
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSIT ÄT MÜNCHEN

Fortgeschrittenenpraktikum

Reference Installation of the
Ponder Policy Toolkit

Patricia Marcu

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering

Betreuer: Vitalian Danciu
Dr. Bernhard Kempter

Abgabetermin: 12. April 2005

2

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSIT ÄT MÜNCHEN

Fortgeschrittenenpraktikum

Reference Installation of the
Ponder Policy Toolkit

Patricia Marcu

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering

Betreuer: Vitalian Danciu
Dr. Bernhard Kempter

Abgabetermin: 12. April 2005

Hiermit versichere ich, dass ich das vorliegende Fortgeschrittenenpraktikum selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 12. April 2005

. .
(Unterschrift des Kandidaten)

Abstract

The topic of Policy based Management is one of the most important today in the context of networks. This
work describes my advanced practical which focused on creating a reference installation of the Ponder
Toolkit.

My work focuses on installing, configuring and running of Ponder Toolkit on the computer network of the
University of Munich CS lab. I wrote also a detailed documentation about Ponder with all the possible
problems I encountered through installing, configuring and running the toolkit.

2

Contents

Contents i

List of Figures iii

1 Introduction 1

2 What are Policies? 2
2.1 Definition . 2
2.2 Policy Architecture Overview . 3
2.3 General Workflows . 4
2.4 Summary . 4

3 Ponder-Framework 5
3.1 The Ponder Policy Specification Language . 5

3.1.1 Domains . 5
3.1.2 Ponder Basic Policies . 6
3.1.3 Ponder Composite Policies . 8
3.1.4 Conclusions . 8

3.2 The PONDER Toolkit . 9
3.2.1 The Domain-Browser . 9
3.2.2 The Policy Editor and Compiler Framework . 9
3.2.3 The Management Console Tool . 10

3.3 Third Party Components . 12
3.3.1 LDAP . 12
3.3.2 RMI . 12
3.3.3 Elvin . 13

3.4 Interactions Between Components . 14
3.5 Conclusions . 15

4 Installation and Configuration 16
4.1 LDAP . 16
4.2 Ponder Toolkit . 19

4.2.1 Installation . 19
4.2.2 Ponder Schema . 19
4.2.3 Configuration and linking to LDAP . 21

4.3 Event Service . 23
4.4 Policy Enforcement . 24

4.4.1 Running the Policy Service . 24
4.4.2 Creating a Policy Management Agent(PMA) . 25
4.4.3 Editing, Compiling and Storing Policies . 26
4.4.4 Loading and Enabling Policies . 26

4.5 Errors in Code . 28

i

5 Conclusions 30

A RFC 2556 compliant schema for Ponder 31

B Posible Errors by starting LDAP 36

Bibliography 41

List of Figures

2.1 The Policy Architecture . 3

3.1 Ponder Domain Browser . 9
3.2 Ponder Policy Editor . 10
3.3 Management Console Tool . 11
3.4 Ponder Framework . 14

4.1 Ponder Management Toolkit . 21
4.2 Configuration Manager . 22
4.3 Compiler Settings . 26
4.4 Invoking a Policy Instance through the Management Console Tool 1 27
4.5 Invoking a Policy Instance through the Management Console Tool 2 27

iii

Chapter 1

Introduction

Why do we need Policies?

Policies are needed in the management of computer -networks and in the management of distributed sys-
tems. That is why we need a platform in which we can have overview about all policies that exist, run,
which are enabled or disabled. Also this platform must help administrators to write and manage all the
policies they need in their system.

The main concept what we focus on isPolicy based Managementas described in the book of Prof.
Hegering [HAN 99]. Why is this concept so important? Let’s suppose we have large networks, distributed
networks, which are administrated with heterogenic tools. So here we have, as a first problem too many
different tools! The solution for this is the Policy based Management. Policies are sets of rules which
are defined for an existing system. They are declarative, can be run parallel. But there are two more
important advantages we have a common ”Knoledge Database” and it is used only one language, the
”Policy-language”.

There have been many attempts to develop such a tool some with more and some with less succes. One
of the known Policy Mangement Platform is thePonder Policy Based Mangement Toolkitdeveloped at
Imperial College, London.

The topic of my advanced practical was to make a reference installation of the Ponder Toolkit on the
computer-network of the Munich Network Management Team. For what is this installation important?
There are at least three motives:

• Comparation with other implementations which were made and which are running on our network

• Gaining experience with a known management tool (writing policies to test Ponder)

• It is a mandatory preparatory work for the topics: conflict resolution or the management of mobile
networks.

My project is composed of five chapters which reflect my work in the advanced practical. The first chapter
makes an introduction to the subject and defines my purpose. The second chapter shortly describes the
concepts of policy and policy architecture. The third chapter deals with the policy toolkit Ponder. I describe
here the Ponder Policy Specification Language, then the Ponder Toolkit, the third party components which
enables the software to run and their interactions.

Chapter four is dedicated to my work so everything I did through my practical I write it here down. That
means how I configured LDAP and Elvin and how Ponder is configured. I also made references to the
errors which ocurred through my tryings. in the last chapter I summarize what was important in my work,
what I did and with what a result.

1

Chapter 2

What are Policies?

In this chapter we will do an introduction to the topic of policies. We will define them and enumerate some
of their properties, and in the last subsection we present a known policy architecture.

2.1 Definition

According to Sloman,”Policies are rules governing the choices in behaviour of a system”[POND 02]

An alternative definition ofnetwork policy is a statement defining which traffic should be treated differ-
ently in the network, and how so. It is defined by an administrator and specifies the rules related to handling
different types of traffic whithin the network [Verm 01].

Here is a example of a policy: ”The administrator of a network will inactivate the account of a user who
enters a wrong password three times in a row.” or ”In our company the staff can receive E-mails only
through a special mail gateway” and so on. As we see, policies are very important for the description of the
system in which they apply, they actually descibe the behaviour of the system. These rules of the system
describe what the system does or may do and what the system doesn’t or may not do.

We see that this approach is elementary, but somehow the policy must ”come” into the system. The admin-
istrator of the network is the one who defines them, writes and enforce them. Some general rules must be
followed by each administrator at writing policies (it concerns the way how the policy may look like, its
functionality etc.). In the following some requirements:

• Precision. The policy must be precise. That means it must be specified for a specific network
component and it must be understood by this network element. Ambiguity is not acceptable in a
policy definition.

• Consistency.The policies which are written for a component must be consistent with each other so
that they are not in contradiction to other policies written for the same component.

• Compatibility. The policy written for a certain network element must be compatible with the capa-
bilities the network element can support.

• Ease of specification.The policy must be simple and easy to specify. An administrator must be able
to specify the policies with the minimum effort required to specify a consistent and precise set.

• Intuitiveness. The policy definition must be done in familiar terms for the administrator.

There are two different levels of policies:

• High-level policies- more human oriented, which are understood by humans

2

2.2. POLICY ARCHITECTURE OVERVIEW 3

• Low-level policies - more divices oriented, which are understood by devices (which then enforce
them)

For each of these two levels exist regarding specification, different requirements. An administrator uses
a higher-level policy to express his objectives, which is then translated into alower-level policy that is
interpreted by specific devices.

1. Low-Level Policies
This kind of policies must be precise and consistent for each specific device to which they will apply
in accordance with the device capabilities. They must also describe exactlly what kind of actions
the devices must execute and when this happens. The low-level policy must specify in unambiguous
terms the exact operations that the device must perform.

2. High-Level Policies
The requirements include ”ease of specification” and ”intuitiveness” so that the administrator can
specify the policies without effort. The definition of the high-level policies depends on the end goal
of the administrator. We can see the high-level policies as requirements and the low-level policies as
implementations of them.

2.2 Policy Architecture Overview

The policy architecture as defined in the IETF/DMTF consists of four basic elements as we can see it
represented in Figure 2.1:

Managed System

PDP

Policy
 Repository

PEP
PEP

PEP

PEP

PEP
PEP

PEP

Figure 2.1: The Policy Architecture

4 CHAPTER 2. WHAT ARE POLICIES?

• A policy management tool

• A policy repository

• A Policy Decision Point(PDP)

• A Policy Enforcement Point(PEP)

Thepolicy management toolis used by administrators to input the different policies that are active in the
network. The policy management tool is the interface between the repository where low-level policies
are stored and policy decision point on the one side and the admins (the human part) on the other side.
The policy management tool take at each moment the ”pulse” of the system where it controls the whole
activities. Thus, the administrator does not have to know how a low level policy must be like because he
can enter the high-level policy which will then be translated into low-level policies.

The policy repositoryis used to store the policies generated by the management tool. In the repository
we can store both high-level and low-level policies as well as other information important for the system.
That’s a very vital point of this architecture that we have a general database where all information about
the managed system is stored.

The devices that can then apply and execute the different low-level policies are known as thePolicy En-
forcement Points(PEPs). There are so much PEPs as devices to which policies apply. Each policy has in
its definition a reference on the PEP which can enforce it.

The Policy Decision Point(PDP) is responsible for interpreting the policies stored in the repository and
transmiting the proper policy to the proper PEP where it is executed.

The management tools, the PDPs, the PEPs, and the repository can communicate with each other using a
variety of protocols. Which protocol is used to communicate with the repository depends on the type of
repository selected. The preferred choice for the repository is a directory that suports the LDAP protocol.

2.3 General Workflows

When something happens in the system the policy decision point is alerted about this. The PDP then
decides whether this is an important event or not for the good functioning of the system. It then looks in
Repository for the right policy (if one exists), loads it and forwards it to the PEP which is ready to do the
action specified in the policy. The PEP executes the action and the system regains balance.

2.4 Summary

In this chapter, I described what policies are and what the policy architecture is with the three important
componets policy repository, policy decision point and policy enforcement point. In the next chapter we
will see how the teoretical concepts, described until now, apply to the practical example of the Ponder
Framework. Ponder is an implementation of the policy architecture, developed at the Imperial College
in London. It contains the Ponder Toolkit and the Ponder Policy Specification Language. This will be
described in the next chapter.

Chapter 3

Ponder-Framework

In this chapter we will present the Ponder Framework and its components: the Ponder Policy Specification
Language and the Ponder Toolkit. Also third party components will be described which are mandatory for
the execution of the Toolkit. At the end of the chapter, we will describe how the components interact whith
each other.

3.1 The Ponder Policy Specification Language

Ponder is a language for specifying management and security policies. It is a declarative language because
all the policy we write are composed actually only of declaration over the system and its components. The
policies in Ponder are classified in basic types (authorisations, obligations, refrains and delegations) and
composite types (roles, relationships and management structures).

The implemetation of this policy language is realised in Java; policies are stored in databases, and for
the control and coordination of the policy objects there are used some control mechanisms for operating
systems. Templates were implemented for each type of policy, and due to the inheritance property of the
language we can build new composite, complex types of policies. Once the policies are written they can
be compiled and so we have either a java-policy-object or a xml-policy-object which can be then stored in
the database (this is done by the Ponder-Toolkit). The Ponder Framework was developed with the goal to
provide a policy based management tool which runs independently from platform, and which is flexible in
writing, administrating, running policies for large networks or distributed systems. To realize this goal is
one of the subject of this practical.

In the following sections, we present some of the most important concepts of the Ponder language. The pol-
icy examples used are mostly taken from the documentation about the Ponder Policy Language [DDLS 01].

3.1.1 Domains

Domains provide a means of grouping objects to which policies apply and can be used to partition the
objects in a large system according to geographical boundaries, object type, responsibility and authority
or for the convenience of human managers.[POND 02]

Actually a domain is a set whose elements are references to objects. These object references are the
members of the domain. The structuring of the domain is a hierarchical one, which means that there exist
sub-domainsthat are members of the parent domain. Domains can overlap, which means that an object in
a sub-domain can be an indirect member of more parent domains. The reason why Ponder uses domains for
the objects to which policies may apply is that objects can be added and removed from it without change to

5

6 CHAPTER 3. PONDER-FRAMEWORK

the policy [DDLS 01]. For the implementation of the domains, the developers used directories organised
in LDAP (Lightweight Directory Access Protocol) Service [lda].

3.1.2 Ponder Basic Policies

Basic policies are defined over sets of objects formed by applying set operations, such as union, intersection
and differnce to the objects held in the domains.[DLSD 01]

Policy objects and the specified network elements are grouped in domains. For the execution of theses
policies, some operation on these domains are defined. Now the question arises as to how we can diffren-
tiate between ”who” executes the policy and ”to whom” the policies apply. These two concepts are key
concepts in the policy definition in Ponder, namely: thesubject and thetarget. We find these two ”key
words” in each definition and in each type of policy. The references of the subject as well as that of the
target are stored in domains. Through these two keywords, target and subject, we can control where the
policy applies, on which level of the domain, where it may be enforced, and who is qualified to enforce it.

Authorisation and Delegation Policies

Authorisation policies specify what a member of the subject domain may do with members of the target
domain. Thus, authorisation policies are designed to protect target objects and are conceptually enforced
by the target objects [DLSD 01].

Authorisation policies are classified in: positive (that permit an action) and negative (that forbid an action)
authorisation policies. The syntax [DDLS 01] is:

inst (auth+ | auth-) policyName”{”
subject [<type>] domain-Scope-Expression;
target [<type>] domain-Scope-Expresion;
action action-list;
[when constraint-Expression;] ”}”

So the policy is composed of:inst which stands for instance,auth+ (auth-) is used to identify that this
instance is a positive (negative) authorisation policy,subject to designate the subject-domain,target to
designate the target-domain,action to specify which actions are allowed (at positive authorisation policy)
or forbidden (at negative authorisation policy),whenstands for the condition for the enforcingof this policy.

The following are examples of a positive authorisation policy and of a negative authorisation policy:

Example 1: Positive Authorisation Policy [DDLS 01]

inst auth+ routerNMPolicy{
subject /NMAdministrator;
target <ProfileT> /NM/routers;
action load(), remove(), enable(), disable();

}

This policy specifies that the members of the NMAdministrator domain (the admins) are authorised to load,
remove, enable and disable objects of type ProfileT (routers) in the NM/routers domain.

Example 2: Negative Authorisation Policy [DDLS 01]

inst auth- /negativeAuth/testRouters{
subject //testEngineers/trainee;
target <routerTT> /routers;
action performancetest();

}

3.1. THE PONDER POLICY SPECIFICATION LANGUAGE 7

This policy specifies that the trainee engineers are not allowed to perform performance test on routers. This
policy will be stored within the /negativeAuth domain [Dami 02].

A delegation policy is similar to an authorisation policy but it is more powerful because it is written to
permit the subjects of an authorisation policy (grantors) to delegate some or all of their access rights to new
subjects (grantees) [Dami 02]. The effect of a delegation action (by the grantor) is the creation of a new
authorisation policy, which is identical with the original policy, except for the new subject (the grantee).

The syntax of the delegation policy is quite similar to that of the authorisation policy [DDLS 01].

inst (deleg+| deleg-) ”(”associated-auth-policy”)” policyName”{”
subject [<type>] domain-Scope-Expression;
[subject [<type>] domain-Scope-Expression;]
[target [<type>] domain-Scope-Expresion;]
[action action-list;]
[when constraint-Expression;]
[valid constraint-Expression;]”}”

A positive delegation policy specifies the authority to delegate and the negative delegation policies forbid
delegation.

Obligation and Refrain Policies

Obligation policies are event-triggered condition-action rules, which assign to subjects actions which must
be executed on objects in the target domain[POND 02].
The syntax for obligation policies in Ponder is as follows:

inst oblig policyName”{”
on event-pecification;
subject [<type>] domain-Scope-Expression;
[target [<type>] domain-Scope-Expresion;]
do obligation-action-list;
action action-list;
[catch exception-specification;]
[when constraint-Expression;] ”}”

So the policy is composed of:inst which stands for instance,oblig is used to identify that this instance
is an obligation policy,on stands for the specification of the event which triggers the policy,subject to
designate the subject-domain,target to designate the target-domain,action to specify which actions are
allowed,do stands for the obligation-action which must be done,catch is an optional field to specify some
possible exceptions which can occur,whenstands for the condition for the enforcing of this policy.

Example 3: Obligation Policy

inst oblig loginFailure{
on 3*loginfail (userid);
subject s=/NM/Admins;
target [<userT>] t=/NM/users{̂userid};
do t.disable()-> s.log(userid);

}

The event on which this policy ”reacts” is when an user fails his login three times n sequence. Then the
administrator of the domain NM/Admins (the subject) must disable this userid (target) of the user in the do-
main /NM/users. The userid will then be stored in the domain /NM/Admins by the administrator(subject)
with the method log(userid). The arrow means that the operations disable() and log() are enforced sequen-
tially [Dami 02].

8 CHAPTER 3. PONDER-FRAMEWORK

Refrain policies are sets of rules which define actions which the subjects must not perform on targets. So
they are a kind of restraints on the actions that subjects may do. Their syntax is similar to the negative
authorisation policies

3.1.3 Ponder Composite Policies

Groups

Groups are used for the organisation and reusability of the policies. This purpose is realised through
grouping related policies in packages by differnt criteria. They may reference the same targets, relate to
the same department or apply to the same application [DDLS 01].

The syntax for a group instance is shown below:

inst group groupName ”{”
{ basic-policy-definition}
{ group-definition}
{ meta-policy-definition}”}”

Roles

A Role has similarities with a group (it is a special case of group), but is more specific in that the policies are
grouped by a common subject, for instance a position within an organisation (department manager, project
manager). Defining roles contribute to the organisational purposes because when another person ccupies
a certain position the policies refering to this position (rights and duties) don’t have to be respecified;
therefor, it simplifies rganiational proedures [LuSl 97].

A Role definition can help for the description of organisational positions (which can be mapped in Ponder
on domains) and it consists of a set of authorisation, obligation, refrain and delegation policies with the
subjectsubject-domainof the role. The role syntax [DDLS 01] in Ponder is as follows:

inst role roleName ”{”
{ basic-policy-definition}
{ group-definition}
{ meta-policy-definition}”}”

3.1.4 Conclusions

In this section, we described the Ponder Policy Specification Language, what the policies are that it uses,
what their syntax are, what domains are. In the next chapter, I’ll describe the components of the Ponder
Toolkit such as the interfaces that each user or administrator uses at editing, storing, writing and enforcing
policies.

3.2. THE PONDER TOOLKIT 9

3.2 The PONDER Toolkit

Ponder Management Toolkit is an Open Source tool for the Specification and management of Ponder
Policies developed at the Imperial College in London. It implements the Policy architecture described
in section 2 and is a practical application of the principles of the Policy based Management. From the main
console of the management toolkit, one can reach all the tools available, and this allows a user to manage
them from a central location (e.g. to start them and to close them). The Ponder Toolkit includes following
components: The Domain Browser, the Configuration Manager, the Policy Editor and compiler, and the
Management Console Tool.

3.2.1 The Domain-Browser

The domain browser is one of the tools of Ponder which gives the user a graphical mapping of the network
(see Figure 3.1). In this tree-like representation, we can see the domains to which the policies apply, we
see the domains where the policies are stored, and we can retrieve information about all the LDAP entries.

Figure 3.1: Ponder Domain Browser

We have here the whole tree which we store through LDAP (see decription in Section 4.4). Notice that this
information stored in LDAP cannot be called when the configuration of Ponder doesn’t correspond to that
of the LDAP.

3.2.2 The Policy Editor and Compiler Framework

The policy Editor tool (Figure 3.2) compiles the policies written and then stores them into LDAP. Due
to the Editor tool in collaboration with the domain browser and the compiler, it is very easy to use the
development environment for specifying, reviewing and modifying policies.

10 CHAPTER 3. PONDER-FRAMEWORK

Figure 3.2: Ponder Policy Editor

The Ponder compiler maps policies (high-level) into low-level XML or java code policies. A policy is
edited in the Ponder editor and after that compiled and stored in LDAP.

See how the Policy Editor can be used in section 4.4.3

Policies are very easy to write in the policy editor because it has the possibility to call templates for the
specific policies. We can select the subject and target domains from the domain browser which is accessible
each time from the editor.

3.2.3 The Management Console Tool

The Management Console Tool is a management console for managing policies dynamically. The Manage-
ment Console Tool has two views: the Policy Objects View and the Enforcement Components View.

All policies stored in LDAP could be called through the management console 3.3 using the domain browser.
Once they are loaded in the Policy Objects View, the policies can be ”Load”, ”Enable”, ”Disable”, ”Unload”
and stopped, and in this overview we can read the complete informations about the policy, where it is stored,
what its name is, what kind of a policy it is, what the subject and target are, what the event is which triggered
the policy and so on.

3.2. THE PONDER TOOLKIT 11

Figure 3.3: Management Console Tool

Details about the selected policy are displayed including the policy-status.

The same function but for Policy Management Components,is fullfilled the Enforcement Components
View(see section 4.4.1). Here we can see which policies are written for this special component and what
their status is.

I described here the components of the Ponder Toolkit, but this is not enough for running them. There is
need for some other components without which the software doesn’t run. This third party components will
be presented in the following section.

12 CHAPTER 3. PONDER-FRAMEWORK

3.3 Third Party Components

The Ponder Toolkit is a very powerful tool, but for running it one must know about additional components
Ponder Toolkit uses at runtime. In this section I will give a short overview on the ”other” software which
is supposed to be installed and running when we want to use Ponder.

3.3.1 LDAP

LDAP stands forLightweight Directory Access Protocol. It is a lightweight protocol for accessing X.500-
based directory services.

What kind of information can be stored in the directory?The basic information model for LDAP is the
entry. It is a set of attributes that has adistinguished name(dn) which is a unique name. Each LDAP-
entry has a dn which distinguishes it from other entries. Other attributes are”cn” for common name,”o”
for organisation,”ou” for organisation unit and others. So we can actually store everything in LDAP.

How is the information arranged?The entries are hierarchical arranged in a tree structure. We can imagine
this tree as having on top the countries, below them are entries representing states and on the next level
national organisation and so on [lda]. The tree may also be arranged based on Internet domain names
(similar to the DNS).

LDAP allows to control which attributes are required and allowed in an entry through the use of a special
attributeobjectClass. The value of the objectClass attribute can be determined in a LDAP-Schema and so
an entry must always be conform to this schema.

From this brief description of LDAP, we can understand why and how it can be used as a policy repository.
The implementation of LDAP for Ponder was made not only for the policy objects but also for the policy
management components (so for the domain where the policies are active).

After an entry is written, the directory is updated. Other operations which may occur in LDAP are adding,
deleting or changing an entry. The most ”sophisticated” operation, however ssearching. The LDAP search
operation allows some portion of the directory to be searched for entries that match some criteria specified
by a search filter.

I’ll give in section 4.1 more technical information about how LDAP can be configured for Ponder and how
it runs. I used in my experiments OpenLDAP despite the recomandations from Imperial College Ponder
Group. The Ponder Schema which is embeded in the Ponder code cannot be used because it is written only
for a specific LDAP server and it doesn’t work (for more details see section 4.1), so I transformed it into
an Ponder Schema for OpenLDAP in conformity to the [RFC 2256].

3.3.2 RMI

What is RMI?RMI stands for Remote Method Invocation and it is an action of invoking a method of a
remote interface on a remote object, and it based on RPC (Remote Procedure Call). In this systems, local
substitute object (stub) exist which manages the invocation on a remote object.

RMI applications are normally divided into two separate programs: a server and a client. A server applica-
tion generates a number of remote objects, makes references to those remote objects and waits for clients
to invoke methods on those remote objects. A client application gets a remote reference to one ore more
remote objects in the server and then invokes methods on them [rmi].

What is its role in Ponder?Ponder uses in its implementation Java RMI as middleware for the comunication
between components. The policy management components are RMI-objects, the policy objects are RMI-
objects, and also the domains are RMI-objects. The policy control objects which connect policy objects to
the LDAP are also implemented using RMI.

3.3. THIRD PARTY COMPONENTS 13

3.3.3 Elvin

What is Elvin?Elvin is the notification service which is used with Ponder. It is actually a distributor of
events and notifications.Producersdetect events (and are responsible for determining that the status change
is significant), and send descriptions to the notification service for dissemination to interestedconsumers
[Seea 99].

Notification is the concept which defines the sending of an information (message) to an intermediate system
to be forwarded to one or more receivers. The result is that the components much better communicate whith
each other, there is more flexibility between them and the dependency is lower. Elvin router based on this
concept is dynamic, scalable, and used for very many sorts of communication.

What is its role in Ponder?

As briefly outlined above, the notification service n our case Elvin collects and composes events which
derive from outside and inside the system, and forwards them to the policy management componenets
which then can enforce the specified policy.

14 CHAPTER 3. PONDER-FRAMEWORK

3.4 Interactions Between Components

The most important thing is how these separate components can communicate with each other, to establish
the framework of the Ponder Management Toolkit. I try to explain in short how this works (see Figure 3.4
which is actually a simplified presentation of Ponder).

When an event happens in the managed system, this event is caught from the Elvin (event service) and
forwarded to the policy service which identifies the source of the event and decides which policy s to be
initiated. After this decision will be looked up in the LDAP for this policy. This policy has a target and a
subject and with help of this, the policy can then be applied to the appropriate component from the right
agent.

Policy
Service
(PDP)

Admin Management
Console

LDAP
(Repository)

Event
Service
(Elvin)Java RMI

ß Speicherung der Policies
ß Speicherung der Dom ain

PEP

PEP

Policy
Service
(PDP)

Admin Management
Console

LDAP
(Repository)

Event
Service
(Elvin)Java RMI

ß Speicherung der Policies
ß Speicherung der Dom ain

PEP

PEP

PEP PEP
PEP PEP

Figure 3.4: Ponder Framework

In addition to the policies, also the network components to which policies may be applied are stored n the
LDAP(this is a charakteristics of Ponder). The LDAP is accessed through the domain browser (provided
that the connection to the LDAP and the configuration of the Ponder are the same), or it can be called
throught the Management console (which implies that the Policy Service is running). We can then check
the state of each policy object and we can start it from here, but we can also control the policy management
component and its activity.

The Management console is a tool developed at the Imperial College. It is a Java Swing GUI application. It
can access all the compnents (network components, policies, domais etc).From here we can start the policy
service, we can access the LDAP and check policies and network components.

The Policy Service is the interconnection point of this implementation. It communicates with the network
components through the middleware RMI, and with the LDAP. Due to the Policy Service, policies can
be stored in LDAP. The Policy Service gets the events transmitted from the event service and distributes
them to the appropriate policies, and afterwards connects this policy to the network component which is to
enforce it.

3.5. CONCLUSIONS 15

3.5 Conclusions

In this chapter, I presented the Ponder Framework with all the components and their interactions. In the
following chapter, I will exactly describe what the steps of my work were, what I did and how I installed
and configured each component.

Chapter 4

Installation and Configuration

In the last chapters I described Ponder from a theoretical point of view. In this chapter, I will describe what
I have done In course of my project, how I applied the knowledge in practical. This will be quite detailed
description because I didn’t find a detailled Documentation of Ponder and the exact steps of installing and
configuring it. I will also describe the installing and running of the OpenLDAP server, of Elvin Event
Service, and propose a new Ponder Schema for OpenLDAP.

Prerequisites:To run the Ponder Toolkit sucessfully, it is necesary to have done some downloads: OpenL-
DAP (it is included in the newer versions of Linux), Ponder Toolkit (open source software from Imperial
College London), JVM with rmi, Elvin Router from http://www.mantara.com/products/. These downloads
are very important because the absence of one of them causes Ponder to fail.

4.1 LDAP

In the Ponder code, there is a Ponder-schema for IPlanet LDAP server but after I tried to run this
server (the code doesn’t recognize the LDAP server at all though it is running) and couldn’t do this,
I decided to take another one, the OpenLDAP. Open LDAP is open source and can be downloaded on
http://www.openldap.org/ , or at the newer SUSE Linux is automatical inserted.

I’ve installed the software in user space so I can be independent from root access. If you have root access,
however, it is surely better to install it as root. The Open LDAP is installed in /users/stud/marcu/lall/openl-
dap/.

The configuration files of LDAP are in lall/openldap (see the configuration file slapd.conf in the Listing
4.1) . Because I will run the slapd only in userspace, I’ve done some modification to this file: all the files
which are included are supposed to be in the root directory so we must give the whole path here.
(e.g
include /users/stud/marcu/lall/openldap/schema/core.schema or
include /users/stud/marcu/lall/openldap/schema/ponderClasses.schema)

In the pidfile the process ID will be stored:
pidfile /users/stud/marcu/lall/openldap/slapd.pid

The label argsfile shows which is the file in which will be stored the arguments with those slapd will be
started:
argsfile /users/stud/marcu/lall/openldap/slapd.args In the File slapd.args I
stored the arguments I used
/usr/lib/openldap/slapd -f /users/stud/marcu/lall/openldap/slapd.conf
-d 9 -h ldap://127.0.0.1:22222

16

4.1. LDAP 17

or
/usr/lib/openldap/slapd -f /users/stud/marcu/lall/openldap/slapd.conf
-d 9 -h ldap://pcheger2:22222

At the end of the fileslapd.conf exists a database definifion where you can write the type of database
you want to use (e.g. bdb, dnssrv, ldap, ldbm, meta, monitor, null, passwd, perl, shell, sql, or tcl)

Other important entries in the file slapd.conf:

rootdn <dn> :

Specify the distinguished name of the LDAP root.

rootpw <password> :

Specify a password (or hash of the password) for the rootdn. The password can only be set if the
rootdn is within the namingContext (suffix) of the database.

suffix <dn suffix> :

Specify the DN suffix of queries that will be passed to this backend database.

Listing 4.1: Database configuration in slapd.conf

2 ##
ldbm database definitions

4 ###

6 database ldbm
suffix "dc=example,dc=lmu,dc=de"

8 rootdn "cn=myroot,dc=example,dc=lmu,dc=de"
Cleartext passwords, especially for the rootdn, should

10 # be avoid. See slappasswd(8) and slapd.conf(5) for details.
Use of strong authentication encouraged.

12 rootpw root
The database directory MUST exist prior to running slapd AND

14 # should only be accessible by the slapd and slap tools.
Mode 700 recommended.

16 directory /users/stud/marcu/lall/openldap/lib
Indices to maintain

18 index cn,sn pres,eq,sub
index objectClass eq

20

###

The database must exist before slapd will be started. With the entry
directory /users/stud/marcu/lall/openldap/lib we assign the place where the database
will be stored.

We start the slapd with:
/usr/lib/openldap/slapd -f /users/stud/marcu/lall/openldap/slapd.conf
-d 9 -h ldap://127.0.0.1:22222 start or
/usr/lib/openldap/slapd -f /users/stud/marcu/lall/openldap/slapd.conf
-d 9 -h ldap://pcheger2.nm.ifi.lmu.de:22222 start

A new root for the LDAP database is done by:

1. Writing a new .ldif file (or two - one for organistion and one for root)

dn:dc=example,dc=lmu,dc=de
objectClass:dcObject

18 CHAPTER 4. INSTALLATION AND CONFIGURATION

objectClass:organization
o:lmu
dc:example

dn:cn=myroot,dc=example,dc=lmu,dc=de
objectClass:organizationalRole
cn:myroot

2. This file will be inserted to LDAP with command ldapadd as follows:
ldapadd -x -h ldap://pcheger2:22222 -D "cn=myroot,dc=example,dc=lmu,dc=de"
-w root -f firstentry.ldif
or
ldapadd -x -H ldap://pcheger2.nm.ifi.lmu.de:22222/ -D
"cn=myroot,dc=example,dc=lmu,dc=de" -W -f secondentry.ldif

And so we have now a new root for the LDAP database with the namemyroot.

After doing this, you have to create a group (In my configurationponder which is an entry of the domain
dc=example,dc=lmu,dc=de). This will be created as follows:

1. Write a .ldif file with the content:

dn:o=ponder,dc=example,dc=lmu,dc=de
objectClass:top
objectClass:organization
o:ponder
**
and save it for example asponderldif.ldif in the directory where theslapd.conf is
saved.(e.g.∼/lall/openldap/ in my configuration).

2. Then run the command
ldapadd -x -H ldap://pcheger12.nm.ifi.lmu.de:22222/ -D
"cn=myroot,dc=example, dc=lmu,dc=de" -w root -f ponderldif.ldif
to add the groupponder to the LDAP.

We have now the groupponder which we use in the next step during the configuration of the Ponder
Toolkit.

4.2. PONDER TOOLKIT 19

4.2 Ponder Toolkit

4.2.1 Installation

Download the software from http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml. At the time
of this writing, the Ponder Toolkit has been taken offline; it is unclear for how long. Install it on your
computer. Under linux may be some problems with the installation so you can use a console. The software
to download is a file with the namePonderTkInstall.bin for Linux (note that for different operating
systems, you must download diferent installation files) and I stored it in the directory∼/Downloads .
E.g. if the Software is downloaded in the directory∼/Downloads , go in this directory and do:
marcu@pcheger2: ∼/Downloads> ./PonderTkInstall.bin
and you can then see:

Preparing to install...
Extracting the installation resources from the installer archive...
Configuring the installer for this system’s environment...
Launching installer...

We assume that Ponder-Toolkit is now installed in the directory∼/Ponder and contains the following
directories and files:

marcu@pcheger2: ∼/Ponder> ls
code exampleDS.sh ponderEditor.sh Ponder Toolkit InstallLog.log
compilePolicy.sh examplePolicies ponderEnforcement ponderToolkit.sh
compilerDebug.txt lib ponder.jar settings
configurationManager.sh LICENSE.txt ponderSchema test
docs LoginFailurePolicy.java ponderToolkit UninstallerData

Now that we have an installed Ponder Toolkit, let’s take a look at the configuration.

4.2.2 Ponder Schema

There exists a ponderSchema for LDAP in the directory∼/Ponder/ponderSchema in the files:
attributes.def, classes.def, prevattributes.def, prevclasses.def; but when we try to run the script
schemadef.bat first, it only runs under Windows, and second there are so many errors that you don’t
know what to do first. This file is a skript which should atomatically configure the LDAP whith the Ponder
schema. The first thing what you can do in this situation write a new ponderSchema in a new file, and
whith a correct syntax according to [RFC 2256] and [RFC 2252]. See new file in Apendix A.

What I did exactly: I took the whole attributes and objectclass definitions for sure from the ponder schema
in the 4 other files and I wrote then for each attribute and for each objectclass a new definition in acordance
with the specifications on the homepage OpenLDAP [ldap2].
Example for the objectclassponderObject:
in the old schema 4.2

Listing 4.2: Objectclass definition in old ponder schema

(’PonderObject-oid’ NAME ’ponderObject’
2 DESC ’Policy Object including Basic Policy and Composite Policy’

SUP ’managedObject’
4 ABSTRACT -- AUXILIARY debugged at 2001/2/23

MUST (’ponderPolicyType’ $ ’policyIsType’ $ ’controlObjectRef’)
6 MAY (’xmlCode’) -- added on Feb. 28, 2001 --

)

20 CHAPTER 4. INSTALLATION AND CONFIGURATION

in the new schema 4.3

Listing 4.3: Objectclass definition in new ponder schema

objectclass (PonderObject-oid NAME ’ponderObject’
2 DESC ’Policy Object including Basic Policy and Composite Policy

AUXILIARY debugged at 2001/2/23’
4 SUP managedObject

ABSTRACT
6 MUST (ponderPolicyType \$ policyIsType \$ controlObjectRef)

MAY xmlCode)

I defined the new ponder schema as described in the OpenLDAP reference, an OID Macro (in the Listing
4.4) so that I can more easily manage the whole oid’s I have to use (for each objectclass and for each
attribute one). For instance, for the objectclassponderObject which I defined, I have an oid and this is
PonderObject-oid . This must be defined somewhere so that LDAP can recognize ponderObject as a
valid LDAP-object.

As we see in the 8th line of the next listing, the objectidentifier (oid)PonderObject-oid is defined
as anmanagedObject-oid:1 (so it derives from the previous definedmanagedObject-oid).
The oid managedObject-oid is defined asldapobject-oid:1 , and the last one is defined as
lallObjects:1 . The oidlallObjects is an lallElemente:2 oid and this one is anlall:2
oid . The oid lall is the base oid defined by myself and is the root of my tree; the oid I used is
1.1.1.1.1.223 which is a random number.

If one wants to obtain a registered OID, one must apply for an OID under the Internet Assigned Numbers
Authority (IANA). For private experiments, OID’s under 1.1 may be used, which is why thelall oid
begins with 1.1.

Listing 4.4: Ponder Schema as OID Macro

objectIdentifier lall 1.1.1.1.1.223
2 objectIdentifier lallElemente lall:2

objectIdentifier lallAttributes lallElemente:1
4 objectIdentifier lallObjects lallElemente:2

objectIdentifier ldapobject-oid lallObjects:1
6 objectIdentifier managedObject-oid ldapobject-oid:1

objectIdentifier ObjectReference-oid ldapobject-oid:2
8 objectIdentifier PonderObject-oid managedObject-oid:1

objectIdentifier BasicPolicyObject-oid PonderObject-oid:1
10 objectIdentifier CompositePolicyObject-oid PonderObject-oid:2

objectIdentifier DomainObject-oid managedObject-oid:2
12 objectIdentifier EnforcementComponent-oid managedObject-oid:3

objectIdentifier PolicyMgmtComponent-oid EnforcementComponent-oid:1
14 objectIdentifier AccessController-oid EnforcementComponent-oid:2

objectIdentifier UserProfileObject-oid managedObject-oid:4
16 objectIdentifier MetaPolicyObject-oid PonderObject-oid:3

You have to save this file in the directory∼/lall/openldap/schema/ (relative the directory where
slapd.conf is). After you did this, you must go into the file slapd.conf and at the beginning of the file write:
include /users/stud/marcu/lall/openldap/schema/ponderClasses.schema
and
include /users/stud/marcu/lall/openldap/schema/java.schema
Otherwise ldap wouldn’t recognize the ponderSchema.

So now we can start the slapd and from the beginning must accept all the classes and attributes. If the
schema is not written as I wrote it here, some interesting errors could occur. Two example of errors are
listed in Appendix B. In the first one B.1 there is a syntax error (when the punctuation is incorectly used)

4.2. PONDER TOOLKIT 21

and in the second one B.2 is an error which occurs when the newly defined objectclasses aren’t recognized
from LDAP.

So a very important thing is that slapd runs without errors, for only then can we run and configure Ponder
Toolkit. You can try now to run the scriptponderToolkit.sh (after the installation in the directory
Ponder) which starts Ponder or if it doesn’t work, enter directly the java... command (content in this
script) at your terminal. The Ponder Management Toolkit window look like Figure 4.1.

Figure 4.1: Ponder Management Toolkit

Each of the other components of the toolkit can be opened from this window, but each of them can also
be opened through their own scrips (e.g. the configuration manager can be opened through running the
configurationManager.sh skript in the directoryPonder). Don’t worry if an error occurs because
ponder is not yet configured. But after you set and save all configuration options, you can restart ponder.
So click the OK button and go on.

4.2.3 Configuration and linking to LDAP

To open the Configuration Manager run the script configurationManager.sh orjava -cp ponder.jar
ponderToolkit.configuration.ConfigManager . Now the Configuration Manager should ap-
pear on the screen (see Figure 4.2).

22 CHAPTER 4. INSTALLATION AND CONFIGURATION

Figure 4.2: Configuration Manager

You must now fill in the Configuration Manager with the informations which match to the settings of the
LDAP as follows:

LDAP Host and Port

Host Name: name of the user (here: pcheger2.nm.ifi.lmu.de)

Port: the port number on which you configured the LDAP server (here: 22222)

LDAP SearchBase

Domain Name: the LDAP group which we created in section 4.1 so o=ponder, dc=example, dc=lmu,
dc=de

Root Distinguished Name: this name doesn’t exist yet. This name domain will be created in LDAP
only after runing the next script. (I used here the common name cn=lallroot)

Directory Manager

Name: name of the root in LDAP (cn=myroot,dc=example,dc=lmu,dc=de)

Credentials: credentials as you wrote in the slapd.conf file at the configuration of slapd

Domain Server Information

Host Name: the same hostname as up pcheger2.nm.ifi.lmu.de

Remote Server Object Name: DomainServer(This name is not optional; it must remain unchanged)

Policy Server Information

Host Name: name of the host for policy service (pcheger2.nm.ifi.lmu.de)

Remote Server Object Name: PolicyServer (it is mandatory)

Event Server Information

Host Name: name of the host for event service(pcheger2.nm.ifi.lmu.de)

Remote Server Object Name: EventServer (it is mandatory)

4.3. EVENT SERVICE 23

After making these changes, you must go on Update and also on the menu System Save for each one of the
three services: domain, policy and event service.

In the directory∼Ponder/code/ponderToolkit/uttilities/testData there exists a file
CreateUniversityDS.java which stores in LDAP an default Example of an University Department as a tree
structure.

The script exampleDS.sh must be run so that this treee structure can be stored in
o=ponder,dc=example,dc=lmu,dc=de . It creates an common namecn=lallroot (the Root
Distinguished Name of the LDAP SearchBase which we configured in Configuration Manager).

It is very important to do this operation in exactly this sequence:

• run the LDAP-Server with the new PonderSchema (without errors)

• take the changes into the Configuration Manager (as described)

• run the script exampleDS.sh

When you did this, you must have in OpenLDAP the whole tree structure of the University department.

4.3 Event Service

Ponder relies on Elvin for event transport. This is why we must run it on the system. The download can be
made from thehttp://www.mantara.com/products/ . I used an evaluation version so I get the
key sent by email. Elvin is a commercial product but there can be downloaded a trail version for 90 days
or for academic use there is free use of the software (for both cases you need a key which will be sent by
email).

Elvin Router is an rpm package which you must install on your system and then run it with the command:
/usr/sbin/elvind -l -dd .

24 CHAPTER 4. INSTALLATION AND CONFIGURATION

4.4 Policy Enforcement

4.4.1 Running the Policy Service

This step can be done only wenn all the other configurations which I described in the last subsections are
done. Actually it s very eas; you only havr to run the scriptpolicyService.bat in the directory
∼/Ponder/ponderEnforcement> . The only problem is that when you have a linux machine, the
script cannot be run. I wrote a new script for LinuxpolicyService.sh with the content from the
former scriptpolicyService.bat as in the Listing 4.5:

Listing 4.5: Script policyService.sh

java -cp .:./classes:./ponder.jar:./lib/httpserver.jar
2 ponderEnforcement.RMIStarter 1200 ./classes

sleep 5
4 java -cp .:./classes:./ponder.jar:./lib/je-4.0b4.jar

-Djava.rmi.server.codebase=http://localhost:1200/
6 -Djava.security.policy=../settings/ponderEnforcement/policyService/policy

ponderEnforcement.policyService.PolicyServerStarter

The problem of another error now occurs (Policy Service error: acces denied). A more detailed
listing of the error can be found in Appendix B, the third errorlisting B.3

That means that RMI-registry cannot be started. The error is in the code in
∼ /Ponder/code/ponderEnforcement/RMIStarter.java in line 38 where the start
commandrmiRegistry is not correctly used. It must bermiregistry . You must change this and recompile
the class∼ /Ponder/code/ponderEnforcement/RMIStarter.java , and be sure to create a
new stub too. If you don’t want to create a new stub, you can start the registry from console:
rmiregistry 1099

If despite the changes, the scriptpolicyService.sh doesn’t run, you can split it into two separate
scripts. The first one could be namedstartwebserver.sh (see listing 4.6) andstartPolServ.sh
(see listing 4.7). The first one starts the HTTP-server.

Listing 4.6: Script startwebserver.sh

marcu@pcheger2:˜/Ponder> echo ’java -cp /users/stud/marcu/Ponder/classes:
2 /users/stud/marcu/Ponder/ponder.jar:/users/stud/marcu/Ponder/lib/httpserver.jar

ponderEnforcement.RMIStarter 1200 /users/stud/marcu/Ponder/classes’ >
4 startwebserver.sh

marcu@pcheger2:˜/Ponder> chmod +x startwebserver.sh
6

marcu@pcheger2:˜/Ponder>./startwebserver.sh
8 Port occupied. Assuming RMI registry is running on default port: 1099

Nothing is running on port: 1200
10 Starting HTTP class-server on: 1200

java -cp "lib/httpServer.jar" lib.rmi.http.ClassServer -port 1200 -dir
12 "./classes" -verbose

HTTP-server started

The second script is actually used to start the Policy Service. It starts the RMI-client and connects
it to the registry.

4.4. POLICY ENFORCEMENT 25

Listing 4.7: Script startPolServ.sh

marcu@pcheger2:˜/Ponder> echo ’java -cp /users/stud/marcu/Ponder/classes:
2 /users/stud/marcu/Ponder/ponder.jar:/users/stud/marcu/Ponder/lib/je-4.0b4.jar

-Djava.rmi.server.codebase=http://localhost:1200/
4 -Djava.security.policy=/users/stud/marcu/Ponder/settings/ponderEnforcement/

policyService/policy ponderEnforcement.policyService.PolicyServerStarter’ >
6 startPolServ.sh

marcu@pcheger2:˜/Ponder> chmod +x startPolServ.sh

When we start the second script, it could be that a new error occurs (See Apendix B, the 4-th
Listing)

The origin of this error is that/classes are not found; with classes is meant the code from Ponder. So
the solution is to make a link on code:
marcu@pcheger2: /Ponder> ln -vs code classes
Then you can run againstartPolServ.sh and you must get the following output:

Listing 4.8: Output Started Policy Service

marcu@pcheger2:˜/Ponder> ./startPolServ.sh
2 >>>http://localhost:1200

>>>1200
4 The Policy Service is up and running

The Policy Service is now up and running and the next step is to create a PMA Agent.

4.4.2 Creating a Policy Management Agent(PMA)

What is a Policy Management Agent?
An agent interprets policies relevant to it. It is an object that implements a policy enforcement interface.
This interface can load, enable and disable the enforcement objects created from policy objects.PMA
enforces all the enabled refrain and obligation methods for a subject [DLSD 01].

The first (important!) step is to create through the domain browser in the root (in my configurationlallroot)
a directory PMAs.

Use the example that is included in the downloaded software: the script
∼/Ponder/ponderEnforcement/LogPMA.bat . It could be that this script doesn’t run so
you must write aLogPMA.sh script and then copy it in∼/Ponder and run it there. So a policy
management agent is created named LogPMA which is stored in LDAP as child from the newly created
directory PMAs. The following output (listing 4.9) will appear on the terminal.

Listing 4.9: Output at runing LogPMA.sh

marcu@pcheger2:˜/Ponder> ./LogPMA.sh
2 Initialising Ponder management-Component: please wait

LDAP NAME: cn=LogPMA,cn=PMAs,cn=lallroot
4 Utils::connectToDomainService at: pcheger2.nm.ifi.lmu.de

Initial DirConext Created Ok
6 Loading Action: log

Try to Read bytes for: ponderEnforcement/ponderMC/PonderMCimpl.class
8 #result = 32768 ## = 11754

javaByteCode = [B@1dc423f size = 11754
10 Started PMC: rmi://pcheger2.in.nm.ifi.lmu.de/LogPMA

The Ponder management-Component is up and running

26 CHAPTER 4. INSTALLATION AND CONFIGURATION

4.4.3 Editing, Compiling and Storing Policies

The first step is to create through the domain browser in the root of LDAP (here in lallroot) a directory with
the name Policies. Here the policies will be stored, obviously.

Figure 3.2 shows the policy editor. This Editor is not only for writing policies but also for compilng policies.
The policy editor can be opend directly with the comand./policyEditor.sh or when you have
already started Ponder management Tool (see Figure 4.1), you have to click the second icon from top on the
vertical toolbar. There is an example policy in∼/Ponder/examplePolicies/loginFail.pol

Presuming the editor is on screen, open the file to view it in the editor. It is an obligation policy which
tells the LogPMA (agent) to log the user that the event logUser carries as parameter. Now you want to
compile it so you must do some configuration. The last Symbol of the topbar is ”Choose the settings of the
compiler”.When you click this, Figure 4.3 appears.

Figure 4.3: Compiler Settings

Select Compile ”on line”, ”Java Code” and ”Enable Storing of Code in Domain Service”, then ”OK”. Then
you must click the second symbol in the topbar for compiling. When everything is running appropriately,
then you must see in the window at the botom ”Compiling done”.

One requisit of unobstructed compiling is to do all the configurations I described until now, to start slapd,
the policy service and the event service (i.e. all components). Now we can load and enable compiled
policies.

4.4.4 Loading and Enabling Policies

You can do this through the Management Console Tool (Figure 3.3) described in Section 3.2.3. To load the
policy, enter the menu Policies as in Figure 4.4:

4.4. POLICY ENFORCEMENT 27

Figure 4.4: Invoking a Policy Instance through the Management Console Tool 1

Then you choose ”Start a policy instance” and the domain browser open as shown in Figure 4.5. Now you
must go in the tree to the policy you want to load (here ”LoginFailurePolicy”) and click the right mouse
button and then choose ”Close and return”; then the policy in the left part of the management console is
loaded.

Figure 4.5: Invoking a Policy Instance through the Management Console Tool 2

In the beginning, the status of the policy is ”Dormant”, but there are five buttons on the bottom of the
right window where you can ”load”, ”enable”, ”disable” or ”unload” the policy. The order I give here is

28 CHAPTER 4. INSTALLATION AND CONFIGURATION

important because only then does Ponder run without error.Dormant is the state of a instantiated policy
(it exists but it is inactive). When you clickload then the policy is loaded into its enforcement agents.
Now you can clickenableand the policy goes into state the enabled where the enforcement agents actively
implement the policy. You can attain again the state loaded if you now clickdisable(that means the policy
is not implemented any more but can be enabeled again at any time), or you can start the policy when you
click start. The state dormant can be reache from the state loaded by clickingunload; it means that the
policy is removed from its enforcements agents. I observed that the policy has to be in dormant state when
you close the program; otherwise, you will get at error at a new start.

The cause for this error ies in the fact that the contol object refernce of the policy object is not deleted,
except when in state dormant. Consequently, when this reference is not deleted, at a new start you get the
error because t tries to build a new reference which already exists. I think that is a bug in code. The error
does not occur anymore however, when you accurately bring the polices into the state dormand each time.

You can also load for all existent policies a management component. This is similar to loading policies,
but you have to choose the window Management Component.

4.5 Errors in Code

After all these changes and configurations of the toolkit and LDAP, I recognized there where some errors
in the Ponder Toolkit code. In the following we discuss those that need to be fixed for the toolkit to run
properly.

In the ponder schema I changed the definition of the policyMgmtComponent:

Listing 4.10: New Definition for policyMgmtComponent

objectclass (PolicyMgmtComponent-oid NAME ’policyMgmtComponent’
2 DESC ’Execution engine for obligation policies’

SUP enforcementComponent
4 AUXILIARY

MAY appliedPolicies)

Because of the error:[LDAP: error code 65 - object class ’basicPolicyObject’
requires attribute ’controlObjectRef’] we must change the definition of basicPolicyOb-
ject. That means that in the definition of basicPolicyObject we seeSUP ponderObject which means
we must change ponderObject definition.

Listing 4.11: Old Definition for ponderObject

objectclass (PonderObject-oid NAME ’ponderObject’
2 DESC ’Policy Object including Basic Policy and Composite Policy

AUXILIARY debugged at 2001/2/23’
4 SUP managedObject

ABSTRACT
6 MUST (ponderPolicyType $ policyIsType $ controlObjectRef)

MAY xmlCode)

Listing 4.12: New Definition for ponderObject

objectclass (PonderObject-oid NAME ’ponderObject’
2 DESC ’Policy Object including Basic Policy and Composite Policy

AUXILIARY debugged at 2001/2/23’
4 SUP managedObject

ABSTRACT
6 MUST (ponderPolicyType $ policyIsType)

MAY (xmlCode $ controlObjectRef))

4.5. ERRORS IN CODE 29

In the File∼/Ponder/code/ponderEnforcement/policyService/PolServiceImpl.java
ControlobjRef=” ” appear several times. This is a mistake because according to the definition of the
ponder schema, the controlObjectRef is never empty string. I modified this with a default string. I wrote
”null” (which has nothing to do with the null = empty string, but is a default,non-empty string). The places
where this must be changed are the lines: 174, 246, 308, 388.

In the file∼/Ponder/code/ponderEnforcement/policyService/LocalPolicyService.java
do the same changes as above in the lines: 128, 367, 453, 701. Another mistake in this file is that in line
752 and 1396 it is used ”userID” which is not in concordance with the definition in the ponder Schema
where ”ponderUserID” is used.

In the file ∼/Ponder/code/ponderEnforcement/ponderMC/PMCServer.java there is a
typewriteing mistake: instead of ”javaReferenceAdress” must be used ”javareferenceAdress”. This mistake
can lead to errors in the policy service at runtime.

Chapter 5

Conclusions

During my practical, I sometimes felt happy to do this topic and sometimes hopeless... At the end it RUNS.
I have summerized some of the problems I encountered and how I solved them

In the begining, there was very little documentation and references that I could read, so that it was iposible
to start the toolkit quickly. Conseuntly I wrote a detailled documentation about installing and configuring
the Toolkit.

What I also noticed was that some important components without which the toolkit does not run are miss-
ing. They are not given anywhere at the beginning of the installation, so that one cannt see what the
prerequisits for ponder are. It’s disturbing not to know this because for each step when you want to run or
configure something you must find out what other components are missing. Thus, I documented how we
configure LDAP and Elvin properly for the use with the Ponder Toolkit.

Another problem was the Ponder Schema. It is written only for the special iPlanet LDAP-server (now
SunOne 5.2) and it doesn’t run at all. I analyzed then the schema provided with the toolkit, and I rewrote it
so as to be syntax conform (after RFC2256 and RFC2252) for OpenLDAP. I kept the whole names of the
attributes and objectclasses (because the Toolkit relies on them).

Most starting and configuration scripts were written for Windows so they couldn’t be run on linux machine.
I rewrote most of them in shell script.

Some times there were some errors whose origin was difficult to locate and that is why looking for errors
in code was quite difficult. I concentrated on fixing errors that prevented Ponder from running.

The products of my practical delivered are:

• a full and complete reference installation with documentation of the Ponder Toolkit

• a reference work for other projects at the MNM department such as: ”Handling of Policy Conflicts”
and ”The management of Mobile Networks”

30

Appendix A

RFC 2556 compliant schema for Ponder

Listing A.1: New ponder schema

#PONDER SCHEMA FOR OPENLDAP
2 #Written by Patricia Marcu

#12.09.2004
4 #the Names of the ObjectClasses and Atributes are taken over the 4 old files

6

objectIdentifier lall 1.1.1.1.1.223
8 objectIdentifier lallElemente lall:2

objectIdentifier lallAttributes lallElemente:1
10 objectIdentifier lallObjects lallElemente:2

12 objectIdentifier ldapobject-oid lallObjects:1
objectIdentifier managedObject-oid ldapobject-oid:1

14 objectIdentifier ObjectReference-oid ldapobject-oid:2
objectIdentifier PonderObject-oid managedObject-oid:1

16 objectIdentifier BasicPolicyObject-oid PonderObject-oid:1
objectIdentifier CompositePolicyObject-oid PonderObject-oid:2

18 objectIdentifier DomainObject-oid managedObject-oid:2
objectIdentifier EnforcementComponent-oid managedObject-oid:3

20 objectIdentifier PolicyMgmtComponent-oid EnforcementComponent-oid:1
objectIdentifier AccessController-oid EnforcementComponent-oid:2

22 objectIdentifier UserProfileObject-oid managedObject-oid:4
objectIdentifier MetaPolicyObject-oid PonderObject-oid:3

24 ###

26 #objectIdentifier ReferredObjectReference-oid lallAttributes:1
#objectIdentifier ActualObjectReference-oid lallAttributes:2

28 #objectIdentifier PonderPolicyType-oid lallAttributes:3
#objectIdentifier PolicyIsType-oid lallAttributes:4

30 #objectIdentifier AccessControllerRef-oid lallAttributes:5
#objectIdentifier ControlObjectRef-oid lallAttributes:6

32 #objectIdentifier AppliedPolicies-oid lallAttributes:7
#objectIdentifier JavaByteCode-oid lallAttributes:8

34 #objectIdentifier ObjectType-oid lallAttributes:9
#objectIdentifier XmlCode-oid lallAttributes:10

36 #objectIdentifier ponderUserId-oid lallAttributes:11
#objectIdentifier policyOwner-oid lallAttributes:12

38 #objectIdentifier creationTime-oid lallAttributes:13
#objectIdentifier weight-oid lallAttributes:14

31

32 APPENDIX A. RFC 2556 COMPLIANT SCHEMA FOR PONDER

40 #objectIdentifier certificate-oid lallAttributes:15
#objectIdentifier publickey-oid lallAttributes:16

42 #objectIdentifier privatekey-oid lallAttributes:17

44

###
46 #

ATTRIBUTEN DEFFINITION
48 #

###
50

attributetype (lallAttributes:1 NAME ’referredObjectReference’
52 DESC ’reverse pointer to Object reference. SUP is distinguishedName

(Syntax is DN).Multiple values are allowed.’
54 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

56 attributetype (lallAttributes:2 NAME ’actualObjectReference’
DESC ’Pointer to Ponder Object from object reference. SUP is

58 distingushishedName (Syntax is DN)’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12

60 SINGLE-VALUE)

62 attributetype (lallAttributes:3 NAME ’ponderPolicyType’
DESC ’Type identifier. Syntax is Directory String (Ver 2.63)’

64 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE)

66

68 attributetype (lallAttributes:4 NAME ’policyIsType’
DESC ’Indicates whether the PonderObject is a type or not.Syntax is Boolean.

70 BecauseNetscape Directory Server does not support
Boolean,We use Directory String instead.’

72 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE)

74

attributetype (lallAttributes:5 NAME ’accessControllerRef’
76 DESC ’A pointer to Access Controller. SUP is distinguishedName (Its syntax is DN).’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
78 SINGLE-VALUE)

80 attributetype (lallAttributes:6 NAME ’controlObjectRef’
DESC ’A pointer to objectControl. Its syntax is Directory String (URL of RMI).’

82 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE)

84

attributetype (lallAttributes:7 NAME ’appliedPolicies’
86 DESC ’A reference to all the policies that apply to the domain -

Multiple values allowed. SUP is distinguishedName
88 (Its syntax is DN).’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
90

attributetype (lallAttributes:8 NAME ’javaByteCode’
92 DESC ’Java byte code programming a Java class. Syntax is Octet String.

Because Netscape Directory server does not support
94 Octet String,we use Binary instead.’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
96 SINGLE-VALUE)

33

98 attributetype (lallAttributes:9 NAME ’objectType’
DESC ’The type of a resource managed object.Its syntax is Directory String.

100 There could be multiple’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

102

attributetype (lallAttributes:10 NAME ’xmlCode’
104 DESC ’The XML code for the Ponder Object. Syntax is Directory String.’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
106 SINGLE-VALUE)

108 attributetype (lallAttributes:11 NAME ’ponderUserId’
DESC ’A unique Id for the user. The syntax is Directory String.’

110 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE)

112

attributetype (lallAttributes:12 NAME ’policyOwner’
114 DESC ’The unique Id of the creator of the basic policy’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
116 SINGLE-VALUE)

118 attributetype (lallAttributes:13 NAME ’creationTime’
DESC ’An Integer indicating the creation time of the basic policy’

120 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE)

122

attributetype (lallAttributes:14 NAME ’weight’
124 DESC ’An Integer indicating a weight-value the basic policy’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
126 SINGLE-VALUE)

128 attributetype (lallAttributes:15 NAME ’certificate’
DESC ’Local temporary’

130 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5)

132 attributetype (lallAttributes:16 NAME ’publickey’
DESC ’Local temporary’

134 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE)

136

138 attributetype (lallAttributes:17 NAME ’privatekey’
DESC ’Local temporary’

140 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE)

142

144 ###
#

146 # OBJECTCLASSES DEFFINITION
#

148 ###

150 objectclass (ldapobject-oid NAME ’ldapObject’
DESC ’Top of Ponder objects (Abstract Class)’

152 SUP top
ABSTRACT)

154

objectclass (managedObject-oid NAME ’managedObject’

34 APPENDIX A. RFC 2556 COMPLIANT SCHEMA FOR PONDER

156 DESC ’Object handled in Ponder (Abstract Class)’
SUP ldapObject

158 ABSTRACT
MAY (accessControllerRef $ referredObjectReference $ objectType))

160

objectclass (ObjectReference-oid NAME ’objectReference’
162 DESC ’The psudo node for plural parents’

SUP ldapObject
164 STRUCTURAL

MUST actualObjectReference
166 MAY cn)

168 objectclass (PonderObject-oid NAME ’ponderObject’
DESC ’Policy Object including Basic Policy and Composite Policy

170 SUP managedObject
ABSTRACT

172 MUST (ponderPolicyType $ policyIsType $ controlObjectRef)
MAY xmlCode)

174

176 objectclass (BasicPolicyObject-oid NAME ’basicPolicyObject’
DESC ’A Ponder Basic Policy’

178 SUP ponderObject
AUXILIARY

180 MAY (policyOwner $ creationTime $ weight))

182 objectclass (CompositePolicyObject-oid NAME ’compositePolicyObject’
DESC ’A Ponder Composite Policy’

184 SUP ponderObject
AUXILIARY)

186

objectclass (DomainObject-oid NAME ’domainObject’
188 DESC ’Domain’

SUP managedObject
190 STRUCTURAL

MUST cn
192 MAY appliedPolicies)

194 objectclass (EnforcementComponent-oid NAME ’enforcementComponent’
DESC ’Execution engine for Policies (Abstract class)’

196 SUP managedObject
ABSTRACT

198 MUST javaByteCode)

200 objectclass (PolicyMgmtComponent-oid NAME ’policyMgmtComponent’
DESC ’Execution engine for obligation policies’

202 SUP enforcementComponent
AUXILIARY

204 MAY appliedPolicies)

206

objectclass (AccessController-oid NAME ’accessController’
208 DESC ’Execution engine for authorization policies’

SUP enforcementComponent
210 AUXILIARY)

212 #-- Added on Mar. 5, 2001 --
objectclass (UserProfileObject-oid NAME ’userProfileObject’

35

214 DESC ’An entry to represent the user in the system’
SUP managedObject

216 AUXILIARY
MUST ponderUserId)

218

220 objectclass (MetaPolicyObject-oid NAME ’metaPolicyObject’
DESC ’A Ponder Composite Policy’

222 SUP ponderObject
AUXILIARY)

Appendix B

Posible Errors by starting LDAP

Listing B.1: Error at the definition of attributes

marcu@pcheger2:˜> /usr/lib/openldap/slapd -f /users/stud/marcu/lall/openldap/slapd.conf
2 -d 9 -h ldap://pcheger2.nm.ifi.lmu.de:22222

@(#) $OpenLDAP: slapd 2.1.22 (Sep 23 2003 21:38:34) $
4 root@E180:/usr/src/packages/BUILD/openldap-2.1.22/servers/slapd

daemon_init: listen on ldap://pcheger2.nm.ifi.lmu.de:22222
6 daemon_init: 1 listeners to open...

ldap_url_parse_ext(ldap://pcheger2.nm.ifi.lmu.de:22222)
8 daemon: initialized ldap://pcheger2.nm.ifi.lmu.de:22222

daemon_init: 1 listeners opened
10 slapd init: initiated server.

slap_sasl_init: initialized!
12 bdb_initialize: initialize BDB backend

bdb_initialize: Sleepycat Software: Berkeley DB 4.1.25: (September 23, 2003)
14 >>> dnNormalize: <cn=Subschema>

=> ldap_bv2dn(cn=Subschema,0)
16 <= ldap_bv2dn(cn=Subschema,0)=0

=> ldap_dn2bv(272)
18 <= ldap_dn2bv(cn=subschema,272)=0

<<< dnNormalize: <cn=subschema>
20 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 57: Missing closing parenthesis before

AttributeTypeDescription = "(" whsp
22 numericoid whsp ; AttributeType identifier

["NAME" qdescrs] ; name used in AttributeType
24 ["DESC" qdstring] ; description

["OBSOLETE" whsp]
26 ["SUP" woid] ; derived from this other

; AttributeType
28 ["EQUALITY" woid] ; Matching Rule name

["ORDERING" woid] ; Matching Rule name
30 ["SUBSTR" woid] ; Matching Rule name

["SYNTAX" whsp noidlen whsp] ; see section 4.3
32 ["SINGLE-VALUE" whsp] ; default multi-valued

["COLLECTIVE" whsp] ; default not collective
34 ["NO-USER-MODIFICATION" whsp]; default user modifiable

["USAGE" whsp AttributeUsage]; default userApplications ; userApplications;
36 directoryOperation; distributedOperation ; dSAOperation whsp ")"

slapd shutdown: freeing system resources.
38 slapd stopped.

connections_destroy: nothing to destroy.

36

37

Listing B.2: Error when the ldap doesn’t recognize the Objectclasses

marcu@pcheger2:˜/lall/openldap/schema> /usr/lib/openldap/slapd -f
2 /users/stud/marcu/lall/openldap/slapd.conf -d 9 -h ldap://pcheger2.nm.ifi.lmu.de:22222

@(#) $OpenLDAP: slapd 2.1.22 (Sep 23 2003 21:38:34) $
4 root@E180:/usr/src/packages/BUILD/openldap-2.1.22/servers/slapd

daemon_init: listen on ldap://pcheger2.nm.ifi.lmu.de:22222
6 daemon_init: 1 listeners to open...

ldap_url_parse_ext(ldap://pcheger2.nm.ifi.lmu.de:22222)
8 daemon: initialized ldap://pcheger2.nm.ifi.lmu.de:22222

daemon_init: 1 listeners opened
10 slapd init: initiated server.

slap_sasl_init: initialized!
12 bdb_initialize: initialize BDB backend

bdb_initialize: Sleepycat Software: Berkeley DB 4.1.25: (September 23, 2003)
14 >>> dnNormalize: <cn=Subschema>

=> ldap_bv2dn(cn=Subschema,0)
16 <= ldap_bv2dn(cn=Subschema,0)=0

=> ldap_dn2bv(272)
18 <= ldap_dn2bv(cn=subschema,272)=0

<<< dnNormalize: <cn=subschema>
20 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 13: unknown directive

"objectClass(’ldapobject-oid’" outside backend info and database
22 definitions (ignored)

/users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 21: unknown directive
24 "objectClass(’managedObject-oid’" outside backend info and database

definitions (ignored)
26 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 27: unknown directive

"objectClass(’ObjectReference-oid’" outside backend info and database
28 definitions (ignored)

/users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 34: unknown directive
30 "objectClass(’PonderObject-oid’" outside backend info and database

definitions (ignored)
32 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 35: unknown directive

")" outside backend info and database definitions (ignored)
34 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 41: unknown directive

"objectClass(’BasicPolicyObject-oid’" outside backend info and database
36 definitions (ignored)

/users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 46: unknown directive
38 "objectClass(’CompositePolicyObject-oid’" outside backend info and database

definitions (ignored)
40 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 53: unknown directive

"objectClass(’DomainObject-oid’" outside backend info and database
42 definitions (ignored)

/users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 59: unknown directive
44 "objectClass(’EnforcementComponent-oid’" outside backend info and database

definitions (ignored)
46 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 64: unknown directive

"objectClass(’PolicyMgmtComponent-oid’" outside backend info and database
48 definitions (ignored)

/users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 69: unknown directive
50 "objectClass(’AccessController-oid’" outside backend info and database

definitions (ignored)
52 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 71: unknown directive

"--" outside backend info and database definitions (ignored)
54 /users/stud/marcu/lall/openldap/schema/ponderClasses.def: line 76: unknown directive

"objectClass(’UserProfileObject-oid’" outside backend info and database
56 definitions (ignored)

38 APPENDIX B. POSIBLE ERRORS BY STARTING LDAP

Listing B.3: Error at starting of the Policy Service

pcheger2:˜/Ponder> java -cp .:./classes:./ponder.jar:./lib/httpserver.jar
2 ponderEnforcement.RMIStarter 1200 ./classes

RMI registry is not running on default port: 1099
4 Starting RMIRegistry 1099...

Could not start RMI registry: java.io.IOException: rmiRegistry: not found
6

8

marcu@pcheger2:˜/Ponder> java -cp .:./classes:./ponder.jar:./lib/je-4.0b4.jar
10 -Djava.rmi.server.codebase=http://localhost:1200/

-Djava.security.policy=../settings/ponderEnforcement/policyService/policy
12 ponderEnforcement.policyService.PolicyServerStarter

>>>http://localhost:1200/
14 >>>1200

Initialising Policy-Service: please wait
16 Configuration Manager: Using build-in default properties.

Warning: properties could not be saved
18 java.security.AccessControlException: access denied (java.io.FilePermission

settings/configuration.ini write)
20 Configuration Manager: Using build-in default properties.

Policy Service error: access denied (java.net.SocketPermission 127.0.0.1:1099
22 connect,resolve)

java.security.AccessControlException: access denied (java.net.SocketPermission
24 127.0.0.1:1099 connect,resolve)

at java.security.AccessControlContext.checkPermission
26 (AccessControlContext.java:269)

at java.security.AccessController.checkPermission
28 (AccessController.java:401)

at java.lang.SecurityManager.checkPermission(SecurityManager.java:524)
30 at java.lang.SecurityManager.checkConnect(SecurityManager.java:1026)

at java.net.Socket.connect(Socket.java:446)
32 at java.net.Socket.connect(Socket.java:402)

at java.net.Socket.<init>(Socket.java:309)
34 at java.net.Socket.<init>(Socket.java:124)

at sun.rmi.transport.proxy.RMIDirectSocketFactory.createSocket
36 (RMIDirectSocketFactory.java:22)

at sun.rmi.transport.proxy.RMIMasterSocketFactory.createSocket
38 (RMIMasterSocketFactory.java:128)

at sun.rmi.transport.tcp.TCPEndpoint.newSocket(TCPEndpoint.java:562)
40 at sun.rmi.transport.tcp.TCPChannel.createConnection

(TCPChannel.java:185)
42 at sun.rmi.transport.tcp.TCPChannel.newConnection(TCPChannel.java:171)

at sun.rmi.server.UnicastRef.newCall(UnicastRef.java:313)
44 at sun.rmi.registry.RegistryImpl_Stub.rebind(Unknown Source)

at java.rmi.Naming.rebind(Naming.java:160)
46 at ponderEnforcement.policyService.PolicyServerStarter.<init>

(PolicyServerStarter.java:45)
48 at ponderEnforcement.policyService.PolicyServerStarter.main

(PolicyServerStarter.java:90)

39

Listing B.4: Error at starting of startPolServ.sh

pcheger2:˜/Ponder> ./startPolSer.sh
2 Tue Aug 24 13:46:23 CEST 2004: ponderEnforcement/policyService/PolicyService

Impl_Stub.class re
4 >>>http://localhost:1200/

>>>1200
6 Initialising Policy-Service: please wait

Policy Service error: undeclared checked exception; nested exception is:
8 java.lang.ClassNotFoundException: ponderEnforcement.policyService.

PolicyServiceImpl_Stub not found in [http://localhost:1200/]
10 java.rmi.UnexpectedException: undeclared checked exception; nested exception is:

java.lang.ClassNotFoundException: ponderEnforcement.policyService.
12 PolicyServiceImpl_Stub not found in [http://localhost:1200/]

at sun.rmi.registry.RegistryImpl_Stub.rebind(Unknown Source)
14 at java.rmi.Naming.rebind(Naming.java:160)

at ponderEnforcement.policyService.PolicyServerStarter.
16 <init>(PolicyServerStarter.java:45)

40 APPENDIX B. POSIBLE ERRORS BY STARTING LDAP

Bibliography

[Dami 02] DAMIANOU , C. NICODEMOS: A Policy Framework for Management of Distributed Systems.
PhD thesis, Imperial College of Science, Technology and Medicine, University of London,
Department of Computing, 2002.

[DDLS 01] DAMIANOU , N., N. DULAY , E. LUPU and M. SLOMAN : The Ponder Policy Specification
Language. In Workshop on Policies for Distributed Systems and Networks, January 2001.

[DLSD 01] DULAY, N., E. LUPU, M. SLOMAN and N. DAMIANOU : A Policy Deployment Model for the
Ponder Language. In IEEE/IFIP International Symposium on Integrated Network Manage-
ment (IM’2001). IEEE Press, 2001.

[HAN 99] HEGERING, H.-G., S. ABECK and B. NEUMAIR: Integrated Management of Networked
Systems – Concepts, Architectures and their Operational Application. Morgan Kaufmann
Publishers, ISBN 1-55860-571-1, 1999. 651 p.

[lda] Introduction to OpenLDAP Directory Services, http://www.openldap.org/doc/admin22/intro.html
.

[ldap2] Introduction to OpenLDAP Directory Services, http://www.openldap.org/doc/admin22/schema.html
.

[LuSl 97] LUPU, E. and M. SLOMAN : Towards a Role Based Framework for Distributed Systems Ma-
nagement. In Journal of Network and Systems Management, 1997.

[POND 02] The PONDER Policy Based Management Toolkit, 2002.

[RFC 2252] WAHL , M., A. COULBECK, T. HOWES and S. KILLE : RFC 2252: Lightweight Direc-
tory Access Protocol (v3): Attribute Syntax Definitions. Technical Report, December 1997,
ftp://ftp.isi.edu/in-notes/rfc2252.txt .

[RFC 2256] WAHL , M.: RFC 2256: A Summary of the X.500(96) User Schema for use with LDAPv3.
Technical Report, December 1997, ftp://ftp.isi.edu/in-notes/rfc2256.txt .

[rmi] JavaRMI Specifications, http://java.sun.com/products/jdk/rmi/ .

[Seea 99] SEGALL , BILL and ET AL .: Augumenting the Workaday World with Elvin. In ESCW’99.
Kluwer Academic Publishers, Sept 1999.

[Verm 01] VERMA, DINESH C.: Policy-Based Networking: Architecture and Algorithms. New Riders
Publishing, 2001.

41

http://www.openldap.org/doc/admin22/intro.html
http://www.openldap.org/doc/admin22/schema.html
ftp://ftp.isi.edu/in-notes/rfc2252.txt
ftp://ftp.isi.edu/in-notes/rfc2256.txt
http://java.sun.com/products/jdk/rmi/

42 BIBLIOGRAPHY

	Titel
	Contents
	List of Figures
	Introduction
	What are Policies?
	Definition
	Policy Architecture Overview
	General Workflows
	Summary

	Ponder-Framework
	The Ponder Policy Specification Language
	Domains
	Ponder Basic Policies
	Ponder Composite Policies
	Conclusions

	The PONDER Toolkit
	The Domain-Browser
	The Policy Editor and Compiler Framework
	The Management Console Tool

	Third Party Components
	LDAP
	RMI
	Elvin

	Interactions Between Components
	Conclusions

	Installation and Configuration
	LDAP
	Ponder Toolkit
	Installation
	Ponder Schema
	Configuration and linking to LDAP

	Event Service
	Policy Enforcement
	Running the Policy Service
	Creating a Policy Management Agent(PMA)
	Editing, Compiling and Storing Policies
	Loading and Enabling Policies

	Errors in Code

	Conclusions
	RFC 2556 compliant schema for Ponder
	Posible Errors by starting LDAP
	List of Abbreviations
	Bibliography

