
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

E�cient scans in a research network

Nils Mäurer

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

E�cient scans in a research network

E�ziente Scans in einem Forschungsnetzwerk

Author Nils Mäurer
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Ralph Holz, Dipl.-Math. Felix von Eye, Oliver Gasser, M.Sc.
Date 15th February 2015

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, 15th February 2015
Signature

Acknowledgements

First and foremost I want to thank my research advisors Ralph Holz, Felix von Eye and
Oliver Gasser for their support and dedicated involvement. Without the many tele-
phone conferences, even to Australia ;), meetings and the very good feedback regarding
scienti�c research and writing a thesis, this work would not have been possible.

I would also like to express my gratitude to my supervisor Prof. Dr.-Ing. Georg Carle,
especially for his trust in me as I could suggest and research the SSL vulnerability part
(POODLE) in the thesis.

First of all persons helping me with this thesis not directly linked to the TUM or the
LRZ, I want to mention my girlfriend Alina Meixl. Thank you so much for everything
you are to me and for what you helped me with.

Of course without family support, this would not have turned out to be a complete
thesis, but rather an essay about scienti�c facts. So �rst of all I want to thank my father
for providing the necessary background about academic writing. Also I want to thank
my mother and my sister for their encouragement.

Last but not least, I want two mention two wonderful Canadian persons, my granduncle
John and my grandaunt Bärbel, who helped me improving my English writing.

Abstract

The Leibniz Supercomputing Centre (LRZ) is the provider of Munich’s largest research
network, the Munich Scienti�c Network (MWN). As the MWN is not a supervised com-
pany network, but a peripheral organized university network, port scans are required to
get an overview about current activities in the MWN and the di�erence between actual
and desired state of the network. Due to long scan times with the port scanner Nmap,
used thus far for scanning the MWN, we looked for other solutions and found new port
scanners like Masscan and ZMap. In this thesis, we compared and evaluated them and
concluded, that Masscan is currently best suited for scanning the entire MWN.
Additionally, since October 2014, a new SSL/TLS security breach named Padding Oracle
on Downgraded Legacy Encryption (POODLE) is known and the most secure way to
prevent it, is to disable SSL 3.0 and older versions. This is the second task of this thesis:
providing a fast solution regarding SSL 3.0 fallback detection. To ful�ll this goal, we
developed a new scanning evaluation tool, the Fast Port Scanning Tool, to scan the
entire MWN. In the end, this tool allowed us to scan about 100 times faster than before.
Furthermore interesting information, regarding the scanned hosts, can be saved in a
�le, containing IPs, open ports, services, operating systems (OSes) and vulnerabilities,
written to single columns and sorted by IPs. We scaned 500,000 hosts in the MWN and
more than 2000 hosts were detected with SSL 3.0 enabled. Furthermore we detected a
part of the MWN to be unable to withstand a packet rate of more than 200,000 packets
per second and identi�ed three hosts, with more than 16,000 ports open. These results
enable the responsible administrators of the MWN to improve its security.

Zusammenfassung

Das Leibniz Rechenzentrum (LRZ) ist Anbieter des größten Forschungsnetzwerks in
München, dem Münchner Wissenschaftsnetz (MWN). Da es sich nicht um ein streng
organisiertes Firmennetzwerk, sondern um ein dezentral organisiertes universitäres
Netzwerk handelt, sind Informationen über aktuelle Aktivitäten und Unterschiede zwi-
schen Soll- und Ist-Zustand schwer für die Verantwortlichen am LRZ zu erhalten. Dafür
werden Portscans benötigt, welche bisher mit dem Portscanner Nmap durchgeführt
wurden. Diese Scans dauern jedoch aufgrund der Größe des MWN mit Nmap bis zu
einem halben Jahr, weshalb diese Arbeit eine Lösung zum schnelleren und e�zienteren
Portscannen sucht. Dafür wurden Scanner wie Masscan und ZMap mit Nmap verglichen
und der am besten geeignete ermittelt: Masscan.
Außerdem ist seit Oktober 2014 die SSL/TLS Sicherheitslücke POODLE bekannt, welche
vollständig nur durch das Deaktivieren der SSL 3.0 Verbindung zu vermeiden ist. Um
die Hosts zu ermitteln, welche innerhalb des MWN für POODLE anfällig sind und um
schneller als bisher scannen zu können, wurde das Fast Port Scanning Tool im Rahmen
dieser Arbeit entwickelt. Es benutzt die Scanner Masscan und Nmap um Informationen
über IPs, Ports, Services und Betriebssysteme zu ermitteln und abzuspeichern. Nach den
Scans des MWN, konnten von 500.000 gescannten Hosts, mehr als 2000 Hosts als anfällig
für POODLE ermittelt werden. Zusätzlich wurde ein Teil des MWN anfällig für hohe
Paketraten mit mehr als 200.000 Paketen pro Sekunde ermittelt und drei Hosts mit über
16.000 o�enen Ports gefunden. Auf Basis dieser Ergebnisse können die verantwortlichen
Administratoren nun die Sicherheit des MWN erhöhen.

I

Contents

1 Introduction 1
1.1 Goals of the thesis . 1
1.2 Outline . 2

2 Related Work 3
2.1 Related work regarding port scanning 3
2.2 Related work regarding SSL/TLS vulnerabilities 4

3 Background 7
3.1 An example of a large research network: The Munich Scienti�c Network 7
3.2 Overview of port scanners . 9

3.2.1 Nmap . 9
3.2.2 ZMap . 10
3.2.3 Masscan . 12
3.2.4 Further scanning tools . 13
3.2.5 Comparison of Nmap, ZMap and Masscan 13

3.3 SSL/TLS vulnerability POODLE . 14
3.3.1 Introduction to the SSL/TLS-encryption 14
3.3.2 POODLE . 15

4 Scanner Evaluation 21
4.1 Setting the test environment . 21

4.1.1 Testing network . 21
4.1.2 Location . 22
4.1.3 Rate Limiting . 22
4.1.4 Acceptance by administrators 22
4.1.5 Output . 22
4.1.6 Speed Evaluation . 23
4.1.7 Plausibility . 23
4.1.8 Files as parameter input source 23

4.2 Conduction of test scans . 23
4.3 Results of comparing tests . 26

4.3.1 Particular characteristics of ZMap and Masscan 26

II Contents

4.3.2 Scan results from scanning within the “Chair 8” network from
a hardware machine . 26

4.3.3 Comparing Masscan and Nmap 27
4.3.4 Comparing ZMap and Nmap 28
4.3.5 Comparing Masscan and ZMap 30

4.4 Evaluation of Nmap, ZMap and Masscan test scans 32
4.4.1 Duplicates . 32
4.4.2 Accuracy . 32
4.4.3 Speed . 32
4.4.4 Documentation . 33
4.4.5 Features . 33

4.5 Reasons for choosing Masscan . 33

5 The Fast Port Scanning Tool 35
5.1 Planning Phase . 35

5.1.1 First drafts . 35
5.1.2 Requirements for the Fast Port Scanning Tool 36
5.1.3 Decision for multiple scanning modes 36

5.2 Implementation phase . 37
5.2.1 Class MasscanTarget . 37
5.2.2 Class NmapTarget . 37
5.2.3 Main function . 37
5.2.4 Masscan_scan function . 40
5.2.5 Masscan_input function . 41
5.2.6 Masscan_evaluate function . 41
5.2.7 Nmap_scan function . 42
5.2.8 Nmap_input function . 43
5.2.9 Nmap_evaluate function . 43
5.2.10 Get_time function . 44

5.3 Hints for working with the tool . 44
5.3.1 General advice . 44
5.3.2 Tweaking Masscan . 44
5.3.3 Summary of arguments . 44

6 Evaluation of MWN scans 47
6.1 Scan preparations . 47
6.2 Results of the MWN scans . 48

6.2.1 Overview of total results . 48
6.2.2 Summary of basic results . 49
6.2.3 Most noticeable ports, hosts and operating systems 50
6.2.4 POODLE results . 54

Contents III

7 Conclusion 57
7.1 Future work . 57

A List of abbreviations 59

B Scanner parameters 63

Bibliography 65

IV Contents

V

List of Figures

3.1 Overview of services and speed, provided by the MWN [1] 8
3.2 Architecture of ZMap [2] . 11
3.3 SSL/TLS connection establishment [3] 15
3.4 SSL 3.0 downgrading, forced by a MitM attacker 16
3.5 Overview about POODLE attack . 18

4.1 Di�erences between Nmap and Massacan scans, performed from hardware 24
4.2 Di�erences between Nmap and Masscan scans, performed from hardware 26
4.3 Di�erences between Nmap and Masscan scan results on testing network,

performed from VM . 28
4.4 Comparing Nmap and ZMap by selected ports, performed from VM on

the same day . 29
4.5 Comparing Nmap and ZMap by selected ports, performed from VM on

the same day . 30
4.6 Comparing Masscan and ZMap by selected ports, performed from VM. 31
4.7 Comparing Masscan and ZMap by selected ports, performed from VM. 31

5.1 General overview about the work�ow of the Fast Port Scanning Tool . 38

6.1 Hosts with the most open ports, detected by Masscan and Nmap 50
6.2 Average amount of open ports per host, detected by Masscan 51
6.3 Most frequently detected open ports in the MWN, scanned by Masscan 52
6.4 The most used services in the MWN, detected by Masscan 52
6.5 The most used services in the MWN, detected by Nmap 53
6.6 Top ten most used operating systems in the MWN, detected by Nmap . 53
6.7 Overview of di�erent hosts and ports vulnerable to POODLE, detected

by Masscan . 55
6.8 Hosts with the most services vulnerable to POODLE, detected by Masscan 55
6.9 Ports most vulnerable to POODLE, detected by Masscan 56

VI List of Figures

VII

List of Tables

4.1 Scan parameters for scanner comparison tests 25
4.2 Example output from comparison tool 25

5.1 Overview about important information from the scans 36

6.1 Scan parameters for scanning the MWN 48
6.2 Overview of scanning duration and results regarding Masscan and Nmap 49

VIII List of Tables

1

Chapter 1

Introduction

Since the development of the well known port scanner Nmap, in the 1990s [4], many
di�erent scanners were invented. Among them are Superscan [5] or newer models
like ZMap [6] and Masscan [7]. They all aimed to be even faster, more accurate and
reliable, though Nmap remained one of the most commonly known and used scanners,
due to its large community [4, 8, 9]. Even large Internet providers, such as the Leibniz
Supercomputing Centre (LRZ) in Munich [10] are interested in fast and continuous
port scans [10] to get an overview of activities in their network, the Munich Scienti�c
Network (MWN), being an example of a large research network. Furthermore scanning
for possible vulnerabilities and thus securing the MWN is also in the best interest of
a peripheral organized university network. Being a research network the MWN has
its advantages in providing open access, a large bandwidth, if required, for research
purposes and not controlling their user’s activities like a company network. On the
downside, this makes it more vulnerable because the provider LRZ has no in�uence
and widely no knowledge of activities ongoing in the MWN, but is responsible for the
MWN. For gaining a quick overview about activities and the di�erence between actual
and desired state, port scans are required. The port scanner Nmap was used for this task
at �rst, providing a good summary about services and activities in the MWN, but due
to the restricted speed of Nmap, these scans can take up to six months to complete [10].
As for the continuous growth of the MWN a new solution is required to complete entire
scans faster than currently.

1.1 Goals of the thesis

In this thesis we address both issues- how to scan faster with the same accuracy as
before and how to scan for vulnerabilities in the MWN, especially for the recent Secure
Socket Layer (SSL) 3.0 fallback vulnerability Padding Oracle On Downgraded Legacy
Encryption (POODLE) [11]. To �nd a good solution to these problems, the thesis has
three common goals:

2 Chapter 1. Introduction

First of all, we evaluate suitable port scanners like ZMap and Masscan for their use
regarding speed, plausibility and reliability in the MWN and concerning detecting
POODLE. In the second step, making use of the respective scanners, a port scanning
evaluation tool is developed in Python to enhance scanning speed signi�cantly. We used
this tool in the third step, scanning the entire MWN, �nding hosts, open ports, services,
additional banner information, operating system and vulnerable hosts to POODLE. This
information is saved and statistically evaluated.
As network security is one of the main �elds of research in the “Chair 8: Network
Architectures and Services” [12] of the Technical University of Munich (TUM), located
next to the LRZ, this chair is also interested in that topic and thus supervising this
thesis. It is therefore a cooperation work of the LRZ and the department of informatics
of the TUM, both interested in the development and use of the tool, the results and
evaluation of the MWN scans based on the theoretical background about port scanners
and POODLE.

1.2 Outline

In chapter 2 we introduce useful related work for this thesis regarding port scanning
and Secure Socket Layer/Transport Layer Security (SSL/TLS) vulnerabilities.
Chapter 3 introduces the MWN and the port scanners Nmap, ZMap and Masscan in
detail, gives an overview about the SSL/TLS encryption and closes with an explanation
of the POODLE vulnerability.
In Chapter 4 the hands-on part of the thesis starts with gathering information about the
chosen port scanners and setting the parameters for scanner comparison tests. Then
we describe the approach of the tests and gather and evaluate the test results.
After the best suited scanner is evaluated, the development of the scanning tool, the
“Fast Port Scanning Tool”, is discussed in chapter 5. Starting with the planing phase, we
continue with the implementation phase and end with hints how to work with the tool.
Chapter 6 describes the preparation phase and the approach of the scans of the MWN
with the scanning tool, as well as the results and the evaluation of them, examining
information about amounts of hosts up, ports open or services used and hosts vulnerable
to POODLE.
With the conclusions in chapter 7 the thesis closes by summarizing the most important
results and providing an outlook on future work.

3

Chapter 2

Related Work

In this chapter we provide an overview about related work regarding port scanners,
port scanning techniques and SSL/Transport Layer Security (TLS) vulnerabilities.

2.1 Related work regarding port scanning

As a direct predecessor work of this thesis, the interdisciplinary project of Omar Tarabai
“A Penetration Testing Framework for the Munich Scienti�c Network” [13] must be
mentioned. Though di�ering in the goals, the work aimed to provide a framework for
e�cient port scanning with Nmap, detecting vulnerabilities with the Nmap Scripting
Engine (NSE) and perform service and version detection on the MWN [13]. In contrast
to [13], this thesis aims more to �nd one speci�c SSL/TLS vulnerability and provides a
faster port scanning solution and evaluation than Nmap.
Another framework for fast port scanning the MWN is Dr. Portscan, developed by Felix
von Eye, Wolgang Hommel and Stefan Metzger [14]. This tool was developed to get
feedback concerning the di�erence between actual and desired state of a decentralized
university network. However the emphasis of Dr. Portscan was more focused on au-
tomated processing of data than speed in showing the di�erence between the actual
and desired state, given that Dr. Portscan uses Nmap as port scanner. Nevertheless this
thesis builds upon information and lessons learned from these two earlier papers.
In the following we give a general overview of scienti�c papers regarding port scan-
ning and SSL/TLS vulnerabilities. A well known port scanner is Nmap [4] because of
its age, popularity and many functions. But with the development of Zmap [6] and
Masscan [7], two possibilities for faster port scanning were developed. We describe
the di�erences and functionalities of these three scanner in detail in chapter 3. Papers
about Zmap like “ZMap: Fast Internet-Wide Scanning and its Security Applications” [2],
“Zmap: The Internet Scanner” [6] and “Zippier ZMap: Internet-Wide Scanning at 10
Gbps” [15] and papers about Masscan such as “Finite State Machine Parsing for Internet
Protocols: Faster Than You Think” [7] or “MASSCAN: Mass IP port scanner” [16] are
very important for the thesis.

4 Chapter 2. Related Work

General work about port scanning are “A review of port scanning techniques” [17],
“Framework for creating realistic port scanning benchmarks” [18] or “Investigating
Study on Network Scanning Techniques” [19] all related to Special Interest Group on
data COMMunications (ACM) (SIGCOMM). They especially helped designing the test
environment for comparing the port scanner.
Lastly the importance of secure ports and regular updates concerning the services and
tasks, using certain ports in a network is summarized in “Network attacks: Taxon-
omy, tools and systems” [20]. Here the authors emphasize the importance of broad
background knowledge regarding publicly available tools and systems for preventing
and defending against attacks [20]. Furthermore attacks are categorized and tools are
introduced to help both, network attackers and defenders. Thus we used some content
from their paper in this thesis for accessing background knowledge on the diversity of
tools available to the public.

2.2 Related work regarding SSL/TLS vulnerabilities

A detailed overview about SSL/TLS is given in detail in chapter 3.3. Nevertheless the
most mentionable papers regarding attacks on SSL/TLS should be introduced here.
The work of Gregory Bard in the year 2006 “A challenging but feasible block wise-
adaptive chosen-plaintext attack on SSL” [21] provides the basis for many later follow-
ing attacks on SSL/TLS such as Browser Exploit Against Secure Transfer (BEAST) [22],
Compression Ratio Info-leak Made Easy (CRIME) [23] and Browser Reconnaissance
and Ex�ltration via Adaptive Compression of Hypertext (BREACH) [24]. BEAST uses a
weakness in the Chaining Block Cipher (CBC) mode of operation in SSL 3.0 and TLS
1.0. Every de- and encryption starts with an Initialization Vector (IV) and only the �rst
IV of the �rst plaintext is chosen randomly, while the following IVs can be calculated
from the last blocks of the previously encrypted plaintext. As an attacker can verify his
guesses with a guessing oracle, it is possible to decrypt e.g. SSL/TLS secured cookies.
CRIME was made possible through BEAST [23] and uses a compression “side-channel”
approach. Through Hu�man-Coding and the “LZ77” algorithm, recurring strings are
�ltered and replaced with a reference to the last occurrence of that string. So the length
of the request diminishes, which can be detected by an attacker, verifying his guesses
about the content in the SSL/TLS encrypted message.
BREACH is based on CRIME, also using compression for a “side-channel” attack. The
di�erence is, that each letter is weighted according to the length of the reply message.
After enough tries, the letters and their position in the SSL/TLS encrypted message are
known with a certain percentage, depending on the length of the message.
After �xing most of the vulnerabilities these recent attacks were using, the HEART-
BLEED bug was made public [25] and the library OpenSSL was gravely a�ected by
it. This weakness allows to steal the secret keys used for X.509 certi�cates, which
makes stealing user names, passwords, messages and emails possible, without leaving a

2.2. Related work regarding SSL/TLS vulnerabilities 5

trace [26].
The attack we deal in this thesis with, is POODLE [11] and thus many research papers
such as “POODLE attacks on SSLv3” [27], “This POODLE Bites: Exploiting the SSL
3.0 Fallback” [11] and “The POODLE bites again” [28] are important for providing the
necessary background information about the requirements for an attack on a POODLE
a�ected system. The POODLE vulnerability and related attacks are described in detail
in chapter 3.3.2. Furthermore as it is the latest yet known vulnerability, �xing it is a
very important issue for any network, including the large research network MWN.

6 Chapter 2. Related Work

7

Chapter 3

Background

Beginning with an introduction of the respective research network MWN, we introduce
the port scanners Nmap, ZMap and Masscan and provide reasons for the choice of these
three scanner. We further introduce the SSL/TLS encryption and POODLE, providing
background knowledge on the subjects discussed in the thesis.

3.1 An example of a large research network: The Munich
Scienti�c Network

The MWN follows the principle to provide easy and unrestricted access for all employees
and students of institutions connected to the network [29]. Its provider is the LRZ of the
Bavarian Academy of Science (BAdW), which is a common data center for the BAdW,
the Ludwig Maximilian University of Munich (LMU) and the TUM. Of course, far more
institutions are using the MWN, all listed in a brochure about the MWN (see [29]).
Furthermore the entire network consists of 1,640,832 IPs (Internet Protocol (IP)) (dated
10th January 2015) divided into 1,179,648 private IPs for, e.g., student hostels or private
households and 461,184 IPs used by institutions, e.g., TUM, LMU or BAdW. With more
than one and a half million IPs, the MWN can be regarded as a large research net-
work [10, 29]. In the following, we provide an overview about holder-of-rights-of-use,
the services provided and, �nally, advantages and drawbacks.
First, every member of connected universities as well as all employees of connected
institutions can use the MWN. Even though, e.g., the faculties of medicine (LMU, TUM)
and informatics (TUM) use their own network architecture because of special research
and teaching character of medicine and informatics networks, the connection to the
Internet (X-WiN) is used all together [29]. Via “LRZ-User maintenance” new user can
be registered for using the MWN and additionally more than 65.000 installed work-
station computers are ready for use. Concerning data volume on a monthly basis in
2012, more than 650 Terabyte (TByte) were received and 370 TByte were sent via the
X-WiN interface. The scienti�c network X-WiN connects universities and research
facilities in Germany and with scienti�c networks in Europe or on other continents. It

8 Chapter 3. Background

is the successor of Gigabit Wissenschaftsnetz (G-WiN), maintained by the Deutsches
Forschungsnetzwerk (DFN) and currently one of the most performance-capable sci-
enti�c network worldwide [30, 31]. Signi�cantly, not only members of institutions or
universities can gain access. Mobile terminal devices can also be registered via a Wi�
connection. These devices pose a signi�cant risk to the network in general, as it is
exposed to unknown new software, brought through the mobile devices. This thread
will be discussed below.
To get a better overview, where which services and bandwidth is provided, �gure 3.1
unfortunately only available in a German version, sums this up [29].

Figure 3.1: Overview of services and speed, provided by the MWN [1]

3.2. Overview of port scanners 9

All services such as World Wide Web (WWW), E-Mail, Virtual Private Network (VPN),
maintaining an outer �rewall and access to online-media (e.g. universities libraries)
are provided based on servers and services such as Domain Name System (DNS), Dy-
namic Host Con�guration Protocol (DHCP) or Network Time Protocol (NTP) to every
bene�ciary. Also network wide Internet Protocol version 6 (IPv6) support has been
established by the end of 2013 and the LRZ operates an own Autonomous System (AS).
Concerning bandwidth, the MWN o�ers 1 to 100 Gigabit Ethernet connections, also
Fast Ethernet with 100 Megabits per second (Mbps) and xDSL with 2 to 50 Mbps.
As already noted in the introduction (chapter 1), the MWN su�ers from not having a
well organized and maintained company network because each institution is responsible
for maintaining its own part of the network. Consequently, the provider LRZ is not
well informed about activities happening in the network. Lacking a central department
responsible for security, the network is vulnerable to new attacks and new found vul-
nerabilities in network protocols.
Combined with the system Secomat for monitoring the private IPs and an Intrusion
Detection System (IDS) “Suricata” a central evaluation of security messages based on
the Open Source tool QRADAR is made possible, which helps maintaining a minimum
level of security [29].
In some cases these measurements are not enough and port scanning must be performed,
to get an actual summary about activities and the di�erence between desired and actual
state.

3.2 Overview of port scanners

In this section we �rst give an overview about available port scanners. Afterwards the
chosen port scanners Nmap, ZMap and Masscan for the Fast Port Scanning Tool are
described in detail.
Due to its age and tested reliability by various researchers [4, 8, 9] and as Nmap was
already used within the MWN with good results [14], Nmap serves as comparator for
the accuracy of ZMap and Masscan. Those two scanner were chosen as their developers
claim that their scanner can scan the entire Internet (Internet Protocol version 4 (IPv4)
address space) in 45 (ZMap) or six minutes (Masscan) [2, 7] with the same accuracy as
Nmap.

3.2.1 Nmap

Nmap was �rst released in 1997 by Gordon “Fyodor” Lyon and has become a well known
network security scanner worldwide [4]. As this is one of the oldest and most used port
scanners, it supports a variety of features including port scanning, service and version
detection, Operating System (OS) detection and �rewall or IDS evasion and spoo�ng,
just to name a few of them.
Due to its age it is probably the slowest of the three mentioned port scanners but

10 Chapter 3. Background

according to many papers [2, 4, 7], also one of the most reliable.
Apart from all the possibilities already provided by Nmap, more feature can be added
by writing customized scripts in the programming language Lua [4].
While Nmap supports a variety of di�erent scan methods, such as the Transmission
Control Protocol (TCP) connect scan, the User Datagram Protocol (UDP) scan, TCP
NULL, FIN or Xmas scans [4], the most common used is the TCP SYN method:
TCP SYN scan1 is probably the fastest scan technique. It works by sending a SYN
packet to the host, acting as if a real connection should be established and waiting for a
response. If a response is received (ACK), the port is very likely listening and therefore
open, while a RST indicates a non listening (closed) port. In case, that after several
retransmission no response is received, the port is listed as �ltered [4].
All open or open|�ltered ports are gathered via a regular port scan and passed to Nmap’s
service scanning module, which performs service/version detection in parallel. In
case of an open TCP port, Nmap tries to connect to it and once the connection is
established, listens. If a common service such as Secure Shell (SSH), Hypertext Transfer
Protocol (HTTP), Simple Mail Transfer Protocol (SMTP) or Post O�ce Protocol 3 (POP3)
is running on that port, it usually identi�es itself by sending an initial welcome banner,
which contains information about service and version number [4]. After comparing
this information to the Nmap probe signature database with more than 3000 entries,
the service can be fully identi�ed, Nmap is done and prints the service name either to
console or to a �le. Otherwise Nmap continues to use other techniques as the “Nmap
RPC grinder” and repeats sending other purpose-built packets to the host [4]. Regarding
OS detection2, Nmap sends up to 16 TCP or Internet Control Message Protocol (ICMP)
probes to open or closed ports of the target host [4]. As these probes contain data, which
exploits “various ambiguities in the standard protocol RFCs” [4], Nmap can generate a
�ngerprint of the OS by analyzing certain attributes and �ags in the responses. With
these values, Nmap can guess an OS with a certain percentage for correctness.

3.2.2 ZMap

ZMap, developed in 2013 by Zakir Durumeric, Eric Wustrow and J. Alex Halderman
at the University of Michigan [6], uses a TCP SYN scan on speci�ed ports. The main
paradigm of the scanner is to be as fast as possible, which is achieved by using an
asynchronous approach. Asynchronous means that its transmit and receive threads are
independent from each other. Furthermore “skipping the TCP/IP stack and generating
Ethernet frames directly” [2] makes sending packets as quickly as the source’s Network
Interface Controller (NIC) allows. In the standard con�guration, ZMap only scans for
one speci�ed port in the given IP range, which requires to write wrappers or similar
programs to scan for the entire port range spanning from 0 to 65,535.
As the tool is relying heavily on a high packet transmission rate, the developers recom-

1Nmap parameter: -sS
2Nmap OS detection command: -O

3.2. Overview of port scanners 11

mend strongly to follow their “scanning best practices” guideline, consisting of seven
points citedurumeric13. Furthermore they encourage to use a blacklist �le (exclude �le)
to exclude every reserved, unallocated or otherwise undesired IP space.
Apart from supporting a TCP SYN scan, it also supports the ICMP echo request scan
and also the UDP datagram scan. Figure 3.2 provides an overview about the ZMap
architecture.

Figure 3.2: Architecture of ZMap [2]

Via the Command Line Interface (CLI) the ZMap commands can be entered by the user
and parsed in the “State & Con�g” modules. The three methods “Validation Generation”,
“Address Generation” are responsible for calculating the addresses and in “Probe Sched-
uler” the timing of probes is set. A probe is a special probe packet, �lled with ,e.g., a TCP
SYN request. “Packet Generation” builds these probe packets, supporting, e.g. TCP SYN
and ICMP echo scans, and “Packet Transmission” sends these probes to the generated
addresses of the scanned hosts. While the “Framework Monitoring” monitors every in-
and outgoing packet, the “Receipt & Validation” part accepts responsive packets to the
probes, the “Response Interpretation” interprets the answers, also supporting multiple
kinds of probes [2]. Finally after “Result Processing” the processed information is either
written to console via stdout or to a �le in a application-speci�c way, making use of the
“Output Handler” of ZMap [2].
The speed of ZMap is an issue regarding the addressing of probes, as sending them
in numerical order would probably overload and block a network. So ZMap uses a
random permutation of the address space, iterating over a multiplicative group of in-
tegers modulo p, with p being slightly larger than 232 [2]. If p is prime, the group is
cyclic and therefore reaches all addresses in IPv4 address space once in a cycle. After
choosing the multiplicative group, selecting a new random permutation for each scan
is the next problem. The authors solved this by choosing a new primitive root of the
multiplicative group and a new random starting address [2]. Utilizing an isomorphism
of the group, �nding new random primitive roots is possible without too many extra
operations. Once this primitive root is found, iterating “through the address space by

12 Chapter 3. Background

applying the group operation to the current address” [2] allows to end a scan once the
initially scanned IP address is reached. Excluding IP addresses from an internet wide
scan, resulting in scans, with only a very small part of all IPv4 addresses, is realized by
using radix trees, often used by routing tables [32, 33]. These excluded ranges can be
speci�ed in a con�guration/exclude �le.
Sending packets is performed as fast as the source’s CPU or network card allows or
as fast as the user de�nes it to be. If an answer packet is captured, the source and
destination port is checked and the packet is either discarded, if it was not intended for
this scan or passed to the active probe module for further breakdown [2].
ZMap can also complete a TCP handshake and get additional information about the
service running on a certain port. This is realized via “forge_socket”, which bypasses
the Linux kernel and allows communication over the ZMap-initiated TCP sessions via
application-level handshakes [2].
Following Nmaps example, ZMap is also adaptable by the user, who can write his own
probe and output modules and include them to ZMap, resembling the Lua scripting
language support from Nmap.
Finally ZMap is a faster scanner than Nmap [2,6, 15], though more di�cult to use when
scanning port ranges as only one port at a time can be speci�ed for scanning. So for a
fast, complete overview of all 65536 ports, ZMap needs to be executed, e.g., in parallel.

3.2.3 Masscan

Masscan was �rst presented on the 2014 IEEE Security and Privacy Workshop confer-
ence [7]. It provides a high scanning speed, the use of arbitrary IP and port ranges and
is based on its own TCP/IP protocol stack.
Running with a maximum rate of seven million packets per second [15] is only achiev-
able, when using a special Ethernet adapter and driver “PF_RING ZC (Zero Copy)” [34].
Though di�ering in speed Masscan uses similar commands as Nmap, also using the
command line as default output.
Regarding its architecture, Masscan works more like ZMap [6], “scanrand” [35] or “uni-
cornscan” [36] using asynchronous transmission [7]. Asynchronous, already explained
in section 3.2.3, means that its transmit and receive threads are independent from each
other.
Randomization of targets is necessary with the same reasons as for ZMap: not to over-
load and block the scanned network. This works by iterating through the range of IPs
times ports (IP_Ports = IPs · Ports), encrypting the current value of i, the iteration
variable, and thus creating a random 1-to-1 mapping between the “original index vari-
able and the output” [7]. The next scanned host and port is then grabbed via the pick
function, taking the address and port at the index of the encrypted index variable. After
the receive threads receives a packet, its information is processed and passed of the
output module.
Masscan is also designed for the “C10M problem”, bypassing the kernel’s custom net-

3.2. Overview of port scanners 13

work driver, user-mode TCP stack and user-mode synchronization [7]. The “C10M
problem” describes the concurrency problem of ten million operations per seconds,
running independently from each other. Together with PF_RING, this allows for a
maximum transmission rate limited only by the speed of the used network card and
probably the CPU.
Apart from port scanning, Masscan can also grab banners, by completing the three-way
handshake and “grab simple banner information” [7] from the application running on
the port. This works basically the same way, as the �rst steps of service detection of
Nmap, but again Nmap can perform more techniques, while Masscan is limited to a
simple banner exchange.
In addition to its features, Masscan can perform scans designed for a speci�c purpose via
appending scripts 3. Especially the “poodle” script is important, as it allows to perform
a port scan and a SSLv3 fallback check at the same time.

According to its developer Robert David Graham, Masscan is currently “the fastest
Internet port scanner” [7] and should produce similar results to Nmap. Although this
statement might have been true for some time, the development team of ZMap published
a newer paper, stating: “Masscan [had its] peak [at] 7.4 Mpps using a single-adapter
con�guration ... [and] 50% of 10 GigE linespeed. ... On the same hardware, ZMap [had
its] peak [at] 14.1 Mpps.” [15]

3.2.4 Further scanning tools

Although tools such as “suscan” [5], “scanrand” [35] or “unicornscan” [36] also exist,
they are either too old and with that too slowly for the task addressed here, lack functions
such as service/OS detection or are not well documented. We also found another new
scanner, “nscan” [37], but as it was released around the 30th of January 2015, it was
released when this thesis was well underway and evaluating nscan was not possible
anymore.

3.2.5 Comparison of Nmap, ZMap and Masscan

Regarding ZMap and Masscan, the major di�erence is that ZMap was especially designed
to scan the entire IPv4 address space on one port, while Masscan is more adaptable,
allowing arbitrary IP and port ranges.
When comparing Nmap to ZMap and Masscan there are some major di�erences: First
of all Nmap uses a synchronous approach, meaning that transmit and receive thread
are not independent, while the other two scanner are asynchronous. This means, that
due to the architecture of ZMap and Masscan sending, receiving and creating packets
runs independently [2,7]. Nmap on the other hand, while running synchronously, must

3--script

14 Chapter 3. Background

�rst create packets, each assigned to a certain host, then send and receive the responses.
Another di�erence to Masscan is the possibility of host discovery to determine, if a host
is up or not. If this option is not disabled 4, only hosts, marked as “up”, get scanned
afterwards, which is usually found out by an ICMP echo request and reply.
Although Nmap seems like a reliable fast port scanner, it lacks the required speed for
scanning a large research network with about 500,000 hosts.
A combination of Masscan and Nmap seems the most promising solution for scanning
a large network for IPs, open ports, services and OSes.

3.3 SSL/TLS vulnerability POODLE

In this section we give a short overview of the SSL/TLS encryption, possible attack
patterns and the current vulnerability POODLE.

3.3.1 Introduction to the SSL/TLS-encryption

SSL version 1.0 has been developed at the beginning of 1990s by the company Netscape
with the goal to create a secure connection between applications, typically between
web server and Browser. Connections established via SSL/TLS were built to provide
mutual authentication of participants, encryption and integrity [38]. As fundamental
design �aws were corrected, to withstand newer attacks [39], in 1999 SSL was renamed
to TLS. In 2013, the most spread implementation of TLS was 1.0 [38] although versions
1.1 and 1.2 were long available, providing even more security.
In the depiction 3.3 connection establishment is summarized.
Concerning its functionality, the establishment of a TLS connection begins with a
handshake phase: During that phase, all cryptographically required data is exchanged
between client and server. First the client connects to the server, which authenticates
itself, usually with a X.509 certi�cate towards the client. Optionally the client can
authenticate itself too, towards the server also normally using that kind of certi�cate.
Afterwards the client performs a key exchange with the server. Also the client sends the
desired Cipher suite and a mutual secret is calculated either from a Di�e-Hellman key
exchange or from the exchange of the encrypted random number. To provide encryption,
a symmetric cipher is used to encrypt every packet with the cryptographic key, derived
from the mutual secret. For authentication and integrity a Message Authentication
Code (MAC) is used. These two measurements are combined in the following order:
MAC then encrypt. So �rst a message is authenticated and then encrypted. With the
calculation of the session key from the mutual secret, the handshake phase is over and
information exchange begins encrypted and authenticated [38].
Following the handshake-phase, the record layer is responsible for the exchange of
application data over a secure channel.

4-Pn

3.3. SSL/TLS vulnerability POODLE 15

Figure 3.3: SSL/TLS connection establishment [3]

3.3.2 POODLE

More recently, there were many possibilities to break the TLS encryption, such as
CRIME [23], BREACH [24] and BEAST [38] and �nally POODLE [11].
Every Browser and server, still supporting SSL 3.0 is vulnerable to POODLE and since
October 2014 it is known, that even TLS versions can be a�ected. This is due to the direct
takeover of the padding mechanisms in SSL 3.0 to TLS 1.0 in some implementations,
e.g., when using load-balancer of companies such as A10 or F5 [28].
Regarding the use of load-balancer in the MWN, there are almost none [10]. With this
information, we decided that scanning for SSL 3.0 fallback in the MWN su�ces entirely
to eliminate the POODLE vulnerability within the MWN.
In September 2014, Bodo Möller, Thai Duong and Krzysztof Kotowicz, all employed
as cryptographers by Google, published a security advisory describing the POODLE
thread [11].
It was also mentioned by Adam Langley, also cryptographer and employee of Google,

16 Chapter 3. Background

in his blog “ImperialViolet” [27]. In the following an attack is described, making use of
the SSL 3.0 fallback:
To make connection establishment with legacy server easier for clients, a downgrade
of SSL/TLS versions is usually implemented on client side [11]. If the client has only
SSL 3.0 at his disposal or is forced, e.g., by an attacker to pretend that SSL 3.0 is the
latest available version, the client establishes a connection with the server via SSL 3.0.
An attacker can do that, if he controls the network between the client and the server
and interferes with any attempted handshake o�ering TLS 1.0 or later, with the result,
that such clients will readily con�ne themselves to SSL 3.0 [27]. Figure 3.4 shows this
downgrade-dance, forced by a Man in the Middle (MitM). If an attacker knows which

Figure 3.4: SSL 3.0 downgrading, forced by a MitM attacker

load-balancer the client uses, even TLS 1.0 downgrading might su�ce to succeed with
this attack.
Now a client server connection is established using SSL 3.0. If SSL 3.0 uses the RC4
stream cipher for encryption, receiving information by an attacker, e.g., an encrypted
cookie for login information of the victim, is relatively easy as it is known, that “if the
same secret (such as a password or HTTP cookie) is sent over many connections and
[thus] encrypted with many RC4 streams, more and more information about it will
leak” [11]. Receiving a secret from the victim, if the CBC block cipher is used by SSL
3.0, is a bit trickier:
The groundwork of the following attack pattern is based on the work of Gregory
Bard [21]. In this work, he describes a structural weakness of CBC in SSL 3.0 and
TLS 1.0. CBC begins every encryption and decryption with an IV. The problem with
TLS 1.0 and older versions is, that only the IV of the �rst plaintext is chosen randomly
and all further IVs are calculated from the last block of the previously encrypted plain-
text. Furthermore an attacker can verify his guesses about the �rst IV.

3.3. SSL/TLS vulnerability POODLE 17

The reason behind this is, that the block cipher padding of CBC encryption in SSL 3.0
is not deterministic and not covered by the MAC [11] as SSL/TLS calculate the MAC
�rst and then encrypts the message. Being not deterministic, when decrypting, it can
not be veri�ed, e.g. by the victim, if the padding has not been changed, so if integrity is
compromised.
Even though this attack also works in other ways on other protocols, one of the most
common attack is against Hypertext Transfer Protocol Secure (HTTPS) secured cookies,
which is the reason why this scenario was picked for detailed description:

With S being the block size in byte, padding 1 to S bytes is used to get a certain “
integral number of blocks before performing block wise CBC [...] encryption” [11]. To
exploit this weakness, it is easiest if there is an entire block of padding of S-1 arbitrary
bytes, followed by a value S. With the initialization vector C0 and blocks Ci , processing
incoming cipher text recordC1...Cn on recipient’s side works by determining P1...Pn with
Pi = Dk (Di) ⊕ Ci−1. Dk is the block-cipher decryption per-connection key K [11]. Now
padding is checked and removed from the end of the message and the same happens
with the MAC. If there is a full block of padding and the last blockCn is replaced by the
attacker with any earlier cipher text block Ci from the same encrypted message, this
cipher text will be accepted if Dk (Ci) ⊕ Cn−1 has S as its �nal byte [11]. Otherwise it
will we rejected, making a padding oracle attack possible.
In order for this attack to succeed several conditions must be matched:

1. The attacker can read the network tra�c of the victim, e.g., by being a Man in
the Middle.

2. The attacker can force the victim to send HTTPS request to the server.

3. The attacker has full control of the path to the target of the HTTPS request of the
victim.

Ful�lling these prerequisites, launching an attack is covered in the following steps.
Figure 3.5. shows an attack on a HTTPS secured cookie of the online payment company
“paypal”.

The attacker forces the Browser or the application communicating with the Internet
to send HTTPS requests to the target server (e.g. https://www.example.com/ample).
“ample” is chosen in a way by the attacker, that the �rst Byte b of the unknown cookie
header is written to the last position of the plaintext block. With P being the plaintext
block this looks like this:P|b. The Browser of the victim negotiates for the SSL/TLS con-
nection a shared secret key with the server and generates via CBC mode an encrypted
request, which is sent to the server.
The attacker intercepts the encrypted request. Now the SSL record is modi�ed with
a chance that the server will accept the modi�ed record, which allows the attacker to

18 Chapter 3. Background

Figure 3.5: Overview about POODLE attack

decrypt one byte of the cookie: b. To calculate b some assumptions must now be made:
Each block ofC has 16 bytes (C[0],...,C[15]), which is used, e.g., for Advanced Encryption
Standard (AES). If the size of the cookie is unknown, we can use the padding size to
determine the size of the cookie. By inducing byte-growing requests (e.g., by appending
a letter in ASCII) allows to observe the point where the block boundary is crossed [11].
When the padding size is revealed, also the size of the cookie is known. Typically the
MAC size in SSL 3.0 CBC cipher suites is 20 bytes and without CBC an encrypted HTTPS
request looks as follows:
POST /path Cookie: name= value... body || 20byte MAC || paddingAs the at-
tacker controls the request path and body, inducing requests with the following condi-
tions is possible [27]:

1. Padding �lls an entire block (encrypted in Cn)

2. The cookie’s �rst not yet known byte is in the �nal byte in an earlier block
(encrypted in Ci).

After the attacker has replaced Cn by Ci , this modi�ed SSL record is send to the server.
In an average of 255 of 256 cases, the server will reject the record and the attacker has
to try again with a another, new request. If the server accepts the modi�ed record,
the attacker can conclude that Dk (Ci)[15] ⊕ Cn−1[15] =,e.g., 15 and that Pi [15] =
15 ⊕ Cn−1[15] ⊕ Ci−1[15] [11]. With this the cookie’s next, before unknown byte was
calculated by the attacker.

3.3. SSL/TLS vulnerability POODLE 19

By changing the sizes of request path and body at the same time, so that the request
size stays the same, but the position of the headers is shifted, the attacker can �nd out
the next byte [11]. This procedure is repeated until all bytes are known. The expected
overall e�ort is 256 SSL 3.0 requests per byte.
As we already mentioned above, POODLE poses a serious thread and the easiest way to
avoid it, is to disable the SSL 3.0 protocol on both, server and client, side. The problem
is to identify the servers and hosts still supporting SSL 3.0. So the MWN requires an
entire network scan, to identify the servers still supporting SSL 3.0.

20 Chapter 3. Background

21

Chapter 4

Scanner Evaluation

Finding the best suited scanner for implementing a solution for fast and reliable port
scanning is the main goal of this chapter. To evaluate the accuracy of Masscan and
ZMap compared to Nmap, we planned and conducted test scans, described in chapter 4.1
and 4.2. The most important scanning results were gathered in chapter 4.3. In chapter
4.4 we give a summary of arguments in favor or against ZMap or Masscan and conclude
in chapter 4.5 that Masscan is the most suitable scanner for the further approach.

4.1 Setting the test environment

After considering potential test environments, it was agreed to de�ne the ensuing
parameters, described in detail in the further subsections:

1. Testing network

2. Location

3. Rate limiting

4. Acceptance by the administrators

5. Output

6. Speed evaluation

7. Plausibility

8. Files as parameter input source

4.1.1 Testing network

As testing network, we chose the real network of “Chair 8: Network architectures and
services” as many di�erent services run on the hosts, a usual workday takes place, a
�rewall is installed and all hosts are di�erently con�gured , with di�erent OSes and

22 Chapter 4. Scanner Evaluation

executing di�erent tasks. As to its size and exact IP range, the network exists of 2048
possible hosts with the IP ranges 188.95.232.0/22, 192.48.107.0/24, 131.159.14.0/23 and
131.159.20.0/24.In essence, as this is a real subnet, it simulates the authentic circum-
stances of the far larger, but also diversely con�gured, MWN.

4.1.2 Location

First, the question from where to scan must be clari�ed. For this purpose we set up
a Linux based virtual machine, using the infrastructure of the LRZ. The Virtual Ma-
chine (VM) is accessible via a SSH remote connection, established from the home res-
idence of the student, and reachable via the address 129.187.251.11, which is the VM
“lxdps04.srv.lrz.de”. To prevent disconnects to the remote VM, which would result in
ending the running programs on the VM, the terminal multiplexer “tmux” [40] was
used.
In addition to the VM, we also set up a hardware machine located in the “Chair 8:
Network architectures and network services” [12], “bozen.net.in.tum.de”, for testing
purposes.

4.1.3 Rate Limiting

Another parameter is rate limiting, because user should be disturbed as little as possible
by a scan, while working in the MWN. On scanner side, the bandwidth was limited
to 20 Mbps for smaller networks, like the network of “Chair 8: Network architectures
and network services” with 2048 possible hosts and up to 100 Mbps for larger networks
such as the entire MWN.

4.1.4 Acceptance by administrators

While working with this limitation, another issue must be settled: administrator com-
plaints. It is essential during the time of this work, that users or administrators, working
in the respective network should be disturbed in his or her normal daily a�airs as little
as possible. If any complaints occur, the parameters must be adapted or the problem
solved in a di�erent way so that acceptance of the scans is guaranteed.

4.1.5 Output

We decided, that every test using one of the scanners, should be documented by an
output �le in the xml or csv format, so the test results are saved and the test itself
stays repeatable. Optional, if necessary, a “pcap” �le can be created by the network
analyzer “Wireshark” [41]. Furthermore, date, time and the scanning commands were
saved separately in another �le.

4.2. Conduction of test scans 23

4.1.6 Speed Evaluation

For speed evaluation, some guidelines are mandatory:

1. We scan the same IP address range with the comparable scanners.

2. We scan for the same ports in this IP range with the comparable scanners.

3. We use the same scanning method such as TCP SYN Scan (see chapter 3) for
comparison.

4. We use built in randomization of Nmap, ZMap and Masscan for IPs and ports
concerning every scanner (see chapter 3.2).

4.1.7 Plausibility

Testing the data for plausibility is very important, as it is not possible to determine if
the output of a port scanner is indeed “correct”. This shows if a port is really open or
closed or if, for example, a �rewall blocks the access. For ensuring that the tests are
valid, each test scan will be repeated at least two times within a maximum time span of
two days. Due to changes in the network itself it is never guaranteed that each test run
returns the exact same result. So the comparison scans are simply used to evaluate if
the result of the �rst scan are similar.
The standard approach is to scan with Nmap �rst and compare the results of ZMap and
Masscan to each Nmap scan, as Nmap was already used in the MWN with good results
and can thereby regarded as accurate [14].
We regard a scan as plausible, when the results, concerning ports, do not di�er more
than ten percent from each other in one of the three comparison scans.

4.1.8 Files as parameter input source

Another step to produce comparable test scenarios is to write every command to a �le,
which is then executed by using the --config option using ZMap and the -c option
using Masscan. Working with Nmap requires to enter all the desired commands in a
script �le, which is then used as parameter input source. This ensures that apart from
being saved in the output �le and in a separate text �le, the scans stay reproducible.

4.2 Conduction of test scans

After having speci�ed the parameters for scanner comparison, we started comparing
the tools’ accuracy in test scans. Main testing was performed within a month to get
enough di�erent scan results. During that time many di�erent con�gurations were
tried, which are all summed up in the following.
Figure 4.1 shows, where the VM and the hardware machine were located in the di�erent

24 Chapter 4. Scanner Evaluation

AS of LRZ and TUM. The external �rewall or the IDS should of course be located before
entering the TUM [I8] AS.

Figure 4.1: Di�erences between Nmap and Massacan scans, performed from hardware

We started with Nmap, with a full scan of all 2048 hosts in the “Chair 8 ” network. As
the scan was interrupted after 20 hours with no output, the need of Linux tools such as
“GNU screen” [42] or “tmux” [40], to ensure the stability of the scans, became evident
(see subsection 4.1.2).
For this scenario we added an additional “tee” [43] output to collect data until the
interrupt.
Furthermore, we detected the di�erent speed limiting possibilities by ZMap, Nmap and
Masscan, which led to several purpose-built “pcap”-outputs from “Wireshark” to set an
upper limit for the respective packet size of Nmap and Masscan. This was necessary
as Nmap and Masscan only support packet rate limitation. We calculated these packet
rate limitation to the desired bandwidths of 20 Mbps and 100 Mbps accordingly.
The outputs from “Wireshark” of the captured Nmap and Masscan scans showed both
a packet size of outgoing TCP packets of 54 Bytes including headers in 99.95% of all
cases and 60 Bytes in the remaining 0.05%, which resulted in the following packets per
second rates: 20,000,000

0.9995 · 54 · 8 + 0.0005 · 60 · 8 = 46,293

100,000,000
0.9995 · 54 · 8 + 0.0005 · 60 · 8 = 231,481

4.2. Conduction of test scans 25

So we limited Nmap’s and Masscan’s packet rates to 46,000 for 20 Mbps and to 230,000
for 100 Mbps to ensure, that we don’t cross the bandwidth limit.
With the output of the �rst test trials, reference scanning started. Every scan was
conducted in this and the following subsections (4.3.2, 4.3.3, 4.3.4 and 4.3.5) with the
parameters shown in table 4.1. So Nmap scanned all ports, did not perform host de-
tection and DNS resolution, did a TCP SYN scan, had a verbosity level of one, wrote
all information to an xml �le, used more than 1000 packets per second, was limited
to 46,000 packets per second maximum, randomized hosts and had one try per host.
For comparison reason we gave Masscan the same scanning commands for scanning
behaviour. ZMap was limited to 20 Mbps instead of 46,000 packets per second, wrote
the result to a csv �le and had a cooldown of 10 seconds per scan.
All parameters are also described in detail in “Appendix B - Scanner parameters”. One

Scanner Parameters
Nmap -sS, -v, -p-, -oX, -n, -PN, --min-rate, --max-rate, --randomize-

hosts, --max-retries, IP range
Masscan -p, -oX, --max-rate, IP range
ZMap -B, -p, -o, -c, IP range

Table 4.1: Scan parameters for scanner comparison tests

problem was the speed of Nmap, as it still took Nmap up to 20 hours to �nish a scan
of all 2048 hosts with all 65536 ports, so due to di�erent time slots, it was di�cult to
equally compare these test results as ZMap and Masscan were far faster to �nish their
scans.
For easier evaluation we wrote a comparison program in Python, so that output of
Nmap and Masscan only showed hosts, which were up, with their respective open ports.
Table 4.2 shows a part of a Masscan scan, evaluated with the self written evaluation
tool. As both Nmap and Masscan results could be changed to that form, comparing the

IP Ports
’131.159.14.36’ ’80’ , ’443’
’131.159.14.111’ ’21’, ’80’, ’6969’
’131.159.14.197’ ’53’
’131.159.14.204’ ’80’, ’443’
’131.159.14.216’ ’53’
’131.159.14.221’ ’53’, ’80’, ’389’, ’443’, ’636’
’131.159.14.245’ ’443’

Table 4.2: Example output from comparison tool

scans, e.g., via the linux command “di�” [42] returning the di�erences in the �les, was
possible.
After the scanner produced several test scans, from hardware and virtual machine, we
stopped comparison scanning and gathered the results.

26 Chapter 4. Scanner Evaluation

4.3 Results of comparing tests

In this section we gather the results from the scanning phase, beginning by showing
an enormous di�erence concerning host detection when scanning from the hardware
or from the VM. Afterwards the results from the di�erent scanners Nmap, ZMap and
Masscan are compared.

4.3.1 Particular characteristics of ZMap and Masscan

As mentioned in chapter 3.2.2, we could verify a scanning hindrance with ZMap, as
ZMap does not accept arbitrary port ranges but only one port as parameter for each
scan. Thus one ZMap call returned only information about one port, while Nmap and
Masscan scanned all ports per call.
Regarding Masscan, we detected some duplicate entries in the output �les, which needs
to be eliminated to allows equal scanner comparison.

4.3.2 Scan results from scanning within the “Chair 8” network from a
hardware machine

First, Nmap scans from the hardware were more accurate than the scans of ZMap and
Masscan as shown in �gure 4.2. This was mostly due to a �rewall policy allowing only

Figure 4.2: Di�erences between Nmap and Masscan scans, performed from hardware

a certain amount of packets to get through and limiting ICMP) packets to a certain

4.3. Results of comparing tests 27

amount per minute. Furthermore the scans from the hardware machine use another
interface than from the VM:
Scanning from the “bozen” server in “Chair 8” is only possible via the interface “eth0.220”,
which can be speci�ed in Nmap with “-i”1 and in Masscan via the gateway Media Access
Control address (MAC address) 2. With the high packet transmission of ZMap and
Masscan they could not detect as many hosts as Nmap, as Nmap had far more time to
wait for a response [12].
However it was not possible, against sincere e�orts, to get results from ZMap, scanning
from the hardware machine3, which is the reason, why ZMap is excluded from compar-
ison here.
Even though Masscan detected the same hosts and ports as Nmap has, the di�erence in
numbers is too huge. For more reasons of this signi�cant di�erence, further tests would
be required, which is beyond the scope of this thesis. To summarize this section:
As scans on the Munich Scienti�c Network will be run from a virtual machine within
the LRZ network, these test results have no signi�cance for the further approach and
were only done for testing purposes.

4.3.3 Comparing Masscan and Nmap

Following the guidelines listed at the beginning of the chapter it was possible to get
good test results comparing Nmap and Masscan, when scanning from the VM. However,
the speed di�erence between Nmap and Masscan made it impossible to scan at the exact
same time. Thus the results are not exactly the same, but di�er slightly. As �gure 4.3
shows only absolute numbers, the following description lists di�erently detected hosts
and ports by Nmap and Masscan.

1st Nmap vs. 1st Masscan scan
Masscan detected one host with one port more.

1st Nmap vs. 2nd Masscan scan
Nmap detected seven other hosts with 18 other ports than Masscan.
Masscan detected one other host with two other port than Nmap.

2nd Nmap vs. 3rd Masscan scan
Masscan detected one other hosts with two other ports than Nmap.

2nd Nmap vs. 4th Masscan scan
Nmap detected �ve other hosts with nine other ports than Masscan.

We performed two Nmap scans and four Masscan scans to get di�erent values from
di�erent points in time. Regarding duration of the scans, Masscan required 40 to 50

1-i eth0.220
2--gateway-mac 00:1b:ed:e6:7b:00
3sudo zmap -B 20M -c 5 -G 00:1b:ed:e6:7b:00 -p 80 -o 19_11_ZMap_80_HW_�rst.csv 188.95.232.0/22

192.48.107.0/24 131.159.14.0/23 131.159.20.0/24

28 Chapter 4. Scanner Evaluation

Figure 4.3: Di�erences between Nmap and Masscan scan results on testing network, performed
from VM

minutes for all 2048 hosts on all ports, while Nmap required eight to ten hours on the
same range. Furthermore, we performed all tests of this chapter within a day. As these
tests were carried out to evaluate the accuracy of Masscan compared to Nmap, the
accuracy of Masscan can be calculated with the values shown in �gure 4.3.
If every port is counted as one, the port di�erence between Nmap and Masscan from
scans, performed on the VM is 167 vs. 166 and 147 ports in the �rst run and 143 vs. 141
and 134 ports in the second run. This results in the following port cover percentage:

(166 + 147) : 2
167 = 93.71%

and
(141 + 134) : 2

143 = 96.15%

Combining these two values results in 96.15%+93.71%
2 = 94.93%. With these results we

concluded that Masscan possesses an accuracy of 94.93% if compared to Nmap.

4.3.4 Comparing ZMap and Nmap

As already mentioned in section 4.2, ZMap can only scan one port per scan run. So a
ZMap scan was performed on the �rst 1024 ports, as they are “named ports” [44], and

4.3. Results of comparing tests 29

on several other ports detected by Nmap and Masscan. In the end we chose 15 di�erent
ports for comparison testing, as ZMap discovered on all of them more than one host up.
Figure

Figure 4.4: Comparing Nmap and ZMap by selected ports, performed from VM on the same day

As above in section 4.3.3, we performed two tests to get di�erent values from other
points in time. ZMap required ten seconds per scanned port on all 2048 hosts, because
of its internal cooldown, while Masscan stayed at 40 to 50 minutes for all ports on all
hosts, as in section 4.3.3. Furthermore, we performed all tests of this chapter within a
day. Figure 4.4 and 4.5 show the amount of detected hosts on that port and compare the
results of Nmap and ZMap
Regarding di�erent detected hosts, Nmap detected one host more, while ZMap detected
three more hosts in the second test compared to the respective other scanner. The rest
was identical.
So ZMap and Nmap had a port di�erence of four, but it must be reminded that not every
port was scanned but only a selection of the ten most mentioned ports. Hence Nmap
discovered 139 hosts on ports 21, 53, 80, 143, 179, 443, 465, 587, 993, 10025, 10080, 20001,
20002, 26000 and 42512 and ZMap discovered 138 hosts on the same ports. In the second
turn Nmap discovered 123 hosts on these ports, while ZMap discovered 122 on the same
ports. The di�erence based on all ports is: one port in the �rst run and �ve ports in the
second run. This results in a port cover percentage of:

1 − (
1

139 +
5

123) = 95.21%

30 Chapter 4. Scanner Evaluation

Figure 4.5: Comparing Nmap and ZMap by selected ports, performed from VM on the same day

So ZMap matches Nmap’s port coverage in 95.21% of all cases, measured on the �fteen
ports, where more than one host was detected.

4.3.5 Comparing Masscan and ZMap

We compared Masscan and ZMap to see if they produce similar results. Therefore the
same ports as in section 4.3.4 were scanned with ZMap and Masscan and the results
can be seen in �gure 4.6 and 4.7.
As these �gures show, the di�erences between ZMap and Masscan are very small. ZMap
detected one host with an open 53 port more than Masscan, while Masscan detected
one host more with an open 80 port and no hosts on port 10080 in the second run. Apart
from that the detected ports per host are identical.
Scanning duration of Masscan and ZMap stayed the same as in chapter 4.3.3 and 4.3.4
with Masscan taking 40 to 50 minutes on the complete range and ZMap taking ten
second per port on all hosts. Furthermore we performed all tests of this chapter within
a day. In the �rst run a total of 138 hosts were detected on the 15 ports by ZMap and
in the second run 122. Di�ering in two and eight hosts in the �rst and second run, the
host per port coverage of Masscan compared to ZMap was:

1 − (
2

138 +
8

122) = 91.99%

4.3. Results of comparing tests 31

Figure 4.6: Comparing Masscan and ZMap by selected ports, performed from VM.

Figure 4.7: Comparing Masscan and ZMap by selected ports, performed from VM.

32 Chapter 4. Scanner Evaluation

So Masscan equals ZMap in 91.99%, regarding host per port detection on the �fteen
selected ports.

4.4 Evaluation of Nmap, ZMap and Masscan test scans

In this section, we collect all arguments for choosing a certain scanner and close with
reasons why Masscan was chosen for this thesis.

4.4.1 Duplicates

As mentioned in section 4.2 and 4.3.1 the major di�erence, regarding de�ning scanning
arguments between ZMap and Masscan is, that ZMap can only scan one port in the
network at a time, while Masscan as well as Nmap, can already scan every port from
0 to 65535 simultaneously. According to one of the developers of ZMap, this design
was chosen because the problem of duplicates in the scan results couldn’t be solved
satisfactorily, when ZMap was adapted to scan port ranges [6]. When scanning with
Masscan, some scan results occurred several times (see section 4.3.1), so by adapting
ZMap to all ports at once, the output of ZMap and Masscan would equally be �lled with
a few duplicates entries. From that point of view, it does not make sense to alter ZMap
into a tool with the same output as Masscan.

4.4.2 Accuracy

The most likely scenario where the developed tool will be used, is when scanning the
MWN from a VM from the LRZ, so the results from the hardware can not be taken into
account here.
More interesting were the two Nmap scans from the VM compared with the scans from
the other tools, which has shown that Nmap and Masscan were the most comparable
tools - despite their immense di�erence in speed.
With the calculations from section 4.3.3 and section 4.3.4, we showed that Masscan
compared to Nmap has a port cover percentage of 94.93%, while ZMap reaches 95.21%.
Therefore ZMap is slightly more accurate compared to Masscan and both scanner
compared to Nmap, keeping in mind that comparing ZMap to the other two is rather
di�cult as it can only scan one port per run. These results are also supported by the
research of David Adrian et al. published in their paper “Zippier ZMap: Internet-Wide
Scanning at 10 Gbps” [15].

4.4.3 Speed

With respect to speed, both scanners can reach beyond the 100 Mbps limit, which is
required for ful�lling the tasks of this thesis. As mentioned in [15] it must be stated,
that ZMap can speed up to 14 million packets per second, while Masscan reaches
only 7 million packets per second. But these packet rates would require far too much

4.5. Reasons for choosing Masscan 33

bandwidth, so they could be rated equally, as both easily ful�ll the 100 Mbps limit. But
ZMap needs to initialize each time when addressing another port. So we concluded,
that when scanning port ranges, Masscan is currently faster than ZMap.

4.4.4 Documentation

Both tools were developed as open source tools, published on github. But ZMap was
developed at the University of Michigan, resulting in many research paper about ZMap
like [2, 6, 15] and a larger documentation about it, than Masscan. Masscan has only a
README �le along with the provided C code, so ZMap is better documented in general.

4.4.5 Features

We found, that both scanners provide blacklisting for excluding certain IP ranges, as
well as running the scan using parameters de�ned in con�guration �les. Although both
support banner grabbing, “ZMap and banner-grab can have signi�cant performance
and accuracy impact on one another if run simultaneously.” [6] There is a signi�cant
di�erence between the scanners, as Masscan can perform a SSL 3.0 detection, required
to ful�ll the scanning tasks in one step. As service and version detection are very
important requirements for ful�lling the tasks addressed in the thesis, Masscan is better
suited for the further approach regarding its features.

4.5 Reasons for choosing Masscan

We chose Masscan for further development as it can already scan port ranges, needs
less time to �nish the addressed tasks than ZMap and has the features needed to ful�ll
the scanning in one step, like SSL 3.0 detection. Even though ZMap is slightly more
accurate and better documented in general, altering ZMap for scanning port ranges
would result in a tool very similar to Masscan, also not having solved the problems of
duplicate entries in the output �les.

34 Chapter 4. Scanner Evaluation

35

Chapter 5

The Fast Port Scanning Tool

This chapter provides an overview about the planing and implementation phase of the
scanning tool. Furthermore we explain certain design decisions and the modes the tool
supports. According to its purpose we named the tool the “Fast Port Scanning Tool”.

5.1 Planning Phase

Here we explain the steps before implementation.

5.1.1 First drafts

While running the comparison scans with Nmap, Zmap and Masscan, a simple help
function was written in Python 2.7 (see Chapter 4.1) to eliminate duplicate entries and
enable easy comparison between scanning results.
Starting with this simple tool, which reads IP addresses and ports from an xml �le and
writes these, sorted by IP address and port to a txt �le, the requirements for the port
scanning tool were gathered.
We agreed the tool should also be written in Python 2.7 and that the port scanners
should be called from the tool, executed and the result written to .csv �les for further
processing. Deciding which information is necessary was the next step, summarized in
table 5.1. With the existing tools and programs, port scanning itself could be performed
but for a fast detection of SSLv3 fallback, there was no satisfying solution yet.
OpenSSL [45] seemed to be a good choice for checking if a host could still accept SSLv3
or only newer TLS 1.X requests. But checking every host with OpenSSL for the oldest
SSL version available on host side took too long, which is �ve seconds per host.
As OpenSSL was not a good choice, the NSE [4] seemed promising, as there are already
existing scripts designed for checking for POODLE [4]. But even with the fastest options,
this took too long, once again with about 5 seconds per host.
In the end, we chose Masscan for this task as it also provides an additional script for
checking for SSLv3 fallback [7].

36 Chapter 5. The Fast Port Scanning Tool

Entry Description
IP address This entry is the IP address of the respective scanned host.
Port This entry holds an open port detected on the host.
Service This entry shows which applications run on this port
Banner This entry provides additional information regarding running

services such as, e.g., version numbers.
OS This entry exists only if the host was scanned by Nmap as Mass-

can doesn’t provide OS detection.
Vulnerability As this thesis only takes a closer look on POODLE, the standard

vulnerability is POODLE.
SSL 3.0 vul-
nerable Y/N

This entry indicates whether the host is vulnerable to SSLv3
fallback or not.

Table 5.1: Overview about important information from the scans

5.1.2 Requirements for the Fast Port Scanning Tool

The cases the tool must be able to deal with, are the following:

1. IP range: Hosts for scanning can be set in a separate con�guration �le.

2. Excluded IPs: IPs, which are private [44] or should not be scanned can be set in a
separate exclude �le.

3. Scan Parameters: Together with the IP range, scan parameters can be set in the
same con�guration �le for Masscan. Nmap’s parameter are hard coded as the
tool requires Nmap’s OS and service detection to work correctly.

4. Output: The tool always produces the speci�ed .csv �le as de�ned above and
optionally a xml or a txt �le containing the output from the scanner itself. The
name of the output from Masscan or Nmap can be de�ned by the user or taken
from the default value from the tool.

5. Fast overview of the network: If only one scan is required, either a fast Masscan
scan is executed once, or a Nmap scan is appended for more service and especially
OS detection.

6. Continuous scans: In a prede�ned period of time, scanning repeats in the same
user-set time intervals until the user interrupts.

7. Scheduler for scanning: The user can input any time and date, when scanning
should start.

5.1.3 Decision for multiple scanning modes

Because of the time di�erences regarding the scanners, the tool would greatly bene�t
from two di�erent modes for di�erent occasions.

5.2. Implementation phase 37

We decided for a fast mode, performing one or multiple Masscan scans, depending on
the user’s choice, providing a fast overview about activities in the network. On the
other hand we designed a complete mode, scanning with Masscan and Nmap, taking
approximately two to three times longer as the fast mode, but also providing detailed
service and OS detection.
The reason behind dividing the tool into two modes, is time-e�ciency as it is estimated
that a complete scan of 1800 /24 subnets at 100 Mbps on scanner side, takes about 40
hours with Masscan, while appending Nmap takes approximately 40 hours additionally.
The calculus for the duration of one Masscan scan is shown here, with the assumption
that one packet per port su�ces:

1800/24 subnets · 256 hosts per subnet = 460,800 hosts
460,800 hosts · 65,535 ports = 30,198,528,000 total ports
100,000,000 Bits : (54 · 8) bits = 231,481 packets per second
30,198,528,000 ports : 231,481 packets per second= 130,457 seconds

Thus 130,457 seconds are required for one fast scan, which is about 36 hours. So if only
a fast overview of the network is required, the fast scan mode su�ces.
These two modes should ful�ll all properties addressed above and with the gathered
requirements (see section 5.1.2) implementation could start.

5.2 Implementation phase

This part describes the di�erent methods of the Fast Port Scanning Tool, why they were
designed that way and how they work together. First we will explain the de�ned classes
and then the functions used in the Fast Port Scanning Tool.

5.2.1 Class MasscanTarget

The class MasscanTarget de�nes all properties for the MasscanTarget objects, containing
four variables for IP (String), Port (Integer), Service (String) and Banner (String).

5.2.2 Class NmapTarget

This class is similar to MasscanTarget but applies to Nmap targets. The only di�erence
between those two classes is an additional attribute OS for an Nmap target, as Nmap
also performs OS detection.

5.2.3 Main function

As usual by calling the main function the program is executed. It starts with this prompt:
“Welcome to the Fast Port Scanning Tool! :)”

38 Chapter 5. The Fast Port Scanning Tool

Figure 5.1: General overview about the work�ow of the Fast Port Scanning Tool

Then the current time and date and the tool’s directory is fetched. As the tool is started
via console arguments, these are de�ned, when starting the tool. To prevent exceptions

5.2. Implementation phase 39

through, for example, wrong parameter formatting, we wrote de�ne functions for each
parameter, which are described additionally with their respective parameters:

Path
De�nes the path to the local Masscan executable. To enter the path is mandatory
as the Masscan executable can be in di�erent directories, depending on the user’s
choice where to save the Masscan folder to. The de�ne_path_masscan() method
tries to navigate into the directory of the Masscan executable and if that is possible,
the path is returned. Otherwise the program exits, writing an error message to
the console.

Mode
De�nes the mode the program should be executed in (fast or complete). The
de�ne_mode() function allows only mode 1 or mode 2, with 1 being the fast mode
and 2 the complete mode. If any other argument is entered, an error message is
written to the console and the tool exits.

Con�g
Sets the name of the con�guration �le for Masscan, that the tool will then use. The
de�ne_con�g() function checks if the entered Masscan con�guration �le exists in
the masscan/bin directory. If there is no such �le, an error message terminates
the program. Otherwise the name of the con�guration �le is returned.

Start time
Entering a starting time makes the tool wait until that time. The de�ne_startime()
method allows only a start time in the format yyyy:mm:dd:hh:mm:ss. In case
the format was correct, the di�erence between that date and the current time is
calculated and saved in seconds to the variable waittostart, which is returned. If
any other format is entered, an error message is shown on the console and the
program exits.

Repeat
This argument de�nes the number of times the tool should be executed in total.
The de�ne_iteration() function checks the amounts of iterations for the Fast Port
Scanning Tool and if the tool should run for a very long time, the parameter -1
sets the number of runs to 4,000,000,000. In the end the number of iterations is
returned or an error occurs upon entering any other value than an integer.

Waiting time
The time the scanner waits in between the iterations of the scans. The de-
�ne_interval_time() function checks the correct format hh:mm:ss, e.g., 168:00:00
for 168 hours of waiting time, being an entire week. The entered value is trans-
formed to seconds and returned as interval waiting time and as above, if the
format was wrong, the tool exits with an error message.

40 Chapter 5. The Fast Port Scanning Tool

Additional �le
Changing this enables the user to get di�erent output (xml or txt) from the scan-
ners. Furthermore, he can de�ne, if he wants to keep the output from the scanners.
The de�ne_additional_�le() method is responsible for output checking. Input can
be: “xml”, “txt” or “none”. If one of these values were entered, additional_�le is
returned and if not, an error message is written on the console and the tool exits.

Outputmasscan
As the name says, the name of the Masscan output can be set here. The de-
�ne_outputmasscan() function checks if the output of Masscan already exists in
the tool’s folder with the exact same name. If so, the program prints a corre-
sponding error message and exits and if not, the name of the Masscan output is
returned.

Outputnmap
Naming the output of Nmap is made possible through this parameter. The de-
�ne_outputnmap() method checks for an existing Nmap output �le in the script’s
directories, printing an error message if there is one, or simply returns the entered
name.

These user entered parameters are stored in variables and checked, if they match the
conditions. For that purpose the de�ne() functions are used, described above in this
section. If no exceptions were caused due to, for example, wrongly entered parameters
by the user, the variable i, counting the iterations of the tool and the variable scanresult
for storing output from the scanners, are initialized.
Figure 5.1 provides a rough overview about the Fast Port Scanning Tool work�ow.
In both modes, �rst a Masscan scan is performed, the results passed on to the mass-
can_input() function where the scan results are parsed. This information is then eval-
uated in masscan_evaluate() and the results written to a csv �le. In mode two, in the
complete mode, the discovered ports and hosts by Masscan are passed to Nmap, which
performs a scan (nmap_scan()) and returns the results to nmap_input(). This method
parses the information and returns it to nmap_evaluate(), which �nally writes the Nmap
scan results to a csv �le. The functions for Masscan scan, input and evaluation and the
functions for Nmap scan, input and evaluation are described below in detail.

5.2.4 Masscan_scan function

The function is responsible for performing Masscan scans. First the directory is changed
to that of the Masscan executable and, depending on the user’s choice for output, the
scans can produce di�erent output.
If a xml output is required, Masscan is called via subprocess.call() (imported from the
subprocess library) with the scan parameters from the con�guration �le de�ned in the

5.2. Implementation phase 41

variable con�g, the command for checking for SSL 3.0 fallback 1 and the command for
writing to a xml �le2 applied.
In any other output cases than xml, Masscan is executed via subprocess.Popen, imported
from the subprocess library, with the same parameters, except -oX name. Then the scan
results are stored in a String variable, which is returned for further processing.

5.2.5 Masscan_input function

In this method, the important information from either a variable or a xml �le, depending
on the user’s output format, described in section 5.2.4, is parsed.
As explained in section 5.1.1, we need only IP, port, service and banner as information
about SSL 3.0 fallback is stored in the service section of Masscan. Via regular expression
all appearances of these four parts are found either by reading in the xml �le and saving
the �le’s content in a variable data or by directly evaluating the scan result by processing
the returned variable scanresult from masscan_scan().
First an IPv4 address consists of four blocks of one to three decimals, separated by a
dot. Secondly, a port consists of one to �ve decimals and is located always at the same
spot. Thirdly and fourthly service and banner can be any letter or decimal in Unicode
(usually in UTF-8 formatting). But as a service in Masscan is usually not described with
more than twelve letters and even long entries in the banner section don’t use more
than 10.000 letters, these two upper boundaries should su�ce to capture any important
information.
All the information is saved in a list compare, with each IP, port, service and banner in
one entry. Finally the list compare is returned.

5.2.6 Masscan_evaluate function

The returned list compare from masscan_input() is split up into a list of MasscanTargets,
each target in the list storing one IP address, port, service and banner.
Furthermore in these processes, new unique IP addresses are written into a separate
list for sorting the information by IP. This list is sorted and a new list ip�nal is created.
Every time there is a match between an IP address in the sorted IP list and an IP address
of a target, the target is appended to ip�nal thus �lling ip�nal.
But due to the Masscan work �ow, duplicate information is still in ip�nal. Which indi-
cators were there for a duplicate entry and how to traverse so many elements (more
than 160.000 in ip�nal) e�ciently was the next problem. The easy approach by building
an inner and outer loop, both traversing all elements in the list, resulting in an e�ort of
O (n2), was too slowly, as it took about 4452 seconds with that approach with 160,000
elements per list.
A better approach was to use the advantage, that the list is already sorted by IPs. So if

1--script=poodle
2-oX name

42 Chapter 5. The Fast Port Scanning Tool

inner and outer IP and port match and one item has an entry for service and port, and
the other has not, then remove the item with the lesser information. With this approach,
only parts of the list starting with the same IP had to be traversed.
Through this method, removing duplicates could be speed up to 973 seconds for n =
160,000 elements.
Vulnerable hosts and ports are sorted in a help list, which is later returned for further
processing in the Nmap functions.
At that point writing to the .csv �le starts:
In the �rst step the .csv �le is named with the user speci�ed name and “_evaluation.csv”.
Then a �le with this name is created and opened. After setting the �eldnames (“IP
address”, “Port”, “Name of Service”, “Banner”, “Vulnerability”, “SSLv3 [poodle] vulnera-
ble”) writing starts via a DictWriter. Each item’s IP, port, service and banner in ip�nal
is written out and depending on “vuln” or “safe” entries in the service section, the host
and port are marked as vulnerable to SSL 3.0 fallback or not. With closing �le_out and
returning the vulnerable IPs and ports via the help list, this method ends.

5.2.7 Nmap_scan function

Nmap is only appended in the complete mode and for speed reasons checks only hosts,
which were detected by Masscan in its scan. Thus Nmap can never detect more hosts
than Masscan due to the work�ow of this tool.
The method takes the compare list from Masscan, in which IP, port, service and banner
are stored separately. With regular expressions each individual IP address and each sin-
gle port get extracted from compare and stored to two di�erent lists, portlist, containing
only distinct ports and iplist, containing only distinct IPs.
All IPs are joined in the correct format for a Nmap scan, divided by a space, while
ports are joined with a comma between them. By scanning a larger amount of hosts, it
became clear, that Nmap and subprocess.Popen() can’t accept too many arguments. The
limitation was at 32,768 letters, while every detected port and IP together had more than
300,000 letters. So IPs were written to a separate �le which is deleted after performing
the Nmap scan. If more than 4000 di�erent ports were detected, Nmap should scan
the entire port range3 and the IPs are read in from the �le “selectedNmapIPs.txt”4. We
chose the number of 4000 di�erent ports to prevent crossing the 32,768 letter limit.
With these properties, the output of the Nmap scan is named correctly by appending
the �le format, either “.xml” or “.txt”, to the user de�ned name.
Concerning the properties of the Nmap scan, these are set as follows:

3-p-
4-iL selectedNmapIPs.txt

5.2. Implementation phase 43

nmap −PN −n −sV −−v e r s i o n − l i g h t −O −−osscan −gues s −T4
−−min− r a t e 10000 −−max− r a t e 230000 −oX name . xml
−−randomize−h o s t s −p p o r t s − i L I P s o f H o s t s . t x t

So Nmap does not perform host detection, no DNS resolution, scans for services with
an intensity of three, has six retries per host , a packet rate of 10,000 to 230,000 per
second, saves the output to an xml �le and randomizes the hosts. Regarding speed, we
decided to use Nmap’s speed regulation option -T4 because when we scanned with the
faster option -T5 too many hosts were not detected [4]. This Nmap scan is saved to a
�le, which is made executable and executed, resulting in performing the Nmap Scan.
We decided to use this method to ensure, that even long scan commands with about
30,000 letters can be processed.
In case the user requires an additional txt �le, this parameter is appended to the Nmap
commands and Nmap writes two �les.
After the Nmap scan has �nished, the temporary �les are deleted.

5.2.8 Nmap_input function

As well as the Masscan input method, the Nmap input function follows the same princi-
ple. This scan output �le is read in to a variable called data and divided into a list by a
regular expression.
If the user didn’t want a xml �le, this �le is deleted, as requested.
Following the same logic as described above, the important information including an
OS is extracted and returned, using the variable information.

5.2.9 Nmap_evaluate function

This function is very similar to masscan_evaluate(). The information in the list informa-
tion is stored into a list of lists called iplist, each item in the list represents a new IP.
In the next part, the information in the list of lists is written to NmapTarget objects,
making writing to the .csv �le very easy and equal to the method masscan_evaluate().
The next part of sorting the entries of iplist by IP follows the same logic as in mass-
can_evaluate().
The �eldnames used here for the .csv �le are “IP address”, “Port”, “Name of Service”,
“Banner”, “OS”, “Vulnerability” and “SSLv3 [poodle] vulnerable”. Iterating through the
list of NmapTargets allows sorting each target’s IP, port, service, banner and OS to the
respective column. If the IP of the current item is in the list ssl_vuln, returned from
masscan_evaluate(), the host is listed as “vulnerable” otherwise as “safe”.
By closing the csv�le, the function ends.

44 Chapter 5. The Fast Port Scanning Tool

5.2.10 Get_time function

The current time is fetched and then formatted into day_month_year-hour_minute_second,
as the names of the default output �les start with this date-time part for further data
maintenance.

5.3 Hints for working with the tool

For additional explanation how to work with this tool, we provide background material
in this section.

5.3.1 General advice

As this tool is based on Masscan, which is able to send 7,000,000 packets per second, it
is a good idea to tell the responsible administrators of the respective networks of the
scanning plans.

5.3.2 Tweaking Masscan

As this tool uses Masscan and especially the script for checking for POODLE 5, some
�les in the masscan/src directory can be altered slightly to match the requirements of
this tool. In the �le “proto-banner1.c” we �nd the following lines:

b−> t c p _ p a y l o a d s [8 0] = &b a n n e r _ h t t p ;
b−> t c p _ p a y l o a d s [8 0 8 0] = &b a n n e r _ h t t p ;
. . .
b−> t c p _ p a y l o a d s [8 1 4 0] = (vo id ∗)& b a n n e r _ s s l ; / ∗ puppet ∗ /
r e t u r n b ;

We changed these as follows, because every port should be checked for SSL 3.0 fallback:

f o r (i = 0 ; i < 6 5 5 3 6 ; i ++)
b−> t c p _ p a y l o a d s [i] = (vo id ∗)& b a n n e r _ s s l ;

r e t u r n b ;

Now Masscan does not only check the default ports for SSLv3 fallback, but every port,
if any connection via the SSL/TLS encryption was found.

5.3.3 Summary of arguments

Here an overview of the possible arguments is given:

1. help: Shows the help message and exits.
5--script=poodle

5.3. Hints for working with the tool 45

2. -p PATH, --path PATH: De�nes the path to your local Masscan Executable. This
path is mandatory! E.g., --path /root/masscan/bin if there is the Masscan
executable.

3. -m 1,2, --mode 1,2: De�nes the mode the program should be executed in. De-
fault values are "1" for fast mode (only Masscan scan), "2" for complete mode
(Masscan and Nmap scans executed in a row).

4. -c CONFIG, --config CONFIG: De�nes the con�guration �le for Masscan the tool
will use. The default name is myscan.conf E.g. --con�g myscan.conf. All parame-
ters for the Masscan scan come now from myscan.conf.

5. -st STARTTIME, --starttime STARTTIME: De�nes the date and time, when the
scan should start. The default value is no waiting time until scan starts. The
correct format is yyyy:mm:dd:hh:mm:ss, e.g., 2015:01:06:17:11:00 would be 6th
January 2015 at 5:11:00 pm.

6. -r REPEAT, --repeat REPEAT: De�nes the amount of scans, the program should
perform. The default value is one iteration for one scan E.g. --repeat 2 for 2
iterations or --repeat -1 for 4,000,000,000 iterations.

7. -w WAIT, --wait WAIT: De�nes the waiting time between scan iterations. The
default value is no waiting time between scan iterations. Correct formatting is
hh:mm:ss E.g. 100:50:30 would make the program stop between scans for 100h,
50min and 30 seconds.

8. -af ADDITIONALFILE, --additionalfile ADDITIONALFILE: De�nes the selected
additional output �le formats from the scanners. The default �le is the xml �le
and other �le formats can be entered like , e.g., --additionalfile txt for txt
�le.

9. -om OUTPUTMASSCAN, --outputmasscan OUTPUTMASSCAN: This This parameter is
responsible for renaming the output of Masscan scans of the tool. The default
name is date_time-masscan_scan.type, e.g., 10_01_2015-14_00_00-masscan_scan.xml.
For use: Simply enter a name without type, e.g., masscan_scan. The output is
saved to the Tool’s directory.

10. -on OUTPUTNMAP, --outputnmap OUTPUTNMAP: This parameter is responsible for
naming the output of Nmap scans of the tool. The default value is date_time-
nmap_scan.type, e.g., 10_01_2015-14_00_00-namp.xml. For use simply name the
�le without giving it a type: E.g. nmap_scan. The output is saved to the Tool’s
directory.

46 Chapter 5. The Fast Port Scanning Tool

47

Chapter 6

Evaluation of MWN scans

As the most important research insights came from scanning the MWN, in this chapter
we give an overview about the results. First we mention the scanning preparations and
how scanning was performed. Then the results are gathered and evaluated.

6.1 Scan preparations

Following the guidelines from chapter 4.1 concerning setting parameters for the test
environment, we altered the parameters as follows:

1. Network: the scanned network is the MWN with 1,640,832 possible hosts and
461,184 IPs for scanning. We selected these, as they are mostly used by institutions
like the TUM or the LMU as, for example, servers (see chapter 3.1). These 461,184
IPs are separated into the following subnets: seven /16s, one /22s, �ve /24s and
one /25 subnets.

2. Location: all scans were performed from the virtual machine “lxdps04.srv.lrz.de”
located at the LRZ.

3. Rate Limiting: regarding Masscan and Nmap, all scans were performed at a
maximum of 100 Mbps, being equal to 231,481 packets per second (see chapter
4.1.2).

4. Output: every scan consisted of one Masscan and one Nmap scan, resulting in
�ve xml and csv �les, containing the desired information.

5. Files as parameter input source: for Masscan, the scan parameter are saved to a
con�guration �le while Nmap’s parameters are set in the Fast Port Scanning Tool
(see section 5.1.2).

6. Plausibility and reliability: as the three di�erent scan runs contained very similar
results, the results can be regarded as plausible.

48 Chapter 6. Evaluation of MWN scans

With these parameters being set, scanning started in a “tmux” session [40] from the
virtual machine to prevent connection loss and thus terminating the tool. Table 6.1
contains the parameter used for scanning with Masscan and Nmap.

Scanner Parameters
Masscan masscan -p0-65535 -oX outputname.xml --max-rate

230000 --script=poodle IP_ranges

Nmap nmap -PN -n -sV --version-light -O --osscan-guess -T4

--min-rate 10000 --max-rate 230000 -oX outputname.xml

--randomize-hosts -p ports -iL IPsofHosts.txt

Table 6.1: Scan parameters for scanning the MWN

Furthermore Masscan’s parameters were set in a con�guration �le via the -c configurationfile.conf

command. Of course, the parameter outputname.xml is a wildcard for a real name for
scan outputs, configurationfile.conf a wildcard for a real con�guration �le name
and IP_ranges a wildcard for the real IPs of the MWN.
The standard procedure was to open a tmux session, set the parameters and detach it.
Every �ve to ten hours the scanner was checked for problems, like scanning disruption.

6.2 Results of the MWN scans

After two weeks of scanning, we gathered the results of the three scans. Regarding all
following �gures and results, we used Masscan and Nmap TCP SYN scans for gathering
information about hosts and ports, Masscan’s banner detection and Nmap’s service
detection for service and version detection, Masscan’s POODLE script for detecting
hosts vulnerable to POODLE and Nmap’s OS detection for collecting information about
used OSes in the MWN. The following subsections provide statistical results from the
scans.

6.2.1 Overview of total results

The �rst Masscan output �le contained 161,003 entries, resulting in 123,428 entries
without duplicates, the second Masscan output 163,968 �le with 125,501 entries without
duplicates and the third 163,621 with 125,416 entries without duplicates (see chapter 3.2
and 4.3 for duplicate occurrence explanation).
With the Fast Port Scanning Tool, Nmap scanned ports and hosts in the �rst scan. As
taking too long, the second scan was interrupted, but the third scan provided good
results again.
An important fact to remember for the following is, that the Nmap input comes from
the Masscan output so Nmap can never detect more hosts or ports than Masscan.
Interesting was especially the �rst Nmap scan because of the very low diversity in ports.
We consider it as highly probable that this is due to the start time of the scan, as it started

6.2. Results of the MWN scans 49

Scan Duration Hosts Ports
Masscan scan 1 33h 31m 54s 9377 46982
Nmap scan 1 11h 52m 27s 1320 638
Masscan scan 2 33h 21m 28s 10186 46747
Nmap scan 2 0 (interrupt) 0 (interrupt) 0 (interrupt)
Masscan scan 3 32h 17m 54s 10230 47040
Nmap scan 3 68h 44m 42s 2360 46671

Table 6.2: Overview of scanning duration and results regarding Masscan and Nmap

on a weekend at night and �nished before the begin of a work day. Furthermore the
high diversity of ports comes mostly from three hosts with more than 30.000 open ports
and these were not running during the �rst Nmap scan time. Also the large di�erence
in amount of detected hosts between Masscan and Nmap was unexpected. The only
explanation for this is that due to the host-timeout parameter set in Nmap, Nmap gave
up on most of the ports, which were unavailable at that time. As the scans were also
performed during night time, many hosts were probably shut down.

6.2.2 Summary of basic results

Beginning with the hit rate of detected hosts, referring to all detected hosts divided by all
scanned hosts, we calculated, that Masscan’s hit rate is 10500

461384 = 2,2%. This value seems
plausible as in the scanner evaluation phase (chapter 4), this value was 61

2048 = 2,98%.
Another sign of the plausibility of the low total hit rate can be found in the papers [6,15],
as these papers compared the hit rate of Masscan to that of Zmap and found an equal
hit rate for Masscan.
Astonishing was the diversity of detected distinct ports, as about 70% of all possible
65536 ports were listed by each Masscan Scan (46982, 46747 and 47040 distinct ports).
Here we provide the corresponding calculation: 46923

65536 = 71.6%.
Continuing with the evaluation of the POODLE results leads to an interesting fact:
Only 1,7% of all detected ports or services were vulnerable to SSL 3.0 fallback, which
means that an average of 18% of all detected hosts by Masscan and only 0,39% of all
scanned hosts are vulnerable to POODLE. We think the low hit rate for the POODLE
vulnerability of 0,39% regarding all scanned hosts is due to the low total hit rate of
Masscan.
With these results, the Fast Port Scanning Tool seems to ful�ll its properties leading to
good results and being 5∗30∗24h

36h = 100 times faster than before, with Nmap alone
Two other outcomes of the scans were that a web server in the department of medicine
was not reachable during the Nmap scans and needed therefore updating, because a
Nmap scan with a very low packet rate compared, e.g., to Masscan, was enough to
make this server unreachable. Another revelation was that the RBG network’s ARP
table at the department of informatics and mathematics is too small for a large amount

50 Chapter 6. Evaluation of MWN scans

of requests (> 200.000 per second) sent from the Internet. The responsible sta� for the
RBG network were able to �x the issue, therefore reinforcing the university’s network
architecture.

6.2.3 Most noticeable ports, hosts and operating systems

Figure 6.1 shows the three hosts, which had the most open ports by far. As detected
in three scans over a week, these hosts seem to be permanently up and have 16,000
respectively 36,000 of all their ports open.

Figure 6.1: Hosts with the most open ports, detected by Masscan and Nmap

These hosts, shown in �gure 6.1, regarding the many open ports on those three machines,
are very likely servers as “Apache HTTP server” runs on several ports and also OpenSSH.
Additionally the last Nmap scan detected their OSes as Linux 2.6.18 (129.187.44.188) and
Linux 2.6.38 - 3.2 (141.84.69.32 and 141.84.69.32) all suited for a server machine.
Another possibility would be that the user or administrator responsible for that machine
uses a white listing policy instead of a black listing policy for, e.g., a �rewall, disguising
the true port states. Still it seems as if these machines pose a security hazard, because
too many open ports were detected by all Masscan and Nmap scans. This allows an
attacker to take many attack points and the question remains if all of these open ports
are required simultaneously.
Figure 6.2 gives an overview about how many hosts had which amount of ports open
and is based on the three Masscan scans.
Beginning with more than 2800 hosts with only one port open, the amount of hosts
with more and more open ports diminishes with a small peak at 47 open ports regarding

6.2. Results of the MWN scans 51

Figure 6.2: Average amount of open ports per host, detected by Masscan

all scans. As most of the hosts with 47 open ports were in the same subnet with the
same ports open, it is very likely, that the machines were con�gured by the same sta�,
ful�lling a certain task. As Nmap detected on almost all of these hosts “McAfee Email
Gateway” as embedded OS from “McAfee”, we regard them with a high likeliness as
mail servers.
Regarding ports, the most as open detected ports, taken from an average value of all
three Masscan scans, are summed up in �gure 6.3. Concerning services, Masscan didn’t
�nd a corresponding service to a port in about 90% of all cases. But the remaining 10% of
services is shown in �gure 6.4. They were all detected via the Masscan “banner” method
and evaluation was performed on all scan results with a self developed Python tool.
We calculated the values in �gure 6.4 and 6.5 by building an average value of detected
services in all three scan runs and divided it to the total amount of known services,
which was 9619 regarding Masscan and 2240 regarding Nmap. Thus we conclude that
Nmap has a higher service detection rate than Masscan, which seems plausible due to
the di�erent detection methods of Nmap (see chapter 3.3.1).
For comparison reasons, the services detected by Nmap are shown in �gure 6.5. Nmap
also revealed the di�erent used operating systems, leading to �gure 6.6, where the ten
most used operating systems are rated in percent.
We compared �gure 6.3 and 6.4 and found a signi�cant coherence between port and
service. The most services appear to be running on the Internet Address Name Alloca-
tion (IANA) de�ned ports [46]. Port 80 correlates with the HTTP service, port 443 with
SSL and port 22 with SSH. Additionally to port 443, SSL was detected to be running

52 Chapter 6. Evaluation of MWN scans

Figure 6.3: Most frequently detected open ports in the MWN, scanned by Masscan

Figure 6.4: The most used services in the MWN, detected by Masscan

on 21, 25, 2222, 7512, 7780, 17500, 34463 and several other ports not mentioned due to
their irrelevance. Apart from running on port 80, HTTP was also detected frequently
on port 8080, SSH was detected on 22, 23, 22157, 22394, 55122 and on port 21 the File
Transfer Protocol (FTP) service was running. As Masscan could not name the most

6.2. Results of the MWN scans 53

Figure 6.5: The most used services in the MWN, detected by Nmap

Figure 6.6: Top ten most used operating systems in the MWN, detected by Nmap

services running on the other ports, Nmap was used to get information about port 25,
111, 139, 161, 179, 445, 646 and 3389. As port 25 is assigned to the SMTP protocol by
IANA, it was no surprise to detect mostly the SMTP protocol running on port 25. On
port 111 no instance of Sun’s Remote Procedure Call (RPC) as de�ned by IANA [46]

54 Chapter 6. Evaluation of MWN scans

could be veri�ed by Nmap but also no other service was found here.
On port 139 the service “Samba smbd” was detected several times but also in half of all
cases no speci�c service could be evaluated by Nmap. Port 161 also remained empty
in terms of detected service by Nmap, while on port 179 the Border Gateway Proto-
col (BGP), as IANA assigned this port to that service, was not detected implicitly by
Nmap. Also for the ports 445, 646 and 3389, Nmap revealed no services. Regarding the
services Virtual Network Computing (VNC), Internet Message Access Protocol (IMAP)
and Post O�ce Protocol (POP) we found that “IMAP” was detected on port 143 by
Masscan and Nmap, following IANA’s guidelines [46]. POP was detected mostly on port
110 and VNC on port 5900. With this summary we showed the correlation between the
most open ports and most detected services.
When comparing �gure 6.4 and 6.5, thus comparing the various services detected by
Masscan and Nmap, we found a signi�cant di�erence in the results. A part of the
large di�erence can be explained in the overall di�erence of detected hosts, as Nmap
discovered only 13% of all Masscan detected hosts in the �rst run and 23% in the second
run. Furthermore service detection of Nmap can detect up to 3000 unique services,
while Masscan is yet limited to 11 di�erent services [4, 7]. Thus the results of Nmap are
distributed over a larger variety of services, while Masscan focuses on the few services
it can detect.
The next issue is the correlation between OSes and ports and services, starting with
�gure 6.6, showing the most used OSes in the MWN As, for example, “SSH” or “FTP”
are Linux based services, the four Linux operating systems in the top ten most used
OSes seem plausible. Also with many services related to E-Mail transfer, the most used
OS, the embedded “McAfee Email Gateway” is realistic. As the rest of the most detected
services can run on any of the other systems, these results correlate well between OS
and services.

6.2.4 POODLE results

For this purpose the Masscan script “poodle” was used and the Masscan code was
tweaked as described in chapter 5.3.2. After the �rst Masscan scan 2534 ports/services
were detected to be vulnerable for SSL 3.0 fallback, the second Masscan scan detected
2683 and the third 2722. When �ltering all vulnerable ports/services from all three scans,
2182 ports/services remained. Filtering was performed once again with a self written
python script, taking the three Masscan scans as input and compared all vulnerable IPs
with each other, returning the IPs shown as vulnerable from all three scans.
The di�erent hosts and ports (or services running on that port) vulnerable to POODLE
are shown in �gure 6.7, while the most vulnerable hosts in terms of amount of ports
susceptible to POODLE are listed in �gure 6.8.
A ranking for the ports most mentioned as vulnerable to POODLE, is seen in �gure 6.9
and a discussion about the results is presented below in this chapter.
Concerning �gure 6.7, showing the amount of di�erent hosts and ports detected as

6.2. Results of the MWN scans 55

Figure 6.7: Overview of di�erent hosts and ports vulnerable to POODLE, detected by Masscan

Figure 6.8: Hosts with the most services vulnerable to POODLE, detected by Masscan

vulnerable to POODLE by Masscan, the di�erence in terms of host detection between
the three scans is probably due to the di�erent scanning times. We performed the �rst
scan on a weekend, while scan two and three were performed during the week.
Figure 6.8 shows the most a�ected hosts in terms of amount of a�ected ports. In the �rst

56 Chapter 6. Evaluation of MWN scans

Figure 6.9: Ports most vulnerable to POODLE, detected by Masscan

and second scan, the host 131.159.37.50 could not be detected, as well as in the �rst run
the host 138.246.255.57, which is the reason why we didn’t list them in the �rst/second
run. As stated in the paragraph above, these hosts were probably not detected, as the
�rst scan took place on a weekend.
Regarding the top ten most a�ected hosts, they were running on Linux 3.0, Linux 3.1 and
Sun Solaris 9/10 and four were in the same subnet 141.84.0.0/16. With these values, the
subnet of 141.84.0.0/16 with the OS Sun Solaris 9/10 is the most vulnerable constellation,
followed by Linux 3.0.
We show in �gure 6.9. the most a�ected ports, beginning with port 443 and 17500. This
correlates well with the coherence between ports and services explained in section 6.2.2.
Also on these ports the services FTP, SSH, HTTPS, IMAP and SMTP were detected. We
found another interesting detail, as Masscan detected on many ports just the service
SSL, while Nmap could not �nd any speci�c service. To provide more reasons for
this behaviour, a detailed review of Nmap’s and Masscan’s service detection would be
required, which is beyond the scope of this thesis.
Finally we gave a list of the a�ected hosts and ports to the responsible administrators,
who can now update the respective hosts.

57

Chapter 7

Conclusion

In this thesis initially the use of port scanners and the challenges implicit in scanning a
large research network, the MWN, were pointed out. Possible vulnerabilities regarding
the SSL/TLS encryption used in the MWN, which should be detected by the port scans,
were also listed.
As no satisfying solution regarding speed and vulnerability detection was available,
three port scanners Nmap, Zmap and Masscan were evaluated for their accuracy, speed
and use when scanning a decentralized, organized university network. The evaluation
revealed, on the one hand, that all scanners were comparable regarding accuracy with
only minor di�erences around 3% to 5% of non detected hosts and ports. On the other
hand, the scanner di�ered strongly in speed and scanning features, as Masscan and
Zmap exceeded the speed of Nmap up to 1300 times and Nmap provided by far more
scanning possibilities than the other two.
Furthering the methodology, Masscan and Nmap were chosen due to their similar
usability and aptitude for the speci�ed tasks. With these scanners a new tool providing
a solution to the issues of speed, accuracy and SSL/TLS vulnerability detection was
developed, making evaluation of large port scan results easy.
With this tool the MWN was scanned and the results evaluated, revealing that 18% of
all detected hosts were vulnerable to the POODLE vulnerability. Also Linux 3.0 and Sun
Solaris 9/10 were evaluated as very often mentioned with SSL 3.0 fallback problems,
while especially services like “HTTPS”, “FTP”, “IMAP” and “SMTP” were detected to
be vulnerable. Furthermore we found some hosts, depicting a security hazard due to
many open ports. These results provide now a possibility for the sta�, responsible for
the respective subnets to enhance security in the MWN, by closing the POODLE breach
and all undesired open ports.

7.1 Future work

However the Fast Port Scanning Tool can be extended by making switching between
IPv4 and IPv6 address space possible, as the tool only supports scanning for IPv4 yet.

58 Chapter 7. Conclusion

In case IPv6 scanning is required, another solution regarding address exclusion must
be developed, as otherwise the address space is simply too large. For further research
the question remains how to cope with IPv6 address space as it is 296 times larger than
IPv4 and all available port scanner are far too slow for that size. Also �rewall and IDS
evasion could be added for a more stealthily approach, but the question remains if that
is wanted and helpful because scanning a huge amount of addresses fast seems a more
realistic scenario than scanning that amount of IPs surreptitiously and therefore far
slower.
Furthermore parallelization of Masscan and Nmap can be applied to the tool, allowing
for even more accurate information about ongoing activities within the network.
Lastly in January 2015 it was revealed that POODLE is also applicable on TLS 1.0 when
load balancer of certain companies are used by SSL/TLS [28]. In the MWN these load
balancers were such a small minority, that the amount was negligible but for a total
scan for POODLE, they should also be detected by the scanning tool.
So this thesis shows some new areas of application with respect to port scanning,
provides a good overview about the danger of SSL/TLS vulnerabilities and leaves a
bene�cial port scanning evaluation tool for administrators of large research networks

59

Appendix A

List of abbreviations

Here the meaning of all abbreviations used in the thesis is shown:

LRZ Leibniz Supercomputing Centre . 1

MWN Munich Scienti�c Network . 1

POODLE Padding Oracle On Downgraded Legacy Encryption . 1

SSL Secure Socket Layer . 1

TUM Technical University of Munich . 2

NSE Nmap Scripting Engine . 3

TLS Transport Layer Security . 3

BEAST Browser Exploit Against Secure Transfer . 4

BREACH Browser Reconnaissance and Ex�ltration via Adaptive Compression of Hy-
pertext . 4

CBC Chaining Block Cipher . 4

60 Appendix A. List of abbreviations

CRIME Compression Ratio Info-leak Made Easy . 4

IV Initialization Vector . 4

SIGCOMM Special Interest Group on data COMMunications (ACM) 4

BAdW Bavarian Academy of Science . 7

IP Internet Protocol . 7

LMU Ludwig Maximilian University of Munich . 7

TByte Terabyte . 7

DFN Deutsches Forschungsnetzwerk . 8

G-WiN Gigabit Wissenschaftsnetz . 8

AS Autonomous System . 9

DHCP Dynamic Host Con�guration Protocol . 9

DNS Domain Name System . 9

IDS Intrusion Detection System . 9

IPv4 Internet Protocol version 4 . 9

IPv6 Internet Protocol version 6 . 9

Mbps Megabits per second . 9

61

NTP Network Time Protocol . 9

OS Operating System. 9

VPN Virtual Private Network . 9

WWW World Wide Web . 9

HTTP Hypertext Transfer Protocol . 10

ICMP Internet Control Message Protocol . 10

NIC Network Interface Controller . 10

POP3 Post O�ce Protocol 3 . 10

SMTP Simple Mail Transfer Protocol . 10

SSH Secure Shell . 10

TCP Transmission Control Protocol . 10

UDP User Datagram Protocol . 10

CLI Command Line Interface . 11

MAC Message Authentication Code . 14

MitM Man in the Middle . 16

HTTPS Hypertext Transfer Protocol Secure . 17

62 Appendix A. List of abbreviations

AES Advanced Encryption Standard . 18

VM Virtual Machine . 22

MAC address Media Access Control address . 27

IANA Internet Address Name Allocation . 51

FTP File Transfer Protocol . 52

RPC Remote Procedure Call . 53

BGP Border Gateway Protocol . 54

IMAP Internet Message Access Protocol . 54

POP Post O�ce Protocol . 54

VNC Virtual Network Computing . 54

63

Appendix B

Scanner parameters

Regarding Nmap’s scanner commands, the following selection was used often during
the thesis:

1. -p[range]: This speci�es the port range to scan. -p- scans every port.

2. --exclude�le list.xml: The IP range given in the list.xml �le is excluded from being
scanned.

3. -Pn: This option treats all hosts as if they were online.

4. -n: This option forbids DNS resolution, while -R always enables it.

5. -sS/sA/sN/sF/s0: These options specify, which scan technique to use: TCP SYN,
TCP ACK, TCP Null, TCP FIN scans the IP protocol scan.

6. -max-retries [tries]: How many outgoing probes are used per port is set here.

7. --host-timeout [time]: After the speci�ed amount of time the host is treated as
timed out.

8. --max-rate [number]: The maximal transmission rate of packets is set here.

9. -oN/oX/oG [�le]: The output of the scan is stored in either a normal txt, xml or
Grepable format of the name speci�ed in �le.

10. [X.X.X.X/X]: This sets the IP range(s) for scanning.

We mostly used the following ZMap’s commands in the thesis:

1. -p [port]: This is the speci�ed port to scan.

2. -o [name.xml]: This writes the results to the name.xml �le. Other output options
are possible.

3. -b [path/name.xml]: This enables ZMap to use a blacklist �le name.xml.

64 Appendix B. Scanner parameters

4. -t [time]: This caps the time in seconds for sending packets.

5. -B [max. bits/seconds]: This sets maximum usable bandwidth on scanner side in
bits per second.

6. -c [time]: This speci�es how long to wait for an response in seconds.

7. -P [number]: This sets the number of probes to send to each IP address.

8. --con�g=[path/name.conf]: This enables ZMap to work with a prede�ned, repeat-
able conf �le (name.conf), which speci�es the scan parameters.

9. [X.X.X.X/X]: This simply speci�es the IP range, which is to scan. Multiple IP
ranges can be appended by putting a space between them.

Concerning Masscan, we used these commands rather frequently:

1. -p[port(s)]: This assigns the ports the scan should test, ranging from 0 to 65535.

2. -oX [�le.xml]: This saves the output of the scan in the �le.xml �le. Other data
formats such as csv or txt are also permitted.

3. --exclude�le [�le.txt]: This excludes every IP range written in the �le.txt �le.
Other data formats are also permitted.

4. --max-rate [number]: This sets the maximum packet transmission rate on scanner
side.

5. -c [scan.conf]: With this option a scan with the parameters set in the scan.conf
�le is performed.

6. --banners: Banner grabbing is enabled with this command.

7. --script=poodle: This enabled Masscan to check if a host is vulnerable to SSL 3.0
fallback.

8. [X.X.X.X/X]: This speci�es the interesting IP range. Appending multiple IP ranges
is possible by putting a space between them.

65

Bibliography

[1] LRZ. (2014) Überblick über das Münchner Wissenschaftsnetz (MWN). [Last
accessed 28th December 2014]. [Online]. Available: http://www.lrz.de/services/
netz/mwn-ueberblick/

[2] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-wide Scan-
ning and its Security Applications,” in USENIX Security. Citeseer, 2013, pp. 605–
620.

[3] C. Meyer and J. Schwenk, “Lessons Learned From Previous SSL/TLS Attacks-A
Brief Chronology Of Attacks And Weaknesses,” IACR Cryptology ePrint Archive,
vol. 2013, p. 49, 2013.

[4] G. F. Lyon, Nmap Network Scanning: The O�cial Nmap Project Guide to Network
Discovery and Security Scanning. Insecure, 2011.

[5] G. Conti and K. Abdullah, “Passive visual �ngerprinting of network attack tools,”
in Proceedings of the 2004 ACM workshop on Visualization and data mining for
computer security. ACM, 2004, pp. 45–54.

[6] Z. Durumeric, M. Bailey, and J. A. Halderman, “An Internet-wide view of Internet-
wide scanning,” in USENIX Security Symposium, 2014.

[7] R. D. Graham and P. C. Johnson, “Finite State Machine Parsing for Internet Proto-
cols: Faster Than You Think,” in Security and Privacy Workshops (SPW), 2014 IEEE.
IEEE, 2014, pp. 185–190.

[8] E. Seagren, Secure your network for free: using NMAP, Wireshark, Snort, Nessus, and
MRTG. Syngress, 2007.

[9] G. Lyon. (2012) The o�cial nmap project guide to network discovery and security
scanning. [Last accessed 12nd February 2015]. [Online]. Available: www.nmap.org

[10] LRZ. (2014) Flyer über das LRZ. [Last accessed 30th December 2014]. [Online].
Available: http://www.lrz.de/wir/lrz-�yer/lrz-�yer.pdf

[11] B. Möller, T. Duong, and K. Kotowicz, “This POODLE Bites: Exploiting The SSL
3.0 Fallback.” Google, 2014.

http://www.lrz.de/services/netz/mwn-ueberblick/
http://www.lrz.de/services/netz/mwn-ueberblick/
www.nmap.org
http://www.lrz.de/wir/lrz-flyer/lrz-flyer.pdf

66 Bibliography

[12] L. I8. (2014) Informatik VIII: Lehrstuhl für Netzarchitekturen und Netzdienste.
[Last accessed 10th February 2015]. [Online]. Available: http://www.net.in.tum.
de/de/startseite/

[13] O. Tarabai, “A penetration testing framework for the Munich Scienti�c Network,”
2014.

[14] F. von Eye, W. Hommel, and S. Metzger, “Dr. Portscan: Ein Werkzeug für die au-
tomatisierte Portscan-Auswertung in komplexen Netzinfrastrukturen,” in Sicher-
heit in vernetzten Systemen: 20. DFN Workshop. BoD–Books on Demand, 2013.

[15] D. Adrian, Z. Durumeric, G. Singh, and J. A. Halderman, “Zippier ZMap: Internet-
wide scanning at 10 Gbps,” in Proceedings of the 8th USENIX conference on O�ensive
Technologies. USENIX Association, 2014.

[16] R. D. Graham. (2014) MASSCAN: Mass IP port scanner. [Last accessed 30th January
2015]. [Online]. Available: https://github.com/robertdavidgraham/masscan

[17] M. De Vivo, E. Carrasco, G. Isern, and G. O. de Vivo, “A review of port scanning
techniques,” ACM SIGCOMM Computer Communication Review, vol. 29, no. 2, pp.
41–48, 1999.

[18] M. Al-Tamimi, W. El-Hajj, and F. Aloul, “Framework for creating realistic port scan-
ning benchmarks,” in Wireless Communications and Mobile Computing Conference
(IWCMC), 2013 9th International. IEEE, 2013, pp. 1114–1119.

[19] M. Anbar, A. Manasrah, S. Sureswaran Ramadass, A. Altaher, A. Aljammal, and
A. Almomani, “Investigating Study on Network Scanning Techniques,” Interna-
tional Journal of Digital Content Technology and its Applications (JDCTA). Volume7
(9.37), p. 9, 2013.

[20] N. Hoque, M. Bhuyan, R. C. Baishya, D. Bhattacharyya, and J. Kalita, “Network
attacks: Taxonomy, tools and systems,” Journal of Network and Computer Applica-
tions, vol. 40, pp. 307–324, 2014.

[21] G. V. Bard, “A Challenging but Feasible Blockwise-Adaptive Chosen-Plaintext
Attack on SSL,” in SECRYPT, 2006, pp. 99–109.

[22] T. Duong and J. Rizzo. (2011) Here come the XOR ninjas. [Last accessed 11th
January 2015]. [Online]. Available: http://www.hpcc.ecs.soton.ac.uk/~dan/talks/
bullrun/Beast.pdf

[23] Johnson, “CRIME attack compression ratio info-leak made easy,” Cryptography II,
2013.

[24] H. Gluck and A. Prado, “BREACH: Reviving the crime attack,” Online at
http://breachattack.com/resources/BREACH - SSL, gone in 30 seconds.pdf, 2013.

http://www.net.in.tum.de/de/startseite/
http://www.net.in.tum.de/de/startseite/
https://github. com/robertdavidgraham/masscan
http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf
http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf

Bibliography 67

[25] Z. Durumeric and A. Kasten, “The matter of Heartbleed,” in Proceedings of the 2014
Conference on Internet Measurement Conference. ACM, 2014, pp. 475–488.

[26] J. A. Kupsch and B. P. Miller, “Why do software assurance tools have problems
�nding bugs like heartbleed?” Continuous Software Assurance Marketplace, vol. 22,
2014.

[27] A. Langley. (2014) POODLE attacks on SSLv3. [Last accessed 11th February 2015].
[Online]. Available: https://www.imperialviolet.org/2014/10/14/poodle.html

[28] ——. (2014) The POODLE bites again. [Last accessed 11 February 2015]. [Online].
Available: https://www.imperialviolet.org/2014/12/08/poodleagain.html

[29] W. Hommel and H. Reiser, Das Münchner Wissenschaftsnetz (MWN) Konzepte,
Dienste, Infrastrukturen, Management. LRZ, 2012.

[30] A. Bley and M. Pattloch, Modellierung und Optimierung der X-WiN-Plattform.
Konrad-Zuse-Zentrum für Informationstechnik, 2005.

[31] J. Pattloch. (2014) Das Wissenschaftsnetz X-WiN. [Last accessed 5th February
2015]. [Online]. Available: https://www.dfn.de/xwin/

[32] K. Sklower, “A tree-based packet routing table for Berkeley unix,” inUSENIXWinter,
vol. 1991, 1991, pp. 93–99.

[33] G. R. Wright and W. R. Stevens, TCP/IP Illustrated. Addison-Wesley Professional,
1995, vol. 2.

[34] ntop Blog. (2014) Introducing PF_RING ZC (Zero Copy). [Last accessed 30th De-
cember 2014]. [Online]. Available: http://www.ntop.org/pf_ring/introducing-pf_
ring-zc-zero-copy/

[35] W.-c. Feng, “The case for TCP/IP puzzles,” in ACM SIGCOMM Computer Commu-
nication Review, vol. 33, no. 4. ACM, 2003, pp. 322–327.

[36] N. El-Nazeer and K. Daimi, “Evaluation of Network Port Scanning Tools,” in The
2011 International Conference on Security andManagement (SAM’11), July. Citeseer,
2011, pp. 18–21.

[37] O�ensivePython. (2015) Nscan: Fast internet-wide scanner. [Last accessed 10th
February 2015]. [Online]. Available: https://github.com/O�ensivePython/Nscan

[38] C. Meyer, “20 Years of SSL/TLS Research An Analysis of the Internet’s Security
Foundation,” Ruhr-University Bochum, 2014.

[39] Z. Jeelani, “An insight of SSL security attacks,” International Journal of Research in
Engineering and Applied Sciences, 2013.

https://www.imperialviolet.org/2014/10/14/poodle.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.dfn.de/xwin/
http://www.ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/
http://www.ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/
https://github.com/OffensivePython/Nscan

68 Bibliography

[40] M. McDonnell, “Terminal Multiplexer,” in tmux Taster. Springer, 2014, pp. 1–18.

[41] L. Chappell, Wireshark 101-Einführung in die Protokollanalyse. MITP, 2013.

[42] B. Ward, How Linux Works. No Starch Press, 2014.

[43] R. Blum, Linux command line and shell scripting bible. John Wiley & Sons, 2008,
vol. 481.

[44] Y. Rekhter, D. Karrenberg, G. d. Groot, and B. Moskowitz, “Address allocation for
private internets,” RFC 1597, 1994.

[45] P. Chandra, M. Messier, and J. Viega, “Network security with OpenSSL,” O’Reily,
June, 2002.

[46] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire, “Internet assigned
numbers authority (IANA) procedures for the management of the service name
and transport protocol port number registry,” Work in progress, 2011.

	Introduction
	Goals of the thesis
	Outline

	Related Work
	Related work regarding port scanning
	Related work regarding SSL/TLS vulnerabilities

	Background
	An example of a large research network: The Munich Scientific Network
	Overview of port scanners
	Nmap
	ZMap
	Masscan
	Further scanning tools
	Comparison of Nmap, ZMap and Masscan

	SSL/TLS vulnerability POODLE
	Introduction to the SSL/TLS-encryption
	POODLE

	Scanner Evaluation
	Setting the test environment
	Testing network
	Location
	Rate Limiting
	Acceptance by administrators
	Output
	Speed Evaluation
	Plausibility
	Files as parameter input source

	Conduction of test scans
	Results of comparing tests
	Particular characteristics of ZMap and Masscan
	Scan results from scanning within the ``Chair 8'' network from a hardware machine
	Comparing Masscan and Nmap
	Comparing ZMap and Nmap
	Comparing Masscan and ZMap

	Evaluation of Nmap, ZMap and Masscan test scans
	Duplicates
	Accuracy
	Speed
	Documentation
	Features

	Reasons for choosing Masscan

	The Fast Port Scanning Tool
	Planning Phase
	First drafts
	Requirements for the Fast Port Scanning Tool
	Decision for multiple scanning modes

	Implementation phase
	Class MasscanTarget
	Class NmapTarget
	Main function
	Masscan_scan function
	Masscan_input function
	Masscan_evaluate function
	Nmap_scan function
	Nmap_input function
	Nmap_evaluate function
	Get_time function

	Hints for working with the tool
	General advice
	Tweaking Masscan
	Summary of arguments

	Evaluation of MWN scans
	Scan preparations
	Results of the MWN scans
	Overview of total results
	Summary of basic results
	Most noticeable ports, hosts and operating systems
	POODLE results

	Conclusion
	Future work

	List of abbreviations
	Scanner parameters
	Bibliography

