
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN
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Abstract

Context aware services often need derived and higher level information about users
and their environments. Sensors and databases mostly offer low-level information only.
The need to bridge this gap demands for refinement and ennoblement of contextual
information. Therefore the concept of conventional traders known from distributed
systems is adapted. Their core, typically a database, is equipped with its deductive
closure.

A complete deductive closure is ineligible for practical purposes because of a fairly
high runtime complexity. Therefore a representation is used which is simple enough
to maintain the deductive closure but which is still strong enough to model our
environment adequately.

All three key functionalities of conventional traders offered at their interface are em-
ulated, namely to add and to withdraw service offers and context information as well
as to enquire the availability of a, maybe derived, service.

Algorithms for adding and removal are efficient as far as time and memory accesses
are concerned since they are polynominal with low degree and measured in those
changes that are imposed by deductive closeness. This avoids complete and expensive
rebuildings of closures.

Inquiries for services can be treated efficiently as well. For inquiries the requester needs
to provide a construction strategy and a representation of the answer. This differs from
conventional traders since structurally multiple answers are possible due to deductive
closeness.

Zusammenfassung

Kontextabhängige Dienste benötigen abgeleitete Informationen und Informationen
auf höherem Abstraktionsniveau über ihre Benutzer und ihre Umgebung. Sensoren
und Datenbanken können aber meist nur rohe und unbearbeitete Daten liefern. Die
Notwendigkeit, diesen Unterschied zu überbrücken, verlangt nach Verfeinerung und
Veredelung von Kontextinformationen. Dazu wird das Konzept der Trader aus dem
Umfeld Verteilter Systeme herangezogen. Deren Zentralkomponente, im wesentlichen
eine Datenbank, wird um ihre deduktive Hülle erweitert.

Wegen der hohen Laufzeitkomplexität eines vollständigen deduktiven Abschlusses
kommt für die Praxis nur ein Fragment in Frage. Aus diesem Grund wird eine Darstel-
lung verwendet, die einfach genug ist, um den deduktiven Abschluss aufrecht erhalten
zu können, aber mächtig genug ist, um unsere Umgebung angemessen zu modellieren.

Die drei Funktionalitäten für konventionelle Trader zum Hinzufügen von Dienstange-
boten bzw. Kontextinformationen, deren Entfernung sowie Anfragen nach der Verfüg-
barkeit von, möglicherweise abgeleiteten Diensten nachgebildet.

Die Algorithmen zum Hinzufügen und Entfernen von Diensten sind effizient, in
dem Sinne, dass Laufzeit und Speicherzugriff polynominell sind in der Größe der
tatsächlich notwendigen Veränderungen, welche die deduktive Abgeschlossenheit aufer-
legt. Dadurch werden komplette und damit auch kostspielige Neuberechnungen ver-
mieden.

Ebenso effizient können Anfragen nach Diensten behandelt werden. Dazu muss der An-
frager im Gegensatz zu konventionellen Tradern zusätzlich eine Konstruktionsstrate-
gie sowie eine Repräsentation der Antwort im Vorfeld angeben. In diesem Punkt
unterscheiden sie sich von konventionellen Trader, da strukturell verschiedenartige
Antworten aufgrund der deduktiven Abgeschlossenheit möglich sind.
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Chapter 1

Introduction

1.1 Motivation

Nowadays computerised facilities become more and more ubiquitous. The vision of pervasive
computing as first expressed by Weiser [Weis 91] is turning into reality. This development has
serveral causes. One of them is miniaturisation of electronical equipment. Another one is their
decreasing cost of production [Moor 65].

Computer science is influenced by these developments as it has to fulfill increasingly demanding
tasks requiring more processor power, memory capacity, reduced consumption of energy, and
network connectivity, to name just a few.

But the main responsibility of computer scientists, however, is to design systems supporting
human users in achieving their goals. The link between these aspects of computer science is a
sophisticated form of interaction in order to achieve efficient communication. Programs often need
information about their users in order to perform their designated tasks. The quality of information
needed has to be the higher the more these systems are required to be autonomous, intuitive and
convenient. This necessity is often referred to as context awareness [DAS 01]. Exemplary scenarios
(cf. [ChKo 00]) combine qualitatively different kind of information.

• Raw data of low level. These might be measured by sensors. Examples of such data include
temperature, air humidity, time, position, and velocity. Other raw data might be stored
in databases and could, for example, include textual descriptions of the appendant entity,
preferences, and history of former contexts. In the literature these data are called mostly
context information (cf. [ChKo 00] or [KSB 02]) - which is owned by an entity .

• Information about service providers. These offer to convert information or to enrich contexts
by deduced information. Examples of information conversions include position transforma-
tion functions, and information desks. Such deduced information can reflect situations of
users for instance.

Following [KSB 02] both kinds are subsumed under content provider since both can be treated
as functions. The first as function of zeroth order and the latter with a degree greater than zero.
SML (see http://www.smlnj.org/) goes an akin way, it considers functions as syntactical sugar.
For example the function declaration

fun foo x = x;

is internally translated into a variable declaration like

1

http://www.smlnj.org/


2 CHAPTER 1. INTRODUCTION

val foo = fn x => x;

To eclipse computerised equipments into the background of automatisation they need to be
consolidated and to synergy. This conforms to the trader concept in distributed systems (cf.
[LP 03, chapter 7] and figure 1.1) where service providers are asked to register their service offers
at a central component - the so called trader. Moreover, they are allowed to withdraw their offers
as well. Inquiries of users (or synonymously clients – independently whether they are human or
parts of software or even importer - as common in distributed systems) for services are directed
to a trader. The trader looks up its database for matches and answer accordingly to the caller
who can finally get into touch with the proposed service providers.

Service
Provider

Client

Add or
remove
demands

Query for 
types

Database containing all 
registrated service providers

Answer

Conventional Trader

Figure 1.1: Main components of and data flow within a conventional trader.

The common lookup corresponds to a simple selection operation on a relation in a database system.
This suffices for most systems looking for something usable like yellow pages, but suffers from a
fairly obvious drawback: it is not deductively closed.

As an example consider the conversant but simplified problem to compose services: Given a .tex
file, say file, a service latex able to construct .dvi files out of this and a further service dvips
able to convert the latter into postscript. The user might ask to build a postscript out of its .tex
source. Suppose all these information - but not more - are entered into the trader system and the
user queries for such a composition. As expected the answer is ”no” since no immediate service for
the type ”postscript” was announced. To elude this unwished result two adaptations are required.

• Firstly, the structure of possible answers needs to be amplified. But how should an answer
look like? In our example it should express that in order to achieve a postscript file the .tex
source should be applied to the first service and then its result to the second.

As a generic solution we choose simple typed lambda terms since functional languages avail
them and form an excellent playground.

In our actual case we could form an answer expression as a function composition like:

dvipsdvi→ps(latextex→dvifiletex),

whereby types are written as superscript.

Even in this simple example we can use SML as representative of functional languages as a
test enviroment primarily for type checking and normalisation (cf. chapter 2).

The user can understand the answer as a description of how to construct the desired
information: replace free variables by their representing service functions and normalise
the resulting term which means to execute their beta redexes.

Hereby service providers are assumed to be omnipresent - at least at the client. As often
services are available only at some specialised network nodes, terms could also be translated
into messages containing instruction sequences and lists of values. These can be sent around
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in the network like tokens or software agents. As an example consider gB→C(fA→Ba) and
assume that the client owns a, f is located at a node called F and g at G. The user could
initiate the computation by sending a message 〈codeF, [value of a]〉 to node F whereby codeF
is

apply first argument to f and save result at aux;
send a message 〈codeG, [aux]〉 to G whereby
codeG is apply first argument to g and save result at aux;

send a message 〈 this is the result , [aux]〉 to client

The user might take advantage of parallel computation if the term is long and not too nested.

• Besides the linguistic extension the ”brain” of traders needs also to be improved which is
the main topic of this thesis. For the subsequent we refer to figure 1.2.

As a database cannot act deductively by itself its deductive closure is provided to the trader,
representing all possible service combinations. To get the complexity under control service
combinations are not materialized explicitly and the closure is not completely rebuilt due to
update operations but is rather updated on-the-fly. We will tackle the deductive closure in
chapter 4 complying with the elementary operations add and remove, cf. definition 39.

Service
Provider

Client

Add or
remove
demands

Query for 
types

Deductive
closure

Database 
containing all 
registrated 
service providers

Answer

Deductive Trader

Figure 1.2: Main components of and data flow within a deductive trader.

Therefore inquiries by users are redirected from the database to its closure. Demands for
updates are directed to both. The database will only hold additional information not used
within the closure like, or information about vendors. The database is also used to prevent
that identical services occur with different types since the closure can be understood as being
indexed only by types whereas the database can be additionally indexed by names.

As an integration into an existent and enclosing framework should be possible the interface of
conventional traders is reused for the proposed deductive trader:

• adding service offers (by content providers),

• withdrawing service offers (by content providers), and

• queries for a certain service (by clients).

1.2 ”Types” types the world

More than for conventional trader our approach focuses on types of information as a complete
description of their characteristics. Consequently information of equal type are considered as
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comparable to each other and thus treated as equal. Among others, this type driven approach
bases on the famous slogan (cf. [Miln 78] and [MyO’ 84])

Well-typed programs cannot go wrong.

In contrast to those services handled by conventional traders context information handled by
deductive traders are treated without any kind of dynamic or static parameters usable for inquiries.
This restriction stems from function composition itself. For example consider costs per page
being affixed on printer services. Assume a typesetting service allowing to convert text equipped
with visual markups into a typeset and further a printing service taking the latter as input. As
the amount of pages produced by the typesetting programme is not predictable in advance, an
information about the costs per page is almost meaningless.

In other words, additional information cannot be used for inquiries within our approach so far.
Thus quality of service (QoS for short) aspects cannot be realised directly. Nevertheless such
additions can be offered as dynamic property by the content providers. If the granularity is coarse
enough they can be encoded into the type system directly. Section 4.5 discusses how this can be
accomplished but at the price of an increased complexity (since the corresponding covering set
contracts, cf. definition 37). Independently, dynamic properties are incumbent upon the user to
check their validity as they reside outside the scope of traders.

In general the existence of an common typing system is assumed. It should describe services and
their abilities properly. The intelligence for problem solving remains at the service providers and
their cooperation. Since typing in our framework resembles that of conventional traders we do not
detail its design, management, etc.

To get the trader system viable, context information and service providers need to be melted.
Security in the sense of value hiding is guaranteed as the traders do not notice any value. Instead
they notice only its type. Types at their own do not provoke any security leak in general. For
example it is more dangerous to trumpet one’s bank balance than to say that someone has a bank
account.

As in contrast to conventional traders our approach requires an integration of the inquirer’s
context. At the first glance, it seems to be inferior as the complexity to assemble the deductive
closure is cubical and not linear. This can be revised if the principles of object oriented development
– as a model of the surrounding world – is additionally taken into account. The difference between
classes and objects plays the same role like types and values do in our approach. Even if the
abundance of entities is huge the amount of entity kinds is rather small as they reflect only the
diversity of products. Since traders do not perceive values they can not distinguish among different
entites of identical kind.

Another pillar of object orientation is inheritance. It can be adapted for an hierarchy of entity
kinds as types of context information can be handed over but not necessarily their values. As
a showcase we use inheritance in figure 1.3 which is not asserted to be exhaustive. Without
wanting to advertise, another more detailed branch of such modeling can be gazed at http:
//www.wordreference.com/definition/computer.htm or similar web directories.

Apart form inheritance, hierarchy can be utilized to parallise traders as indicated by figure 1.4.
Each entity kind is tackled by a dedicated trader and its closure can be fed by the immediate
lower (i.e. rootwards) trader.

Inquiries of clients are to be addressed to the trader for its entity kind. Service providers interact
only with the root entity. Every change in the closure is to be propagated leafwards. As information
could be independently deducible for two different entity kinds - one is the descendant of the other
-, service compositions must be labeled with their origin since this constellation could be released
by a withdrawal of an involved service provider.

Our type driven traders operate on a more abstract level than proprietary approaches of context
aware application as summarised in [ChKo 00, chapter 4]. This abstraction supersedes special

http://www.wordreference.com/definition/computer.htm
http://www.wordreference.com/definition/computer.htm
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Physical
 position

Entity

Conceptual

Person
 emotions

 preferences

 interests

Computer
 IP address

 operating system

 list of software

Space
 general climate

 list of subspaces

 list of physicals

 measures

Software
 vendor

Softwareagent
 list of IP addresses

Figure 1.3: Hierarchy of entity kinds.

treatments for position, time, temperature, and so on.

To sum up, deductive trader can advance context aware services.

1.3 Requirements and Restriction

The requirements for a deductive trader are:

1. It should fit the role of traditional traders, i.e. should implement the interface of a trader
but extend its semantics as described above. This interface consists of operations for adding
and removal as well as a function for inquiries.

2. Both adding and removing of content providers should be arranged efficiently. In particular,
the deductive closure should not be rebuilt because of these update operations, instead only
mandatory parts should be realigned in polyominal time (with low degree) measured in their
cardinality.

3. It should be possible to gather update demands to adjust adequately individual costs for
updates. The decision when the necessary operations take place are not detailed in this
thesis.

4. As changes of types effect the closure rather than changes of their values, updates are
presumed to be less frequent than inquiries. Therefore update operations should maintain
data structures to speed up inquiries, more precisely some kind of calculation in advance.

Nevertheless this thesis should be treated as a proof of concept rather than an ingenious, detailed
and straightly practical system. Therefore we need to exclude some aspects as

• replication of traders,

• hierarchies of entities as above mentioned,

• dynamic service attributes, as for example current queue length, operational capacity and
so forth,

• every kind of management, and
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position

position position

other content 
information

other content 
information

Physical

ComputerPerson

weather

position -> weather

position -> weather

position -> weather

weather

weather

content information of type X

context for enitity kind X

dependency

duplication

X

X

Figure 1.4: Inheritance as means for parallelising.

• every kind of organising types.

1.4 Specification

The trader administrates a set X of content providers and maintains its deductive closure X∗.
The asterisk denotes the closure, a concept formally defined in definition 30.

The management operations for adding and removal of providers are realised at the level of sets just
by union and difference and at the level of its deductive closure by add(�,�) and remove(�,�).
These are executed simultaneously on both structures. In the case of the closure some efforts are
to be undertaken in chapter 5 and 6 to get following diagrams commutative:

X
�∪R

−−−−−−−−→ �

∗
y y∗
�

add(�,R)
−−−−−−−−→ �

X
�\R

−−−−−−−−→ �

∗
y y∗
�

remove(�,R)
−−−−−−−−→ �

The topmost lines characterise the behaviour of traditional traders.

For queries we anticipate components for inquiries (cf. figure 1.5) and their interconnections and
demonstrate their necessity later during this thesis.

• The inquired type. It has been left unchanged from the conventional traders.

• A selection strategy specifying how the result should be built up.

• The selector handles ambiguities and can access both static and dynamic parameters of
content providers.
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Deductive Trader

User

C:       [B->C][B]  
B->C: g
B:       [A->B][A]
A->B: f
A:      a

g (f a)

type
(C)

inquiry

selection kind, selector
(depth driven, first fit)

representation
(expanded lambda term)

User

proof of derivability
by depth value
(cf. chapter 4) 

derivation
(cf chapter 2)

result
( g(f a) )

selection
(cf chapter 7)

Figure 1.5: Dependency of the parts of an inquiry to each other.

• A description of the representation of the result.

All subsequent descriptions focus on the trader’s point of view.

1.5 Comparison with present software

The make[SuS 89] tool is an often used tool for software development to construct files out of
others and can be used for the initial question involving latex and dvips. Makefiles
would correspond to the database of conventional traders. But it contradicts requirement
four as it does not tender to compute in advance since inquires are answered by a depth first
search.

On the field of context awareness. According to the survey article by Chen and Kotz (cf.
[ChKo 00]), which was published 2000, only proprietary and specialised approaches are avail-
able so far.

Theorem provers could be used but are ineligible for reasons discussed in section 3.1 on page 17.

Logical programming languages and deductive database systems provide opportunities.
For example Prolog [BrEi 04, chapter 5] can continue the initial example of page 2 by
emulating lambda terms (cf. subsequent chapter).

tex(file).
tex_to_dvi(latex).
dvi_to_ps(dvips).

dvi(app(X,Y)) :- tex_to_dvi(X), tex(Y).
ps(app(X,Y)) :- dvi_to_ps(X), dvi(Y).
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The first block represents the database and the second realises deductive closeness (cf.
definition 28) for some types. The question ps(X) asking for a function composition to
obatain postscript is properly answered by X = app(dvips, app(latex, file)).

To complete closeness for instance dvi_to_ps(trivial_abs(X)) :- ps(X). has to be
added. Therefore traversing alternatives can lead to a stack overflow as cycles might oc-
cur. We meet a similar challenge in subsection 6.2.2.1 for our approach.

Even if logical languages could achieve our aim concerning presentability, they violate the
second requirements on page 5 as they use mainly depth first searching.

Anyhow both influence the concept of our approach. Instead of writing down explicitly how
to compute, as characteristic for imperative programming languages, they accept descriptions
of facts and determinate the computation by theirselves.

Our approach takes advantage of the concept of deductive closeness and simplified theorem provers.

1.6 Outline

This chapter pointed out the necessity for deductive traders in dealing with context awareness. The
subsequent chapter introduces the lambda calculus to refine the original question. Its decidability
is discussed in the third chapter and advises restrictions to master its complexity. Chapter 4
concretises the initial question to a data structure called context and proves its optimality. From
the point of view of service providers chapter 5 and 6 explain the functionalities of the elementary
operations add and remove. Next, from the reverse side, the side of the enquirers, we detail how
answers can be formed. Examples are presented in chapter 7.

1.7 Notations and Preliminaries

1.7.1 General Notations

• n is considered as both natural number and the set {0, . . . n− 1} like in set theory ([Deis 02,
2. Abschnitt, 6. Ordinalzahlen, ”Die moderne Definition einer Ordinalzahl”; page 177]).

• (N,≤) is a well ordering on N := N] {∞} as an extension to (N,≤) whereby ≤ is amplified
by {(x,∞) | x ∈ N}. Notice that (N,≤) equals ω+1. Whereby ω is the least infinite ordinal
[Deis 02]. However the subsequent does not use ordinals directly.

• For two sets A and B, A]B equals A∪B and denotes implicitly that A and B are disjoint.

• ”iff” abbreviates ”if and only if”.

• ”wlog” abbreviates ”without lost generality”.

• As most of the occurring tuples are implemented as classes and their components as their
members or attributes the name of components are printed in a monospace font and accesses
to components are symbolised by the dot notation. For example if x is a tuple (A, B),
x = (x.A, x.B) is a tautology.

• For a function f : A → B, dom(f) denotes its domain and range(f) its range. f : A ↪→ B
symbolises a partial map for A to B, meaning dom(f) ⊆ A.

• For a set X, 2X denotes its powerset, meaning the set of all subsets of X.
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• For a function f : A→ B, f : 2A → 2B denotes its extension on powerset such that

f(X) := {f(x) | x ∈ X}

for every subset X of A.

1.7.2 Complexity theory

We use for asymptotic behaviour of functions the common notations O, o, Ω, ω θ, . . ., cf. [Reis 90,
subsection 1.3.2]. Languages are printed as normal text (e.g. SAT) whereas complexity classes
in bold (e.g. NPC). For latter we use explicitly P, NP, NPC, coNP, PSPACE, and some of
their oracle classes. For definitions and details confer [Reis 90, chapter 6] or [Papa 94, chapter 17
and 19].

1.7.3 Source and Pseudo Codes

The attached source code has been written in Java 1.5 as a prototype. During the chapters we use
pseudo codes to concretise algorithms rather than excerpt from its implementations. We presume
that no run time error takes place and variables differ from the null pointer.
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Chapter 2

The Simple Typed λ Calculus
with Pairs

A very short introduction to λ calculus is given.

2.1 Types

Definition 1. The set of types denoted by T is given by the following grammar:

T ::= A | (T → T ) | (T ∧ T )

whereby A is representative for atomic types.

Types are written in capital letters. For simplicity we omit outermost brackets, assume that
conjunction has a higher precedence than implication, and treat chains as right associative.

Definition 2. The functions subtypes and directSubtypes : T → 2T collect for a type its subtypes
and its direct subtypes (or synonymically immediate subtypes) respectively. Let ◦ range over
{∧,→}.

directSubtypes(S0 ◦ S1) := {S0, S1}
directSubtypes(X) := ∅ (if X is atomic)

subtypes(S0 ◦ S1) := {S0 ◦ S1} ∪
⋃
i∈2

subtypes(Si)

subtypes(X) := {X} (if X is atomic)

Hereby atomic types shall represent an annotation to values about the kind of their information
content like position, temperature, time, duration, user’s preference, and so on. Analogically to
programming languages values of the conjunction type S ∧T can be considered as an ordered pair
consisting of values of type S and T , and a value of type S → T as a (total) function mapping
values of type S to those of type T . These types do not denote types on implementational level
like integer, real, or bool does. Indeed it is essential that the underlying typing system of the
proposed framework is sufficiently granular to detail all demanded aspects of context information.
Development and maintenance of a proper type system require of course an adequate management.
The subsequent analysis premises such an typing system, but we disregard its details.

11
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Definition 3. The size |T | of a type T is:

|A| := 1
|T0 → T1| := 1 + |T0|+ |T1|
|T0 ∧ T1| := 1 + |T0|+ |T1|

The notion length is used synonymously for size.

2.2 Lambda terms and some of their properties

So far we introduced a type system. Now its inhabitants and their operational aspects are
addressed.

For every type T we presume a set VarT of infinite many variables of type T , written as x, y, z . . .,
possibly ornamented with super- or subscripts or primed. For two different types their sets are
required to be disjoint.

To define simple typed lambda terms with pairs (for short: term or derivation) in the typed-term
style of Curch (see [Hind 97, subsection 2A3]) we define by simultaneous induction on types
auxiliary sets ΛT of all lambda of type T :

Definition 4. The auxiliary family {ΛT }T∈T is inductively defined by

VarT ⊆ ΛT
(variable)

x ∈ VarS t ∈ ΛT

(λxt) ∈ ΛS→T
(abstraction)

r ∈ ΛS→T s ∈ ΛS

(rs) ∈ ΛT
(application)

t ∈ ΛT0∧T1

(πit) ∈ ΛTi
(for i ∈ 2, projection)

t0 ∈ ΛT0 t1 ∈ ΛT1

(〈t0, t1〉) ∈ ΛT0∧T1
(pairing)

This yields the set of typed lambda terms:

Λ :=
⋃
T∈T

ΛT

Analogously we understand variables as

Var :=
⋃
T∈T

VarT

Inversely, type : Λ → T maps a lambda term to its (unique) type. To smooth notations we say
that a term t inhabits a type T if and only if type(t) = T and mean by ”T is inhabited” that a
term t exists with type(t) = T .

To smooth the notation of terms we introduce some abbreviations:

• we omit outermost brackets,

• application is left associative,

• abstraction has the greatest precedence,

• a dot symbols a parenthesis pair starting at the dot position and closes rightmost,

• types annotation can be omited if determinable and

• instead of tT we write t : T if T is lengthy.
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A central idea of the lambda calculus its variable binding. λxt binds all occurences of x within t.
Consider as an example

λy.zyλxλx.yx

whereby arrows emphasise bindings.

Bindings play the main part rather than their names. Consequently we treat terms as equal up to
α-equivalence, meaning up to bounded renaming. Continuing the above example it is α equivalent
to

λy.zyλxλw.yw

but not to
λy.zyλwλx.yw.

Equality of terms is treated up to α equivalence.

All unbound variables are covered by the set of free variables FV.

Definition 5 (free variables). The function FV : Λ → 2Var on terms is defined as

FV(x) := {x}
FV(λxu) := FV(u) \ {x}
FV(uv) := FV(u) ∪ FV(v)
FV(〈u, v〉) := FV(u) ∪ FV(v)
FV(πiu) := FV(u) (for i ∈ 2)

A term is closed iff its set of free variables is empty.

The main operation on terms is reduction. It presupposes substitution.

Definition 6 (substitution). Let x be a closed term and t an arbitrary term. The substitution
�[x := t] is defined by recursion on the applied term �:

y[x := t] :=

{
t if x = y

y otherwise

(λyr)[x := t] := λy.r[x := t] (wlog. x 6= y and y 6∈ FV(r))
(rs)[x := t] := r[x := t]s[x := t]

(πir)[x := t] := πi(r[x := t]) (for i ∈ 2)
〈r, s〉[x := t] := 〈r[x := t], s[x := t]〉

Definition 7 (iterative substitution). Let W be a set of closed terms, v : W → Λ and t an
arbitrary term. The iterative substitution

t[u := v(u)]u∈W

is defined by recursion of W as

t[u := v(u)]u∈∅ := t
t[u := v(u)]u∈W]{w} := t[w := v(w)][u := v(u)]u∈W

The independence of the iteration orders for W is silently presumed.

Definition 8 (reduction). Let s, t, t0, t1 be terms and x a variable. The (one step) reduction 7→
is defined by 7→β ∪ 7→π.

(λxt)s 7→β t[x := s]
πi〈t0, t1〉 7→π ti (for i ∈ 2)
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The terms on the left hand side are called (β-, π-)redexes. Its continuation to the relation →β
1 is:

t 7→β t
′

t→ t′
t 7→π t

′

t→ t′

t→ t′

st→ st′
t→ t′

ts→ t′s

t→ t′

(λx.t)s→ (λx.t)
t→ t′

πit→ πit
(for i ∈ 2)

t→ t′

〈s, t〉 → 〈s, t′〉
t→ t′

〈t, s〉 → 〈t′, s〉
whereby the corresponding types are omitted and rules apply only if they conform to the definition
of lambda terms. →+

β and →∗
β denoted the transitive respectively the transitive reflexive closures

of →β .

Definition 9. Let s be a λ term.

• s is called normal if no term t with s→β t exists.

• s is called strong normalising if no infinite sequence (si)i∈N with s0 = s and si →β si+1 for
all i exists.

• s is called confluent2 if for all terms t0 and t1 with s →∗
β t0 and s →∗

β t1 a term t′ exists
such that t0 →∗

β t
′ and t1 →∗

β t
′.

Lemma 10. Every term is strong normalising and confluent.

Proof. Consider [TrSc 96, chapter 6] and adapt definition 1.2.12 and theorem 1.2.15 in [TrSc 96].

Definition 11. For every term t its unique normal form is ↓ t.

Note that the normal form is unique because of strong normalisiation and confluence.

Thus equality can be defined as

Definition 12. Two terms s and t are equal (in sign s =β t) if and only if ↓ s =↓ t.

Definition 13 (depth). The function depth : Λ → N is defined as

depth(x) := 1
depth(λxu) := 1 + depth(u)
depth(uv) := 1 + max(depth(u),depth(v))
depth(〈u, v〉) := 1 + max(depth(u),depth(v))
depth(πiu) := 1 + depth(u) (for i ∈ 2)

Definition 14 (size). The function size : Λ → N is defined as

size(x) := 1
size(λxu) := 1 + size(u)
size(uv) := 1 + size(u) + size(v)
size(〈u, v〉) := 1 + size(u) + size(v)
size(πiu) := 1 + size(u) (for i ∈ 2)

1 The proper notation would be →. But as we use 7→π only in some proofs and focus more on 7→β the subscript
β is suffixed.

2 More precisely not a term itself is confluent but →β is.
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Definition 15 (subterm). The function subterms : Λ → 2Λ is defined as

subterms(x) := {x}
subterms(λxu) := {λxu} ∪ subterms(u)
subterms(uv) := {uv} ∪ subterms(u)∪ subterms(v)
subterms(〈u, v〉) := {〈u, v〉}∪ subterms(u)∪ subterms(v)
subterms(πiu) := {πiu} ∪ subterms(u) (for i ∈ 2)

Definition 16 (Abbreviations). Let Γ be every finite set of variable and T a type.
Γ ` t : T and Γ ` tt abbreviate FV(t) ⊆ Γ.
Γ `? T (derivability problem for short) holds if and only if a term t with Γ ` t : T exists.

2.3 Comparison to context awareness

So far we can compare the λ calculus with concepts of context awareness:

λ calculus context awareness
free variable context information
term nondeterministic computation instruction
reduction order computation trace
type classification of values
implication type function
conjunction type data pairing

The original requirements for deductive traders can now be reformulated. Service offers can be
understood as variables. Let C denote the set of all offers registered at the trader. An inquiry for
a type T is translated into the question whether a term t exists with C ` t : T . In the positive
case such a term should be returned.

2.4 Implementation

Types are realised within the package type. Every kind of type constructor corresponds to some
class either TypeAtom, TypeImpl or TypePair. Each is derived from the class Type harbouring
some elementary queries for instance for subtypes.

Lambda term constructors are analogously derived from Lambda within the package lambda.
Among other things it performs substitution, but the caller bears the responsibility to avoid cyclic
term representations. As the behaviour of bounded and free variables differ, they are implemented
in differend classes LambdaBound and LambdaVar. Depth values are implemented as int. As the
definition 27 of depthC later on allows the value ∞, Integer.MAX VALUE is treated as ∞.



16 CHAPTER 2. THE SIMPLE TYPED λ CALCULUS WITH PAIRS



Chapter 3

Decidability, Complexity and
Restrictions

So far we know how to translate inquiries into the problem of deducibility (C ` t : T ). But is this
question decidable at all, meaning can an algorithm exist which solves this problem? If so, what
is its time complexity? Is it efficiently solvable?

3.1 Decidability

Strong normalisation turns the black box of a proof into a white one. More formally it leads to
the

Lemma 17 (subformula property). Let t be a normal term with C ` t : T . The type of every
subterm of t is a subtype of T or of the type of some variable in C.

Proof. Adapt the proof of theorem 6.2.6 in [TrSc 96] and consult the Curry-Howard isomor-
phism in [Hind 97].

As the amount of subformulae is finite deducibility is decidable.

Lemma 18. An algorithm exists deciding constructively whether a term t exists with C ` t : T .

Proof. Decidability corresponds to theorem 4.2.5 in [TrSc 96] for the Gentzen calculus. Chapter
3.3 in [TrSc 96] and the Curry-Howard isomorphism mediate between Gentzen and the simpled
typed lambda calculus.

Fortunately our aimed goal is decidable. On the first glance one might suggest a theorem prover
(prover for short) specialised in minimal or even in intuitionistic1 logic utilizing the Curry-
Howard isomorphism once more.

To return a proper term to the inquiring user the knowledge of its existence per se is not sufficient.
Hence a prover should also offer to return a proof witness, which should be convertible into a
lambda term within an linear amount of time.

For example PVS (see http://pvs.csl.sri.com/) drops out as it does not provide proof objects
equaling lambda terms. Indeed it uses proof objects, but organised as a tree consisting of applied
tactics. Thus an internal proof of an automated proof using e.g. the prop or bddsimp instruction
is only atomic and hence useless for us. Additionally as these proofs are classical it can ”prove”

1 As we do not use ⊥ as an atomic type intuitionistic logic is conservative over minimal logic.

17

http://pvs.csl.sri.com/
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statements unprovable in minimal logic, consider for example the Pierce formula [Hind 97,
subsection 6A1]: ((A→ B) → A) → A.

Even if a prover could return lambda terms most provers present them in normal form since the
subformula property affords a decision methode. As demonstrated in section 7.2 the gap between
normal terms and minimal terms might be exponential and even exponential in the size of C for
the decision problem C `? T . To the knowledge of the author no current prover produces minimal
terms.

Albeit one might argue that these cases are rather rare, but conventional provers suffer from
additional disadvantage. They are not designed to benefit from multiple invocations as they tend
to be applied to empty contexts. But this clashs the fourth requirement on page 5.

3.2 Complexity

We show that the derivability problem `? is complete for PSPACE (for details on this class
consider [Reis 90, section 6.4.2] or [Papa 94, chapter 19], used notation is borrowed from the
latter).

Definition 19 (QBF, QSAT). QBF (Quantified Boolean Formulae) is the set of all second-
order propositional closed formulae in prenex and rectified normal form. Explicit conjunctions,
disjunctions, negations, and implications are allowed. QSAT is the subset of QBF containing
precisely those formulae which are valid in common sense.

Lemma 20. Derivablitity is PSPACE complete.

Proof. Following [dS 76] derivablitity is in PSPACE.
As QSAT is complete for PSPACE (cf. [Papa 94, theorem 19.1]) it suffices to show QSAT ≤p `?.
Let F be a quantifed boolean formula. We translate F within polynominal time into a question
of derivablitity: ΓF `? SF,1. Hereby ΓF consists exactly of:

• for every ∃xφ ∈ Sub(F ):

c∃xφ,1,w : (Sx,w → Sφ,1) → S∃xφ,1 (for w ∈ 2)

• for every ∀xφ ∈ Sub(F ):

c∀xφ,1 : (Sx,0 → Sφ,1) → (Sx,1 → Sφ,1) → S∀xφ,1

• for every ¬φ ∈ Sub(F ):

c¬φ,1 : Sφ,0 → S¬φ,1

c¬φ,0 : Sφ,1 → S¬φ,0

• for every φ ∧ ψ ∈ Sub(F ):

leftφ∧ψ,0 : Sφ,0 → Sφ∧ψ,0

rightφ∧ψ,0 : Sψ,0 → Sφ∧ψ,0

cφ∧ψ,1 : Sφ,1 → Sψ,1 → Sφ∧ψ,1
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• for every φ ∨ ψ ∈ Sub(F ):

leftφ∨ψ,1 : Sφ,1 → Sφ∨ψ,1

rightφ∨ψ,1 : Sψ,1 → Sφ∨ψ,1

cφ∨ψ,0 : Sφ,0 → Sψ,0 → Sφ∨ψ,0

Whereby Sub(φ) denotes the set of all (immediate or not) subformulae of φ analogously to
subformulae of types. Above described transducer requires obviously polynomial time.

The principal idea is to enroll subformulae of F together with a flag whether the subformula should
be valid or not. Variable assignments are expressed by nested implications. Within normal terms
every single assignment of a variable x to its value b corresponds to a lambda abstraction for a
type Sx,b. This abstraction value can be used to form the value of subformulae. For existentially
quantified formulae the abstractions are nested whereas for univerally the abstractions are abreast.

As QBF are required to be in prenex normal form and we seek for tautologies only quantifiers
with a flag for valid are to be encoded in ΓF .

Since F must be rectified, here: every quantifier has it own variable, occultation needs not to be
regarded. Otherwise above translation would not respect the borders of the both problems QSAT
and · `? ·: F := ∃x∃x.x ∧ ¬x is false but ΓF ` SF,1 would hold testified by

cF,1,1 λy
Sx,1 .c∃x.x∧¬x,1,0 λz

Sx,0 .cx∧¬x,1y. c¬x,0z

We saw that the inherent complexity is established on compelled decisions emitting their witnesses
into the context. Hence we pursue the pragmatic approach to interdict context modification along
the derivational tree.

Someone could argue against that this high complexity by pointing at the exponential growing
proof length in case of an extensive usage of universally quantified variables. The satisfiability
problem (see [Reis 90, section 6.3.1]) can refute this argumentation since in the positive case a
linear derivation exists whereas deciding satisfiability might consume superpolynomial amount of
time (again on the global assumption that P 6= NP).

Every local choice between c∃xφ,1,0 and c∃xφ,1,1 for some formula φ become a global matter since
a decision can emit its witness into the proof context which might be used leafwards and can
therefore affect the global structure inherently.

3.3 Exigence for fragments

The first enthusiasmus about the decidability is curtailed by its complexity. As we can not presume
that the polynomial hierarchy (cf. [Papa 94, chapter 17]) collapses, there is no efficient (in the
sence of P) algorithm for it.

This brings up a barely studied problem: vulnerability by complexity.

The trader system would face the problem of break down due to the extremely time consuming
computations it offers. A denial of service attack could easily be achieved by using lemma 20 and
the QSAT benchmark library2.

Even restriction of the query length can be circumvented by an adequate conspiracy among service
providers and users.

2available at http://www.qbflib.org/benchmarks.html

http://www.qbflib.org/benchmarks.html
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Almost every algorithm in distributed systems bases on data transfer between two network nodes
(Base64- and CRC32-coding, cf. [Jung 95, section 2.2]), common internet protocols HTTP,
FTP, SMTP, POP3, IMAP, NNTP cf. http://www.rfc-editor.org/rfcxx00.html). Thus its
complexity is only linear. Algorithm with higher time complexity are either broken down (for
example blockwise usage as by SSH) or only available for the whole system (for example routing)
and does not provide any point of attack for abuse as their methods are not universal enough.
For example RSA (cf. [Stin 95, chapter 4]) offers primarily efficient arithmetical functions. Recall
that we do not deal with attacks undermining authentication or message integrity protocols.

Only one hint to parasitic computing could be found by the author: [BFJB 01], [Bara 01], or
http://www.nd.edu/~parasite/. Parasitic computing subsumes attacks by abuse features in
a not intended manner besides exploitations of implementational mistakes or denial of service
attacks. The authors of the above essays describe how the checksum algorithm of the Transmission
Control Protocol could be abused for verifying assignment of boolean formula and demonstrate
how the SAT question could be solved by spreading the assignment space out to different network
nodes and enforce them to verify an assignment.

Although they ignore that the construction of proper IP packets consume more time than to verify
the corresponding assignment and thus they break a fly on the wheel, they do point out indeed a
new way of abusing service offers (here: web servers), maybe for the first time. As the capabilities
of current offers is fairly limited such kind of attacks are not profitable and hence are pretty rare.
Nowadays invaders focus rather on security leaks to hijack a whole computer and their abilities.

To sum up, vendor of such a trader system would offer most vulnerable system even if its
implementation is sound.

An alternative is to restrict crudely the amount of time given to an algorithm to answer the inquiry.
But how should a user react if she receives a time out message? She can do nothing as nothing
useful can be deduced. Consider a proof searcher working with exhaustive search by testing each
rule to apply. Assume that the trader knows

a0 :A0

fi :Ai−1 → Ai (for 0 < i ≤ n)
an−1 :An−1

(whereby n is assumed to be sufficient large) and a user asking for An. Consider following trace
(informal):
search a term of type An, choosing fn, to continue with An−1,
search a term of type An−1, choosing fn−1, to continue with An−2,
search a term of type An−2, choosing fn−2, to continue with An−3,
...
search a term of type Ai, time out.

In this case the trader was on the wrong track. If he had chossen an−1 instead of fn−1 the user
would have received the positive answer fnan−1 in time. All in all the user can not infer anything
reasonable from a time out message.

3.4 Restriction on derivations

As we assume P 6= PSPACE, no efficient (in the sense of polynominal time) programme can
decide whether a term of given type whose free variables are covered by a given set exists. To
achieve our goal anyhow we have to lower our sights. The concept of ”derivations” needs to be
rethought in such a way that all derivations can be constructed by algorithm running in lower
polynominal time.

http://www.rfc-editor.org/rfcxx00.html
http://www.nd.edu/~parasite/
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The intended usage of the proposed system and its type modeling provide incentives.

1. Left recursive types are unusual. For example a service of type (A → B) → C uses
another service of type A → B as an oracle. This means that the former is allowed to use
the latter an unlimited amount of time. It is essential to distinguish between this setting
and a situation within the type of the first service is replaced by B → C. Hereby only (at
most) one information of type B is claimed and plays the part of a service composition.

2. Services are means to an end. In real life users seeking for services do not aim to get
the services for theirselves rather for an application of their own data to this service. Take
for example a time table inquiry for rail connections. Generally one wishes to get a certain
question (maybe having alternative dates up its sleeve) answered and not the whole time
table.

Both offer a restriction on normal forms to those which do not contain proper lambda abstractions.
More precisely the first imposes that no proper innermost abstraction is required as no proper
service composition can be used as an oracle for another service. For example h(λx.f(gx)) is
unwished. The second connotes that outermost proper abstractions are needless. Thus following
definition is motivated:

Definition 21. A term t equaling λxr is a proper (lambda) abstraction if and only if x ∈ FV(r)
and otherwise it is called trival (lambda) abstraction. The latter is emphasised by the notation
λ0xr.
A term t is context stable if and only if its normal form does not contain any proper lambda
abstraction.
Let C be a finite set of variables. C `cs t : T iff C ` t : T and t is context stable.
C `?

cs T iff a term t with C `cs t : T exists.

The definition relies on normal forms as the subformula properties is used in next chapter for
deductively closed contexts.

Herewith the initial asked question C `? T can be refined to C `?
cs T .
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Chapter 4

Context

4.1 Motivation

A deductively closed context for a finite set C of variables should not contain all possible derivations
t with C `cs t, since the amount of such terms t is exponential in the cardinality of C (cf. the
subsequent lemma 73). Thus, we need to compromise about the multivaluedness of types.

Only the type fixes the intended information. This centralisation permits to substitute an
arbitrary subterm of a derivation by another covering the same set of free variables and
of the same type. Thus we can not handle quality of service at this state. Nevertheless
one can furnish this system by quality of service measures. These could be attached to
variables offered by their corresponding content providers and be homomorphically extended
on other term constructor rules. But be warned: this can lead to more necessary updates
due to managemant operations than without, since the corresponding covering set reduces,
cf. definition 37 and lemma 38.

Thus we focus on types rather than on derivation since terms are treated as equivalent if they
coincide in their types. This suggests to fractionalise potential derivations into handy fragments
merged by their types. These aggregations are called contextitems. As these snippets are not
covered by the definition of lambda terms, their endings are caped by elementary stub terms
(see definition 23). These terms are built by exactly one application of the construction rules in
definition 4, but applied to stubs rather than to its inductive predecessor.

This suggests a system consisting mainly of items each representing a type and covering these
elementary stub terms.

To detail more informally we consider exemplarily a simplified deductively closed context contain-
ing services aA, fA→B , gB→C , and hA→C .

23
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A a

A→ C h B [A→ B][A]

C [B → C][B] [A→ C][A] A→ B f

B → C g

The boxes symbolise the items for the type on its left hand side. The list on the right side
corresponds to its set of dervations. Brackets symbolise stubs and their links target at the
corresponding contextitems.

In contrast to the later used definitions of context (cf. defintion 25) and deductive closeness (cf.
defintion 28) we simplify both for the moment.

If we are for example interested in a derivation of type C we just pick up one mentioned derivation
of this type and proceed by successively tracking its links until a derivation was selected without
any further links. The demanded derivation is obtained by pluging a these collect derivations
together.

type choosen derivation hence to follow
C [B → C][B] B → C and B
B → C g none
B [A→ B][A] A→ B and A
A→ B f none
A a none

and leads to following derivation of type C:

[B → C][B] g[B] (plug in for B → C)
 g([A→ B][A]) (plug in for B)
 g(f [A]) (plug in for A→ B)
 g(fa) (plug in for A)

This example prods at some open problems:

Loop awarenes. The above algorithm does not treat possible loops. If for example f ′B→A is
added to the context and [B → A][B] as additional derivation to A one runs into a loop if
[B → A][B] is choosen as derivation for A instead of the above a.
To exclude loops depth values will be assigned to context items (cf. definition 25).

Ambiguity. Instead of g(fa) we could achieve ha as well.
As the system does not enumerate all possible derivations (for its reason cf. lemma 73) the
user has to provide a selection strategy.

Frugalness and simplicity. Which types should occur within the context and which derivations
should be replied to the enquirer? The first is answered within the definition of contexts
(cf. definition 25) and the latter by definition 28. Their sufficiency will be demonstrated in
lemmata 32 and 33.
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4.2 Extentions of λ terms

The set of derivation stubs of a type is modeled as a data structure called contextitem additionally
equipped with administrative information.

Firstly we extend lambda terms to tackle derivations fragments.

Definition 22. The inductive definition 4 of Λ is extended to Λstub by replacing ΛTstub for ΛT

and by adding the rule

[T ] ∈ ΛTstub

(stub)

and appending

FV ([T ]) := ∅
[T ][x := t] := [T ]
depth([T ]) := 1

size([T ]) := 1
subterms([T ]) := {[T ]}

The enumeration of stubs is straightforward.

stubs(x) := ∅
stubs(λxu) := stubs(u)
stubs(uv) := stubs(u) ∪ stubs(v)
stubs(〈u, v〉) := stubs(u) ∪ stubs(v)
stubs(πiu) := stubs(u) (for i ∈ 2)
stubs([T ]) := {T}

Definition 23. A term t is an elementary stub term if and only if t matches to one of the patterns
for some types A0 and A1:

x (as variable)
[A0 → A1][A0]
λ0xA0 [A1]
πi[A0 ∧A1] (for both i ∈ 2)
〈[A0], [A1]〉

A stub [T ] can be regarded as a pointer to a set of (stubbed) derivations of type T . To obtain
a stubless term one has successively to agglutinate stubs with a corresponding term as detailed
later on in chapter 7.

4.3 Contexts

Definition 24. A contextitem is a tupel (type, depth, derivations) consisting of

• a type type,

• a value depth being either a natural number or ∞, and

• a finite set derivations of elementary stub terms which inhabit the type type.

The set of all contextitem is denoted as ContextItems.

Definition 25. A context is a (partial) map C : T ↪→ ContextItems such that for every type T
holds
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• C(T ).type = T (coincidation), and

• stubs(t) is a subset of the domain of C for every term t ∈ C(T ).derivations

and its domain is finite and minimal, i.e.

dom(C) = {S ∈ subtypes(T ) | for some variable a ∈ C(T ).derivations}.

For the sequencing parts coinciding is always resumed. The second item ensures that no stubs can
point to types not covered by this context.

Definition 26. Let C be a context. Its set of free variables is

FV(C) :=
⋃

t∈C(T ).derivations

T∈dom(C)

FV(t)

And its set of free types is
FT(C) := {T | t : T ∈ FV (C)}

Thereby the minimality property for a context C can be rewritten to

dom(C) = subtypes(FT(C)).

Remark. Minimality expresses that only those types are in the domain which are really used to
form relevant derivations. Of course, this does not imply that all derivation stubs used for answers
are covered. Consider an inquiry for A ∧ B within a context C whose set of free variables equals
{a : A, b : B}. Here A ∧ B is not in the domain of the context and thus no proper derivation is
manifested in the context.

We solve this apparent problem by an not materialized extention of the domain in definition 31
and lemma 33. For our example it means to construct 〈a, b〉 according to lemma 32.

Definition 27 (depth for stubs). depthC : T → N

depthC(c) := 1
depthC(uv) := 1 + max(depthC(u),depthC(v))
depthC(λxu) := 1 + depthC(u)
depthC(〈u, v〉) := 1 + max(depthC(u),depthC(v))
depthC(πiu) := 1 + depthC(u) (for i ∈ 2)

depthC([T ]) :=

{
C(T ).depth if T ∈ dom(C)
∞ otherwise

In order to be able to access more quickly to often needed information we extend contextitems
by some syntactical abbreviations (secondary attributes in contrast to the primary attributes of
definition 24) for every type T within the domain of C:

• supertypes as {S ∈ dom(C) | T ∈ directSubtypes(S)},

• desiredDepth as
min

t∈C(T ).derivations
depthC(t)

• activity as the cardinality of

{s : S ∈ FV(C) | T ∈ subtypes(S)}

• changeObservers as
{t ∈ C(T ′).derivations | T ∈ stubs(t)}
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The central idea behind the whole trader system is its deductive closeness:

Definition 28 (Closeness). Let C be a context and T a subset of dom(C). C is called structurally
closed with respect to T iff for every T ∈ T holds:

(1) →−: if T = A → B and both C(A → B).derivations and C(A).derivations are not
empty then [A→ B][A] ∈ C(B).derivations.

(2) →+: if T = A → B and C(B).derivations is not empty then λ0xA.[B] ∈ C(A →
B).derivations.

(3) ∧−: if T = A0 ∧ A1 and C(A0 ∧ A1).derivations is not empty then πi[A0 ∧ A1] ∈
C(Ai).derivations for both i ∈ 2.

(4) ∧+: if T = A0 ∧ A1 and C(Ai).derivations 6= ∅ for both i ∈ 2 then 〈[A0], [A1]〉 ∈
C(A0 ∧A1).derivations.

C is ordinally closed with respect to T iff for every T ∈ T holds:

C(T ).depth = C(T ).desiredDepth.

If both, structurally and ordinally closed with respect to T , we call C deductivly closed with
respect to T . Additionally a context is deductively/structurally/ordinally closed if and only if it is
deductivly/structurally/ordinally closed with respect to its domain.

4.4 Properties

Lemma 29. For every finite subset C of constants there exists exactly one deductively closed
context C whose set of free variables is C.

Proof. Existence is obvious. By induction on the depth value of a given context one can achieve
the claimed uniqueness.

Hence the following definition is welldefined:

Definition 30. Let C be a finite set of constants. C∗ is the (unique) minimal and deductivly
closed context whose set of free variables is C.

Remark. Notice that FV(�) is the invers to �∗, i.e. FV(X∗) = X for arbitrary finite sets X of
variables. Vice versa FV(C)∗ = C but only for deductively closed contexts named by C.

So far we tackled deductive closeness. To endorse the decision for the definition of context as done
above we consider how answers can be constructed.

Definition 31. Let C be a deductivly closed context. The set reachable(C) is inductively defined
by containing

• all those elements of dom(C) whose .depth value is finite,

• if A and B in reachable(C) then A ∧B ∈ reachable(C) as well, and

• if B ∈ reachable(C) then A→ B ∈ reachable(C) for an arbitrary type A.

Herewith we can show soundness and completeness of the deductivly closed context with respect
to the context stable derivations. The first indicates that every type in reachable(·) is indeed
derivable. The second shows the other way round.
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Lemma 32 (Soundness). Let C be a deductivly closed context. Then for every type T holds

1. if T ∈ dom(C) and C(T ).depth is finite then a norm term t exists with FV(C) `cs t : T and
depth(t) = C(T ).depth.

2. if T ∈ reachable(C) then a normal term t exists which satisfies FV(C) `cs t : T .

Proof.

1. Strong induction on C(T ).depth.

Base case 1: Then there exists a variable x ∈ FV(C) of type T .

Step case 1 . . . n→ n+ 1: Assume that C(T ).depth = n + 1. Then there exists an ele-
mentary stub term d ∈ C(T ).derivations of depth n+1. As depthC(S) ≤ n for every
S ∈ stubs(d) we can apply the induction hypothesis for S and denote the obtained term
as tS . The demanded term t is d with replaced stubs:

t := d[ [S] := ts]S∈stubs(d)

2. By induction on S ∈ reachable(C). Induction base, C(S).depth is finite: Use the
normalised term of item (1.). Induction step. We distinguish between construction rules
of reachable(C). For the conjunction case apply pairing to the induction hypotheses. And
for the implication use a trivial abstraction on the induction hypothesis.

Both items together offer an algorithm to construct a term of a given type if such an term exists.
We will detail it in chapter 7. The basic principle is to break the type down and to branch until
the domain is hit. For this case the first item offers to traverse parts of the demain in order to
pick up derivation stubs and stick them together.

Lemma 33 (Completeness). Let C be a deductivly closed context. Then for every type T holds

1. if T ∈ dom(C) and FV(C) `cs t : T then C(T ).depth ≤ depth(↓ t). This implies that
C(T ).depth is finite as well.

2. FV(C) `cs t : T implies T ∈ reachable(C) and the existence of a term t′ : T built up by
stubs, conjuctions and trivial abstractions with depthC(t′) ≤ depth(↓ t) and stubs(t′) ⊆
{T ∈ dom(C) | C(T ).depth is finite}.

Proof.

1. Wlog. we can assume that t is in normal form. Strong induction on depth(t).

Base case 1: Trivial as t is a variable.

Step case 1, . . . , n→ n+ 1: Assume that depth(t) = n + 1. We distinguish t according
to its constructional rule. Since they resemble each other only the application rule is
considered exemplarily here.
Thus let tT = rS→T sS . Since the depth of both r and s are less or equal n we can
apply the induction hypthesis for r and s and obtain:

C(T ).depth ≤ 1 + max(C(S → T ).depth,C(S).depth) (by definition)
≤ 1 + max(depth(r),depth(s)) (by induction hypothesis)
= depth(t) (by definition)

Notice that the restriction `cs is essential since deductively closeness does not allow
proper lambda abstraction.
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2. Suppose that t is already normal. Induction on T .
Induction base, T is atomic. Since T is atomic, the outermost term constructor of t
cannot be pairing or trivial lambda abstraction. As t is normal its leftmost branch can only
consist of applications and projections leading to a free variable at its leaf, say c of type C.
According to the typing rules T is a subtype of C. As C is in the domain of C, T is as well
and C(T ).depth is finite. The latter implies T ∈ reachable(C). We set t′ to [T ] and notice
that depthC(t′) ≤ depth(t) because of the first item.
Induction step for T composed. If T ∈ dom(C) then use t′ = [T ] as before. Otherwise
we claim that if T is built up by implication then t is a trivial lambda abstraction and if
T is a conjunction t is a pair. Otherwise we can follow again the leftmost branch with can
only consist of applications, projections and variables since t is in normal form. Like before,
T needs to be in the domain.
If T = T0 ∧ T1 set t′ to 〈t0, t1〉 where by ti is a term offered by the induction hypothesis for
the direct subtype Ti of T . Otherwise T = T0 → T1 and t′ is λ0xT0t1 whereby t1 emerges by
the induction hypothesis for T1. In both cases T ∈ reachable(C), depthC(t′) ≤ depth(↓ t)
and stubs(t′) ⊆ {T ∈ dom(C) | C(T ).depth is finite}.

4.5 Optimality of depth

The mixture of using max during depth calculation and min at .depth of every contextitem will
pose problems when removing variables later on. Hence, the question whether these definitions
are optimal deserves an answer.

4.5.1 Depth on terms

Subsequent chapters prefer the depth value, although the size of terms could have been used
without essential modification as well. Even optimality and complexity remain unchanged – at
least syntactically, but the cardinalities of the later defined sets ∆struct and ∆ord might change.
These quantify the contextitems needed to be changed as a result of an add or a remove operation.

Exactly this is the crucial point, as the choice of the measure function Λ → N – like the functions
depth(·), size(·) or whatsoever – indirectly affects the amount of required changes. According to
lemma 38 more terms can be covered by depth limitation than by every other measure.

How does it influence the number of updates? Every update of depth attributes for contextitems
might enforces an update propagation. An attribute update is the more likely the less terms are
covered by the measure function up to the current attribute value. Hence we should be interessed
in a measure with a largest possible preimage for every initial segment, to lower the probability
for updates.

For the subsequent we omit type annotations and assume implicitly that they were adequate.

Let f : Λ → N be an opponent of depth-function. Its utilisation requires:

(a) f should ensure finiteness of its argument, i.e. its value is finite if and only if its argument is
finite. Infinite terms stem from the coinductive counterpart of Λ. In principle infinite terms
could arise by loops. Therefore it is legitimate to require monotonicity, i.e. for every proper
subterm s of a finite term t holds f(s) < f(t).

(b) Since terms will be assembled by stubed terms, f should be recursively definable.

(c) Wlog. we can assume that f is independent of the types of the subterms of its argument.
Otherwise in the subsequent the functions f•• are to be extended by an additional argument
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for the type and the sequence η parameterized for every type. However lemma 38 remains
unchanged.

All in all we can rewrite f by some auxiliary functions f•• and fix the base cases as follows

f(x) = 1

f(λxr) = 1 + fabs1 (f(r))
f(rs) = 1 + fapp2 (f(r), f(s))

f(〈r, s〉) = 1 + fpair2 (f(r), f(s))

f(πir) = 1 + fproji1 (f(r)) (for i ∈ 2)

To avoid gaps in this measure and for technical reasons we require completeness, i.e. the existence
of a term sequence (ηi)i>0 such that f(ηi) = i. Of course one could omit completeness and in
return replace N by the image of f .

Lemma 34.
f•1 (x) ≥ x

for all x ∈ N and • ∈ {abs, proj0, proj1}.

Proof. We detail only the proof for • = abs, the others are similar. Let x ∈ N be given arbitrarily.
Since f is complete there exists an η with f(η) = x. Hence

f(λxη) > f(η) (by monotonicity)
⇒

fabs1 (f(η)) ≥ f(η) (by locality of f)

Since x was arbitrary, fabs1 (x) ≥ x.

Lemma 35.
f•2 (x, y) ≥ max(x, y)

for all x ∈ N and • ∈ {app, pair}.

Proof. Analogous to the proof of lemma 34.

Lemma 36. For every term t holds depth(t) ≤ f(t).

Proof. Induction on t using above lemmata 34 and 35.

As a consequence a context based on depth value requires no more update operations than a context
based on f . Therefore we compare the amount of lambda terms covered up to an arbitrary value
in measure of depth and f .

Definition 37 (Covering set). Let φ : Λ → N be a function. Its covering sets is the function

Covφ(c) := {t ∈ Λ | φ(t) ≤ c}

from N to Λ.

For the subsequent let D(c) := Covdepth(c) and F (c) := Covf (c).

Lemma 38. For every c ∈ N holds
F (c) ⊆ D(c)
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Proof. Strong induction on c. In its base case F (0) = 0 = D(0). Step case:

F (c+ 1) =V ar
∪{λxr | fabs1 (f(t)) ≤ c}
∪{rs | fapp2 (f(r), f(s)) ≤ c}
∪{〈r, s〉 | fpair2 (f(r), f(s))≤ c}
∪{πi(r) | fproji1 (f(t)) ≤ c, i ∈ 2}

As a difficult case we elaborate on application. The others are treated analogously.

{rs | f(rs) < c} = {rs | fapp2 (f(r), f(s)) ≤ c} (by definiton of f)
⊆ {rs | max(f(r), f(s)) ≤ c} (by lemma 36)
= {rs | r ∈ F (i), s ∈ F (j),max(i, j) ≤ c} (by definition of F )
⊆ {rs | r ∈ D(i), s ∈ D(j),max(i, j) ≤ c} (by induction hypothesis)
= {rs | max(depth(r),depth(s)) ≤ c} (by definition of D)
= {rs | depth(rs) ≤ c+ 1} (by definition of depth)

All together we obtain

F (c+ 1) ⊆ D(c+ 1)
= V ar

∪ {λxr | depth(t) ≤ c}
∪ {rs | max(depth(r),depth(s)) ≤ c}
∪ {〈r, s〉 | max(depth(r),depth(s)) ≤ c}
∪ {πi(r) | depth(t) ≤ c, i ∈ 2}

4.5.2 Depth within contexts

Up to now we got acquainted with the depth function as an optimal measure function for our
purposes. These values need to be combined per type, say by a function F : 2N → N:

C(T ).depth = F ({depthC(t) | t ∈ C(T ).derivations})

• F should be easy to compute, i.e. there should be a function f : N2 → N, such that

F (∅) := ∞
F (X ] {c}) := f(c, F (X))

Hence f is also symmetric.

• The proof of lemma 33 suggests that F , resp. f , should facilitate the choice of a derivation.
Hence if F (X) is finite then a value x ∈ X should exist with F (X) = x.

• C(T ).depth should be finite if and only if a term t exists with FV(C) `cs t exists (again
inspired by lemma 33).

• F should deter loops during the extraction of terms, i.e. for every context stable derivation
l of type T with T ∈ stubs(l) should hold

depthC(l) > C(T ).depth.
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Let d, L > 1 be arbitrary. Obviously a deductively closed context C exists such that

|C(T ).derivations| = 1 and C(T ).depth = d.

Let C′ be the deductively closed extentions of C by

ci : Ti → Ti+1 (i ∈ L)

whereby T0 and Td denotes T , and Ti is not in the domain of C for every 0 < i < L. Observe that
now

C′(T ).derivations = C(T ).derivations ∪ {cL−1[TL−1]}

whereat C(T ).derivations is treated as an empty set if T /∈ dom(C). As depthC′(cd−1[Td−1]) =
L+ C′(T ).depth we obtain

C′(T ).depth = f(d,C′(T ).depth + L).

Because of the second desideratum f must pick up one of its arguments as its result. The second
segregates as the equation

L+ C′(T ).depth = C′(T ).depth

can only be solved for C′(T ).depth = ∞. But this contradicts the third requirement. Hence

C′(T ).depth = d = f(d, d+ L) = min(d, d+ L)

Since d and L ranged over the positive integers f must be min-function. The value of f is
dispensable in the case that one of its arguments is 0, since the depth value can never be 0 within
a deductively closed context.

All in all, C(T ).depth must be

min
t∈C(T ).derivations

depthC(t).

4.6 Operational Specification

Under no circumstances we want to rebuild the corresponding deductively closed context after
every management operation otherwise operations would cost too much. Requirement three and
four on page 5 substantiate the add and remove operations to:

Definition 39. For every deductively closed context C and X as a set of variables should hold

1. add(C, X) = (FV(C) ∪X)∗, or written as commutative diagram

�
�∪X

−−−−−−−−→ �

FV(�)

x y∗
C

add(�,X)
−−−−−−−−→ �

2. remove(C, X) = (FV(C) \R)∗, or

�
�\X

−−−−−−−−→ �

FV(�)

y y∗
C

remove(�,X)
−−−−−−−−→ �
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To implement both algorithms as above specified following lemma is utilised.

Definition 40 (v on contexts). Let C0 and C1 be deductively closed contexts. C0 v C1 applies
if and only if for every type T ∈ dom(C0) holds

1. dom(C0) ⊆ dom(C1),

2. C0(T ).derivations ⊆ C1(T ).derivations, and

3. C0(T ).depth ≥ C1(T ).depth.

Lemma 41. If X and Y are sets of constants with X ⊆ Y then X∗ v Y ∗

Proof.

1. Let S ∈ dom(X∗). Then there exists a variable x : R in X such that T ∈ subtypes(R). Since
c is also in Y , S ∈ dom(Y ∗) as well.

2. Since X∗ and Y ∗ are deductively closed and by use of (1.).

3. Strong induction on Y ∗( ).depth.

Y ∗(T ).depth = min
t∈Y ∗(T ).derivations

depthY ∗(t) (by definition)

≤ min
t∈X∗(T ).derivations

depthY ∗(t) (by (2.))

≤ min
t∈X∗(T ).derivations

depthX∗(t) (by induction hypothesis)

= X∗(T ).depth (by definition)

The induction hypothesis is applicable since there exists a term s ∈ X∗(T ).derivations such
that

depthY ∗(s) = min
t∈X∗(T ).derivations

depthY ∗(t).

Thus the depth value in context Y ∗ of every type S in stubs(s) is strictly less than depthY ∗(s).

These properties encourage the construction of simple algorithms for both add and remove since
they can rely on a given deductively closed context. Both subsequent chapters detail these
management operations.

4.7 Remarks on the implemention of contexts and their
items

All relevant datastructures and operations are implemented within the package context.

Operations from the outside, notably both management operations (add1 and remove, cf. both
subsequent chapter) and inquiries (cf. chapter 7), are accepted by the main class Context2. In the
case of management these are are enqueued separately. The invocation of context.closeDeduc-
tively() commits both queues by further delegation to instances of the class DeductivelyAdder
and accordingly DeductivelyRemover. Thereby we pursue to avoid needless and time consuming
multiple updates of the closure.

Every object of class ContextItem models an instance of a contextitem as suggested in defini-
tion 24. Besides the primary attributes it contains the secondary ones as well.

1As the textual outputs are not armed with type for every subterm the implemenation requires that the variable
names fix their types. Therefore if a variable a of type A is present in the closure every attempt to add another
variable a of a different type will be rejected.

2The implementation uses the Context class as a singleton, cf [GHJV 95].
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Context
+enqueueVariableToAdd(type,name)

+enqueueVariableToRemove(name)

+closeDeductively()

+getFreeVariables(): terms

+getDepthDrivenSelection(type,selector:ISelector): selection

ContextItems

ContextItem
 type: Type

 depth: integer

 derivations: set of terms

 

 supertypes: set of types

 desiredDepth: integer

 activity: integer

 changeObserver: set of terms

AbstractOperator

DeductivelyAdder
 DeductivelyAdder(contextItems,variablesToAdd)

DeductivelyRemover
 DeductivelyRemover(contextItems,variablesToRemove)

DerivationEmitter
 DerivationEmitter(contextItems,hook:IAddHook)

contextItems

contextMap

<<{interface}>>

IAddHook

 addTerm(term,consideredType)

<<{interface}>>

ISelector

+select(candidates): term

Selection
+asExpandedTerm(): term

+asMinimalTerm(): term

Figure 4.1: An overviewing UML diagram for the package context.

Even if secondary attributes are helpful they demand extra work for maintaining. From the
point of view of the implementations for add, remove and query processing the maintaining is
hidden by delegation. Therefore the dedicated class ContextItems is used on the one hand
as a quantified association towards the set of contextitem. On the other hand every operation
concerning contextitems are handed over to ContextItems which involves the demanded operation
of the contextitems and adjust some secondary attributes, namely supertypes, activity and
changeObservers but not desiredDepth. To simplify matters these detours are not mentioned
explicitly in the pseudo programming language. In doubt compare to the attached implementation.

Nevertheless desiredDepth must be maintained by the core implementation. Consider the repet-
itive pattern of setting a depth value to its desiredDepth one. The pseudo code

C(T).depth := C(T).desiredDepth;

summarizes following (exemplary) Java code:

item.commitDepth();

for (Lambda observer: item.getChangeObservers())
{

ContextItem observerItem = getItem(observer);
observerItem.updateDesiredDepth(observer);

}

These updates have not been encapsulated by the commitDepth() methode as the above loop is
also used to collect information for further processing.

To hide implementional details from the caller, accesses to attributes are turned into method
invocations, for instance desiredDepth to getDesiredDepth(), as the amount of derivations
covered by a certain contextitem is organised as heap.

Akin to conventional traders, our traders are treated to reply primarily on a database storing
its data on disks rather than in the main memory, even if the available implementation keeps
its information in the main memory. As the input/output bottleneck slows down the trader
considerably the runtime is determined by the amount of data base accesses, in our case the access
to context items.

During the next three chapters pseudo code treats some variables as sets, whereas they are
implemented as heap or as tree and operations on them are not in situ.
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For these reasons we focus on the complexity of accesses to contextitems rather on the time
complexity.
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Chapter 5

Adding Variables

Given a deductively closed context Cinit and a set A of variables disjoint from FV(Cinit) we
want to construct a deductively closed context Cfinal by an operation called add such that
add(Cinit, R) = (FV(Cinit) ∪ A)∗ =: Cfinal, or written as commutative diagram (cf. specifi-
cation 39)

�
�∪R

−−−−−−−−→ �

FV(�)

x y∗
Cinit

add(�,R)
−−−−−−−−→ Cfinal

but without rebuilding Cfinal from its set of free variables. Instead, we want to adjust the given
context as lemma 41 proposes.

5.1 Outline of the whole algorithm

At first sight one could be inspired by lemma 41 which treats definition 28 as an inflationary
monotone operator and construct Cfinal as its fixed point by a fixed point iteration based on Cinit

enriched by the variables of A.

This idea is obviously effective but not necessarily efficient, since indeterminism can lead to an
adverse adjustment and vitiate its complexity. To thwart indeterminism it is broken into phases
each one basing on scheduling, motivated by following observations.

1. As structural closeness affects only the existence of derivations of the considered type and
its direct subtypes, types of low size should be prefered to achieve optimality.

2. Ordinal closeness relies only on the depth value evoked by the existence of derivations.
Therefore items are scheduled by their desiredDepth values.

As both schedulings strategies are independent the implementation addresses two data structures.

• pendingTypes as a minimum heap by type size containing types that could violate structural
closeness, initiated as empty set.

• itemsToGage as a minimum heap as to desiredDepth containing exactly those contextitems
whose desiredDepth differs from depth.

The whole algorithm consists of the following phases:

37
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The 1st phase adds variables of A. In this phase types could be provoked to violate deductive
closeness. Those which violate structural closeness are reported in pendingTypes and those
which violate ordinal closeness in itemsToGage.

The 2nd phase closes context structurally based on information in pendingTypes and augments
itemsToGage if necessary.

The 3rd phase closes context ordinally based on information in itemsToGage. Afterwards the
context is deductively closed.

5.2 Notational issues

At some points the implementation uses contextitems rather than their types, especially in com-
binations with the java collection framework (see [Sun 04]), to reduce accesses to contextitems by
explicit dereferrings like C(T ). To keep proofs and intuitions simple we want to assign an unique
context to every step of computation. As bookkeeping operations on contextitems would smear
such assignments, types are favoured in the subsequent parts over contextitems. Therefore they
are treated as equal and variable names of the implementation are used.

To refer to special contexts we introduce some abbreviations. Cinit relates to the initial context
and Cfinal to the final ones. Every phase passes a loop changing possibly the current context.
Therefore Cpi denotes the context at the beginning of the ith iteration (zero based counted) in
phase p. If the ith iteration did not take place it refers to the result of the last iteration, which is
explicitly addressed by Cpω. Superscription can be omitted if it is deducible.

These notations outline the interfaces among the phases as:

C FV structurally closed w.r.t. ordinally closed w.r.t.
Cinit,C1

0 FV(Cinit) dom(C) dom(C)
C1
ω,C2

0 FV(Cinit) ∪A dom(C) \ pendingTypes dom(C) \ itemsToGage
C2
ω,C3

0 FV(Cinit) ∪A dom(C) dom(C) \ itemsToGage
C3
ω,Cfinal FV(Cinit) ∪A dom(C) dom(C)

In the source C relates to the current context. Implicitly secondary attributes like supertypes
and desiredDepth are updated whenever necessary as well as the maintenance of properties to
be a context as declared in definition 28.

To point out complexities we introduce two notations containing those types whose depth and
respectively derivations has been changed:

∆ord :={T ∈ dom(Cinit) | Cinit(T ).depth 6= Cinit(T ).depth}
∪ (dom(Cfinal) \ dom(Cinit))

∆struct :={T ∈ dom(Cinit) | Cinit(T ).derivations 6= Cfinal(T ).derivations}
∪ (dom(Cfinal) \ dom(Cinit))

For the first two phases an auxiliary method addTerm(t : T ) is used. It appends an elementary
stub term t to C(T ).derivations, retains all other primary attributes, maintains all secondaries
and preserves the properties to be a context with smallest enhancement of its domain. The latter
becomes necessary if T or one of the stubs in t are not in the domain. For details consider the
implementation of addTerm(t) in context.ContextItems.

Lemma 42. addTerm(t:T) keeps a context minimal.
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Proof. Let C be the given context and C′ the context after executing addTerm(t). We have to proof
in particular dom(C′) ⊆ subtypes(FT(C′)). Therefore let S ∈ dom(C′). If S is already member
of dom(C) then also in FT(C) as C is presumed to be minimal and such in subtypes(FT(C′)).
Otherwise S ∈ subtypes(T ). By construction of C′, S ∈ subtypes(FT(C′)).

5.3 The Algorithm

5.3.1 First phase (raw adding)

Within this initial phase we append variables in A to the current context Cinit and report violations
of structural and ordinal closeness to pendingTypes and itemsToGage respectively.

As all subtypes of some variable in A become part of the domain of the current context, their
seam to the previous domain might violate deductive closeness (see figure 5.1).

subtypes

Tfree types of the context C

seam(T) regarding to C

atomic types

complex composed types

Figure 5.1: Graphical presentation of seamC(T ).

Definition 43. Let C be a context, T ∈ dom(C), and T ⊆ dom(C).

seamC(T ) := {S | directSubtypes(S) ∩ dom(C) 6= ∅ and S ∈ subtypes(T ) \ dom(C)}

Its calculation is covered by the methode emitSeam in context.ContextItems.

The algorithm for this phase can be paraphrased by

pendingTypes :=
⋃
t:T∈A seamC(T);

itemsToGage := ∅;

for all t: T ∈ A descending by their size;
{
call addTerm(t);
set C(T).depth to 1; // note that its desiredDepth is 1.
pendingTypes := pendingTypes ∪ {T} ∪ C(T).supertypes;
for all s of type S in C(T).changeObserver
if (C(S).desiredDepth 6= C(S).depth)

itemsToGage := itemsToGage ∪ {S};
}

Next, we show that this algorithm hits its specification.

Lemma 44.
FV(C1

ω) := FV(Cinit) ∪A



40 CHAPTER 5. ADDING VARIABLES

Proof. Obvious.

Lemma 45. After executing the first phase pendingTypes equals⋃
t:T∈A

(seamC0(T ) ∪ {T} ∪ Cω(T ).supertypes) .

Proof. Note that due to the descreasing consideration of types the supertypes attributes retain
for the remaining loop after they had been picked up into pendingTypes, as for every type in the
domain the type of every element in its supertypes field is strictly longer than itself.

Lemma 46. The context Cω obtained by this phase is structurally closed with respect to
dom(Cω) \ pendingTypes.

Proof. Let T ∈ dom(Cω). We peruse the properties of structurally closeness one after another.

→+: Assume that T has shape A → B and B is derivable within Cω. We have to show that
λxA.[B] ∈ Cω(A→ B).derivations or A→ B ∈ pendingTypes. Case A→ B ∈ dom(C0).
If B is already derivable within C0 then λxA.[B] as well since C0 is by assumption deductively
closed. Otherwise a variable of type B was added and hence A→ B ∈ pendingTypes. Case
A→ B ∈ dom(Cω)\dom(C0). Thus a term of type T ′ with A→ B ∈ subtypes(T ′) must have
been added. If B ∈ dom(C0) then A → B ∈ seamC0(T

′) and thus also in pendingTypes.
Otherwise a constant of type B was added and hence A→ B ∈ pendingTypes.

→−: Assume that T has shape A→ B and both A→ B and A are derivable within Cn. We have
to show that [A → B][A] ∈ Cω(B).derivations or A → B ∈ pendingTypes. Case A →
B ∈ dom(C0). If a variable of type A or A→ B was added then A→ B is in pendingTypes,
however. Otherwise [A → B][A] is in C0(T ).derivations ⊆ Cω(T ).derivations. Case
A → B ∈ dom(Cω) \ dom(C0). Since a variable of type A → B was added, A → B is
mentioned in pendingTypes.

∧−: analogous to →−.

∧+: analogous to →+.

Lemma 47. The obtained context Cω is ordinally closed with respect to dom(Cω)\itemsToGage
and is not ordinally closed with respect to every proper subset.

Proof. Only contextitems whose .depth value differs from its .desiredDepth value are heaped
onto itemsToGage.

Lemma 48. At most 3|∆struct| accesses to contextitems are required. Those accesses which are
only used to dump corresponding types on itemsToGage are not connumerated. These will be
counted within the succeeding phase.

Proof. An invocation of addTerm within a context C for a term of type T touches subtypes(T ) \
dom(C) and their direct subtypes at most once.

As every touched type become part of the domain and every type that at most two direct subtypes
the amount of accesses is bounded by 3|∆struct|.

5.3.2 Second phase (structural closing)

Structual closeness is achieved by following algorithm:



5.3. THE ALGORITHM 41

while (pendingTypes is not empty)
{

pick up the top element of pendingTypes as variable type;
emit derivations for C(type) whereby
for every term to add "addHook" is invoked;

}

We use following auxiliary procedures:

The emit process realises definition 28 for a given type. For example →− leads to an algorithm
working like:

// given type labeled by T.
if (T matches A→B)
{

if (C(A→B).derivations 6= ∅
and C(A).derivations 6= ∅)
call addTermHook([A→B][A], T);

}

For details confer DerivationEmitter.emitDerivations(ContextItem item) in package
context.

addTermHook reports types which could violate structural or ordinal closeness due to appending
t to the context.

procedure addHook(term t of type T, consideredType)
{

call addTerm(t);

if (T had not have any derivation before) (*)
{

dump T on pendingTypes unless T = consideredType; (**)
dump C(T).supertypes on pendingTypes; (***)

}

if (C(T).depth 6= C(T).desiredDepth)
add term t to itemsToGage, rsp. update it;

}

Lemma 49.
FV(C2

ω) = FV(C2
0)

Proof. No variable is added to the context.

Lemma 50. At the beginning and the end of every loop C is structurally closed with respect to
dom(C) \ pendingTypes.

Proof. Initially ensured by lemma 46 and is invariant: By additing terms only its type or its
supertypes might be affected. All these were added to pendingType.

Lemma 51. At the beginning and the end of every loop C is ordinally closed with respect to
dom(C) \ itemsToGage and is not ordinally closed with respect to every proper subset.

Proof. Initially guaranted by lemma 47 and remains invariant: addHook heaps only those contex-
titems onto itemsToGage whose .depth values differ from their .desiredDepth values.

Lemma 52. The algorithm of the second phase terminates.
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Proof. Since (*) can be applied at most once to a type, say S, every type can be heaped at most
1 + |directSubtypes(S)| many times because of (**) and (***).

Lemma 53. The set of picked up types is⋃
T∈∆struct

{T} ∪ C0(T ).supertypes =: B.

Proof. Let P the set of those types which had been picked up within the loop.

P ⊆ B: Let T ∈ P . We distinguish whether the emit process calls addTerm(u : U) with a new
term u meaning that u does not occur in any derivations attribute.

In the positive case U ∈ ∆struct. Because of the definition 28 of structural closeness U is
either T or subtype of T . Therefore T ∈ B.

Otherwise T has been heaped before because of an appending of a term, say r : R. The
algorithms of this and the previous phase ensure that T is either R or in C(R).supertypes.
As R ∈ ∆struct, T ∈ B.

B ⊆ P : Let T ∈ ∆struct. If T is type for a term in A then both T and its supertypes are
appended to pendingTypes by the first phase and thus considered within the second phase
as it terminates.
Otherwise T got derivable due to the emit process applied to T or its supertypes as nobody
else can add derivations and (FV(Cinit)∪A)∗ is unique. Since all its supertype are appended
to pendingTypes at (**) and first phase terminates they will be considered later on.

Remark. ∆struct is unknown in advance. To assess its frontier, i.e.⋃
T∈∆struct

C0(T ).supertypes,

one has to cross it. Thus the amount of considered types during this second phase can be
understood as optimal.

Remark. pendingTypes is organised as a minimum heap according to the type size to minimize
the amount of accesses to contextitems, as the emit procedure relies only at the given type and
its direct subtypes.

Lemma 54. The amount of contextitem accesses is bounded by 3|B| as defined in the above
lemma.

Proof. By lemma 53 at most the contextitems for types in B are considered and by the proof of
lemma 52 each is considered at most three times with the same argumentation as in the proof of
lemma 48.

5.3.3 Third phase (ordinal closing)

Ordinal closeness is achieved by following algorithm:

for (ContextItem item: itemsToGage)
{

item.desiredDepth := item.depth; (*)

for all s of type S in item.changeObserver
if (C(S).desiredDepth 6= C(S).depth)

itemsToGage.add(S);
}
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Lemma 55.
FV(C3

ω) = FV(C3
0)

Proof. This phase does not touch any derivations attributes.

Lemma 56. For every i and all types T in itemsToGage holds:

Ci(T ).desiredDepth < Ci(T ).depth

Proof. Initially ensured by the previous phase and remained by ascertaining whether depth differs
from desired depth before adding a type to itemsToGage.

Lemma 57. At the beginning and the end of every loop C is ordinally closed with respect to
dom(C) \ itemsToGage and is not ordinally closed with respect to every proper subset.

Proof. Initially guaranted by lemma 51 and remains invariant: Only those contextitems are heaped
onto itemsToGage whose .depth values differ from their .desiredDepth values.

Corollary 58. The depth values can only lower or remain.

Proof. By above lemma.

Lemma 59. The sequence of the desiredDepth field of considered types is weakly increasing.

Proof. It suffices to show that the minimum of the desiredDepth values of all types mentioned
in itemsToGage does not decrease.

Let T be the type picked up. Lemma 56 and line (*) decreases the depth value of C(T ). Thus at
most the desiredDepth value changes of those types for which a term in C(T ).changeObservers
of its type exists. The desiredDepth value can thereby only remain or decrease, but can not fall
below the new C(T ).depth + 1 value by this commit.

Therefore the minimum of itemsToGage can not increase.

Lemma 60. Every type in ∆ord was considered exactly once and every other in dom(Cfinal)
never.

Proof. Firstly every type in ∆ord was considered but none of the complement with respect to
dom(Cfinal). Thus it remains to show that every type in ∆ord was considered at most once. For
contradiction assume that T ∈ ∆ord was treated twice. Let d1 its desired depth at the first time
and d2 at the second.

By lemma 59 d1 ≤ d2 holds. Since T can not occur twice at the same time, T was heaped a
second time after T had been considered the first time. Again by lemma 59 and the definition of
desiredDepth, d2 must be strictly greater than d1.

This means that a type S ∈ stubs(t) for some t ∈ C(T ).derivations exists whose depth value
had been strictly increased, which contradicts lemma 58.

Thus the algorithm of the third phase is optimal for the amount of contextitem accesses and leads
directly to its terminations.

5.3.4 Complexity

All in all the number of accesses during an invocation of add is bounded by

θ

(
|∆ord|+

∣∣∣∣∣ ⋃
T∈∆struct

{T} ∪ Cinit(T ).supertypes

∣∣∣∣∣
)

.
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Or in other words: nearly linear in the amount of necessary updates.

If we presume a thin and approximately uniformly distributed closure the amount of supertypes
is bounded by a constant. Ergo, the whole amount of access is linear in the amount of mandatory
updates.



Chapter 6

Removing Variables

Given a deductively closed context Cinit and a subset R of FV(Cinit) we want to construct a
deductively closed context Cfinal by an operation called remove such that remove(Cinit, R) =
(FV(Cinit) \R)∗ =: Cfinal, or written as commutative diagram (cf. specification 39)

�
�\R

−−−−−−−−→ �

FV(�)

x y∗
Cinit

remove(�,R)
−−−−−−−−→ Cfinal

but without rebuilding Cfinal from its set of free variables. Instead, we want to adjust the given
context as proposed by lemma 41.

We use the same ornaments for contexts as proposed in section 5.2 on page 38.

6.1 Outline of the whole algorithm

As the algorithm has to assure both minimality (cf. definition 25) and deductively closeness we
decompose it into two phases.

The 1st phase dislodges all constants in R from their corresponding .derivations and constrict
the domain. This leads of course to a not necessarily ordinally closed but minimal and
structurally closed context.

The 2nd phase adjusts the depth values to obtain a deductively closed context (FV(Cinit)\R)∗.

Swapping both parts does not accelerate this combination as minimalisation does not benefit from
deductive closeness. But the other way around is beneficial: As the main complexity is based
on the second part (as we will see later), the preferred minimalisation leads to a better overall
efficiency.

During this chapter we discuss only a corresponding pseudo algorithm to restrain administrative
circumstantiality. For details refer to the implementing class context.DeductivelyRemover.

We introduce following abbreviations about context changes

∆ord :={T ∈ dom(Cfinal) | Cinit(T ).depth 6= Cfinal(T ).depth}
∆struct :=dom(Cinit) \ dom(Cfinal)

to state complexity issues more precisely.
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6.2 The Algorithm

6.2.1 First phase (raw removal)

6.2.1.1 Specification

To argue more accurately about the removal of variables and the minimalisation of the domain
we introduce some notations.

Definition 61. Let C be a context and r a constant ot type R. Their difference C−r is a context
such that

• dom(C− r) := dom(C) \ {T ∈ subtypes(R) | C(T ).activity = 1},

• FV(C− r) := FV(C) \ {r}, and

• for all T ∈ dom(C− r) holds

(C− r)(T ).depth :=C(T ).depth and
(C− r)(T ).derivations :={t ∈ C(T ).derivations

| stubs(t) ⊆ dom(C− r)} \ {r}

The only precarious challenge for well definedness is its domain. The definition of the activity
attribute relaxes to

dom(C − r : R) =dom(C) \ {T ∈ subtypes(R) | C(T ).activity = 1}

=
⋃

a:A∈FV(C)

subtypes(A)

\ {T ∈ subtypes(R) | C(T ).activity = 1}

=
⋃

a:A∈FV(C)

subtypes(A)

\ {T ∈ subtypes(R) | ∀a : A ∈ FV(C) \ {r}.T 6∈ subtypes(A)}

=
⋃

a:A∈FV(C)\{r}

subtypes(A)

=
⋃

a:A∈FV(C−r)

subtypes(A)

Definition 62. Let C be a context and R a finite set of a constants. Their difference C − R is
defined by induction on the cardinality of R to

C− ∅ := C
C− (R ] {r}) := (C−R)− r

As the perambulation of R does not effect the result this difference is well defined.

Lemma 63. Let C be a deductively closed context and R a set of variables. Then C − R is a
structurally closed context and for all T ∈ dom(C−R) holds

(FV (C) \R)∗(T ).derivations = (C−R)(T ).derivations

and

(FV (C) \R)∗(T ).depth ≥ (C−R)(T ).depth
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Proof. Abbreviate (FV (C) \R)∗ as A.

• Let t ∈ (C − R).derivations ⊆ C.derivations. As dom(C − R) = dom(A) and A is
deductively closed, t ∈ A.derivations. And the other way around:

A(T ).derivations
={t ∈ A(T ).derivations | stubs(t) ⊆ dom(A)} (by definition of context)
⊆{t ∈ C(T ).derivations | stubs(t) ⊆ dom(C−R)} (by lemma 41)
=(C−R)(T ).derivations (by definition of C−R)

• The depth value of (C−R)(T ) equals that of C(T ). Lemma 41 yields the inequality.

Thus, after removal of variables only an adjustment of the depth values is required to obtain a
minimal and deductively closed context Cfinal.

6.2.1.2 Implementation

The class context.DeductivelyRemover delegates the minimalisation to context.context-
Items.removeTerms. The crux is to detect whether an item survives or not. Therefore an addi-
tional administrative attribute activity was introduced to contextitems as reference counter as
mentioned in section 4.3 on page 26. It allows the following procedure:

If the term to remove is a variable, decrease the activity value of all subtypes. If
the value zero is hit, remove the corresponding contextitem exhaustive, by meaning to
remove all derivations of its type and all derivations using stubs of its type.

There the amount of contextitems access is bounded linearly by ∆struct.

This phase results in a minimum heap itemsToGage ordered by the .desiredDepth attribute
consisting of exactly those elements whose .desiredDepth values differ from .depth.

6.2.2 Second phase (depth adjustment)

During this final phase only the depth values need to be adjusted as above lemma 63 suggests. All
other structures like domain, active types, set of free variables, derivations etc. remains unchanged.

6.2.2.1 Intractability

At first sight one could proceed akin to the third phase of the add algorithm with following
adaptions:

while (a type T ∈ dom(C) exists such that
C(T ).depth<C(T ).desiredDepth)

{
choose such a T;
C(T ).depth := C(T ).desiredDepth;

}

Obviously this leads to the desired context, if it terminates. And this is the crucial point, if it
terminates.
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For example consider the deductive closure for

a : A

f : A→ B

cover : (A→ B) → X

Here cover is only used to avoid effects of minimalisation and is suppressed as it becomes irrelevant
for the subsequent. Its context could be illustrated as

A 1 a

B 2 [A→ B][A]

A→ B 1 f λxA.[B]

whereby the middle value is the depth value.

The observation of its unique trace for removing f reveals the reason for non termination:

time C(A).depth C(B).depth C(A→ B).depth
0 1 2 1
1 1 2 3
2 1 4 3
3 1 4 5
4 1 6 5
...

...
...

...

∞ 1 ∞ ∞

Thus a refinement of the above raw algorithm is needed to avoid such infinite loops.

6.2.2.2 Depth boundedness

A loophole could be tendered by the observation that every depth value is bounded by the
cardinality of the current domain or it is infinite, as it can be proven by induction on the depth
value.

This leads to teh following refinement by replacing the above loop body by:

choose such a T;
if (C(T ).desiredDepth > |dom(C)|) then

C(T ).depth := ∞;
else

C(T ).depth := C(T ).desiredDepth;

If C(T ).depth exceeds |dom(C)| it becomes sooner or later infinite, more precisely for some limit
ordinals which describe the progress of computation. If the depth is set to infinity it will not be
considered any more since ∞ < α is wrong for every α ∈ N. Termination follows immediately as
every type in the domain is considered at most |dom(C)|-many times.
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So far we achieved an algorithm, but its complexity is not really viable. Assume that a variable
should be removed such that the amount of touched types is negligible compared to the number of
active types. For instance consider once again the previous example but enriched by a multitude
of variables whose types do not overlap with A → B (and hence also not with A and B). Since
the removal of f leads to a loop wich is to be iterated according to above algorithm approximately
|dom(C)|/2 times, this procedure is not contenting. In particular we stipulate that the complexity
for removing depends only on the number of changed contextitems and not on the whole context.

Thus we have to look for a further refinement which can handle loops accurately.

6.2.2.3 Refinement of the second phase

As pointed out in the previous chapter a heap itemToGage is used which contains precisely those
contextitems which violate ordinal closeness and is used to set depth to desiredDepth if it
is considered for the first time. Therefore an additional bookkeeping set visited contains all
previously considered contextitem within the current remove invocation. If an item is repeatedly
visited depth values are adjusted only within visited and items outside visited, which need
thereby to update their depth, are dumped on itemsToGage. Thus the loop problem is shifted to
the adjustment within visited: the depth values of dependent items within visited are set to
infinity – the neutral element of min – and afterwards rearranged as per the third phases of the
add algorithm.

Definition 64. Let C be a context and T ∈ dom(C).
dependents(T ) is the smalltest set of active types with

if S is member or equals T then the types of all terms in
C(S).changeObservers are members as well.

Remark. Even if dependents(·) depends to the context and should formally be written as
dependentsC(·) we omit this context annotation as during this phase structural components remain
constant as well as the domain.

Definition 65. Let C be a context and T a subset of dom(C).

border(T ) := type

( ⋃
T∈T

C(T ).changeObservers

)
\ T

bordered(T ) := T ∪ border(T )

Before we turn to the main part of the algorithm we introduce two auxiliary methods, infinite-
Depth and adjustDepth. The intended invocation is adjustDepth(infiniteDepth(T0)). Let C
denote the context immediately before evaluating infiniteDepth, C′ after infiniteDepth and
before adjustDepth, and C′′ after all. Analogously for itemsToGage. Both auxiliary methods
keep visited unchanged.

6.2.2.4 Method infiniteDepth

The method infiniteDepth with argument T0 as type changes the current context C to C′ with

C′(S).depth =

{
∞ if S ∈ dependents(T0) ∩ visited

C(S).depth otherwise

whereby every other attribute remains stable and returns the set of possible changed types,
dependents(T0)∩ visited, whereby visited refers to the variable of the main loop. The content
of itemsToGage remains untouched. Thus we obtain
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Lemma 66. If C is ordinally closed with respect to a set T of types then C′ is ordinally closed
with respect to

T \ bordered(dependents(T0) ∩ visited).

Proof. Let Z abbreviate dependents(T0) ∩ visited and let T ∈ T \ bordered(Z). As Z ⊆
bordered(Z) the depth attribute of type T remains. So, it is left to show C′(T ).desiredDepth =
C(T ).desiredDepth. By the definitions of this attribute and of depthC(·) it suffices to proof that
C(S).depth = C′(S).depth for every term t ∈ C(T ).derivations and every type S ∈ stubs(t).
Therefore assume the opposite. Then C(S).depth was set of infinity and hence S ∈ Z. The
definition of changeObserver ensures t ∈ C(S).changeObserver. These result in

T ∈ type

( ⋃
R∈Z

C(R).changeObserver

)
⊆ bordered(Z).

Contradiction to T ∈ T \ bordered(Z).

As its implementation bases on a depth first search restricted on visited its complexity is linear
in the cardinality of ⋃

T∈dependents(T0)∩bordered(visited)

C(T ).derivations

and requires at most
|dependents(T0) ∩ visited|

accesses to contextitems.

6.2.2.5 Method adjustDepth

The method adjustDepth expects a set T of types equaling dependents(T0) ∩ visited for some
T0 ∈ dom(C) whose depth attributes are infinite.

In return it adjusts the current context C′ to C′′ with

C′′(S).depth =

{
C(S).desiredDepth if S ∈ T
C(S).depth otherwise

,

leaves all other attributes untouched and amplifies itemsToGage properly.

// input T as a set of types as mentioned in the text.

Declare itemsToAdjust as minimum heap according to desiredDepth
initialised with T restricted to those whose
desiredDepth attribute differs from its depth;

while (itemsToAdjust 6= ∅)
{

pick up the topmost element of itemsToAdjust as type T;
if (T 6∈ visited)

heap T on itemsToGage; (*)
else
{

C(T).depth := C.desiredDepth;
for every s:S ∈ C(T).changeObservers

if (C(S).depth 6= C(S).desiredDepth)
heap S on itemsToAdjust; (**)

}
}
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Let ∆itemsToGage denote the set of all types added to variable itemsToGage due to the line
marked by (*). Hence itemsToGage′′ = itemsToGage ∪∆itemsToGage.

Lemma 67 (properties of itemsToAdjust). itemsToAdjust is a subset of dependents(T0) and
for of its elements T holds:

• C(T ).depth 6= C(T ).desiredDepth, and

• if T 6∈ visited then T ∈ border(dependents(T0) ∩ visited)

Proof. Initially warranted by the first if statement. Its perpetuation is to be verified at point
(**). By definition of depenents(T0) and by previous incarnation of this invariant, S as mentioned
in the source is an element of it. Further S is only heaped if its depth differs from desiredDepth.
Let additionally S 6∈ visited. By invariant T ∈ visited ∩ dependents(T0) and thus S lies in

type

 ⋃
T∈visited∩dependents(T0)

C(T ).changeObservers

 .

But as S 6∈ visited ∩ dependents(T0), S is in border(dependents(T0) ∩ visited).

Lemma 68. ∆itemsToGage is a subset of

{T ∈ border(dependents(T0) ∩ visited) | C(T ).depth 6= C(T ).desiredDepth}

Proof. Consider the line marked by (*) and use the last item of above lemma 67.

As this algorithm resembles the third phase of the add algorithm restricted to visited, argumen-
tations about soundness, completness and complexity issues apply accordingly.

Lemma 69. If C is ordinally closed with respect to C then C′′ is ordinally closed with respect to

C \∆itemsToGage.

Proof. According to lemma 66, C′ is ordinally closed with respect to

C \ borders(dependents(T0) ∩ visited).

As this algorithm recycles the third phase of the add method but with a main loop restricted to
visited, the depth attribute for all types in dependents(T0)∩visited are adjusted and all other
types on its border and violating ordinal closeness are covered by ∆itemsToGage (lemma 68).

6.2.2.6 Main part

while (itemsToGage 6= ∅)
{

pick up the topmost element of itemsToGage as T;
if (T ∈ visited)

adjustDepth(infiniteDepth(T));
else
{

visited := visited ∪ {T};
C(T).depth := C(T).desiredDepth;
if (thereby the depth value changed)

for every type S of some term C(T).changeObservers
if (C(S).depth 6= C(S).desiredDepth)

dump S on itemsToGage;
}

}
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Lemma 70 (Termination). The main loop is passed at most |∆ord|2 times.

Proof. It suffices to show that the measure

(|∆ord| − |visited|, |itemsToGage ∩ visited|)

decreases according to its lexicographical order because both visited and itemsToGage are
subsets of ∆ord at all times.

Hence let T be a picked up type. Assume it is in visited. As both adjustDepth and
infiniteDepth do not change the set visited, it remains constant. Since T was picked up
out of itemsToGage it decreases and both above mentioned methods do not heap any visited
type, itemsToGage ∩ visited decreases.

Next assume T 6∈ visited. As hence visited increases by one, the measure decreases.

Lemma 71 (Soundness). The main loop maintains the invariant that the current context C is
ordinally closed with respect to dom(C) \ itemsToGage.

Proof. Initially ensured by previous phase. For the retaining of the invariant during the loop let
T be a type picked up.
If T ∈ visited lemma 69 ensures the claimed ordinal closeness.
Otherwise (T 6∈ visited) T was removed from itemsToGage and its depth value was equaled to
desiredDepth. Every type whose depth value differs thereby from desiredDepth was dumped
on itemsToGage.

As this phase only changes the depth value and the given context is minimal and structurally closed
the context afterwards is minimal and deductively closed and equals (FV(C) \R)∗ as demanded.

Lemma 72. The second phase accesses O(|∆ord|3) to contextitems.

Proof. Both auxiliary methods access the items a linear amount of time. The amount of their
invocations is quadratically bounded due to lemma 70.

6.2.3 Complexity

The total amount of accesses to contextitems for remove is bounded by

θ(|∆ord|3 + |∆struct|)

due to subsection 6.2.1.2 and lemma 72.

The non-wellordering (N,≥) hamper termination for a naive adjustment of depth values as
demonstrated in chapter 6.2.2.1. Therefore the compensating bookkeeping set visited is used.
Both the non-wellordering and the bookkeeping could hold responsible for the occurrence of an
additional factor |∆ord| in comparison with the previous management operation add.

We do not detail the runtime complexity of the whole algorithm as many adminstrational oper-
ations are hidden in the implementation not presented here, even if they are logarithmically or
linearly bounded.



Chapter 7

Queries

7.1 Selection

So far we discussed deductivly closed contexts and elementary management functions on it. Now
we are confronted with the task to answer queries for a certain type by derivations of this type.
For this task mainly the lemmata 32 and 33 will be utilised.

7.1.1 Necessity of Selection

Even if lemma 32 points out how to construct proper derivations the first item of this lemma leaves
at some points open how to choose an elementary stub term. Thus the multitude of possible
answers can grow exponentially measured in the amount of involved types whose contextitems
cover more than one elementary stub term of minimal depth. Hence selections are essential.

Lemma 73. There exists a sequence of finite sets Γn and types An such that the amount of
normal derivations dn with Γn ` dn : An is exponential in the size of Γn.

Proof. For every n ≥ 0 choose Γn as the set containing for each i ∈ n:

forki,0: Bi → Ai+1 forki,1: Ci → Ai+1

joini,0: Ai → Bi joini,1: Ai → Ci

and as initial part
init : A0.

Following context stable terms (recall the definition on page 21) of type An are in normal form
whose free variables are covered by Γn:

forkn−1,β(n−1)(joinn−1,β(n−1)(
. . .
fork1,β(1)(join1,β(1)(

fork0,β(0)(join0,β(0)init)
))
. . .

))

for every function β : n→ 2. Hence we obtained at least 2n normal forms.

53
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Assume a context X∗ with X ⊇ Γn for some n and Γn as in the previous proof. If a user inquires
a derivation for type An we need to design how the system should answer in order to explore the
multitude of derivations.

We discuss some answer patterns:

One answer is choosen indeterminately. As the system should act as a database system it
needs to comply with the ACID principle (Atomicity, Consistency, Isolation, and Durability),
cf. [KeEi 99, section 9.5]. But fortuitousness weakly violates isolation since it pretends the
existence of another user: suppose a user inquires the same question twice and the answers
differ he could infer the existence of another user who has removed some essential part of
the former derivation in the meantime.

Arbitrary, but fixed all along. But how should the user react if the proffered answer does
not suffice? For example if he distrusts one of the mentioned service providers within the
derivation. Precisely nothing, as the system would not offer any possibility to vary the
answer for a fixed requested type.

Offer all possible derivations explicitly. Well, this solves obviously the above problem but
may be exponential – as shown above – and is hence not really practicable.

All possible derivations given as cursor. Indeed the cursor concept [KeEi 99, section 4.20]
could revise the above unapproachability. Hereby the user obtains an interface to traverse
all possible derivations. Its benefit is that the user decides within the first few terms whether
his intended answer occurs or not. A modified principle was put into practice by many web
search engines, as a complete list of all websites containing given words would not help the
user in general. This modification consists of a representation block by block containing a
bounded amount of results. A grave drawback is caused by locking the involved context.
Update operations can not take place until all users have released their cursor interface.

Preselection As indicated the user knows in advance how the enquired answer should look like
to fulfill his demands. To achieve this we allow the user to hand over

• a selection strategy (cf. subsequent section 7.3) declaring which parameters of the terms
should be optimised, and

• a selection can advise the trader to choose a proper elementary stub term by delegating
the choice back to the enquirer and help the enquirer to get an answer sufficing her
demands.

Therefore, we favour preselection as advertised in the introducing chapter 1 by the activity diagram
on page 7.

7.1.2 Definition

Definition 74 (Selection). Let C be a deductivly closed context. A selection is a pair

(S, σ : reachable(C) ↪→ Λstub)

such that

• S ∈ reachable(C)

• for every T ∈ reachable(C) holds

σ(T )


∈ C(T ).derivations if T ∈ dom(C)
= 〈[T0], [T1]〉 if T 6∈ dom(C) and T = T0 ∧ T1

= λ0xT0 [T1] if T 6∈ dom(C) and T = T0 → T1
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• σ is closed concerning C, i.e. for all T ∈ dom(σ) and S ∈ stubs(σ(T )) also S ∈ dom(σ)
holds.

• σ is acyclic concerning C, i.e. there exists an injective map η : dom(σ) → |dom(σ)| such
that for all T ∈ dom(σ) and S ∈ stubs(σ(T )) holds η(T ) < η(S).

• σ is minimal, i.e. every proper subset of σ is not closed.

The last bullet implies η(S) = 0. We refer to S as the type of the above selection.

Remark. The second item reproduces the structure of reachable(·) as defined on page 27. For
elements of the domain of the context the derivations can be choosen among all terms mentioned
in their contextitem. Otherwise the derivations are fixed.

Remark. The witnessing function η is only needed for [[(S, σ)]]min (see below). Whenever
this representation is demanded η is constructed implicitly within Selection.asMinimalTerm
in package context since σ can be treated as an acyclic graph and η is a congruent topological
order used to traverse the selection. (in doubt confer [OtWi 96, section 8.1]).

Lemma 75. For every deductively closed context C holds:
FV(C) `? T if and only if a selection for C of type T exists.

Proof. By lemma 32 and 33.

Definition 76 (Free Variables and Size of a Selection). Let (S, σ) be a selection. Its set of
free variables is

FV((S, σ)) :=
⋃

t∈range(σ)

FV(t)

And its size is the cardinality of dom(σ).

7.2 Representations as λ terms

7.2.1 As expanded terms

First, we consider a simple representation of selections as expanded lambda term.

Definition 77 (As expanded term). Let (S, σ) be a selection.

[[(S, σ)]]expanded := σ(S)[ [T ] := [[(T, σ)]]expanded]T∈stubs(σ(S))

Notice that this definition is well defined: Acyclicity ensures termination, closeness ensures that
(T, σ) is a selection as well, and as [[·]]expanded does not contain stubs, the order of stubs substitution
does not effect its value.

Lemma 78. [[(S, σ)]]expanded is in normal form for every selection (S, σ).

Proof. The only possibility to violate normal form is due to redexes. For contradiction assume
that a redex (λxArB)s occurs in t. Both redex and its body r need to have idential type B. This
contradicts the acyclicity of the selection since

A→ B ∈ stubs(σ(B)) (because of the application)
B ∈ stubs(σ(A→ B)) (due to the lambda abstraction)

In full first order minimal logic the gap between normal and minimal forms is known to be
hyperexponential provided by Orevkov’s sequence (cf. [TrSc 96, section 6.7.6]).
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We show that although we only consider a fragment of the simple typed lambda calculus which
correlates with the propositional minimal logic by the Curry-Howard isomorphism, the corre-
sponding gap is exponential.

Lemma 79. A sequence Cn of deductively closed contexts together with a sequence of selection
(Pn, σn) exists such that

θ(|dom(σn)|) = FV(Cn)

but |[[(Pn, σn)]]expanded| is exponential in FV(Cn).

Proof. Let
Cn := ({pair0 : P0} ∪ {pairi : Pi ∧ Pi → Pi+1 | i < n})∗ .

For type Pn exists exactly one selection (Pn, σn) with

σn :={(P0, pair0)} ∪
{(Pi+1, [Pi ∧ Pi → Pi+1][Pi ∧ Pi]) | i ∈ n} ∪
{(Pi ∧ Pi → Pi+1, pairi) | i ∈ n} ∪
{(Pi ∧ Pi, 〈[Pi], [Pi]〉) | i ∈ n}

Thus |[[(Pn, σn)]]expanded| = 2n+2 − 3 =: sn as it satisfies

s0 = 1
si+1 = 2si + 3 (for i ∈ n)

whereby the value 3 stems from the variable, application, and pairing per every type Pi for
1 < i ≤ n.

7.2.2 As minimal terms

As the straightforward representation of selections as expanded terms can cause an exponential
growth measured by the size of their domains, an alternative is necessary but at the price of a
somewhat more complex algorithm.

Definition 80 (Degree). Let (S, σ) be a selection.
For every type T ∈ dom(σ) its degree deg(T ) is the number of occurences of [T ] within the range
of σ. For example [T ] occures in 〈[T ], [T ]〉 twice.

Definition 81 (As minimal term). Let (S, σ) be a selection.

[[(S, σ)]]min := [[(S, σ)]]|dom(σ)|−1
min

for every 0 < i < |dom(σ)|

[[(S, σ)]]imin :=

{
(λx.[[(S, σ)]]i−1

min [ [Ti] := x])ti if deg(Ti) > 1 (and x fresh)
[[(S, σ)]]i−1

min [ [Ti] := ti] if deg(Ti) = 1

and
[[(S, σ)]]0min := σ(S) (= t0)

whereby ti = σ(Ti) and Ti = η−1(i). Note that η is injective, cf. definition 74.

Lemma 82. Let (S, σ) be a selection.

[[(S, σ)]]min →∗
β [[(S, σ)]]expanded

Proof. Execute all redexes produces by the [[ · ]]·min functions from outside inwardly.
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Next, we show that [[ · ]]min produces a term whose size is linear (with a low hidden factor) in the
minimal size among all β-equal terms.

Lemma 83. Let (S, σ) be a selection.

|dom(σ)| ≤ |[[(S, σ)]]min| ≤ 5|dom(σ)|

Proof. The first inequality arises from the manifestation of every type within the domain of σ as
it retains the type of its argument and σ is minimal.
As a preparation for the proof of the last inequality it can be easily seen by induction on i that for
every T ∈ dom(σ) the amount of occurences of [T ] in [[(S, σ)]]imin is equal to the amount among
t0, . . . , ti.
Recall that for every Ti ∈ dom(σ), [Ti] can only be a subterm of σ(Tj) if j < i since η induces a
topological order.
To achieve the inequality we assign costs of at most 5 to every type of the domain of η for their
contribution to the size of |[[(S, σ)]]min|. Thereby the whole term is covered completely.
For i > 0 the substitution [ [Ti] := x] at the upper case does not influence the length of [[(S, σ)]]i−1

min

as |[Ti]| = |x|. Thus its contribution to the whole size is 2 + |ti| ≤ 5, sharply.
At the lower case the substitution [Ti := x] increases the length of [[(S, σ)]]i−1

min by at most |ti|−1 ≤ 5
as [Ti] occurs exactly once within [[(S, σ)]]i−1

min.
For i = 0 the contribution is |t0| ≤ 5.

Lemma 84. Let (S, σ) be a selection.

|[[(S, σ)]]min| ≤ 5 min
{
|t|
∣∣ t→∗

β [[(S, σ)]]expanded

}
Proof. As every beta reduction step reduces the diversity of types at most by the type of the
lambda abstraction belonging to the redex to be executed, t contains every type mentioned in
range(σ), because σ is additionally minimal. Thus

|[[(S, σ)]]min| ≤ 5|dom(σ)| (by lemma 83)
≤ 5|t| (σ preserves the argument’s type)

for arbitrary terms t normalising to [[(S, σ)]]expanded.

7.2.3 Comparison to system F

The reason why we are actually not interested in terms of exact minimal length among all β
equivalent terms is simple: systems more expressive than the simple lambda calculus might have
shorter minimal forms by additional rules which allow to pack information more efficiently.

An example is of course system F (cf. [Matt 00, chapter 7], [Matt 04, chapter 2.1]), a lambda
calculus equipped with parametric polymorphism like used in SML or in Java 1.5.

We just recall the essential extensions:

• dedicated typevariables as special types, say X,Y, . . ., and an additional rule for type
construction: if X is a typevariable and T a type, ∀X.T is a type as well. The concept
of free typevariable and type substitution are meant as usually.

• two term constructor rules:
r : R

ΛX.r : ∀X.R
(type abstraction)

Hereby the so called variable condition must be satisfied, i.e. X is not free in any free
variable of r. For example ΛXλxXx : ∀X.X → X fulfills this condition but ΛXxX does not.
To instantiate a type abstraction one can use

r : ∀X.R
rS : R[X := S]

(type appliction)
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• a reduction rule:
(ΛY rR)X →β r

R[Y :=X]

We define a set Γn as

ci,k :
∧
j∈i

Aj,k → Ai,k (for i, k ∈ n)

f :
∧
i∈n

An−1,i → X

to point out the difference in sense of complexity between the simple typed lambda calculus and
system F .

An implication whose premise is a vacuous meta conjunction (i.e.
∧

) is treated as its conclusion
and meta conjunctions are treated right associative, for example:∧

j∈3

Aj,k = A0,k ∧ (A1,k ∧A2,k)

Lemma 85. Every derivation t of type X with FV(t) ⊆ Γn within the simple typed lambda
calculus has length Ω(n3).

Proof. The normal form of t contains of at least the following types∧
l≤j≤r

Aj,k

for every k ∈ n and 0 ≤ l ≤ r < n. As these θ(n3) types must occur also in t its size is bounded
by θ(n3).
Hereby it is essential that

∧
produces rightwise associated conjunction: the expansion of

∧
is

defined in opposite direction in comparison to its associativity. If leftwise were choosen instead
only θ(n2) many types would occur in the normal form of t.

Lemma 86. A derivation t of type X with FV (t) ⊆ Γn within system F whose length is O(n2)
exists.

Proof. Consider following arrangement similar to that above

c0 : A0

c1 : A0 → A1

c2 : A0 ∧A1 → A2

...
. . .

cn−1 : A0 ∧ (A1 ∧ (· · ·An−2)) → An−1

As a selection (An−1, σ) for the context ({ci | i ∈ n})∗ with |dom(σ)| quadratic in n exists,
[[(An−1, σ)]]min =: µ is quadratic in n as well (by lemma 83).

Second order abstraction manages to achieve the desired derivation of type X

(λa.
f

(a A0,0 · · ·An−1,0 c0,0 · · · cn−1,0)
...
(a A0,n−1 · · ·An−1,n−1 c0,n−1 · · · cn−1,n−1)

)
(ΛA0 . . .ΛAn−1λc

A0
0 . . . λc

A0∧(A1∧(···An−2))→An−1
n−1 µ)



7.2. REPRESENTATIONS AS λ TERMS 59

of length θ(n2). Hereby the complexity is independent of whether the lengths of the annotated
types mentioned in type abstraction or application are counted or not.

Hence, representations in system F are more efficient than in the simple typed lambda calculus.

Selection and [[ · ]]min are to be extended in the usual way for system F. A corresponding lemma
to lemma 83 holds as well.

Although we can obtain in the general case shorter terms, polymorphism is not implemented in
our program since the advantage is small due to two observations. On one hand the occurrence
of structurally equivalent patterns for a sufficiently long path is fairly unlikely.

On the other hand the construction of selections becomes more expensive. The time to construct
a selection might be quadratic in the size of the selection. Therefore we use the observation that
verification is a lower bound for construction.

Assume a context C, a type A in its domain, and a selection (σ,A) for this type. Let C′ be the
above context multiplied |dom(σ)| =: k times by copying type and variable structures and let A
be spread over A1, . . . , Ak. The size of the induced selection for A1 ∧ . . . ∧ Ak in system F is
bounded by θ(k) due to construction. On the other hand, the selection for system F bases on a
modification of an appropriate selection for simple typed terms. The determination of its pairs
which can be merged by type abstraction costs θ(k2). Every pair requires θ(k) comparisons and
k groups exist containing exactly those parts which can be merged.

7.2.4 Comparison to CoCoGraphs

Another kind of representation is offered by the CoCoGraph mentioned in [Krau 03, in particular
section 5.3] for the first time. It turns out that CoCoGraphs are essentially lambda terms:

CoCoGraph lambda term
node n-ary application to a variable
wrapper node β redex
repeated usage of an output port β redex
edge symbol for construction order
input port part of an application sequence
output port part of a conjunction
(not presentable!) abstraction

differentiation between sequential application(not presentable!)
and application to conjunctions

For instance the CoCograph of figure 7.1 (taken from [Krau 03, figure 5.9]) can be converted into
the equivalent lambda term

(λx〈CTB(CTA s1)(π0x), (π1x)〉)(OJA s2)

or for better comparison to the CoCoGraph the term can be considered as a directed acyclic graph.
Note that the double usage of OJA needs to be translated into a β redex and the input into the
variables s1 and s2.
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Figure 7.1: An example of an CoCoGraph.

CTB
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x x
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@

(@ denotes applications.)

Thus like lambda terms CoCoGraphs are not optimal for minimal representation of work flows to
compute additional context information as demonstrated in the preceding subsection.

7.3 Selection Strategies

Given a deductively closed context and a type enquired by the user we want to discuss two
reasonable possibilities to gain an adequate selection.

7.3.1 Depth Driven Selection

Since contextitems are already provided with depth values we use a depth-driven approach for the
construction of selections.
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Definition 87. Let C be a deductively closed context and S ∈ dom(C). A depth driven selection
(S, σ) is any selection which satisfy for every T in the domain of C:

depthC(σ(T )) = C(T ).depth <∞.

As the choice of the terms is left open a depth driven selection does not need to be unique.
Furthermore the above definition is well defined as σ is acyclic: Assume for contradiction that σ
is cyclic. Then a sequence (Ti)i∈k of length k exists with Ti ∈ dom(σ) for all i ∈ k and:

T(i+1)modk ∈ stubs(σ(Ti)) (for all i ∈ k)

This implies that all types of the loop are in the domain of the context: Assume the converse.
Note that the domain of the context is closed under subtypes by its definition. Hence if Ti is not
in this domain T(i−1)modk is not as well. Iteration ensures that every type of the cycle is not in
the domain. By definition of selection the type size decreases strictly for cyclic increasing indices.
This contradicts the finiteness of type size.

The definition of ordinally closeness enforces

C(Ti).depth ≥ 1 + C(T(i+1)modk).depth (for all i ∈ k)

meaning

C(T0).depth > C(T1).depth > . . . > C(Tk−1).depth > C(T0).depth

as all depth values have to be finite, which leads to an obious falsity.

context.Context.getDepthDrivenSelection implements the construction of a depth driven
selection. It breaks down the inquired type constructors, according to the definition 31 of
reachableC(·), until it hits a element of the domain of the context whose depth is finite. Thence-
forward it picks up successively derivation stubs whose depth equals the depth of its contextitem.
For simplification a first fit selection is used by the implementation, but could be easily be adapted
for other purposes.

7.3.2 Free Variables Minimal Selection

As the multitude of content providers might be held responsible for ”contamination” of the quality
of information due to error propagation, we should also be interested in derivations involving a
minimum amount of free variables.

Given a deductively closed context C and a type T we are looking for an algorithm constructing
a selection (T, σ) with a minimal amount of free variables provided that such an selection exists
at all.

Starting from an arbitrary selection for a type T , we stepwise approach the optimum by a binary
search. As it already suffices for the most purposes to approximate the minimal amount of free
variables the parameter granularity allows to specify how much the cardinality of the set of free
variables of the result may differ from its minimum.

During each loop the function SBS(T, s) tests whether a selection of type T with at most s free
variables exists. If so, a corresponding selection is returned. We detail the functionality of this
auxiliary parameter later.
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// Input: type T; granularity as natural number, default is 0.
// Enviroment: context.

Let (T , τ) be an arbitrary selection for T
for example "depth driven";

up := size of [[(T , τ)]]min;
down := 1;

while (up-down > granularity)
{
middle := (down+up) / 2;

if (SBS(T, middle) returns successfully)
up := middle;

else
down := middle+1;

}

return with SBS(T, down);

The critical point is SBS as its task is NP-complete.

For the sequencing lemma we recall short the language SAT (cf.[Reis 90, section 6.3]). Given a
propositional formula ϕ build by a conjunction of clauses. A clause is a disjunction of literals –
either a variable, denoted by {xi}i∈n, or its negation –, saying

ϕ =
∧
i∈k

∨
j∈3

x
pol(i,j)
var(i,j)

where var : k × 3 → n, pol : k × 3 → 2 and x0 = ¬x as well as x1 = x.
∨

and
∧

are to be
treaten as meta symbols meaning a finite enrolling to ∨ and ∧ on the language level. The question
is whether this formula is satisfiable according to the standard interpretation, i.e. whether an
assignment β : n → 2 exists such that β |= F . This problem is the established example of NP
complete languages.

Definition 88 (Problem of Size Bounded Selection). The problem of size bounded selection
(SBS for short) is to decide for a given context C, a type T , and an integer value s whether a
selection (T, σ) exists with |FV(σ)| ≤ s.

Lemma 89. SBS is NP-complete.

Proof. SBS ∈ NP. Guess a (raw) selection and verify whether it is wellformed and its amount of
free variables is bounded by s.

NP ≤p SBS. It suffices that 3− SAT reduces to the problem above.

Let a formula ϕ be given in conjunctive normal form with exactly three literals per clause

∧
i∈k

∨
j∈3

x
pol(i,j)
var(i,j)

whereby var : k × 3 → n and pol : k × 3 → 2.
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This formula is translated in polynominal time into the deductive closure of

vali,p :Xi,p

vari,p :Xi,p → Xi (for i ∈ n and p ∈ 2)
clausei,j :Xvar(i,j),pol(i,j) → Ci (for i ∈ k and j ∈ 3)

force :
∧
i∈n

Xi ∧
∧
i∈k

Ci → G

with G as goal and 2n+ k + 1 as threshold s.

Apparently G is derivable by a selection containing all above mentioned constants.

It remains to show that this transformation respects the border of both languages: ϕ is
satisfyable if and only if there exists a derivation whose set of free variables has size bounded
to s:

⇒ Let β : {xi}i∈n → 2 (0 is interpreted as false) be a satisfying assignment to ϕ. Then
there exists a selection with free variables force, clausei,j (i ∈ k and some j with
β(xvar(i,j)) = pol(i, j), which must exists as β satisfies every clause), as well as vali,β(i)

and vari,β(i) (i ∈ n).

⇐ Let (G, σ) be a selection whose set of free variables is bounded by 2n+k+1. The variable
force as well as clausei,j for every i ∈ k and some j ∈ 3 must be in FV((G, σ)). Hence
at most 2n variables have to be distributed among {vali,p, vari,p | i ∈ n, p ∈ 2}.
According to the pigeonhole principle the exists a function β : {xi}i∈n → 2 such that
both vali,β(i) and vari,β(i) are elements of FV((G, σ)). By construction of the clausei,js
β is a satisfying assignment for ϕ.

Even if SBS can be translated into a SATquestion and could be delegated to an SATsolver1 as
oracle using its result to form a proper selection, we don not favour it since its implementation as a
rather huge part of the context needs to be embedded into the SATquestion. A further parameter
bounding the depth of the demanded selection might be useful to get a grip on the run time of
both, translation and orcale.

To avoid multiple invocations of a SATorcale it is imaginable to run the translation once and then
to ask for a model with a minimal amount of variables assigned to true among those variables
encoding a free variable of the translated part of the context.

Anyway, it is open to be implemented.

1Note that many rather efficient SATsolvers, in the tenor of low run time for small instances, are available
like exemplarily sato (available at http://www.cs.uiowa.edu/~hzhang/sato.html) or zchaff (available at http:

//www.princeton.edu/~chaff/software.html)

http://www.cs.uiowa.edu/~hzhang/sato.html
http://www.princeton.edu/~chaff/software.html
http://www.princeton.edu/~chaff/software.html
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Chapter 8

Examples

To introduce the implementation of a deductive trader, called Ganglia, some raw setting are
itemised below. A ganglion is the kernel of a nerve cell1. The implemention’s name is choosen as
stubed terms look like dendrites, both contextitems and nerve cells own each time generally more
than one, and stubs accord with axons. Since a deductively closed context consists of a multitude
of contextitems the noun ”ganglion” is pluralised.

To keep the implementation simple the selection strategy is fixed to ”depth driven” and the selector
to ”first fit”. Both can be replaced by more appropriate ones.

8.1 New in town?

Assume someone is moving to another town. To get an accommodation the landlord claims a bank
account and that he should apply personally. On the other hand the local branch of his home
bank wants him to hand in his identity card to open an account. To get such a card he should go
to the local registration office.

To achieve the indicated procedure we encode the involved actors as functions and inquire for a
minimal lambda term describing such an procedure.

__ __ __ __

| | | |\ | | | | | |

| - |__| | \ | | - | | |__|

|__| | | | \| |__| |__ | | |

Enter a command, as example "help" for help.

ganglia> add identity: Identity

[ OK ] "identity" was queued to adding.

ganglia> add registrationOffice: Identity -> IdentityCard

[ OK ] "registrationOffice" was queued to adding.

ganglia> add bank: IdentityCard * Identity -> BankAccount

[ OK ] "bank" was queued to adding.

ganglia> add landlord: Identity -> BankAccount -> Flat

[ OK ] "landlord" was queued to adding.

ganglia> dc

======== statistics ========

Time elapsed ...

... to order terms and determinate borders: 0,080 seconds,

1see http://en.wikipedia.org/wiki/Ganglion
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thereby 4 terms were considered.

... to close context structurally: 0,060 seconds,

thereby 20 items were considered.

... to close context ordinally: 0,000 seconds,

thereby 5 items were considered.

----------------------------

Total time elapsed for adding deductively: 0,140 seconds.

============================

ganglia> min Flat

Derivation is:

landlord identity (bank ((registrationOffice identity),identity)): Flat

Its depth is 5 and

its size 11.

ganglia> sml "examples/town.sml"

ganglia>

Ganglia outputs a ”playground” for SML in the file town.sml:

(* Section models datatypes of every reasonable atomic type *)

datatype Identity = valueOfIdentity;

datatype Flat = valueOfFlat;

datatype IdentityCard = valueOfIdentityCard;

datatype BankAccount = valueOfBankAccount;

(* Section models free variable as function returning only test values *)

val identity: Identity =

valueIdentity;

val bank: IdentityCard*Identity->BankAccount =

fn _:(IdentityCard*Identity) => valueOfBankAccount;

val landlord: Identity->BankAccount->Flat =

fn _:(Identity) => fn _:(BankAccount) => valueOfFlat;

val registrationOffice: Identity->IdentityCard =

fn _:(Identity) => valueOfIdentityCard;

After loading the above code and entering the derivation produced by Ganglia, SML outputs:

Standard ML of New Jersey, Version 110.0.7, September 28, 2000 [CM&CMB]

- use "examples/town.sml";

[opening examples/town.sml]

datatype Identity = valueOfIdentity

datatype Flat = valueOfFlat

datatype IdentityCard = valueOfIdentityCard

datatype BankAccount = valueOfBankAccount

val identity = valueOfIdentity : Identity

val bank = fn : IdentityCard * Identity -> BankAccount

val landlord = fn : Identity -> BankAccount -> Flat

val registrationOffice = fn : Identity -> IdentityCard

val it = () : unit

- landlord identity (bank ((registrationOffice identity),identity));

val it = valueOfFlat : Flat

-

So far we can only conclude that SML accepts the typing and computes the expected value. As
SML evaluates in applicative order [Bry 04, subsection 3.2.2] the output for min Flat can be
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detailed as follows:

landlord identity (bank ((registrationOffice identity),identity))
→∗
β landlord valueOfIdentity (bank

((registrationOffice valueOfIdentity),valueOfIdentity))
→∗
β landlord valueOfIdentity (bank

(valueOfIdentityCard,valueOfIdentity))
→∗
β landlord valueOfIdentity (valueOfBankAccount)

→∗
β valueOfFlat

The first reduction steps replaces those variables by their definitions whose types are atomic. The
subsequent steps execute those redexes produced by replacing variables by their definitions in
applicative order.

The reduction sequence coincides with the intuition. It can be summarised by the following trace:

interstation things you should at least take with you
valueOfIdentity

registrationOffice
valueOfIdentity, valueOfIdentityCard

bank
valueOfIdentity, valueOfBankAccount

landlord
valueOfFlat

whereby ”things you should at least take with you” are represented by the free variables.
”valueOfIdentity” denotes yourself.

8.2 What does drive most other provers mad?

We consider the context of the proof to lemma 79 for n = 260 and inquire type P260. As
demonstrated there, the minimal term is linear in n whereas its normal form is linear in 2n.
Latter means that a prover plainly using normal forms would need memory for approximately
2260 intermediate step to decide its derivability. This would exceed the amount of atoms in our
univers, approximately 1078 in number.

__ __ __ __

| | | |\ | | | | | |

| - |__| | \ | | - | | |__|

|__| | | | \| |__| |__ | | |

Enter a command, as example "help" for help.

ganglia> pair 260

ganglia> dc

======== statistics ========

Time elapsed ...

... to order terms and determinate borders: 0,751 seconds,

thereby 261 terms were considered.

... to close context structurally: 1,052 seconds,

thereby 1817 items were considered.

... to close context ordinally: 0,080 seconds,

thereby 520 items were considered.

----------------------------

Total time elapsed for adding deductively: 1,883 seconds.

============================
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ganglia> min P260

Derivation is:

(fn v0 => (fn v1 => (fn v2 => (fn v3 => (fn v4 =>

[...]

(pair_4 <v2,v2>)) (pair_3 <v1,v1>)) (pair_2 <v0,v0>)) (pair_1 <pair_0,pair_0>): P260

Its depth is 521 and

its size 1818.

ganglia>

Every prover whose derivation search involves, even if only implicitly, the construction of the full
normal form would not terminate in this universe.

8.3 Removal

We consider as an example the intractability instance discussed in subsection 6.2.2.1. In practice a
removing could be required for instance due to a outage of content providers because of a network
error or whatsoever, in particular for longer periods.

__ __ __ __

| | | |\ | | | | | |

| - |__| | \ | | - | | |__|

|__| | | | \| |__| |__ | | |

Enter a command, as example "help" for help.

ganglia> add a:A

[ OK ] "a" was queued to adding.

ganglia> add f:A -> B

[ OK ] "f" was queued to adding.

ganglia> add cover:(A -> B) -> X

[ OK ] "cover" was queued to adding.

ganglia> dc

======== statistics ========

Time elapsed ...

... to order terms and determinate borders: 0,050 seconds,

thereby 3 terms were considered.

... to close context structurally: 0,040 seconds,

thereby 11 items were considered.

... to close context ordinally: 0,000 seconds,

thereby 2 items were considered.

----------------------------

Total time elapsed for adding deductively: 0,090 seconds.

============================

ganglia> show

context:

Number of elements: 11

+-----------+----------+--------------+---------------------------------------------+...+

| type | depth | desiredDepth | derivations | |

+-----------+----------+--------------+---------------------------------------------+...+

| A | 1 | 1 | [a: A] | |

| B | 2 | 2 | [([A->B]) ([A]): B] | |

| X | 2 | 2 | [([(A->B)->X]) ([A->B]): X] | |

| A->B | 1 | 1 | [f: A->B, fn v0 => [B]: A->B] | |

| (A->B)->X | 1 | 1 | [fn v0 => [X]: (A->B)->X, cover: (A->B)->X] | |

+-----------+----------+--------------+---------------------------------------------+...+
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free variables: [a: A, f: A->B, cover: (A->B)->X]

scheduled constants to add: []

scheduled constants to remove: []

ganglia> remove f

[ OK ] "f" was queued to removing.

ganglia> dc

======== statistics ========

Time elapsed ...

... to order reduce to minimal context: 0,000 seconds,

thereby 1 terms were considered.

... to close context ordinally: 0,100 seconds,

thereby 4 items were considered,

whereby 3 items repeatedly.

1 times items were considered repeatedly.

----------------------------

Total time elapsed for removal deductively: 0,100 seconds.

============================

ganglia> show

context:

Number of elements: 11

+-----------+----------+--------------+---------------------------------------------+...+

| type | depth | desiredDepth | derivations | |

+-----------+----------+--------------+---------------------------------------------+...+

| A | 1 | 1 | [a: A] | |

| B | infinity | infinity | [([A->B]) ([A]): B] | |

| X | infinity | infinity | [([(A->B)->X]) ([A->B]): X] | |

| A->B | infinity | infinity | [fn v0 => [B]: A->B] | |

| (A->B)->X | 1 | 1 | [fn v0 => [X]: (A->B)->X, cover: (A->B)->X] | |

+-----------+----------+--------------+---------------------------------------------+...+

free variables: [a: A, cover: (A->B)->X]

scheduled constants to add: []

scheduled constants to remove: []

ganglia>

The infinite loop of naive implementations as mentioned in section 6.2.2.1 does not take place.
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Chapter 9

Conclusion

9.1 Résumé

Many applications or parts of those can be treated as compositions and abstractions of services
and information. Even if these are needed, so far only proprietary attempts are realised and
published.

We considered the question whether and how such compositions can be done automatically. Our
approach is guided by types as types offer an abstract and generic description of services and
information. They are well understood and are for example used in programming languages and
for theorem provers.

Answers to instances of this general question consume provably a huge amount of time. Too much
for its applictions in practice. Moreover, it would also offer a vulnerable point just by its run time
complexity.

To get the deduction logic tractable we focused on a fragment of this logic – a fragment weak
enough to be efficiently computable, but yet strong enough to model properly our environment by
simple types.

The proposed system comes close to the concept of traders. Its database contains the actual
references to information and services. But additionally their deductive closure is carried along.

Both structures are affected by structural changes of the enviroment. They are indicated by
changes in the database. We adapted and dualised the database for the closure in order to avoid
redundant and expensive recomputations of the closure every time the content of the database
changes. These operations are called add and remove (cf. the diagram on page 6).

The implemention ideas of both operations were detailed and proved to be optimal measured in
the amount of accesses to persistent data structures.

The handling of questions for compositions of a given type is divided into two parts. The first
constructs a selection for this type. We detailed the depth driven approach and considered another
approach which ensures that the amount of information used for the composition is minimal.
This could be suitable for environments with inaccurate information. The second part treats
the representation for the questioner. We considered two implemented representation for lambda
terms and compare them to each other and to representations of system F and as CoCoGraph.
After all, the minimal lambda representation seems to be more useful.
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9.2 Future work

We itemize some selected questions arosen during writing of this thesis.

Polymorphism. As indicated by references to functional and logical languages, parametric poly-
morphism might be interesting for example for nested contexts. Assume someone has a set
of hotels and a function to enrich an individual hotel by its quality. To obtain a set of
evaluated hotels a polymorphic function like SML’s map might be purposeful.

To experiment with such an extension the current implementation offers a naive plugin for
an additional term constructor map and an uniterated type constructor list, i.e. list list
A is forbidden. Thereby the hotel problem can be tackled like:

__ __ __ __

| | | |\ | | | | | |

| - |__| | \ | | - | | |__|

|__| | | | \| |__| |__ | | |

Using polymorphic extension.

Enter a command, as example "help" for help.

ganglia> /* To be started with "java user/Ganglia -polymorphic" */

ganglia> /* or with "java -jar ganglia.jar -polymorphic" */

ganglia> add locator Position

[ OK ] "locator" was queued to adding.

ganglia> add enumerator Position>Hotel list

[ OK ] "enumerator" was queued to adding.

ganglia> add eval Hotel>EvalHotel

[ OK ] "eval" was queued to adding.

ganglia> dc

======== statistics ========

Time elapsed ...

... to order terms and determinate borders: 0,060 seconds,

thereby 3 terms were considered.

... to close context structurally: 0,030 seconds,

thereby 9 items were considered.

... to close context ordinally: 0,000 seconds,

thereby 3 items were considered.

----------------------------

Total time elapsed for adding deductively: 0,090 seconds.

============================

ganglia> min EvalHotel list

Derivation is:

map eval (enumerator locator): EvalHotel list

Its depth is 3 and

its size 7.

ganglia>

Quality of service. As affected in the introducing chapter 1.

Term of derivations. A weaker restriction to context stable derivations could expand the ex-
pressability. Such an extention could be achieved by bounded derivations Λk for some globally
fixed parameter k. These are those terms t ∈ Λk if and only if for all subterms s of t’s nor-
malform |FV(s)| ≤ k. Notice that Λ0 equals the set of context stable normal forms.
Up to now every reasonable type corresponds to an individual contextitem. But within this
extension up to approximately knk contextitems have to be assigned to an individual type
whereby n measures the cardinality of the domain since contextitems needs to split for every
assortment of at most k types out of n.
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Set operations of contexts. In particular the union could be of interest. For example two
entities might be interested in sharing information which can be modeled as a union of
deductively closed contexts or parts of them.

Hierarchies on contexts. To simplify the management and for efficient operations contexts
should be possible to arrange in hierarchies as introduced in section 1.2 by figure 1.4.
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– eine Einführung aus der Sicht der logischen Programmierung. Vieweg, 1994.

[ChKo 00] Chen, Guanling and David Kotz: A Survey of Context-Aware Mobile Computing
Research. Technical Report TR2000-381, Dept. of Computer Science, Dartmouth
College, November 2000, http://www.cs.dartmouth.edu/reports/TR2000-381/ .

[DAS 01] Dey, Anind K., Gregory D. Abowed and Daniel Salber: A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware applications.
context-aware computing in the Human-Computer Interaction (HCI), 16(2–4):97–166,
2001. http://www.cs.berkeley.edu/~dey/context.html.
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