to get the estimated
result.

All the modules were implemented separately. Moreover the user interface module was
implemented in different programming language to show the independence of the solution
to particular languages and possibility of integration into existing software. User interface
module is implemented using Ruby programming language and represents a web UI acces-
sible via browser. The initial screen shows the current status of the virtual machines and
provides a possibility to search for a solution if a problem exists(figure 4.1). The result
screen shows a found plan and estimated resulting infrastructure (figure 4.2).

4.2. Evaluation

To test scalability of the planner performance two evaluation scenarios were created. One is
evaluating the impact of failure number increases, and the other is evaluating the impact
of virtual machines number on the planning implementation. Each evaluation scenario
consists of test cases, which provide different parameters for the planner. The results of
the impact of failure number are presented on figure 4.3, and the results of the second
scenario – on figure 4.4. Every test case in both evaluations was run 5 times to ensure
the accuracy of the results. The results deviation of the test cases are so small, that only
mean value is presented on the depictions.

The results show, that the execution time of the algorithm concerning the number of
virtual machines is scaling in exponential time. However the performance concerning the
number of failures scale in linear time. Performance of the planner, although implemented
in a relatively slow programming language, is fast enough to be used in real-life situations.

The implemented solution is limited by hardware boundaries only at the cpu performance
level. Being programmed sequentially, it does not utilize the possibilities of multiple pro-
cessors yet. The amount of data held in memory and used for computations is reasonable.
Calculating a plan for 250 virtual machines with 5 faults uses around 800MB of RAM.

The implementation solves following problems:

24 4. Implementation

• Determination of a recovery plan for an outage is performed by planner in reasonable
time .

• Monitoring of the recovery process can be performed by a monitoring module which
will interact with the planning agent when changes of the infrastructure occur.

• Knowledge is stored in a human-readable format and can be used and altered by
other applications.

4.2.1. Hardware and software setup for evaluation

Testing hardware is a virtual machine in a VMSphere environment of VMWare. It has
following parameters:

CPU speed 2.2 GHz
memory amount 3 GB

Testing machine runs Ubuntu linux OS version 9.10 with the following relevant packages:

package version

kernel 2.6.31
gcc 4.4.1
python 2.6.4
ruby 1.8.7

4.2.2. Evaluation procedure

The evaluation scenarios were created by manually altering the input which usually would
be provided by a monitoring agent.

Each test case in the scenarios was run 5 times in a row. The results were recorded and
mean value of spent time was calculated. It is then taken as result representation.

Evaluation of planner performance for generating a plan for 50 virtual machines and dif-
ferent amounts of faults produce following results:

5 faults 10 faults 20 faults 30 faults 40 faults 50 faults

2.169 5.026 12.112 18.344 33.854 47.292
2.125 5.040 12.102 18.461 33.731 48.013
2.116 5.062 12.264 18.431 33.014 45.223
2.174 4.926 12.149 18.472 34.292 46.053
2.242 4.968 12.262 18.427 33.966 45.994

mean results

2.16520 5.00440 12.17780 18.42700 33.77140 46.51500

4.2. Evaluation 25

Evaluation of planner performance for generating a plan for an infrastructure with 5 faults
and different amounts of virtual machines produce following results:

5 machines 20 machines 50 machines 100 machines 250 machines

0.044 0.350 2.313 9.479 112.671
0.046 0.339 2.298 9.599 104.138
0.044 0.361 2.303 9.640 97.604
0.044 0.341 2.383 9.452 97.645
0.045 0.337 2.296 9.449 97.301

mean results

0.04460 0.34560 2.31860 9.52380 101.87180

26 4. Implementation

Figure 4.2.: A proposed recovery plan consisting of five actions grouped by virtual machines they
have to be performed on. Last two tasks are deployment tasks and these will be
executed on a cluster. At the end an estimated resulting infrastructure is presented.

4.2. Evaluation 27

 0 5 10 15 20 25 30 35 40 45 50 55 60

50

0

5

10

15

20

25

30

35

40

45

Number of faults in the infrastructure to be repaired

Ti
m

e
pa

ss
ed

 to
 fi

nd
 a

 p
la

n.

46.616 seconds

33.771 seconds

18.427 seconds

12.178 seconds

5.004 seconds

2.165 seconds

Figure 4.3.: This picture shows relation between amount of faults in a system and the time spent
on finding a recovery plan. The amount of virtual machines remains the same during
the test

 0 50 100 150 200 250

110

0

10

20

30

40

50

60

70

80

90

100

Number of virtual machines

Ti
m

e
pa

ss
ed

 to
 fi

nd
 a

 p
la

n

2.3s

9.5s

101s

20vms
0.34s

5vms
0.04s

Figure 4.4.: This picture shows relation between amount of virtual machines and the time spent
on finding a recovery plan. The amount of faults remains the same during the test.

28 4. Implementation

5. Related work

There are several examples, where artificial intelligence and in particular - the automated
planning was implemented in the similar large scale computing systems like grid or cluster
computing.

The performance of the system is highly related to the representation of states, actions
and goals. Here a similar approach was taken on dealing with constantly changing infras-
tructure metrics, goal and operation representation as Jim Blythe et. al. in [13]. However
concerning plan generation our implementation aims at fast plan generation contrary to
best plan generation because the latter is very time expensive task. Terry Zimmerman
and Subbarao Kambhampati take here a Learning-assisted Automated Planning approach
for dynamic environments [21]. William K. Cheung et. al. in their work[14] argue that
the search for plan in their domain should be targeted at services composition and not at
resource allocation, because the latter is already handled by grids. The presumption is
not necessarily true for domain of cloud computing although their bidding-like approach
for service composition is also considered in resource allocation in cloud computing.

An interesting idea concerning software stability is proposed by Paul Robertson and Brian
Williams in [17]. Contrary to our approach of creating a solution to a generic system,
they propose models, which, when used, create systems that will be able to recognize
that it has failed and to recover from the failure. They try to increase system stability
using automated planning algorithms by adding dynamic intelligent fault awareness and
recovery to running systems. This enables the identification of unanticipated failures and
the construction of novel workarounds to these failures. Their approach aims to minimize
the cost, in terms of hand-coded specifications with respect to how to isolate and recover
from failures.

Concerning plan execution there are several attempts to build a solution for grid com-
puting environments. One of them is Pegasus - a system to generate executable grid
workflows given a high-level specification of desired results. Pegasus uses Artificial In-
telligence planning techniques to compose valid workflows, and has been used in several
scientific applications. [15] Pegasus uses search to optimize the execution of a plan whereas
our approach predefines the order of task execution. While pegasus can reduce plan exe-
cution time by finding tasks which can be executed in parallel, the search of the optimal
execution scenario can also be a time-intensive task. The approach of search for optimal
solution is also considered by CHAMPS - a prototype under development at IBM Research
for CHAnge Management with Planning and Scheduling.[11] Although the last decision of
action execution is made by a system administrator.

30 5. Related work

6. Outlook and future work

There is much room for further work of the current implementation and the addition of
new features and modules. An implementation of the algorithm to utilize distributed
computation mode may further shrink the time of planning phase. It may be possible by
using functional programming methods Map() and reduce() provided by python. Another
idea, mentioned by Jim Blythe is to make the planner reuse the plans which were found
earlier[13]. The knowledge base may be refined by adding improved tasks which would
fit better to concrete examples. The evaluation function may also be improved if such
improvement is possible.

New features can be implemented such as improved search by constraints during the tasks
application phase. Interactive search can also be an interesting idea to have a look at.
Current implementation does not search for partial solutions if no solution can be found.
It also does not include cost or time constraints in the search. These issues may be
addressed in the future implementations.

Current implementation also assumes the fact, that the system react in the same way to
the performed actions, as defined in the tasks operations. Although this static approach
is good for finding a quick solution, it would be more realistic, if the algorithm would be
adopted to search under the given uncertainty.

Nowadays the industry understands that it needs to automate its processes to be able to
be competitive on the market. Therefore all the system automation research appears to
be very useful. Current work opens new insights on complexity of such solutions especially
because the topic which the work is targeted at is dealing with developing and changing
technology. And as the technology changes and gains its usage shape, it will be easier
to determine best practices of its use. Moreover determining problem places in its early
development stages can be very beneficial later.

32 6. Outlook and future work

List of Figures

1.1. This image shows the hierarchy of three levels of cloud computing services
- software as a service, platform as a service and infrastructure as a service. 2

1.2. Heroku platform architecture. [4] . 3

2.1. A schematic overview of a virtual infrastructure, which hosts several vir-
tual machines represented by squares. Virtual machines are grouped into
three virtual applications: web application, pipe application and some third
application . 7

3.1. Deployment view of the architecture of the planner. The monitoring system
(2) receives the status of the infrastructure (1) and writes the data into
the status database (3). In case of a system failure identification by the
monitoring agent, the planner (4) is immediately notified. This triggers plan
generation. Planner receives the system description and available tasks on
the system as well as the current system status from the knowledge base
(5) and the status database (3) respectively. It then produces a plan used
by automated or human actors (6). 13

3.2. Status of the virtual infrastructure environment. Provided by monitoring
system. 14

3.3. Description of the system. Available clusters and normal state of running
applications. Provided by administrator. 15

3.4. Tasks, which can be executed in the environment. Provided by administrator. 15

3.5. Recovery plan and predicted resulting system after a plan is found. Provided
by planner. 16

3.6. Data flow scheme showing types of data required and produced by different
parts of the planning system. 17

3.7. Evaluation object, returned by the evaluate(status) function. 19

3.8. Data structure representing the dependencies and connections between the
entities that represent different aspects of the system. Application and type
of the virtual machines are part of the cloud description. The tasks are
part of the solution knowledge base and they have to be defined by an
administrator together with the cloud description. The status of virtual
machines and clusters are provided by the monitoring agent. Solution and
the estimated effects are created by the planner. 19

4.1. Initial screen of the user interface showing the current status of the infras-
tructure with 5 virtual machines. The red bar shows overloaded value of
the cpu. grey bars indicate that the virtual machine is shut off. 23

4.2. A proposed recovery plan consisting of five actions grouped by virtual ma-
chines they have to be performed on. Last two tasks are deployment tasks
and these will be executed on a cluster. At the end an estimated resulting
infrastructure is presented. 26

34 List of Figures

4.3. This picture shows relation between amount of faults in a system and the
time spent on finding a recovery plan. The amount of virtual machines
remains the same during the test . 27

4.4. This picture shows relation between amount of virtual machines and the
time spent on finding a recovery plan. The amount of faults remains the
same during the test. 27

Bibliography

[1] 3tera. http://www.3tera.com/AppLogic/, visited on 4. October 2009.

[2] Amazon elastic compute cloud. http://aws.amazon.com/ec2/, visited on 4. October
2009.

[3] Eucalyptus systems. http://www.eucalyptus.com/, visited on 4. October 2009.

[4] Heroku, ruby cloud platform as a service, an architecture overview. http://heroku.
com/how/architecture, visited on 4. October 2009.

[5] Json (javascript object notation). http://www.json.org, visited on 1. Dec 2009.

[6] Rightscale. http://www.rightscale.com/, visited on 4. October 2009.

[7] Techtarget.com: Heroku learns the hard way from amazon ec2 outage.
http://searchcloudcomputing.techtarget.com/news/article/0,289142,sid201
gci1378426,00.html, visited on 5. February 2010.

[8] Vmware vcloud. http://www.vmware.com/solutions/cloud-computing/, visited on 4.
October 2009.

[9] Vmware: Virtual machines, virtual server, virtual infrastructure. http://www.
vmware.com/technology/virtual-machine.html, Visited on 7. June 2009.

[10] Xen cloud platform. http://xen.org/products/cloudxen.html, visited on 4. October
2009.

[11] J. L. Wolf K.-L. Wu V. Krishnan A. Keller, J. L. Hellerstein. The champs system:
Change management with planning and scheduling, August 25, 2003.

[12] Sue Black. Deriving an approximation algorithm for automatic computation of ripple
effect measures. Inf. Softw. Technol., 50(7-8):723–736, 2008.

[13] Jim Blythe, Ewa Deelman, Yolanda Gil, Carl Kesselman, Amit Agarwal, Gau-
rang Mehta, and Karan Vahi. The role of planning in grid computing. In Enrico
Giunchiglia, Nicola Muscettola, and Dana S. Nau, editors, ICAPS, pages 153–163.
AAAI, 2003.

[14] William K. Cheung, Jiming Liu, Kevin H. Tsang, and Raymond K. Wong. Towards
autonomous service composition in a grid environment. In ICWS ’04: Proceedings
of the IEEE International Conference on Web Services, page 550, Washington, DC,
USA, 2004. IEEE Computer Society.

[15] Yolanda Gil, Ewa Deelman, Jim Blythe, Carl Kesselman, and Hongsuda Tangmu-
narunkit. Artificial intelligence and grids: Workflow planning and beyond. IEEE
Intelligent Systems, 19(1):26–33, 2004.

[16] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory &
Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

http://www.3tera.com/AppLogic/
http://aws.amazon.com/ec2/
http://www.eucalyptus.com/
http://heroku.com/how/architecture
http://heroku.com/how/architecture
http://www.json.org
http://www.rightscale.com/
http://searchcloudcomputing.techtarget.com/news/article/0,289142,sid201_gci1378426,00.html
http://searchcloudcomputing.techtarget.com/news/article/0,289142,sid201_gci1378426,00.html
http://www.vmware.com/solutions/cloud-computing/
http://www.vmware.com/technology/virtual-machine.html
http://www.vmware.com/technology/virtual-machine.html
http://xen.org/products/cloudxen.html

36 Bibliography

[17] Paul Robertson and Brian Williams. Automatic recovery from software failure. Com-
mun. ACM, 49(3):41–47, 2006.

[18] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[19] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–
55, 2009.

[20] Enrique Vargas. High availability fundamentals, November 2000.

[21] Terry Zimmerman and Subbarao Kambhampati. Learning-assisted automated plan-
ning: looking back, taking stock, going forward. AI Mag., 24(2):73–96, 2003.

A. Appendix

The source code of the implementation of the planner is provided here. These sources as
well as the web based user interface, test cases generator and the library dependencies can
be found under http://home.in.tum.de/kerestey/BA/autofrc.tar.gz.

A.1. Planner: Planner.py

#!/usr/bin/env python

encoding: utf-8

import sys

import unittest

import jsonlib2 as json

import copy

class SolutionNotFoundError(Exception): pass

class Planner:

def __init__(self, knowledge_base):

self.knowhow = knowledge_base

self.solution_path = "../data/solution.json"

def solve(self, constraints=None, method=None):

env = self.knowhow.status()

if not method: method = ’DFS’

elif method not in [’DFS’, ’Interactive’]:

return []

effects = open(self.solution_path, "r+")

effects.write(

json.write(

{"working": 1, "actions": [], "effects": {}}, indent = " "

)

)

effects.close()

http://home.in.tum.de/kerestey/BA/autofrc.tar.gz

38 A. Appendix

print ""

print "machines in the infrastructure: ", len(env.keys())

expand the found tasks and get the lists of todo’s

if method == ’DFS’:

actions, result = self._dig_deep_(env)

else:

actions, result = self._dig_interactive_(([], [env]))

print "amount of tasks in the recovery plan: ", len(actions)

effects = open(self.solution_path, "r+")

effects.write(json.write(

{

"working": 0,

"actions": actions,

"effects": result

}, indent = " ")

)

effects.close()

return {

"actions": actions,

"effects": result

}

def _dig_deep_(self, env, level = 0, todos = None):

"""Retrieve the solution by applying the given set of todo’s"""

if not todos: todos = []

curr_eval = self.knowhow.evaluate(env)

envlist = []

for vm, metr in env.iteritems():

tasks = self.knowhow.tasks(vm, env = env, evaluation = curr_eval)

for t_id, task in tasks.iteritems():

params = {

’id’: vm,

’app’: metr[’vapp’],

’type’: metr[’type’],

’amount’: curr_eval[’missing’][metr[’vapp’]][metr[’type’]]

}

if task[’type’] == 1:

newenv = self.knowhow.apply(task[’todo’],

params = params,

env = env)

evaluation = self.knowhow.evaluate(newenv)[’value’]

envlist.append((task, newenv, evaluation, vm, params))

A.1. Planner: Planner.py 39

if evaluation <= 0:

todos.append({

’vm’: vm,

"task": task,

’level’: level,

"params": params})

return todos, newenv

else:

concr_task = map(lambda t: self.knowhow._tasks_[t] ,task[’todo’])

newenv = env

for t in concr_task:

newenv = self.knowhow.apply(t[’todo’],

params = params,

env = newenv)

evaluation = self.knowhow.evaluate(newenv)[’value’]

envlist.append((task, newenv, evaluation, vm, params))

if evaluation <= 0:

todos.append({

’vm’: vm,

"task": task,

’level’: level,

"params": params})

return todos, newenv

sort the new environment list to get the best tasks come first.

envlist = filter(lambda a: a[2] <= curr_eval["value"], envlist)

if envlist: envlist.sort(lambda a,b: cmp(a[2], b[2]))

else: raise SolutionNotFoundError

for e in envlist:

newtodos = copy.copy(todos)

newtodos.append({

’vm’: e[3],

"task": e[0],

’level’: level,

"params": e[4]

})

try:

return self._dig_deep_(e[1], level=level+1, todos = newtodos)

except SolutionNotFoundError:

pass

def _dig_wide_(self, params):

todos, env = params

return (todos, env)

40 A. Appendix

def _dig_interactive_(self):

"""Interactive search for the soultion"""

todos, env = params

return (todos, env)

A.2. Planner: Knowledge.py

#!/usr/bin/env python

encoding: utf-8

import sys

import os

import unittest

import imp

import copy

import jsonlib2 as json

impott random

class KnowledgeException(Exception): pass

class TaskNotFoundException(KnowledgeException): pass

class Knowledge:

def __init__(self):

tasks_path = "../data/tasks.json"

status_path = "../data/status.json"

descr_path = "../data/descr.json"

solution_path = "../data/solution.json"

self._operations_ = {

"start": self.start,

"stop": self.stop,

"pause": self.pause,

"restart": self.restart,

"deploy": self.deploy,

"clone": self.clone,

"migrate": self.migrate,

"snapshot": self.snapshot,

"restore": self.restore,

"delete": self.delete

}

f = open(tasks_path, "r")

self._tasks_ = json.read(f.read())

f.close()

f = open(status_path, "r")

self._status_ = json.read(f.read())

f.close

f = open(descr_path, "r")

A.2. Planner: Knowledge.py 41

self._descr_ = json.read(f.read())

f.close

#

Tasks on the machines

#

def tasks(self, vm, env=None, evaluation=None):

"""returns the tasks, which can be performed on a vm"""

if not env: env = self.status()

if not evaluation: evaluation = self.evaluate(env = env)

vmtype = env[vm][’type’]

vapp = env[vm][’vapp’]

res = {}

for t_id, t in self._tasks_.iteritems():

if t[’type’] == 0:

fulfilled = True

try:

if vmtype not in t[’vmtype’]: fulfilled = False

except KeyError:

pass

try:

if fulfilled:

for pre in t[’preconditions’]:

fulfilled = True

for premise, val in pre.iteritems():

if val != evaluation[premise][vapp][vmtype]:

fulfilled = False

break

if fulfilled: break

except KeyError:

fulfilled = False

if fulfilled:

res[t_id] = t

elif t[’type’] == 1:

fulfilled = True

try:

if vmtype not in t[’vmtype’]: fulfilled = False

except KeyError:

pass

try:

if fulfilled:

for pre in t[’preconditions’]:

fulfilled = True

42 A. Appendix

for premise, val in pre.iteritems():

if val != env[vm][premise]:

fulfilled = False

break

if fulfilled: break

except KeyError:

fulfilled = False

if fulfilled:

res[t_id] = t

return res

#

Evaluation of the status

#

def evaluate(self, env = None):

"""evaluate the environment, set by env."""

if not env:

env = self._status_

metrics = env

vApps = self._descr_[’vApps’]

cpu = {} # mean cpu - tells about mean cpu utilization of the vms

mem = {} # mean mem - tells about mean mem utilization of the vms

hdd = {} # mean hdd - tells about mean hdd utilization of the vms

hungup = {}

deployed = {}

missing = {}

stopped = {}

overload = {}

idle = {}

evalue = 0

multiplier = len(metrics.keys())

for vapp, params in vApps.iteritems():

make a dictionary of crashed services in vm’s in every vApp

hungup[vapp] = dict(map(lambda x: (x, []), params.keys()))

make a dictionary of deployed vm’s in every vApp

deployed[vapp] = dict(map(lambda x: (x, 0), params.keys()))

make a dictionary of stopped vm’s per application

stopped[vapp] = dict(map(lambda x: (x, []), params.keys()))

make a dictionary of stopped vm’s per application

idle[vapp] = dict(map(lambda x: (x, []), params.keys()))

make a dictionary of the cpu, memory and hdd metrics grouped by

vapps

cpu[vapp] = dict(map(lambda x: (x, 0), params.keys()))

mem[vapp] = copy.copy(cpu[vapp])

A.2. Planner: Knowledge.py 43

hdd[vapp] = copy.copy(cpu[vapp])

overload[vapp] = dict(map(lambda x: (x, False), params.keys()))

missing[vapp] = dict(map(lambda x: (x, 0), params.keys()))

for vm, metr in metrics.iteritems():

if not metr[’vapp’] == vapp: continue

vmtype = metr[’type’]

if metr[’running’] == 1:

adding metrics for mean calculations

cpu[vapp][vmtype] += metr[’cpu’]

mem[vapp][vmtype] += metr[’mem’]

hdd[vapp][vmtype] += metr[’hdd’]

if vm not in hungup[vapp][vmtype]:

too high metrics

if (metr[’cpu’] >= params[vmtype][’cpu’]

or metr[’mem’] >= params[vmtype][’mem’]

or metr[’hdd’] >= params[vmtype][’hdd’]):

hungup[vapp][vmtype].append(vm)

evalue += 5 * 10

too low metrics

if (metr[’cpu’] <= 2 or metr[’mem’] <= 2):

idle[vapp][vmtype].append(vm)

evalue += 1

finding out crashed services

if (vm not in hungup[vapp][vmtype]

and not len(

set(params[vmtype][’services’]) - set(metr[’services’])

) == 0):

hungup[vapp][vmtype].append(vm)

evalue += 5 * 10

add to the number of deployed machines per vm type per app

deployed[vapp][vmtype] += 1

else:

stopped[vapp][vmtype].append(vm)

evalue += 1

for vmtype in deployed[vapp]:

calculate the mean metrics

items = deployed[vapp][vmtype]

try:

cpu[vapp][vmtype] = float(cpu[vapp][vmtype]) / items

except ZeroDivisionError:

cpu[vapp][vmtype] = 0

try:

mem[vapp][vmtype] = float(mem[vapp][vmtype]) / items

44 A. Appendix

except ZeroDivisionError:

mem[vapp][vmtype] = 0

try:

hdd[vapp][vmtype] = float(hdd[vapp][vmtype]) / items

except ZeroDivisionError:

mem[vapp][vmtype] = 0

relative levels to the app defaults

if ((cpu[vapp][vmtype]-params[vmtype][’cpu’])>=0

or (mem[vapp][vmtype]-params[vmtype][’mem’])>=0

or (hdd[vapp][vmtype]-params[vmtype][’hdd’])>=0):

overload[vapp][vmtype] = True

evalue += 2 * 10

calculate number of missing machines

items = params[vmtype][’amount’] - items

if items>0:

missing[vapp][vmtype] = items

evalue += items * 10

result = {

’hungup’: hungup,

’missing’: missing,

’overload’: overload,

’idle’: idle,

’stopped’: stopped,

’value’: evalue

}

return result

#

Status retriever

#

def status(self): return self._status_

#

Operations on the machines

#

def apply(self, operation, **kwargs):

params = kwargs[’params’]

env = copy.deepcopy(kwargs[’env’])

return self._operations_[operation](params = params, env = env)

Operations themselves

def start(self, **kwargs):

params = kwargs[’params’]

env = kwargs[’env’]

A.2. Planner: Knowledge.py 45

descr = self._descr_

machine = env[params[’id’]]

mtype = machine[’type’]

vApp = machine[’vapp’]

machine[’running’] = 1

machine[’cpu’] = descr[’vApps’][vApp][mtype][’cpu’] / 2

machine[’mem’] = descr[’vApps’][vApp][mtype][’mem’] / 2

machine[’hdd’] = descr[’vApps’][vApp][mtype][’hdd’] / 2

machine[’services’] = descr[’vApps’][vApp][mtype][’services’]

result = env

return result

def pause(self, **kwargs):

params = kwargs[’params’]

env = kwargs[’env’]

machine = env[params[’id’]]

machine[’running’] = 2

return env

def stop(self, **kwargs):

params = kwargs[’params’]

env = kwargs[’env’]

machine = env[params[’id’]]

machine[’running’] = 0

return env

def restart(self, **kwargs):

params = kwargs[’params’]

env = kwargs[’env’]

descr = self._descr_

machine = env[params[’id’]]

mtype = machine[’type’]

vApp = machine[’vapp’]

machine[’running’] = 1

machine[’cpu’] = descr[’vApps’][vApp][mtype][’cpu’] / 2

machine[’mem’] = descr[’vApps’][vApp][mtype][’mem’] / 2

machine[’hdd’] = descr[’vApps’][vApp][mtype][’hdd’] / 2

machine[’services’] = descr[’vApps’][vApp][mtype][’services’]

return env

def deploy(self, **kwargs):

try:

params = kwargs[’params’]

env = kwargs[’env’]

descr = self._descr_

except KeyError:

return {}

try:

amount = params[’amount’]

except KeyError:

amount = 1

46 A. Appendix

deploy the given amount of machines

try:

vapp = params[’app’]

vmtype = params[’type’]

except KeyError:

return {}

for i in range(0, amount):

while True:

m_id = str(random.randint(1, 100000))

if m_id not in env.keys():

break

find out the template for the new machine

newvm = descr[’vApps’][vapp][vmtype]

find out the cluster for the new machine

if newvm[’clustered’] == "deny":

find first machine of the same type and take it’s cluster

cluster = descr[’clusters’].keys()[0]

for metr in env.values():

if metr[’vapp’] != vapp: continue

if metr[’type’] == vmtype:

cluster = metr[’cluster’]

break

else:

cluster = dict(map(lambda x: (x, 0), descr[’clusters’].keys()))

for metr in env.values():

if metr[’vapp’] != vapp: continue

if metr[’type’] == vmtype:

cluster[metr[’cluster’]] += 1

cluster = min(cluster, key = lambda a: cluster.get(a))

env[m_id] = {

"cluster": cluster,

"type": vmtype,

"vapp": vapp,

"cpu": descr[’vApps’][vapp][vmtype][’cpu’] / 2,

"mem": descr[’vApps’][vapp][vmtype][’mem’] / 2,

"hdd": descr[’vApps’][vapp][vmtype][’hdd’] / 2,

"running": 1,

"services": newvm["services"]

}

return env

def clone(self, **kwargs):

try:

params = kwargs[’params’]

env = kwargs[’env’]

A.2. Planner: Knowledge.py 47

vm_id = params[’id’]

except KeyError:

return {}

while True:

new_id = str(random.randint(1, 100000))

if new_id not in env.keys():

env[new_id] = env[vm_id]

break

return env

def migrate(self, **kwargs):

try:

params = kwargs[’params’]

env = kwargs[’env’]

descr = self._descr_

vm = env[params[’id’]]

except KeyError:

return {}

vapp = vm[’vapp’]

vmtype = vm[’type’]

try:

target = str(params[’target’])

except KeyError:

if descr[’vApps’][vapp][vmtype][’clustered’] == "deny":

find first machine of the same type and take it’s cluster

target = descr[’clusters’].keys()[0]

for metr in env.values():

if not metr[’vapp’] == vapp: continue

if metr[’type’] == vmtype:

cluster = metr[’cluster’]

break

else:

target = dict(map(lambda x: (x, 0), descr[’clusters’].keys()))

for metr in env.values():

if not metr[’vapp’] == vapp: continue

if metr[’type’] == vmtype:

target[metr[’cluster’]] += 1

target = min(target, key = lambda a: target.get(a))

vm[’cluster’] = target

return env

def snapshot(self, **kwargs):

"""Makes a snapshot of a VM"""

48 A. Appendix

try:

params = kwargs[’params’]

env = kwargs[’env’]

vm_id = params[’id’]

except KeyError:

return {}

state = copy.deepcopy(env[vm_id])

env[vm_id][’snapshot’] = state

return env

def restore(self, **kwargs):

"""Restores a VM to it’s previous state and deletes its snapshot"""

try:

params = kwargs[’params’]

env = kwargs[’env’]

vm_id = params[’id’]

except KeyError:

return {}

try:

state = copy.deepcopy(env[vm_id][’snapshot’])

if state: env[vm_id] = state

except KeyError:

return env

return env

def delete(self, **kwargs):

try:

params = kwargs[’params’]

env = kwargs[’env’]

vm_id = params[’id’]

except KeyError:

return {}

try:

app = env[vm_id][’vapp’]

del env[vm_id]

finally:

return env

A.3. Planner: tests/test-planner.py

#!/usr/bin/env python

encoding: utf-8

import sys

import unittest

import Planner

A.4. Planner: runtests.py 49

import Knowledge

class PlannerTests(unittest.TestCase):

def setUp(self):

self.knowhow = Knowledge.Knowledge()

self.planner = Planner.Planner(self.knowhow)

def test_planner_generates_a_plan(self):

"""

Test if planner generates a correct plan on healing the system

"""

constr = {

"costs": {

"cpu": 5.0,

"mem": 4.0,

"sto": 4.0,

"traf": 0.4,

"base": 25

},

"reliability": 99

}

start = self.knowhow.status()

plan = self.planner.solve(constraints = constr)

assert len(plan[’actions’]) == 5

if __name__ == ’__main__’:

unittest.main()

A.4. Planner: runtests.py

#!/usr/bin/env python

encoding: utf-8

import unittest

import psyco

from tests.test_planner import PlannerTests

psyco.full()

if __name__ == ’__main__’:

unittest.main()

A.5. Data: tasks.json

{

"200": {

"preconditions": [{"overload": true}],

"todo": ["06", "07", "sync"],

"type": 0,

"name": "shard",

"vmtype": ["database"]

50 A. Appendix

},

"203": {

"preconditions": [

{

"stopped": true,

"overload": false

},

{ "idle": true }

],

"todo": ["10"],

"type": 0,

"name": "optimize utilization"

},

"202": {

"preconditions": [{"overload": true}],

"todo": ["05"],

"type": 0,

"name": "lower load",

"vmtype": ["application"]

},

"205": {

"preconditions": [{"missing": true}],

"todo": ["200"],

"type": 0,

"name": "deploy missing",

"vmtype": ["database"]

},

"204": {

"preconditions": [{"missing": true}],

"todo": ["05"],

"type": 0,

"name": "deploy missing",

"vmtype": ["application"]

},

"02": {

"preconditions": [{"running": 1}],

"todo": "stop",

"type": 1

},

"10": {

"preconditions": [],

"todo": "delete",

"type": 1

},

"01": {

"preconditions": [{"running": 0}, {"running": 2}],

"todo": "start",

"type": 1

},

"06": {

"preconditions": [],

"todo": "clone",

A.6. Data: description.json 51

"type": 1

},

"07": {

"preconditions": [],

"todo": "migrate",

"type": 1

},

"04": {

"preconditions": [{"running": 1}],

"todo": "restart",

"type": 1

},

"05": {

"preconditions": [],

"todo": "deploy",

"type": 1

}

}

A.6. Data: description.json

{

"vApps":{

"Killerapp": {

"application":{

"amount": 3,

"clustered": "deny",

"cpu": 95,

"mem": 90,

"hdd": 90,

"services": ["app", "nginx"]

},

"database":{

"amount": 2,

"clustered": "force",

"cpu": 90,

"mem": 85,

"hdd": 80,

"services": ["postgres", "pgpool2"],

"ensure": ["synchronised"]

}

},

"Lsc10w": {

"application":{

"amount": 3,

"clustered": "force",

"cpu": 50,

"mem": 90,

"hdd": 75,

"services": ["app", "nginx"]

}

}

52 A. Appendix

},

"clusters": {

"1": {

"avail": {

"cpu": 20,

"mem": 24000,

"hdd": 5000,

"sla": 95

},

"price": {

"cpu": 5,

"mem": 5,

"hdd": 1,

"base": 0

}

},

"2": {

"avail": {

"cpu": 10,

"mem": 1000,

"hdd": 5000,

"sla": 100

},

"price": {

"cpu": 15,

"mem": 15,

"hdd": 0.5,

"base": 20

}

}

}

}

A.7. Data: status.json

{

"01":{

"cluster": "1",

"type": "application",

"vapp": "Killerapp",

"cpu": 34,

"mem": 25,

"hdd": 70,

"running": 0,

"services": ["app", "nginx"]

},

"02":{

"cluster": "2",

"type": "application",

"vapp": "Killerapp",

"cpu": 93,

"mem": 37,

A.7. Data: status.json 53

"hdd": 87,

"running": 1,

"services": ["nginx"]

},

"03":{

"cluster": "1",

"type": "database",

"vapp": "Killerapp",

"cpu": 98,

"mem": 25,

"hdd": 40,

"running": 1,

"services": ["postgres", "pgpool2"]

},

"04":{

"cluster": "1",

"type": "database",

"vapp": "Killerapp",

"cpu": 34,

"mem": 25,

"hdd": 40,

"running": 1,

"services": ["postgres", "pgpool2"]

},

"99":{

"cluster": "1",

"type": "application",

"vapp": "Lsc10w",

"cpu": 34,

"mem": 25,

"hdd": 70,

"running": 1,

"services": ["nginx", "app"]

}

}

	Abstract
	Contents
	1 Introduction
	1.1 Cloud Computing
	1.1.1 Infrastructure as a Service
	1.1.2 Platform as a Service
	1.1.3 Software as a Service

	1.2 Automated Planning
	1.2.1 Types of automated planning
	1.2.2 Representations of planning

	2 Scenario
	2.1 Model
	2.2 Problem Statement
	2.3 Requirement analysis

	3 Automated planning as a solution
	3.1 Planning Techniques
	3.1.1 Graphplan
	3.1.2 Hierarchical Task Network - Informed Search

	3.2 System design
	3.3 Data types and data structure
	3.4 Algorithm

	4 Implementation
	4.1 Implementation
	4.2 Evaluation
	4.2.1 Hardware and software setup for evaluation
	4.2.2 Evaluation procedure

	5 Related work
	6 Outlook and future work
	Bibliography
	A Appendix
	A.1 Planner: Planner.py
	A.2 Planner: Knowledge.py
	A.3 Planner: tests/test-planner.py
	A.4 Planner: runtests.py
	A.5 Data: tasks.json
	A.6 Data: description.json
	A.7 Data: status.json

