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Abstract

Corporate communication networks are frequently attacked with sophisticated and previ-
ously unseen malware or insider threats, which makes advanced defense mechanisms such
as anomaly based intrusion detection systems necessary, to detect, alert and respond to
security incidents. Both signature-based and anomaly detection strategies rely on features
extracted from the network traffic, which requires secure and extensible collection strategies
that make use of modern multi core architectures. Available solutions are written in low
level system programming languages that require manual memory management, and suffer
from frequent vulnerabilities that allow a remote attacker to disable or compromise the net-
work monitor. Others have not been designed with the purpose of research in mind and
lack in terms of flexibility and data availability. To tackle these problems and ease future
experiments with anomaly based detection techniques, a research framework for collecting
traffic features implemented in a memory-safe language will be presented. It provides ac-
cess to network traffic as type-safe structured data, either for specific protocols or custom
abstractions, by generating audit records in a platform neutral format. To reduce storage
space, the output is compressed by default. The approach is entirely implemented in the
Go programming language, has a concurrent design, is easily extensible and can be used for
live capture from a network interface or with PCAP and PCAPNG dumpfiles. Furthermore
the framework offers functionality for the creation of labeled datasets, targeting application
in supervised machine learning. To demonstrate the developed tooling, a series of experi-
ments is conducted, on classifying malicious behavior in the CIC-IDS-2017 dataset, using
Tensorflow and a Deep Neural Network.

https://golang.org
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.tensorflow.org
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1 Introduction

Fueled by the invention of the TCP protocol (IP) in 1974 [CK74], modern life relies heavily
on complex computer networks and applications. This ranges from everyday personal use
of computers, to distributed business networks, medical and industrial applications and self
driving cars. Due to the increasing amount of valuable information stored in such systems,
they are becoming a more and more popular target for attackers. Successful attacks against
computer systems often have a direct negative economic impact. Adversaries range from
amateur enthusiasts, to organized criminals and state-sponsored organizations. [McN16]
Due to the rising availability and sophistication of internet technology and the increased
number of network attacks, network defense has become an important area of research.
Network defense requires in-depth knowledge about all protocols flowing across the network.
Capture software must therefore implement many complex parsers in order to interpret the
collected data the right way. Keeping up with the increasing amount of data that has to
be processed can be challenging, and requires effective implementations and algorithms.
[Hos09] Real time data processing is necessary, to ensure a fast uncovering of an ongoing or
past attack and to prevent or lighten economic damage. New vulnerabilities appear every
day and are quickly exploited with so called zero-day attacks. Signature based detection
strategies suffer from the inability to detect previously unknown threats. However, although
having been a popular area of research over the last 20 years, machine learning techniques
are rarely seen in commonly available tools. High amounts of false positives and the lack
of proper training and evaluation data are well known problems of anomaly based intrusion
detection. [Pat14] Traffic patterns change a lot - and so does the software stack inside network
environments. To reflect this, modern datasets must be used for the evaluation of anomaly
based intrusion detection strategies. Network intrusion detection greatly helps in identifying
network breaches, tracing them back to the responsible parties and then taking action to
isolate and retrieve any damage that occurred. The attack recognition and event monitoring
capabilities of intrusion detection systems also have a deterrent effect on attackers, who
face a greater risk of being discovered and prosecuted. [Bac00] The presence of an intrusion
detection might convince an attacker to search for another target, that is easier to penetrate.
Being blocked by the monitor or by an analyst due to an alert, creates unwanted attention
for the intruder and slows down his operations. However, in order to benefit from intrusion
detection, there is a need for a reliable and extensive data source in order to make accurate
predictions.

1
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1.2 Outline Of The Thesis

This introduction explains the motivation for network security monitoring and anomaly
based detection strategies, and outlines the impact of memory corruptions on the secu-
rity of todays networking infrastructure. Common terminology will be explained, along
with a problem definition and a task description to define the scope of this thesis. After
a brief discussion of related work, requirements for network feature collection mechanisms
are analyzed, followed by an evaluation of existing solutions. Afterwards, concept and im-
plementation of the research project will be outlined in-depth, as well as ideas for future
improvements and several use cases beyond network intrusion detection. In the final evalu-
ation, several practical appliances of the developed tool are shown, which includes a series
of experiments on classifying malicious behavior with a deep neural network in Tensorflow.
After the conclusion, a look ahead on possible future developments is given.
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1.3 Motivation

Preventative techniques like authentication and access control can fail, intrusion detection
provides a second line of defense [BK14] and serves as the base for incident response after a
system was compromised. [BCV01] After gaining a foothold on a network, time passes for
the attacker to perform reconnaissance and identify assets of interest. Although the initial
infection might not be detected, it is possible to prevent further damage when detecting the
lateral movement of the attacker. Intrusion detection plays a critical role in uncovering such
behavior and greatly aids in reconstructing it for further forensic investigation. Mandiant
/ FireEye published statistics from 2013, outlining an average time from an intrusion to
incident response of more than 240 days. Only one third of organizations discovered the
intrusion themselves. [Bej13] Their latest report from 2018 states a median detection time
of 99 days in 2016 and 101 days in 2017. [mtr18] Even though the decreasing detection time
is a positive development, it is still too high. 100 days are a lot of time for an attacker to
identify assets of interest and take action. Besides that, even the most sophisticated and
secure systems are still vulnerable to insiders, who misuse their privileges. [Den87]

When inspecting vulnerability visualizations, an alarming trend becomes visible: the overall
number of reported vulnerabilities each year is growing and the vast amount of them is
scored as medium or high severity. Figure 1.1 shows a distribution of vulnerabilities and
their different severity rankings (low, medium and high) over the last years. The rankings
are based upon the CVSS V2 Base score, more details and visualizations can be found on
the NVD CVSS page. [nvd18]

Figure 1.1: CVSS Severity Distribution Over Time

Intrusion detection is a key component for network defense and information security, it
helps identifying attempts to compromise information systems and protect their availability,
integrity, and confidentiality. [MSA05] Security information and event management (SIEM)
systems often struggle with organizing the huge amount of data and provide interoperability
between various data formats and input sources. Data fed into a SIEM can be divided into
4 categories: network traffic, host data from the monitored endpoints, logs generated by
various systems and threat intelligence feeds.
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Network data is the most valuable of these informations, since every attack has to go through
the network and thus leaves traces, even if an attacker tries to hide or obfuscate his pres-
ence. On the contrary for example, host data is not always reliable, because a compromised
machine can be manipulated by an attacker. A recent study from the American Consumer
Institute Center for Citizen Research has shown that 83% of routers contain vulnerable code.
Infrequent updates cause the devices to be vulnerable for a long period of time, even after the
vulnerabilities have been published. [aci18] Although recent claims about hardware attacks
by implants in the supply chain of the server manufacturer supermicro have not been proven
at the time of this writing, they describe a possible scenario that should be considered when
securing a network environment. Network security monitoring can detect malicious attempts
to contact the outside world, from both compromised software or hardware components, and
allows to search the gathered data for indicators of compromise afterwards, to determine if
there were other attempts in the past. In order to exfiltrate assets or information, the data
has to be transferred to a server that is controlled by the intruder. This makes network data
a very powerful piece of evidence. A recent study on the history of Remote Access Tools
(RATs) [rat18] shows that the development of trojans has not stopped, instead it seems
to be increasing. The study analyzed the 300 most important RATs of the last 20 years.
It shows the importance of behavior based detection strategies, since signatures can only
identify known malicious programs, and new malware variants appear frequently.

Figure 1.2: RATs Study v1.2
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Many software systems are exploitable, due to logic errors or memory corruption vulner-
abilities. An example are buffer overflows, in which a section of memory is being overfilled
with data and the following section overwritten, which can lead to a crash or even remote
code execution. Another common example are use after free vulnerabilities, which refer to
the process of accessing memory after it has been freed. This can also cause a program to
crash or result in the execution of arbitrary code. The C programming language and its
derivatives without automated memory management, suffer from these kinds of vulnerabil-
ities, due to human errors in bounds checking or even because of compiler optimizations
that eliminate bound checks. [cap17]. However, also languages that provide such automated
memory management are not prune to attacks. For example, the Java virtual machine
[jav11] and object serialization [jav17] have been exploited in the past. Web browsers are
a well known target for attacks, as they implement a huge protocol stack and have many
potentially vulnerable components, such as plugins and extensions. A commonly exploited
component of web browsers is Adobe Flash, a programming language to create animated
web contents.

Even big companies that invest large amounts of money in a security team and offer bug
bounties for submitted vulnerabilities, fail to protect themselves or their users from attacks
on a regular basis. In the recent facebook incident, attackers exploited a technical vulner-
ability to steal access tokens that would allow them to log into about 50 million people’s
accounts. [fb218] Apple recently fixed a vulnerability in the ICMP packet error handling code
of their XNU kernel, which resulted in a heap overflow and could potentially be exploited
for remote code execution (CVE-2018-4407). The vulnerability exists in such a fundamental
part of the operating systems networking code that anti-virus software is unable to detect
exploitation attempts. [apl18] Also, even companies run by engineers aware of computer
security implications, such as the italian spyware manufacturer HackingTeam, have been
compromised with a zero-day exploit against an embedded device in their network in the
past. [hac18] A new zero day (CVE-2018-15454) in Cisco’s Adaptive Security Appliance and
Firepower Threat Defense Software has recently been discovered, due to an error in handling
Session Initiation Protocol (SIP) packets. The vulnerability allows an attacker to remotely
reload or crash the affected systems. [cis18] The attack surface is further increased by the
tools used for forensic investigation. Protocol dissectors have a huge attack surface, due to
the amount of supported protocols and implemented code that has be to maintained. Wire-
shark for example, has 1400 authors, supports over 2400 protocols and is made of a total of
at least 2.5 million lines of code. [wir18] Due to its complexity and dynamic nature, current
software stacks are potentially vulnerable to exploitation and compromise. Monitoring them
is therefore necessary to ensure rapid uncovering of breaches and to increase the attackers
efforts and costs. It is important to keep in mind that also the network monitor might be
the target of an attack.
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For the following tables the MITRE CVE database has been queried, it holds a total of
108021 entries at the time of this writing. The results listed here should be taken with a
grain of salt: not all issues are severe or remotely exploitable, and some queries deliver results
that did not affect the search term itself but a software product running on it (especially
Operating System queries). Also some queries deliver inaccurate results, due to keywords
present in descriptions, i.e. the ’Golang’ search returns four results, but one result is a
vulnerability in the Joomla framework which is written in PHP. In this case it is listed
because the proof of concept exploit is written in Golang and this is mentioned in the
description. Language keyword searches contain results of vulnerabilities in products that
are written in the language, but the vulnerability arised from an error in the product and not
in the used language. However, this provides a rough estimation of the problem dimension
and the attack surface. All search queries have been submitted at the 10th of october
2018. An interesting observation is that 5143 CVE entries match the ’memory corruption’
keywords, which means that almost 5% of the collected vulnerabilities are related to memory
corruption. The search term ”overflow” delivers 11417 results, which makes almost 11% of
all tracked vulnerabilities.

OS CVEs

Windows 6317
Linux 4905
macOS 2010
iOS 2325
Android 4788

Table 1.1: CVE results for commonly used operating systems

Browser CVEs

Firefox 2260
Chrome 1796
Opera 357
Internet Explorer 2051
Safari 1029

Table 1.2: CVE results for common browsers

Format CVEs

JSON 213
BSON 7
MessagePack 0
YAML 48
ProtoBuf 1
SOAP 193
XML 1227

Table 1.3: CVE results for common serialization formats
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Vendor CVEs

Netgear 78
Asus 68
LinkSys 84
Juniper 259
HPE 312
D-Link 226
TP-Link 104
ZyXEL 68
Cisco 3869

Table 1.4: CVE results for common router manufacturers

Language CVEs

Java 1828
Javascript 2060
Adobe Flash 1363
PHP 6003
.NET 1298
C++ 65
Golang 3
Haskell 0
Rust 3

Table 1.5: CVE results for commonly used programming languages

Bugs or vulnerabilities exist across the whole technology stack that is being used in co-
operate or personal environments. The risk that attackers will find a way in is high, and
depends on the amount of time and money adversaries are willing to spend. Vulnerabilities
can potentially be abused to disable, disrupt or circumvent the monitoring system. The
network monitor might even serve as an entry point to the network it was supposed to pro-
tect, and thus weakens the overall system security, instead of increasing it. To shed some
light on the situation regarding the most popular open source projects, various searches
have been conducted and will be summarized below. Four databases for vulnerabilities have
been queried using their search function, for the keywords snort, suricata and bro, namely
the MITRE CVE, NIST NVD, vulDB and exploitDB. If configurable in advanced search,
the exact match option has been selected to filter the results. Without this, a search query
for bro would also deliver results for entries containing the keyword browser. For vulDB
the product name field was used to improve search accuracy. The estimated number of
unrecorded cases is probably much higher, since many bugs get discovered and fixed by the
authors without being assigned a CVE identification. Additionally, software libraries that
are commonly used are at risk of being exploited and increase the attack surface, for example
libpcap or bpf ; they will be included in the search as well. Many of these vulnerabilities occur
due to memory corruptions, such as buffer under- or overflows and heap corruptions. With
proper auditing and unit testing, logic errors can be detected early in the development cycle.
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To estimate the amount of unreported incidents, a search in git log history of the projects
version control system (git) was conducted, the following command was used to filter the
log entries and display the result:

git log --grep="memory -leak" \

--grep=" memleak" --grep=" memory leak" \

--grep=" memory corruption" --grep="memory -corruption" \

--grep="CVE" \

--grep="denial -of -service" --grep=" denial of service" \

--grep=" overflow" \

--grep="out of bounds" --grep="out -of-bounds" \

--pretty=oneline | wc -l

For searching the linux kernel source for netfilter and bpf git history, the last line needs to
be changed to filter for paths that contain the respective names, example for bpf:

...

--pretty=oneline *bpf* | wc -l

For snort, the github repository of snort3 was queried. VulDB displays 50 entries at a max-
imum for unpaid users, libpcap and netfilter delivered more results than that, and thus were
marked with 50+.

Finally a google search was conducted that used the following search pattern. Enclos-
ing the search keywords with double quotations requires an exact match on these phrases,
multiple statements have been combined with a logical OR, newlines have been added for
readability. The character represents a whitespace, framework is a placeholder for the
search term.

"<framework > security vulnerability" OR

"<framework > buffer overflow" OR

"<framework > memory corruption" OR

"<framework > memory leak" OR

"<framework > denial of service"

The results are displayed in table 1.6 Because the amount of possible vulnerabilities should
be seen in relation to the age of the framework, the year of creation was added as well.

snort suricata bro libpcap bpf netfilter

created 1998 2009 1994 1999 1992 1998
nvd 42 13 0 3 31 59
cve 38 12 4 3 24 60
vulDB 25 13 3 50+ 28 50+
exploitDB 27 1 0 0 11 5
repository 44 162 165 24 126 168
google 407 10 8 5 9 232

Table 1.6: Potential security vulnerabilities in IDS and their components

This search was performed on the 31th of August 2018. The bro repository was queried
for the git log history at last commit 33a8e7, suricata last commit was 8c7aee, linux kernel
source last commit was 420f51, libpcap last commit was 96571e, snort3 last commit was
f3268ef4f.
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It should be noted that the authors of those frameworks are highly experienced software
engineers, who have a strong sense for security and their code is audited by several simi-
lar experienced developers. Nevertheless, mistakes happen and can lead to compromise or
denial-of-service attacks if not discovered and patched in time. Many of the vulnerabilities
could have been avoided by choosing a memory safe language instead of using C for better
performance.

Running the git log query for potential vulnerabilities on the latest linux kernel source
yields 12297 results, while a CVE search for linux returns only 4817 results. This confirms the
assumption that the dark digit of potential vulnerabilities is much higher than the amount
being tracked in vulnerability databases.

The report ”State of Software Security 2018” from the security company veracode [Ver18],
represents the results of analyzing over 2 trillion lines of code across 700,000 scans, conducted
over a one year period between April 1, 2017 and March 31, 2018. This gives an impression
regarding the dimension of the attack surface in modern software environments:

Figure 1.3: State of Software Security 2018 excerpt

Code is often written in a hurry, as developers need to get things done on time. This
introduces programming mistakes and bad design decisions, which can lead to exploitable
vulnerabilities. Source code audits are expensive and time intensive and therefore often
omitted. Even more problematic is the sanitation of an production infrastructure. Changes
can lead to new bugs or malfunctions that negatively impact the systems availability. Pen-
etration testing on the live environment is often not possible, which increases costs because
a testing environment has to be created for this purpose. The risk that an intruder, who
invests sufficient amounts of time and money, will always be able to successfully penetrate
an IT infrastructure, has to be taken into account. Therefore secure and efficient strategies
for detecting system compromise are necessary to protect todays network environments.
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1.4 Terminology

When extracting artifacts from network traffic several different terminologies are commonly
used: collection, selection, extraction and generation. Because these terms are often confused
or mixed up, the following section outlines their differences and characteristics.

1.4.1 Data Collection

Data collection describes the task of building up a dataset from an input data source. In the
collection stage as much information as possible should be yielded, to provide a rich data
set for the selection or extraction phases. A simple example for a collected feature would be
an IP address from an IP packet.

1.4.2 Feature Extraction

Also referred to as feature generation, this describes techniques for obtaining new features
from existing ones. Because this requires further computations and therefore consumes a
lot of system resources, extracted features must be chosen carefully and their contribution
to the detection task must be evaluated. Example for extracted features include: Inter
packet arrival times, average flow size, payload entropy etc. Feature extraction methods
are transformative, the data is projected into a new feature space with lower dimension.
Examples include Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD). [BK14]

1.4.3 Feature Selection

Feature selection refers to the task of choosing features from a dataset. This usually happens
after gathering all data and aims to reduce the amount of data that has to be processed by
the machine learning algorithm. Data that does not sufficiently contribute to the detection
task is removed, as well as highly redundant or correlated data. The dimensionality of the
input feature set is reduced by selecting a subset of the original features. [BK14] The answer
to the question which features are the most relevant depends on various factors, such as
network size and architecture, used machine learning algorithms and the goal of the network
monitoring operation. For example, the purpose of the network monitor could be software
debugging, security operations or network performance analysis.
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1.5 Problem Definition

Feature collection for the purpose of network intrusion detection faces several problems.
First of all, the increasing volume of data that has to be processed: high resolution video
streaming, large file transfers and video conferences are common scenarios in corporate envi-
ronments, and generate huge amounts of network packets that have to be processed. Another
problem are attacks against the monitoring system, which can result in crashes and therefore
loss of audit data, or in the worst case even to remote compromise of the network moni-
tor. [Pax98] Current solutions for collecting features from traffic are written in low level
system programming languages. This increases the attack surface tremendously, since these
languages do not provide automated memory management. This can lead to memory cor-
ruption vulnerabilities that enable denial of service or remote code execution attacks. Even
if the state of an implementation is considered audited and secure, future updates to proto-
col specifications or new protocols will require continuous modifications, which can possibly
(re-) introduce exploitable security vulnerabilities. Furthermore, the collection sensor should
not be dependent on a specific architecture and be functional across all major platforms, in
order to qualify for a widespread area of applications. The output data format should be
consumable by as many systems as possible, to enable easy and quick integration into an
existing network monitoring stack. The most commonly used data format for big data anal-
ysis and machine learning are comma separated values (CSV), which do not preserve data
types or provide structure to the data. Deployment and configuration of existing solutions
is complex and time intensive for large environments. A growing share of internet traffic
is encrypted, denying access to content and requiring analysis strategies that do not rely
on cleartext packet payloads for classification. The current state of tooling is insufficient
to meet requirements for convenient and effective experiments, due to the fact that most
of those tools were not designed specifically with a research task in mind. Core questions
of anomaly based intrusion detection haven’t been solved completely, after more than two
decades of research: Which are the most powerful features, which do require extraction
and which don’t? Which feature combination delivers the best results across all available
datasets or algorithms? Which features are delivering the best results for a specific algo-
rithm? What is the most efficient summary structure for the intrusion detection task? What
delivers better results, observations for each protocol or summary structures such as flows
and connections? Which technique is the most efficient in terms of computing resources?
Solving these questions entirely requires efficient tooling for feature collection, selection and
extraction. Unfortunately, many researchers don’t publish their tools, which makes it hard
to reproduce and validate their results, and increases time needed for future research on the
topic. Furthermore, relying on crafted datasets for verification of network security monitor-
ing, does not reflect the actual situation inside the protected network environment. There
might be fundamental differences in architecture or in client behavior. Collecting network
traffic during a penetration test inside the network and using this as a dataset to verify the
deployed countermeasures work as expected, would create a much more realistic scenario
and therefore more meaningful results. Currently, no publicly available tooling exists to
accomplish this kind of independent verification in an effective and reproducible manner.
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1.6 Task Description

Goal of this thesis is the implementation of a modern, systematic approach to access net-
work protocol specific information, for the purpose of research on anomaly based intrusion
detection strategies. In this context, the term modern refers to the following attributes
of the implemented framework: A suitable programming language must be chosen for the
implementation, which supports all major platforms, provides memory safety and has a
concurrent programming model. A suitable output format must be selected that preserves
type safety and structure of the data, while being platform neutral. To make use of modern
computer architecture with multiple processor cores and allow scaling for large workloads,
the implementation must have a concurrent design. Also it must be well documented to
support other researchers working with it in the future. The implemented approach should
be suitable for usage with dump files and live traffic from a network interface and provide a
command-line and library interface. Furthermore, unlike many solutions that try to achieve
maximum data reduction, this approach shall focus on making the data more accessible and
provide maximum flexibility, in order to improve the workflow and efficiency for experiments.
This follows the philosophy, that a network feature collection system should provide data
at the lowest level of its internals, prior to generating any abstractions on top of it. The
implemented approach shall be evaluated with an up-to-date dataset and an anomaly based
classification strategy.
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1.7 Related Work

The following sections briefly describes related work, ordered by its year of publication.

1.7.1 Literature

Michael W. Lucas [Luc10] presents several network traffic flow capture formats, tools and
techniques to visualize, filter and analyze network flow data.

Richard Bejtlich [Bej13] covers the general practice of network security monitoring and
incident response, and provides lots of background knowledge on network topologies and
sensor placement. Common tools are explained and their usage is demonstrated.

Bhattacharyya et al [BK14] present several feature selection algorithms among classifica-
tion techniques to identify network anomalies and vulnerabilities at various layers. They
also cover the assessment of network anomaly detection systems, present different tools and
discuss research challenges.

Michael Collins [Col17] presents techniques for experimental data analysis, traffic behavior
analysis, data collection using sensors and network mapping using python. He also deals with
application identification and provides various ways to visualize network data.

1.7.2 Articles

Vern Paxson [Pax98] describes requirements for a network intrusion detection system and
explained the structure and functionality of the bro network monitor. Although this paper is
more than 20 years old at the time of this writing, it contains fundamental aspects of network
security monitoring, and inspired this research project with its philosophy of separating
mechanism from policy.

Felix Iglesias et al. [IZ14] reduce the 41 features widely adopted from the KDD dataset,
to only 16 features, while still achieving similar detection results as with the full feature
set. They used several filter algorithms including Weight by Maximum Relevance (WMR),
Stepwise Regression and Stability Selection. For validation the Bayes Classifier was used,
besides Support Vector Machines (SVM). This research paper served as a motivation for
questioning the need for overly complex extracted features, and served as a hint to conduct
experiments with a more basic feature set.

Kim et al [KKD+15] presented their packet extraction tool for large volume network traces
and compared the performance to existing solutions. Unfortunately, while their implementa-
tion could have been of great interest to the research community, they do not seem to have
released it. The fact that their results could therefore not be evaluated, and that future
research will need to continue with inefficient tooling, greatly encouraged me to publish my
whole tool chain, in order to assist future researchers and allow independent verification of
my results.

Chakchai So-In [Si16] analyzed the state of the art for traffic flow analysis, and provided
an overview and comparison of common tools and capture formats. It served as a useful
introduction to flow based collection methodology.
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In the following, software requirements for feature collection from network traffic are defined
and explained. Weighting the requirements has been intentionally omitted. The more of
these characteristics are offered by a particular implementation, the better it is suited for
network monitoring. An ideal solution should fulfill all requirements. Any missing require-
ment will cause trouble at one point in the development or usage cycle.

2.1 Functional Requirements

2.1.1 Protocol Support Coverage

The feature collector must be able to parse as many protocols as possible, in order to get
the most detailed view on activity on the network. Additionally the system must report on
traffic that it does not understand.

2.1.2 Data Availability

For research purposes, the network monitor should make the collected data available at the
lowest possible level, prior to generating summary structures. That means, protocol specific
information should be offered for every protocol that can be interpreted by the monitor.

2.1.3 Abstraction Capabilities

Using the information that has been gathered in the collection stage, abstractions, summary
structures, aggregate values and statistics can be generated from the collected data. A
popular example for summary structures are unidirectional network flows and bidirectional
connections.

2.1.4 Concurrent Design

With the evolution of multi-core processors and their decreasing cost, more and more sys-
tems are equipped with this technology. When designing a monitoring system, availability of
several processing cores should be taken into account from the beginning. The term concur-
rency refers to the process of splitting a big problem into many small sub-problems, which
unveils opportunities to execute independent operations in parallel. Concurrency describes
programming as the composition of independently executing processes. Parallelism refers
to programming as the simultaneous execution of, possibly related, computations. While
concurrency could also be expressed as dealing with lots of things at once, parallelism can
be described as doing lots of things at once. While concurrency refers to structure, par-
allelism refers to execution. Although not identical, both are related. In order to enable
concurrency, independent executions must be coordinated through communication. [rob18]
Since receiving network packets always happens sequentially, no matter if reading them from
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a dump file or live from the network card, parallelizing their decoding process is an option to
utilize the power of multi-core systems, and speed up the overall processing. Many systems
haven’t been designed with concurrent processing in mind from the ground up.

2.1.5 File Extraction Capabilities

Various network protocols allow the transfer of files or have been specifically created for this
purpose. Examples include HTTP, HTTPS, FTP, SFTP and BitTorrent. Other protocols
can be abused to carry file payloads as well. A prominent example for covert data exfiltration
is the DNS protocol. Encrypted communication such as HTTPS also makes inspection
impossible, without access to the used certificate or cryptographic key. From a security
monitoring perspective, files sent across a network need to be extracted to perform further
analysis, like matching executables against anti-virus (AV) databases. Breaking encryption
for this purpose should not be considered, because this weakens the overall system security,
which is not a desirable effect.

2.1.6 Supported Input Formats

Suitable formats for offline network data input need to be supported, for this purpose the
industry standards PCAP and the improved version PCAPNG are the best candidates.
PCAP preserves every single packet and the full payloads, and thus is a suitable input
format for data collection. However, this comes at the cost of increased size of the dump
files, which is especially problematic when storing traffic over long periods of time. For this
reason, other formats such as Cisco’s NetFlow have been developed, that summarize traffic
on a per flow basis without payload data, which greatly reduces size.

2.1.7 Suitable Output Formats

The output format of the collected data should not only be consumable by many different
systems, libraries and frameworks, but also displayable in a human readable format. Comma
separated values (CSV) is a commonly chosen output format for this, it is not limited to a par-
ticular character set, and work just as well with Unicode as with ASCII. However CSV do not
preserve the character set currently in use, this must be communicated separately. Although
human readable in its original form, CSV is not a space efficient mechanism of storing or
exchanging information. Additionally, CSV cannot represent hierarchical or object-oriented
structured data, without separating sub structures from its parent context.

2.1.8 Real-Time Operation

Live capture from a network interface should be supported, to allow operation and monitor-
ing in real time. Since dumping the collected data to disk is not always an option due to
disk space constraints, e.g. on embedded devices, capture to disk should be optional and an
alternate data collection mechanism should be provided. Uncovering successful breaches in
real time and raising alerts, puts pressure on attackers to move quicker in a compromised
network. This increases the possibility for mistakes and leaves less time for cleaning up
traces, which is beneficial for damage reduction, incident response and digital forensics. A
system that is too slow might generate alerts with a high delay, thus giving attackers more
time to accomplish their goals. Identifying attempted breaches in real time gives network
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security operators valuable information about targeted systems and used techniques, and
helps to put counter measures into place.

2.2 Non-Functional Requirements

2.2.1 Memory Safety

When parsing untrusted input, it must be guaranteed that there are no exploitable vulnera-
bilities in the parser code. Since modern network communication is based on a huge stack of
protocols, many different and potentially very complex parsers have to be implemented and
maintained, which tremendously increases the chances of programming errors in the corre-
sponding parser code. Code audits are often omitted due to high cost, or only performed on
a fraction of the available source code. Additionally, many vendors violate the RFC spec-
ifications for protocols, which requires parsers that are fault tolerant and have been tested
with fuzzing extensively. Choosing a language with a memory safe garbage collected runtime
for the design of a feature collection system, allows to focus on creating robust parsing logic
rather than secure memory handling.

2.2.2 Open Source Codebase

The source code should be accessible and well documented, to enable other researchers to
audit or extend the code. Although this makes the code also available to potential attackers,
the security model of the network monitor must not rely on secret code.

2.2.3 Scalability

The system should be scalable to meet requirements for large scale distributed deployments,
such as receiving input data from many sensors across the network. This should happen in
an efficient and secure way, that means data should be compressed when being transferred,
and the network monitor must encrypt its communication to prevent eavesdropping.

2.2.4 Performance

The number packets of that has to be captured and processed, is rising continuously. The
network monitor must be efficient enough to keep up with all the data, without loosing
anything. Although an alert does not automatically prevent an intrusion, it is a first step
towards detection, and increases the risk for an attacker to be discovered. An overloaded
system that starts to drop packets, can lead to missing the discovery of an ongoing attack.
Performance depends heavily on the programming language used for the implementation. As
mentioned before, low level system programming languages do not provide memory safety.
Because of this, the usage higher level languages such as rust, haskell or Golang for the
design of security critical infrastructure, should be considered in the future. This introduces
a performance penalty, however this is a trade-off that comes with great benefits for the
overall application security. A recently published paper implemented a POSIX compliant
kernel in Golang, and measured a performance penalty ranging from 5-15% in comparison
to the C implementation. [CKM18] Todays networks transport lots of huge traffic streams,
for example video streaming such as netflix, torrent downloads and more. Because these
flows cause a huge performance degradation for the monitoring system, a common practice
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is to detect those so called ’elephant flows’ and discard them at the earliest stage possible.
[SSK15] However, this imposes the security risk of missing relevant information, an attacker
could use the knowledge of certain traffic types being disarded to hide in a big data stream.
Since audio and video players and their codecs are a common source for security vulnera-
bilities, discarding these flows may lead to missing an actual intrusion, due to an exploited
vulnerability in the media player. Searching the MITRE CVE database for the VLC media
player for example returns 92 results. An optimal implementation should not discard any
data to meet performance goals.

2.2.5 Configurable Design

The monitor application needs to be configurable, to allow performance tweaking and adap-
tion to special requirements, such as for example privacy regulations. Automated capture
and analysis of network traffic can result in severe privacy violations, and may violate lo-
cal, state and national laws. Therefore it is necessary to obtain the required permissions
for the target network as well as qualified legal advice, prior to installing any monitoring
software. How to protect the users privacy during a network security monitoring operation
has become an important question for many network administrators. [Bej13] Since the 28th
of May 2018, the General Data Protection Regulation (GDPR) further increases protection
of personal data from citizens of the European Union, by drastically increasing the fines for
violations as well as the scope of protected information.

2.2.6 Extensibility

Computer networks are highly dynamic environments and thus require the network monitor
to be easily extensible, to integrate new protocols as fast as possible and keep up with the
extremely fast development of technology. For this reason, the monitoring system should
allow to add parsers for new protocols in a fast and secure manner, and should provide an
interface to further extend functionality.

2.2.7 Reliability

The monitor must always be available and deliver meaningful results, even under attack or
in high load scenarios. Also, critical errors must not lead to a shutdown of the monitoring
system, but should notify the administrator and rollback the system to working state. Re-
covering from system failure, no matter if due to logic errors or due to a fault produced by
an attacker, it is important to ensure continuous monitoring. Reporting and recovering on
parsing errors or undecodable traffic is mandatory, because the monitor will be subject to
attacks.

2.2.8 Usability

The user interface of the network monitor should be powerful enough to accomplish complex
tasks, but also be simple enough to be efficiently used by a human, without confusion or
waste of time. Since network data is very abstract for humans, the software should provide
proper visualization options, to assist humans in understanding, correlating and analyzing
huge amounts of high dimensional data in a short period of time.
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2 Requirement Analysis

2.2.9 Storage Efficiency

Storage is limited and the continuously increasing amount of data that modern networks are
transporting increases the amount of collected audit data. Therefore, the generated output
should be as small as possible, while preserving all information relevant for the detection
task. Additionally it should be configurable what data will be collected. In some scenarios
there might be data that is not relevant for the detection task or a concrete monitoring
system. If this is the case, no resources should be wasted on collecting or storing irrelevant
data.

2.3 Summary

Feature collection systems for intrusion detection should run continually without or with
minimal human supervision, and should be reliable enough to run in the background of
the observed system and impose minimal overhead. The system must be fault tolerant and
able to recover from errors automatically, and should preserve its own integrity in order
to detect attacks against the monitor itself. Also important are aspects like reconfigurabil-
ity and extensibility, since dynamic environments such as computer networks often require
adaptations. Deployment should be easy and fast and the system must be able to observe
deviations from normal behavior. [Pat13] Additionally, they must provide an efficient user
interface and provide visualization to assist human analysts. The named requirements for the
underlying hardware also play a vital role in ensuring the monitoring systems integrity and
performance. For future reference, all software requirements for modern network intrusion
detection systems have been listed in table 2.2

Requirement Short Description

Protocol Support Coverage Range of supported protocols
Data Availability Access to data on the lowest level
Abstraction Capabilities Generation of abstractions such as flows
Concurrent Design Efficient use of multi-core architectures
File Extraction Extraction of files from network traffic
Suitable Output Format Widely supported and efficient output format(s)
Real Time Operation Live acquisition of traffic from a network interface
Supported Input Formats Support for industry standard input formats
Memory Safety Secure memory management
Open Source Codebase Publicly available source code
Scalability Operation in large scale, possibly distributed networks
Performance Efficient processing for high volume traffic
Configurable Design Configuration and adaption options for special requirements
Extensibility Ease of extension for new protocols
Reliability Reliable implementation
Usability Ease of use for the analyst / researcher
Storage Efficiency Low storage overhead

Table 2.2: Summary of feature collection requirements
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This section describes the most popular formats and tools that can be used to gather in-
formation about network traffic. They are listed in no particular order. Snort (written in
C++) and suricata (written in C) do not seem to provide an interface to export collected
information from the network traffic. Therefore, they are not suited for the purpose of gath-
ering features for anomaly detection. All lines of code statistics have been generated using
the cloc tool (github.com/AlDanial/cloc) in version 1.80.

3.1 Flow Formats

In general, a flow record is defined as a group of packets with a number of common properties,
from a certain time interval. [Pat14] A series of packets that share the same IP protocol,
source and destination IP addresses and ports, is called a five-tuple IP flow. Flow records
have a small footprint and do not include the data exchanged between two systems, but
still deliver valuable insights into a network. Even for large scale networks, flow records
over several years only result in several hundred gigabytes of allocated disk space. A TCP
connection creates two flows: one from client to server and one from server to client. [Luc10]
Flow-based IDS (FIDS) cannot detect attacks related to packet payload, for example the ping
of death attack does not create a change in flow frequency and has a low traffic volume. The
attack makes use of large ICMP packets that violate the specification of ICMP (maximum
size: 56 bytes), but not the specification of the IP protocol, which allows a packet size of
up to 65535 bytes. If not handled properly by the receiving application, this can lead to a
buffer overflow when reassembling the fragmented packet. Flows are instead suited to detect
attacks such as denial-of-service (DoS) attacks, scans, worms and botnet communication.
[Pat14]

3.1.1 NetFlow

NetFlow was developed by Cicso and served as a convenient way of monitoring network
communication and data reduction. Routers that support NetFlow can export data via
UDP or SCTP to NetFlow collectors. Records contain timestamps for flow start and end,
number of bytes and number of packets observed, source and destination addresses, type of
service, TCP flags and more. [Si16]

3.1.2 sFlow

An industry standard technology for monitoring high speed switched networks, developed as
a competitor to NetFlow. It provides insight into the utilization of networks, enables perfor-
mance optimization, allows for usage billing and counter measures against security threats.
When embedded within switches or routers, application level traffic flows can continuously
be monitored at wire speed on multiple interfaces simultaneously. [sFl03]
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3.1.3 IPFIX

Originally developed by the IETF, the Internet Protocol Flow Information Export (IPFIX)
is an open standard for exporting flow information from routers or other probes. Based on
Cisco NetFlow Version 9, the standard defines how IP flow information has to be formatted
and transferred from an exporter to a collector, the protocols requirements were outlined in
the original RFC 3917. It is a push protocol, each probe will periodically transfer IPFIX
messages to configured receivers. [ipf18]

3.2 Packet Level Formats

3.2.1 PCAP

The PCAP format saves a complete dump of the network packet data to disk for offline
analysis. Each dump file has a PCAP file header, with some meta information about the
capture, followed by the captured packets. Each network packet consists of a packet header
with the timestamp and packet length, followed by the complete packet data. Because PCAP
includes the packets full payloads, it requires lots of disk space. It is the output format of
the wireshark protocol dissector tool. [DH12] For anomaly based intrusion detection PCAP
in its original form is an unsuitable format, as it does not provide the data in a structured
form and requires manual parsing and processing to extract relevant information.

3.2.2 PCAP-NG

The PCAP Next Generation Dump File Format (or PCAPNG for short) is an attempt
to overcome the limitations of the currently widely used (but limited) PCAP format. The
PCAPNG file format specification is still work in progress. PCAPNG supports captures from
multiple interfaces in one file, improved timestamp resolutions, embedding of comments and
additional meta data in the capture file, and was designed with extensibility in mind. [pca18]

3.3 Data Collection Tools

3.3.1 Argus

Argus is a system for network audit record generation and utilization, which focuses on
monitoring of large scale networks. It generates enriched network flow data and operates
on dump files or on the wire, and was designed to support network operations, performance
monitoring and security management. It can be used to monitor a network in real-time or
check captured data against indicators of compromise. The Argus sensor processes packets
and generates very detailed network flow reports, focusing on efficient storage, processing
and inspection of large amounts of network traffic. Many metrics, such as connectivity,
availability, reachability, loss, jitter and retransmission, are provided for all observed network
flows. Attributes from packet contents, including mac addresses, tunnel identifiers, protocol
ids and options are preserved as well. Argus is an open source project written in the C
programming language, and currently supports macOS, Linux, Windows (under Cygwin),
FreeBSD, OpenBSD, NetBSD, Solaris, AIX, HP-UX, VxWorks, IRIX and OpenWrt. It has
been embedded in network adapters and ported to various hardware accelerated platforms.
As of version 3.0.8.2, the argus server consists of 28610 lines of C source and 10141 lines of
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C headers, while the argus client of the same version has 111401 lines of C source code and
19526 lines of C headers.

3.3.2 nProbe

Developed by nTop, nProbe is a NetFlow v5 and v9 and IPFIX probe and collector that
supports IPv4 and IPv6. Commonly used in commercial environments, it can be used to
gather and export flows information generated by devices on the network. It can serve as a
replacement for embedded, low-speed, NetFlow probes. Analysis of networks with a traffic
volume of multiple gigabytes can be monitored at full speed, with only a moderate packet
loss under heavy loads. Collected flows can be sent to a collector, such as the open source
ntopng or a commercial solution. nProbe is written in C and its source code is not publicly
available. However, ntop offers nProbe free of charge to universities.

3.3.3 Bro / Zeek

Bro is an open source traffic monitoring system with intrusion detection capabilities, that
passively monitors traffic and generates events, which can then be dynamically handled in
the turing complete bro scripting language. It aims at decoupling mechanism from policy,
that means it simply describes the traffic it sees, leaving all assumptions and interpretation
to be defined by the analyst depending on the current scenario. Bro is implemented in C++
and was originally created by Vern Paxson in 1994 as a research project for the Berkeley
National Lab. The name ’Bro’ is an orweillian reference to the fact that network security
monitoring goes hand in hand with severe privacy violations. Events generated by Bro are
policy neutral and require being handled by a script to take action, like alerting the admin-
istrator by mail or executing a system command. Bro logs information about events and
flow information, SSL handshakes, SSH handshakes and protocol specific data. It provides
analyzers for the most common application layer protocols such as: HTTP, FTP, SMTP
and DNS. [Pax98] Bro supports all major platforms but was not designed with concurrency
in mind. It has been extended to work in a cluster, to tackle the need for large scale packet
analysis. Parsers are not handwritten anymore, the bro authors developed a parser genera-
tion framework (binPAC), to ease extension and maintenance of protocol parsers and reduce
attack surface. However, also with binPAC several memory related bugs are documented
in the security changelog of the bro website [bro18b]. The authors are currently working
on a new version of the parser generator, named SPICY [SAH16]. SPICY uses HILTI, an
abstract execution environment for concurrent, stateful network traffic analysis [SVDCP14].
After being announced in 2014, the project website still states that both HILTI and SPICY
are currently in prototype state, and not production ready yet. As of commit 3f206cb8a,
Bro consists of 81288 lines of C++ source code and 19402 lines of C++ header definitions.
Of all evaluated solutions, Bro is by far the most advanced and should be considered when
monitoring large scale networks. The project was recently renamed to Zeek .

3.3.4 CICFlowMeter

CICFlowMeter (previously known as ISCXFlowMeter) is a research project from the Cana-
dian Institute for Cybersecurity. It serves as a data generator for anomaly detection and has
been used in various cybersecurity datsets from the CIC. These include the IPS/IDS dataset
(CICIDS2017), Android Adware-General Malware dataset (CICAAGM2017) and Android
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Malware dataset (CICAndMal2017). The application is written in Java and generates rich
bidirectional flow information, with more than 80 features, such as packet size statistics
for both directions and total appearances of packets with certain flags set. As of commit
1d4e34e, the CICFlowMeter project contains 5083 lines of Java code and 1875 lines of C
headers.

3.3.5 ipsumdump

Ipsumdump uses libpcap, or packet sockets on Linux, to read IP packets from the network, or
from a PCAP dump file, and writes an ASCII summary of the packet data to the standard
output. Added comments on the first couple of lines describe the contents of the generated
summary. It uses the click modular router, a C++ engine to process network packets from
the same author. Ipsumdump is written in C, as of commit 1903f1c, the project contains
39626 lines of C++ source and 20631 lines of C headers.

3.3.6 tshark

Tshark is the command-line interface to the popular wireshark packet dissector and provides
a huge set of options and configurations. It behaves similar to the tcpdump tool, but
provides wireshark’s filtering capabilities and access to all of wiresharks dissectors. Tshark
is is written in C, as of commit 1f9414a, it consists of 2885 lines of C code. The last commit
on the tshark.c source file, 1f9414a on Sep 4 2013, fixes a memory leak.

3.4 Requirement Evaluation

In the following, previously discussed requirements will be briefly evaluated for each of the
presented current solutions.

Argus

Argus delivers data in its own summary structure flow format and currently lists 65 avail-
able fields in its wiki. For parallel processing worker threads are used, file extraction is not
supported. Data can be exported as CSV, the system can be deployed for real-time monitor-
ing. PCAP and PCAPNG are supported as input formats. The Argus source code for both
client and collector is publicly available and licensed under the GNU General Public License
version 3. [Bej13] Argus can be scaled to meet the requirements for distributed networks.
Usability is improved by offering several command-line tools for working with the generated
data. The tool can be configured with various command-line flags and a configuration file.
Argus client tools support reading compressed argus data, however it seems that argus does
not compress the output by default when generating it.

nProbe

nProbe provides IPFIX or NetFlow information. It is written in C++ and does not seem
to offer file extraction. Real time operation is supported and data can be exported as
CSV. PCAP and PCAPNG are supported input formats, nProbe can be scaled to meet the
requirements for distributed networks, configuration is possible with various command-line
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flags and a configuration file. Output written to disk does not seem to be compressed by
default, data in transit however is being compressed.

Bro / Zeek

Zeek does provide extensive data for each protocol, and a connection log that serves as a
summary of network activity. It does not have a concurrent design, but features a parallel
approach: processing can be achieved by running several instances in a cluster and using their
broker for communication. It meets the requirements for monitoring large scale networks.
Zeek does provide partial memory safety, by using a parser generator, instead of hand written
parsing code. However, memory corruptions can still occur in the remaining parts of the
application and also the parser generation had security relevant bugs in the past. Also
noteworthy is the fact that the parsers currently do not seem to be tested with fuzzing on a
regular basis, a ticket in the bro issue tracker from 2011 brings up the topic but was closed
unresolved after a while. [bro18a] It does not provide a native way to convert its output into
CSV, but a python script (github.com/red8383light/BRO2CSV) exists that can take care
of the conversion. Zeek can extract transferred files from various protocols and generates a
separate file log. Real time operation is supported as well as PCAP and PCAPNG as input
formats. The Zeek Source code is publicly available. Usability is good, the authors put a lot
of effort in making the data accessible, for example by using the bro-cut tool to select fields
of interest. Zeek can be configured with various command-line flags and a configuration file.
Output logs consist of lines with tab separated values and output is written to disk without
compression.

CICFlowMeter

CICFlowMeter provides only bidirectional flow information, no access for individual proto-
cols. The tool uses several worker threads to process incoming packets in parallel. It can
export data as CSV and operate live on a network interface. CICFlowMeter does not provide
file extraction capabilities, PCAP and PCAPNG are supported input formats, it does not
seem to support monitoring distributed networks. Configuration with command-line flags
is possible. The tool is written in Java and should in theory support all major platforms.
However, it depends on a PCAP processing library (jnetpcap) that is not officially supported
on macOS. Jnetpcap seems to be a Java wrapper for libpcap, the official web presence of
the project (jnetpcap.com) was not reachable at the time of this writing. Java is known for
numerous severe security problems in serialization and its vulnerable virtual machine, as out-
lined in the introduction and in the CVE comparison for different programming languages in
table 1.5 and figure 1.3. The CICFlowMeter source code was briefly examined and findings
will be discussed in the following. Numerous comments in the source files PacketReader.java
and TrafficFlowWorker.java mention an unfixed BufferUnderflowException while decoding
a header, that should have been solved by making deep copies of the packets, but apparently
wasn’t. Besides these comments, the source code is almost completely undocumented. A
glimpse at the corresponding github repository reveals problems when parsing large PCAP
files: finished flows are continuously collected in memory until the complete file was pro-
cessed. Currently tracked flows is also continuously growing because flows are not correctly
timed out. A pull request that fixes this was added on May 16, 2018. No reaction to this
from the authors at the time of this writing.
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Some users are complaining that the UDP Flows are incomplete. The source code is publicly
available on github and as of commit 1d4e34e, it contains only 368 lines with comments of a
total 4519 of lines of Java source code in src/main/java/cic. A majority of these comments
is commented-out code instead of descriptive comments.

ipsumdump

Ipsumdump can read compressed PCAP files, and does not offer file extraction. Data can
be exported as CSV, and packets can be read live from the network interface. The source
code is publicly available, PCAP and PCAPNG are supported as input formats, there is no
functionality for monitoring distributed networks. Accessing protocol specific information is
possible with various command-line flags.

tshark

Tshark allows to access individual protocol fields, flow and stream information can also be
accessed. Files can be extracted by supplying a command-line flag, and data can be exported
as CSV. Printing specific fields for the desired protocols is possible, but tedious. Real time
operation is supported, PCAP and PCAPNG are supported as input formats. The Tshark
source code is publicly available as a single file in the wireshark repository. It is not suited
for continuously monitoring large scale distributed networks. Usability is not optimal, there
is a huge amount of options and commands for extracting values of interest can grow many
lines long.

3.5 Summary

A majority of the existing solutions was not specifically designed for research on anomaly
based intrusion detection techniques. The only exception from that, CICFlowMeter, fails
to meet requirements regarding protocol access and platform support. While many of the
available tools offer parts of the desired functionalities, none provides all, or offers them in
a convenient way for research on anomaly based detection techniques. To deliver data in a
way that provides value to the researcher, many additional pre- and post-processing steps
have to be performed. None of the existing solutions is written in a memory safe language.
A majority does not make the gathered data available for each protocol. No tooling ex-
ists to create labeled datasets. Current tooling is either overly complex and therefore time
consuming to extend and debug, or limited in functionality and poorly documented. By
not providing access to each protocol seen on the wire, many solutions obscure details, that
could have been of interest to the researcher. Overall the situation of current tooling for ex-
periments on anomaly based intrusion detection, is very unsatisfying and needs improvement.

24

https://github.com/ISCX/CICFlowMeter/issues/13
https://github.com/ISCX/CICFlowMeter
https://github.com/ISCX/CICFlowMeter/tree/master/src/main/java/cic
https://github.com/kohler/ipsumdump
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org


3 State Of The Art

The following table summarizes the requirement evaluation.

Requirement Argus nProbe Zeek ipsumdump tshark CICFlowMeter

Protocol Support Coverage y y y y y y
Data Availability p n y p y n
Abstraction Capabilities y y y y y y
Concurrent Design y y n n n y
File Extraction n n y n y n
Suitable Output Format p p y p p p
Real Time Operation y y y y y y
Supported Input Formats y y y y y y
Memory Safety n n p n n p
Open Source Codebase y n y y y y
Scalability y y y n n n
Performance y y y y y x
Configurable Design y y y y y p
Extensibility x x y y p p
Reliability x x y x x x
Usability y x y p p x
Storage Efficiency p n n n n n

Table 3.2: State of the art requirements evaluation

Legend:

y = yes , requirement fulfilled.

n = no, requirement not fulfilled.

p = requirement only partially fulfilled.

x = could not be evaluated

With respect to the requirement of memory safety, the only candidate for a possible exten-
sion, would have been CICFlowMeter. However, the before mentioned substantial security
problems of the Java programming language, lack of documentation for the tool and the
incompatibility of the PCAP processing library with the development system (macOS), led
to the decision of creating a new implementation.
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NETCAP 
Traffic Analysis Framework

The Netcap (NETwork CAPture) framework efficiently converts a stream of network pack-
ets into highly accessible type-safe structured data that represent specific protocols or custom
abstractions. These audit records can be stored on disk or exchanged over the network, and
are well suited as a data source for machine learning algorithms. Since parsing of untrusted
input can be dangerous and network data is potentially malicious, implementation was per-
formed in a programming language that provides a garbage collected memory safe runtime.
Netcap uses Google’s Protocol Buffers to encode its output, which allows accessing it across
a wide range of programming languages [pro18]. Alternatively, output can be emitted as
comma separated values (CSV), which is a common input format for data analysis tools and
systems. The developed tooling is extensible and provides multiple ways of adding support
for new protocols, while implementing the parsing logic in a memory safe way. It provides
high dimensional data about observed traffic and allows the researcher to focus on exper-
imenting with novel approaches for detecting malicious behavior in network environments,
instead of fiddling with data collection mechanisms and post processing steps. It has a con-
current design that makes use of multi-core architectures. The name Netcap was chosen to
be simple and descriptive. The command-line tool was designed with usability and read-
ability in mind, and displays progress when processing packets. In the following, Netcap’s
design goals and high level concepts will be presented, along with a specification.
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4.1 Design Goals

Core design goals of Netcap include:

• memory safety when parsing untrusted input

• ease of extension

• output format interoperable with many different programming languages

• concurrent design

• output with small storage footprint on disk

• maximum data availability

• allow implementation of custom abstractions

• rich platform and architecture support

The following graphic shows a high level architecture overview:
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Figure 4.1: Netcap high level design overview
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4.2 Netcap Specification

Netcap files have the file extension .ncap or .ncap.gz if compressed with gzip and contain
serialized protocol buffers of one type. Naming of each file happens according to the naming
in the gopacket library: a short uppercase letter representation for common protocols, and a
camel case version full word version for less common protocols. Audit records are modeled
as protocol buffers. Each file contains a header that specifies which type of audit records is
inside the file, what version of Netcap was used to generate it, what input source was used and
what time it was created. Each audit record should be tagged with the timestamp the packet
was seen, in the format seconds.microseconds. Output is written to a file that represents
each data structure from the protocol buffers definition, i.e. TCP.ncap, UDP.ncap. For this
purpose, the audit records are written as length delimited records into the file.

4.3 Protocol Buffers

Google’s Protocol Buffers are a platform neutral mechanism for serializing structured data.
Originally developed for remote procedure calls (RPC), it provides ease of use and good
performance, compared to other binary serialization formats. The Protocol Buffer compiler
converts the .proto definitions into code for the target language. Officially supported are:
C++, Java, Python, Objective-C, C#, JavaScript, Ruby, Go, PHP, Dart. However, the
protoc compiler has a plugin architecture and many third-party plugins exist for other lan-
guages, including: Erlang, D, R, Haskell, C, .NET, Perl, OCaml, Rust, Scala, Swift, Vala,
Lua, Matlab, Prolog, Julia, Elm, Elixir, Delphi, Closure and more. Netcap uses the protocol
buffers v3 specification.

4.4 Delimited Protocol Buffer Records

The data format on disk consists of gzipped length-delimited byte records. Each delimited
Protocol Buffer record is preceded by a variable-length encoded integer (varint) that specifies
the length of the serialized protocol buffer record in bytes. A stream consists of a sequence
of such records packed consecutively without additional padding. There are no checksums
or compression involved in this processing step.

LENGTH PAYLOAD

STREAM

LENGTH PAYLOAD LENGTH PAYLOAD LENGTH PAYLOAD

RECORD

varint bytes

Figure 4.2: Netcap delimited data
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4.5 Data Pipe

The Netcap data pipe describes the way from a network packet that has been processed in
a worker routine, to a serialized, delimited and compressed record into a file on disk.

Atomic Writer Delimited Writer Gzip Buffer File

NETCAP data pipe

Worker

Worker

Worker

Worker

Worker

Synchronization 
for concurrent access

Delimited 
protobuf records

Gzip 
compression

Data buffering in memory
default: 4096 bytes

Output file
e.g: TCP.ncap.gz

Worker routines
for decoding traffic

Figure 4.3: Netcap data pipe

4.6 Parallel Processing

To make use of multi-core processors, processing of packets should happen in an asynchronous
way. Since Netcap should be usable on a stream of packets, fetching of packets has to happen
sequentially, but decoding them can be parallelized. The packets read from the input data
source (PCAP file or network interface) are assigned to a configurable number of workers
routines via round-robin. Each of those worker routines operates independently, and has all
selected encoders loaded. It decodes all desired layers of the packet, and writes the encoded
data into a buffer that will be flushed to disk after reaching its capacity.

4.7 Data Compression

Encoding the output as protocol buffers does not help much with reducing the size, compared
to the CSV format. To further reduce the disk size required for storage, the data is gzipped
prior to writing it into the file. This makes the resulting files around 70% smaller. Gzip
is a common and well supported format, support for decoding it exists in almost every
programming language. If this is not desired for e.g. direct access to the stored data, this
can be toggled with the -comp command-line flag.
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4.8 Writing Data To Disk

Writing data to disk can happen asynchronously for each audit record type, since the data
is written into separate files. To reduce the overhead imposed on the system by frequent
syscalls for writing data to disk, Netcap determines the block size of the filesystem on startup
(encoder/layerEncoder.go), and uses this value as a size for its internal buffers. The block
size represents the maximum number of bytes that can be written to the filesystem with a
single syscall. Using this value as a size for the buffers drastically speeds up writing data
to disk. Because each audit record type is written to a separate file, reading them back for
analysis purposes can be implemented in parallel, in order to speed up processing time.

4.9 Audit Records

A piece of information produced by Netcap is called an audit record. Audit records are type
safe structured data, encoded as protocol buffers. An audit record can describe a specific
protocol, or other abstractions built on top of observations from the analyzed traffic. Netcap
does currently not enforce the presence of any special fields for each audit record, however
by convention each audit record should have a timestamp with microsecond precision. A
record file contains a header followed by a list of length-delimited serialized audit records.
Naming of the audit record file happens according to the encoder name and should signal
whether the file contents are compressed by adding the .gz extension.

Timstamp
Field
Field
Field
Field
Field
Field
Field
Field
…

NETCAP audit records

Audit Record FileSingle Audit Record

e.g: 
TCP.ncap.gz (compressed)
TCP.ncap (uncompressed)

Netcap File Header

          Audit Record

          Audit Record

          …

length

length

length

Figure 4.4: Netcap audit records
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4.10 Netcap File Header

Each Netcap protocol buffer dump file, has a Header (type definition in netcap.proto) as
its first element. The header contains information about the creation date, Netcap version,
input source and the data type of the audit records.

1 type Header struct {

2 Created string

3 InputSource string

4 Type Type

5 Version string

6 }

Type enumerations are maintained in the netcap.proto definitions. Due to the C++ scoping
implemented by the Protocol Buffer compiler, enumeration names cannot be the same as
the corresponding message type. To solve this, a NC prefix is prepended to each entry (NC
stands for NetCap). Constants will follow the naming scheme Type NC RecordName in the
generated code, for example the TCP constant is named: Type NC TCP.

1 enum Type {

2 NC_Header = 0;

3 NC_Batch = 1;

4 NC_Flow = 2;

5 NC_Connection = 3;

6 NC_LinkFlow = 4;

7 NC_NetworkFlow = 5;

8 NC_TransportFlow = 6;

9 NC_Ethernet = 7;

10 NC_ARP = 8;

11 NC_Dot1Q = 9;

12 NC_Dot11 = 10;

13 ...

14 }

4.11 Packet Decoding

For decoding each layer of the traffic, the gopacket library is used, which provides packet
processing capabilities for Go. It is owned by Google and maintained by a community of
developers. [gop18] The gopacket library is well documented and provides a mature API
and abstractions for creating or decoding network packets. It offers support for reading
and writing PCAPs and fetching packets live from an interface. The gopacket library offers
an easy interface to exchange encoders for implemented protocols, or add support for new
ones and is frequently updated by its developers. Using it for Netcap brings immediate
support for the most common protocols and makes it easy to implement new ones, or extract
additional data from implemented protocols. Choosing gopacket as a primary solution for
decoding network data will lead to a growing list of supported protocols in the future. For
the experiments and development of Netcap, version v1.1.15 of gopacket was used, from the
master branch of the github repository, latest commit ec90f6c.
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4.12 Workers

Workers are a core concept of Netcap, as they handle the actual task of decoding each
packet. Netcap can be configured to run with the desired amount of workers, the default
is 1000, since this configuration has shown the best results on the development machine.
Increasing the number of workers also increases the number of runtime operations for gor-
outine scheduling, thus performance might decrease with a huge amount of workers. It is
recommended to experiment with different configurations on the target system, and choose
the one that performs best. Packet data fetched from the input source is distributed to a
worker pool for decoding in round robin style. Each worker decodes all layers of a packet
and calls all available custom encoders. After decoding of each layer, the generated protocol
buffer instance is written into the Netcap data pipe. Packets that produced an error in the
decoding phase or carry an unknown protocol are being written in the corresponding logs
and dumpfiles.

LINK LAYER

NETWORK LAYER

TRANSPORT LAYER

NETCAP worker

APPLICATION LAYER

Timstamp
Packet

FLOW

CONNECTION

TLS

…

Layer 
Encoders

Custom 
Encoders

Packet 
Info

ETHERNET.PROTO

IPV4.PROTO

UDP.PROTO

TCP.PROTO

errors.log errors.pcap unknown.pcap

…

Protocol
Buffers

Decoding
Error Log

Malformed
Packets

Unknown
Protocols

Figure 4.5: Netcap worker
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Each worker receives its data from an input channel. This channel can be buffered, by
default the buffer size is 100, also because this configuration has shown the best results on
the development machine. When the buffer size is set to zero, the operation of writing a
packet into the channel blocks, until the goroutine behind it is ready for consumption. That
means, the goroutine must finish the currently processed packet, until a new packet can be
accepted. By configuring the buffer size for all routines to a specific number of packets, dis-
tributing packets among workers can continue even if a worker is not finished yet when new
data arrives. New packets will be queued in the channel buffer, and writing in the channels
will only block if the buffer is full.

WORKER 1

WORKER 2

WORKER 3

NETCAP buffered workers

WORKER 4

COLLECTOR

…

Packet Data Distribution 
via Round Robin

Buffered Input Channel 
for each worker

Configurable Number
of workers

Figure 4.6: Netcap buffered workers
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4.13 Encoders

Encoders take care of converting decoded packet data into protocol buffers for the audit
records. Two types of encoders exist: the Layer Encoder , which operates on gopacket layer
types, and the Custom Encoder , for which any desired logic can be implemented, including
decoding application layer protocols that are not yet supported by gopacket or protocols
that require stream reassembly.

Layer encoder example:

The ethernet encoder takes the decoded packet, uses the available routing information and
calculates the Shannon Entropy for the payload data.
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ETHERNET

Data collection

Figure 4.7: Netcap ethernet layer encoder

Custom encoder examples:

The HTTP decoder implements IPv4 stream reassembly, in order to extract HTTP requests
and responses from both reassembled streams. Optionally, files from HTTP responses can
be extracted and written to disk.
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Figure 4.8: Netcap HTTP layer encoder
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The Connection encoder holds a thread-safe connection store, to keep track of all seen
connections and their properties. It is continuously flushed in configurable interval, in order
to reduce memory usage.
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Connection.ncap.gz
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Figure 4.9: Netcap connection encoder

The TLS encoder extracts the TLS Client Hello message from the handshake, calculates the
JA3 hash and adds routing information from the underlying TCP packet.
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Figure 4.10: Netcap TLS encoder
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4.14 Unknown Protocols

Protocols that cannot be decoded will be dumped in the unknown.pcap file for later anal-
ysis, as this contains potentially interesting traffic that is not represented in the generated
output. Separating everything that could not be understood makes it easy to reveal hidden
communication channels, which are based on custom protocols.

4.15 Error Log

Errors that happen in the gopacket lib due to malformed packets or implementation errors
are written to disk in the errors.log file, and can be checked by the analyst later. Each
packet that had a decoding error on at least one layer will be added to the errors.pcap. An
entry to the error log has the following format:

1 <UTC Timestamp >

2 Error: <Description >

3 Packet:

4 <full packet hex dump with layer information >

At the end of the error log, a summary of all errors and the number of their occurrences will
be appended.

1 ...

2 <error name >: <number of occurrences >

3 ...
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4.16 Filtering and Export

Netcap offers a simple interface to filter for specific fields and select only those of interest.
Filtering and exporting specific fields can be performed with all available audit record types,
over a uniform command-line interface. By default, output is generated as CSV with the
field names added as first line. It is also possible to use a custom separator string. Fields
are exported in the order they are named in the select statement. Sub structures of audit
records (for example IPv4Options from an IPv4 packet), are converted to a human readable
string representation. More examples for using this feature on the command-line can be
found in the usage section.
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$ netcap -r TCP.ncap.gz    -select Timestamp,SrcPort,DstPort,SeqNum,Window,ACK,SYN,RST   > TCP.csv 

Output File

Figure 4.11: Netcap filtering and CSV export
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4.17 Dataset Labeling

The term labeling refers to the procedure of adding classification information to each audit
record. For the purpose of intrusion detection this is usually a label stating whether the
record is normal or malicious. This is called binary classification, since there are just two
choices for the label (good / bad) [BK14]. Efficient and precise creation of labeled datasets
is important for supervised machine learning techniques. To create labeled data, Netcap
parses logs produced by suricata and extracts information for each alert. The quality of
labels therefore depends on the quality of the used ruleset. In the next step it iterates over
the data generated by itself and maps each alert to the corresponding packets, connections
or flows. This takes into account all available information on the audit records and alerts.
More details on the mapping logic can be found in the implementation chapter. While la-
beling is usually performed by marking all packets of a known malicious IP address, Netcap
implements a more granular and thus more precise approach of mapping labels for each
record. Labeling happens asynchronously for each audit record type in a separate goroutine.
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Figure 4.12: Netcap labeling
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4.18 Sensors

Using Netcap as a data collection mechanism, sensor agents can be deployed to export the
traffic they see to a central collection server. This is especially interesting for internet of
things (IoT) applications, since these devices are placed inside isolated networks and thus
the operator does not have any information about the traffic the device sees. Although Go
was not specifically designed for this application, it is an interesting language for embedded
systems. Each binary contains the complete runtime, which increases the binary size but
requires no installation of dependencies on the device itself. Data exporting currently takes
place in batches over UDP sockets. Transferred data is compressed in transit and encrypted
with the public key of the collection server. Asymmetric encryption was chosen, to avoid
empowering an attacker who compromised a sensor, to decrypt traffic of all sensors commu-
nicating with the collection server. To increase the performance, in the future this could be
replaced with using a symmetric cipher, together with a solid concept for key rotation and
distribution. Sensor agents do not write any data to disk and instead keep it in memory
before exporting it.
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Figure 4.13: Netcap sensors
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4.19 Sensor Data Pipe

When sending out batches of audit records, the Netcap data pipeline gets slightly modified.
After writing data into the atomic writer, it will be transformed into a delimited record and
written into a channel. This channel can be used to fetch delimited records from another
routine. The sensor sets up this data pipe for each requested audit record type, and then
spawns a routine for each of them, that continuously reads from the supplied channel. The
data is being read until the total size of bytes would exceed the total size of the buffer. In
that case, the current record will be buffered and the remaining data of the batch will be
sent to the collector.

Atomic Writer Delimited Writer

NETCAP sensor data pipe

Worker

Worker

Worker

Worker

Worker

Channel Writer

Delimited 
protobuf records

Synchronization 
for concurrent access

Channel for receiving data
in another routine

Worker routines
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Figure 4.14: Netcap sensor pipeline

40



4 Concept

4.20 Collection Server

The collector node receives data from multiple sensor sources, via batched messages with
audit data of a specific type. For now, each received batch of audit data is stored on the
file system, separately for each client. For example, if a client has the identifier ”xyz”, a
folder named ”xyz” will be created, and inside the different Netcap files for each types will
be placed. Every time a new batch is received, the data it carries will be appended to the
corresponding file on disk. A batch of data is modeled as follows in netcap.proto:

1 type Batch struct {

2 ClientID string

3 MessageType string

4 Size int32

5 Data []byte

6 }

Many systems are able to accept protocol buffers as input, alternatively the audit records
can be also converted to CSV. In the future, the collection server will be extended to export
data to various systems for further analysis and correlation, for example the elastic stack or
splunk.
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Figure 4.15: Netcap collection server
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This chapter describes internals of the Netcap implementation.

5.1 Why Go?

Go, commonly referred to as Golang, is a statically typed and compiled imperative systems
programming language released by Google in 2009. It is syntactically similar to the C
programming language, but adopted lots of ideas from other languages, such as Python
and Erlang, in order to improve readability and productivity. Commonly used for network
programming and backend implementation, Golang is known for its extremely fast compile
time and generation of statically linked binaries, which are independent of any libraries on
the execution environment. Go is currently available in version 1.11.2 and provides a built-
in model for concurrent execution and coordination of asynchronous processes, which was
inspired by the Communicating Sequential Processes (CSP) paper. A asynchronous process
is called a goroutine, which should not be confused with an operating system (OS) thread.
Goroutines are multiplexed onto threads of the OS as required. In case a goroutine blocks,
the corresponding OS thread blocks as well, but no other goroutine is affected. Goroutines
are less computationally expensive compared to a thread and allocate resources dynamically
as needed. For synchronization and messaging, Go offers channels as a lightweight way to
communicate between goroutines. This design decision was inspired by the idea of sharing
memory by communicating, instead of communicating by sharing memory. Additionally,
multi-way concurrent control is provided through select statements, which are used to receive
data from channels. Another important aspect of Go is its rich platform and architecture
support, which will be described in detail below. Besides that, the language offers a garbage
collected runtime, and stack management, in order to combat memory corruptions. However,
this should not be confused with the virtual machine approach of the Java runtime. Although
Go is not an object oriented programming language, it provides interfaces and the ability to
define methods on structures. Go also enforces a uniform programming style for formatting
the source code, which greatly helps increasing readability across code from different authors.
It is noteworthy that Go provides functionality to circumvent the type system and runtime
checks, by reading and writing to arbitrary memory addresses via the unsafe package. As
of version 0.3.4 Netcap does not make use of this package.

5.2 Platform and Architecture Support

Netcap is entirely written in Golang and can be compiled and executed on Mac, Linux and
Windows. Supported operating systems (OS), for the current 1.11 version of Go, are: an-
droid, darwin, dragonfly, freebsd, linux, netbsd, openbsd, plan9, solaris, windows. Golang
officially supports the following architectures: arm64, ppc64, ppc64le, mips64, mips64le,
s390x, arm, 386, amd64. Netcap has been developed and tested on darwin (macOS mojave
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10.14.1, go-1.11.2), but is expected to compile and function seamlessly on all other architec-
tures as well, since it does not make use of any operating or architecture specific features.
For creating filepaths, the filepath package from the standard library is used. It takes care
of using the correct directory separator for the current OS when assembling paths.

5.3 Reading PCAP Files

Support for reading PCAP dump files in Go is provided by the libpcap bindings from the
gopacket library (github.com/google/gopacket/pcap). However, this conflicts with the design
goals of memory safety, as these bindings rely on the libpcap C library for parsing the input
file. Several Golang implementations exist that natively parse PCAP files. After bench-
marking and comparing these implementations, it was discovered that all of them make
use of the binary.Read function from the standard library to unmarshal a byte slice in a
predefined structure in memory. Because this function makes use of reflection, it is compu-
tationally expensive and cannot provide the desired performance. For Netcaps early days, a
pure Golang implementation was created that parses the data in a more efficient way. The
library and benchmarks have been published on github: github.com/dreadl0ck/gopcap. After
discovering that a pure go implementation also exists in gopacket (gopacket/pcapgo package),
Netcap now uses this as it offers functionality for both reading the PCAP and PCAPNG
format, and the option to use a pure go implementation when capturing traffic live on linux.
The pcapgo package was added to the benchmark comparison, it appears to be only slightly
slower than the previously used implementation.

5.4 Reading Traffic from a Network Interface

When reading packets live from an interface, the name of the interface has to be specified
with the -iface flag. When running on windows or macOS the libpcap bindings must be
used for this, if running on linux the native pure go implementation from gopacket is used.
In either way, packets are read in a loop from the interface handle with ZeroCopyRead-
PacketData() (data []byte, ci gopacket.CaptureInfo, err error), until the user cancels with
a SIGINT interrupt signal. On receiving the signal a cleanup is performed, all buffers are
flushed and written to disk. There are more flags for configuring the live mode: the snapshot
length can be adjusted and the network card can be configured to run in promiscous mode,
which configures the network adapter to also return packets that were not addressed to itself.
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5.5 Concatenating Strings

Concatenating strings can be slow, as joining them with the ”+” concatenation operator
creates a copy for each operation. Go 1.10 provides a new primitive for efficient string
concatenation: strings.Builder . A builder behaves like an io.Writer and is used though-
out Netcap to assemble strings. In the following, it is used to create a human readable
representation of an IPv4Option:

1 func (i IPv4Option) ToString () string {

2 var b strings.Builder

3 b.WriteString(begin)

4 b.WriteString(formatInt32(i.OptionType ))

5 b.WriteString(sep)

6 b.WriteString(formatInt32(i.OptionLength ))

7 b.WriteString(sep)

8 b.WriteString(hex.EncodeToString(i.OptionData ))

9 b.WriteString(end)

10 return b.String ()

11 }

Example Output: (134/22/00000002021000020000000200040005000600ef)

5.6 Atomic Writers

Since writers are shared between multiple concurrent procedures, they are synchronized with
a mutual exclusion lock, to allow only one thread at a time to write data. Although syn-
chronization of writers in the Netcap data pipe could have also been achieved with channels,
mutual exclusion locks were chosen for better performance. Channels have a slight overhead
compared to a mutual exclusion lock [goc17]. Synchronization with mutual exclusion locks
in Go can be implemented by adding a Mutex from the sync package, as an anonymous
field to a structure. This makes the Lock() and Unlock() methods available directly on an
instance of the structure.

The following shows an example from the collector package, the AtomicPcapGoWriter is
used for writing packets with unknown layers or decoding errors into the errors.pcap file. It
counts the number of packets written. Note that for performance reasons, this code does
not use a defer statement for the unlock operation of the mutex .

1 type atomicPcapGoWriter struct {

2 count int64

3 w pcapgo.Writer

4 sync.Mutex

5 }

6
7 func (a *atomicPcapGoWriter) WritePacket(ci gopacket.CaptureInfo , data []byte) error {

8 // sync

9 a.Lock()

10 a.count++

11
12 // write data

13 err := a.w.WritePacket(ci, data)

14
15 // dont use a defer here for performance

16 a.Unlock ()

17 return err

18 }
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5.7 Supported Protocols

This is the list of currently supported protocols, it is expected to grow in the future. Note
that this represents the layers as known from the gopacket library, and follows their naming
convention.

Name Layer Description

Ethernet Link IEEE 802.3 Ethernet Protocol
ARP Link Address Resolution Procotol
Dot1Q Link IEEE 802.1Q, virtual LANs on an Eth-

ernet network
Dot11 Link IEEE 802.11 Wireless LAN
LinkLayerDiscovery Link IEEE 802.1AB Station and Media Ac-

cess Control Connectivity Discovery
EthernetCTP Link diagnostic protocol included in the Xe-

rox Ethernet II specification
EthernetCTPReply Link reply to an ethernet ctp packet
LinkLayerDiscoveryInfo Link decoded details for a set of LinkLay-

erDiscoveryValues
LLC Link IEEE 802.2 LLC
SNAP Link mechanism for multiplexing, on net-

works using IEEE 802.2 LLC
IPv4 Network Internet Protocol version 4
IPv6 Network Internet Protocol version 6
IPv6HopByHop Network IPv6 Hop-by-Hop Header
IGMP Network Internet Group Management Protocol
ICMPv4 Network Internet Control Message Protocol v4
ICMPv6 Network Internet Control Message Protocol v6
ICMPv6NeighborAdvertisement Network Neighbor Discovery Protocol
ICMPv6RouterAdvertisement Network Neighbor Discovery Protocol
ICMPv6Echo Network Neighbor Discovery Protocol
ICMPv6NeighborSolicitation Network Neighbor Discovery Protocol
ICMPv6RouterSolicitation Network Neighbor Discovery Protocol
UDP Transport User Datagram Protocol
TCP Transport Transmission Control Protocol
SCTP Transport Stream Control Transmission Protocol
DNS Application Domain Name System
DHCPv4 Application Dynamic Host Configuration version 4
DHCPv6 Application Dynamic Host Configuration version 6
NTP Application Network Time Protocol
SIP Application Session Initiation Protocol
HTTP Application Hypertext Transfer Protocol

Table 5.2: Netcap protocols
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5.8 Protocol Sub Structure Types

There are also types for sub structures in protocol fields, currently implemented are:

Name Description

Dot11QOS IEEE 802.11 Quality Of Service
Dot11HTControl IEEE 802.11 HTC information
Dot11HTControlVHT IEEE 802.11 HTC information
Dot11HTControlHT IEEE 802.11 HTC information
Dot11HTControlMFB IEEE 802.11 HTC information
Dot11LinkAdapationControl IEEE 802.11 HTC information
Dot11ASEL IEEE 802.11 HTC information
LLDPChassisID Link Layer Discovery Protocol information
LLDPPortID Link Layer Discovery Protocol information
LinkLayerDiscoveryValue Link Layer Discovery Protocol information
LLDPSysCapabilities Link Layer Discovery Protocol information
LLDPCapabilities Link Layer Discovery Protocol information
LLDPMgmtAddress Link Layer Discovery Protocol information
LLDPOrgSpecificTLV Link Layer Discovery Protocol information
IPv4Option IPv4 option
ICMPv6Option ICMPv6 option
TCPOption TCP option
DNSResourceRecord Domain Name System resource record
DNSSOA Domain Name System start of authority record
DNSSRV Domain Name System service record
DNSMX Mail exchange record
DNSQuestion Domain Name System request for a single domain
DHCPOption DHCP v4 option
DHCPv6Option DHCP v6 option
IGMPv3GroupRecord IGMPv3 group records for a membership report
IPv6HopByHopOption IPv6 hop by hop extension TLV option
IPv6HopByHopOptionAlignment Hop By Hop Option Alignment

Table 5.4: Netcap protocol sub structures
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5.9 Available Fields

5.9.1 Layer Encoders

Layer NumFields Fields

TCP 22 Timestamp, SrcPort, DstPort, SeqNum,
AckNum, DataOffset, FIN, SYN, RST,
PSH, ACK, URG, ECE, CWR, NS, Win-
dow, Checksum, Urgent, Padding, Options,
PayloadEntropy, PayloadSize

UDP 7 Timestamp, SrcPort, DstPort, Length,
Checksum, PayloadEntropy, PayloadSize

IPv4 17 Timestamp, Version, IHL, TOS, Length, Id,
Flags, FragOffset, TTL, Protocol, Check-
sum, SrcIP, DstIP, Padding, Options, Pay-
loadEntropy, PayloadSize

IPv6 12 Timestamp, Version, TrafficClass, FlowLa-
bel, Length, NextHeader, HopLimit, SrcIP,
DstIP, PayloadEntropy, PayloadSize, Hop-
ByHop

DHCPv4 16 Timestamp, Operation, HardwareType,
HardwareLen, HardwareOpts, Xid,
Secs, Flags, ClientIP, YourClientIP,
NextServerIP, RelayAgentIP, ClientH-
WAddr, ServerName, File, Options

DHCPv6 7 Timestamp, MsgType, HopCount,
LinkAddr, PeerAddr, TransactionID,
Options

ICMPv4 5 Timestamp, TypeCode, Checksum, Id, Seq
ICMPv6 3 Timestamp, TypeCode, Checksum
ICMPv6Echo 3 Timestamp, Identifier, SeqNumber
ICMPv6NeighborSolicitation 3 Timestamp, TargetAddress, Options
ICMPv6RouterSolicitation 2 Timestamp, Options
DNS 18 Timestamp, ID, QR, OpCode, AA, TC,

RD, RA, Z, ResponseCode, QDCount, AN-
Count, NSCount, ARCount, Questions, An-
swers, Authorities, Additionals

ARP 10 Timestamp, AddrType, Protocol, HwAd-
dressSize, ProtAddressSize, Operation,
SrcHwAddress, SrcProtAddress, DstHwAd-
dress, DstProtAddress

Ethernet 6 Timestamp, SrcMAC, DstMAC, Ethernet-
Type, PayloadEntropy, PayloadSize

Table 5.6: Netcap Layer Encoder Fields Part 1
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Layer NumFields Fields

Dot1Q 5 Timestamp, Priority, DropEligible,
VLANIdentifier, Type

Dot11 14 Timestamp, Type, Proto, Flags, Dura-
tionID, Address1, Address2, Address3,
Address4, SequenceNumber, Fragment-
Number, Checksum, QOS, HTControl

NTP 15 Timestamp, LeapIndicator, Version,
Mode, Stratum, Poll, Precision, Root-
Delay, RootDispersion, ReferenceID,
ReferenceTimestamp, OriginTimestamp,
ReceiveTimestamp, TransmitTimes-
tamp, ExtensionBytes

SIP 3 Timestamp, OrganizationalCode, Type
IGMP 13 Timestamp, Type, MaxResponseTime,

Checksum, GroupAddress, Supress-
RouterProcessing, RobustnessValue,
IntervalTime, SourceAddresses, Num-
berOfGroupRecords, NumberOfSources,
GroupRecords, Version

LLC 6 Timestamp, DSAP, IG, SSAP, CR, Con-
trol

IPv6HopByHop 2 Timestamp, Options
SCTP 5 Timestamp, SrcPort, DstPort, Verifica-

tionTag, Checksum
SNAP 3 Timestamp, OrganizationalCode, Type
LinkLayerDiscovery 5 Timestamp, ChassisID, PortID, TTL,

Values
ICMPv6NeighborAdvertisement 4 Timestamp, Flags, TargetAddress, Op-

tions
ICMPv6RouterAdvertisement 7 Timestamp, HopLimit, Flags, Router-

Lifetime, ReachableTime, RetransTimer,
Options

EthernetCTP 2 Timestamp, SkipCount
EthernetCTPReply 4 Timestamp, Function, ReceiptNumber,

Data
LinkLayerDiscoveryInfo 8 Timestamp, PortDescription, SysName,

SysDescription, SysCapabilities, Mgm-
tAddress, OrgTLVs, Unknown

Table 5.8: Netcap Layer Encoder Fields Part 2
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5.9.2 Custom Encoders

Name NumFields Fields

TLS 27 Timestamp, Type, Version, MessageLen, HandshakeType,
HandshakeLen, HandshakeVersion, Random, Session-
IDLen, SessionID, CipherSuiteLen, ExtensionLen, SNI,
OSCP, CipherSuites, CompressMethods, SignatureAlgs,
SupportedGroups, SupportedPoints, ALPNs, Ja3, SrcIP,
DstIP, SrcMAC, DStMAC, SrcPort, DstPort

LinkFlow 9 TimestampFirst, TimestampLast, Proto, SrcMAC, Dst-
MAC, Size, NumPackets, UID, Duration

NetworkFlow 9 TimestampFirst, TimestampLast, Proto, SrcIP, DstIP,
Size, NumPackets, UID, Duration

TransportFlow 9 TimestampFirst, TimestampLast, Proto, SrcPort, Dst-
Port, Size, NumPackets, UID, Duration

HTTP 14 Timestamp, Proto, Method, Host, UserAgent, Referer, Re-
qCookies, ReqContentLength, URL, ResContentLength,
ContentType, StatusCode, SrcIP, DstIP

Flow 17 TimestampFirst, LinkProto, NetworkProto, Transport-
Proto, ApplicationProto, SrcMAC, DstMAC, SrcIP, Src-
Port, DstIP, DstPort, Size, AppPayloadSize, NumPackets,
UID, Duration, TimestampLast

Connection 17 TimestampFirst, LinkProto, NetworkProto, Transport-
Proto, ApplicationProto, SrcMAC, DstMAC, SrcIP, Src-
Port, DstIP, DstPort, Size, AppPayloadSize, NumPackets,
UID, Duration, TimestampLast

Table 5.10: Netcap Custom Encoder Fields
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5.10 TLS Handshakes

In order to be able to identify the initiators of encrypted connections and enhance encrypted
telemetry, Netcap provides information about handshakes used to create a TLS / SSL secured
connection. The TLS ClientHello is extracted from TLS v1.1 and v1.2 traffic. Additionally,
for each ClientHello message the corresponding JA3 hash is calculated and added to the
data structure. It will be explained in more detail below. The audit is enriched with context
information from the corresponding packet, such as addresses and ports.

1 type TLSClientHello struct {

2 Timestamp string

3 Type int32

4 Version int32

5 MessageLen int32

6 HandshakeType int32

7 HandshakeLen uint32

8 HandshakeVersion int32

9 Random bytes

10 SessionIDLen uint32

11 SessionID bytes

12 CipherSuiteLen int32

13 ExtensionLen int32

14 SNI string

15 OSCP bool

16 CipherSuites [] int32

17 CompressMethods []int32

18 SignatureAlgs [] int32

19 SupportedGroups []int32

20 SupportedPoints []int32

21 ALPNs [] string

22 Ja3 string

23 SrcIP string

24 DstIP string

25 SrcMAC string

26 DstMAC string

27 SrcPort int32

28 DstPort int32

29 Extensions [] int32

30 }
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The following shows a simple example, note that not all available fields are being displayed
and some are truncated for brevity:

Timestamp (seconds.micro)

Version

MessageLen

HandshakeType

HandshakeVersion

Random

TLS

SessionID

CipherSuiteLen

ExtensionLen

SNI

CipherSuites

SessionIDLen

1397555506.130567

769

355

1

771

U\305\016\222\241\
\b\336\250D\315…

Example

x\223\2720\006\00…

198

125

192.168.0.20

106,49188,19,49162,49171,…

32

HandshakeLen 351

SignatureAlgs

Ja3

SrcIP

DstIP

…

CompressMethods

1025,1283,513,515,…

4d7a28d6f2263ed61de88ca66eb011e3

197.162.1.30

172.123.0.10

...

0

Figure 5.1: Netcap TLS data excerpt
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5.10.1 JA3 Fingerprinting

Developed by engineers from salesforce and open sourced in July 2017, JA3 is a technique
to create a fingerprint of a TLS client hello message, in order to identify the client that is
establishing an encrypted connection. For Netcap, a pure Go implementation was created
(github.com/dreadl0ck/ja3 ). It outperforms the python reference implementation by a factor
of 20, and currently finds 30% more handshakes in the test dump file.

JA3 collects the decimal values of the bytes for the following fields in the order they appear,
and concatenates them in the named order: SSL Version, Accepted Ciphers, List of
Extensions, Elliptic Curves, Elliptic Curve Formats.

Those values are then concatenated together sequentially, using “,” to delimit a field and
“-” to delimit values inside the fields.

Example: 771,49195-49199-52243-52245-49162-57-49171-51-156-53-47-10-255,0-23-35-13-5-
13172-18-16-30032-11-10,23-24,0

In case there are no SSL extensions present in the client hello message, the correspond-
ing fields are left empty.

Example: 771,49195-49199-52243-52245-49162-57-49171-51-156-53-47-10-255,,,

The created bare string is then hashed with the MD5 algorithm, to produce a 32 character
fingerprint. This hash is the JA3 SSL Client Fingerprint digest. According to the authors,
MD5 was chosen for better readability when comparing several fingerprint on a dashboard,
despite the risk of hash collisions.

JA3 has several advantages as an indicator of compromise (IoC) compared to IP addresses
or domain names. Since JA3 identifies the client application, it is irrelevant if malware uses
techniques such as Domain Generation Algorithms (DGA), or several different IP addresses
for each command and control host. The idea is to detect malicious communication over
SSL based on how the malware communicates, rather than where it connects to.

For heavily restricted environments, where only specific applications are allowed to be in-
stalled and used, JA3 is an interesting mechanism for identifying unwanted activity. This
can be achieved by creating a whitelist of granted applications and alerting on communica-
tion from clients that are not present on the whitelist. The whitelist needs to be updated
after changes to client software.
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5.11 HTTP

Extracting HTTP audit records has been implemented as a custom encoder. Since a HTTP
request or response is often fragmented across several TCP packets, TCP stream reassembly
needs to be performed. To accomplish this the gopacket implementation for IPv4 stream
reassembly (gopacket/reassembly) was used, IPv6 stream reassembly is currently not sup-
ported. For parsing the HTTP requests and responses, the net/http package from the go
standard library is used. The HTTP audit record type preserves the following information:

1 type HTTP struct {

2 Timestamp string

3 Proto string

4 Method string

5 Host string

6 UserAgent string

7 Referer string

8 ReqCookies [] string

9 ReqContentLength int32

10 URL string

11 ResContentLength int32

12 ContentType string

13 StatusCode int32

14 SrcIP string

15 DstIP string

16 }

Timestamp (seconds.micro)

Proto

Method

Host

URL

ResContentLength

HTTP

SrcIP

DstIP

Referer

StatusCode

1397557690.271109

HTTP/1.1

GET

investor.apple.com

/common/images/icons-xls-on.gif

330

Example

172.16.11.104

95.100.238.75

http://referer.org.com/move?ID=11931

200

UserAgent Mozilla/4.0 (compatible; MSIE 8.0; …)

Figure 5.2: Netcap HTTP data excerpt
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5.12 Flows and Connections

Flow audit records in Netcap are unidirectional, whereas Connections and Layer Flows are
bidirectional. Flows and Connections are continuously flushed, to keep the memory usage
as low as possible. Timeout intervals can be configured separately for both types. The first
packet seen decides about source and destination of a Connection or Flow.

Name Layer Description

Flow All Unidirectional Multi Layer Flow
Connection All Bidirectional Multi LayerFlow
LinkFlow Link Bidirectional Link Layer Flow
NetworkFlow Network Bidirectional Network Layer Flow
TransportFlow Transport Bidirectional Transport Layer Flow

Table 5.12: Netcap flows

For Flows and Connections, the following identical information is preserved:

Timestamp First Seen (seconds.micro)

Link Layer Protocol

Network Layer Protocol

Transport Layer Protocol

Source Mac Address

Destination Mac Address

Flow / Connection

SrcPort

DstIP

DstPort

Size in bytes

Number of Packets

SrcIP

1499257434.003136

Ethernet

IPv4

TCP

00:0c:28:9f:16:1e

00:0c:28:c9:60:ce

Example

1873

95.100.238.75

80

922

6

173.15.11.103

Application Layer Protocol HTTP

Timestamp Last Seen (seconds.micro)

Duration (nanoseconds)

1499257551.553088

117549952000

Figure 5.3: Netcap Flows and Connections
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5.13 Layer Flows

In order to further decouple Flows, they are also exported for each layer, e.g: LinkFlow,
NetworkFlow, TransportFlow. As mentioned previously, Layer Flows are bidirectional, their
UID is the same for both directions. Note that in the following graphics the UID field was
omitted.

5.13.1 Link Flow

A LinkFlow describes communication on layer 1 of the Internet Protocol Suite. It contains
the hardware adresses of the communicating devices, and connection statistics.

TimestampFirst (seconds.micro)

TimestampLast (seconds.micro)

Protocol

SrcMAC

DstMAC

NumPackets

Link Flow

1499255388.191380

Ethernet

00:0c:28:9f:16:1e

00:0c:28:c9:60:ce

52

1423

Example

Size (bytes)

Duration (nanoseconds)

1499284556.475471

29168284091000

Figure 5.4: Netcap Link Layer Flow example
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5.13.2 Network Flow

A NetworkFlow describes communication on layer 2 of the Internet Protocol Suite. It con-
tains the ip adresses of the communicating devices, and connection statistics.

TimestampFirst (seconds.micro)

TimestampLast (seconds.micro)

Protocol

SrcIP

DstIP

NumPackets

Network Flow

1499283872.749692

IPv4

192.168.10.8

185.11.128.203

137

30160

Example

Size (bytes)

Duration (nanoseconds)

1499284166.267369

293517677000

Figure 5.5: Netcap Network Layer Flow example

5.13.3 Transport Flow

A TransportFlow describes communication on layer 3 of the Internet Protocol Suite. It con-
tains the ports of the communicating devices, and connection statistics.

TimestampFirst (seconds.micro)

TimestampLast (seconds.micro)

Protocol

SrcPort

DstPort

NumPackets

Transport Flow

1499279129.560185

TCP

60846

443

156

118942

Example

Size (bytes)

Duration (nanoseconds)

1499282267.760859

3138200674000

Figure 5.6: Netcap Transport Layer Flow example
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5.14 Sensors & Collection Server

As described in the concept chapter, sensors and the collection server use UDP datagrams
for communication. Network communication was implemented using the go standard li-
brary. This section will focus on the procedure of encrypting the communication between
sensor and collector. For encryption and decryption, cryptographic primitives from the
Golang.org/x/crypto/nacl/box package are used. The NaCl (pronounced ’Salt’) toolkit
was developed by the reowned cryptographer Daniel J. Bernstein. The box package uses
Curve25519, XSalsa20 and Poly1305 to encrypt and authenticate messages. It is im-
portant to note that the length of messages is not hidden. Netcap uses a thin wrapper
around the functionality provided by the nacl package, the wrapper has been published
here: github.com/dreadl0ck/cryptoutils.

5.14.1 Batch Encryption

The collection server generates a keypair, consisting of two 32 byte (256bit) keys, hex en-
codes them and writes the keys to disk. The created files are named pub.key and priv.key.
Now, the servers public key can be shared with sensors. Each sensor also needs to generate
a keypair, in order to encrypt messages to the collection server with their private key and
the public key of the server. To allow the server to decrypt and authenticate the message,
the sensor prepends its own public key to each message.

NETCAP

COLLECTOR

NETCAP

SENSOR

PUB.KEY PRIV.KEY

PUB.KEY PRIV.KEY

Step 1: Sensor and Collector server generate keypair

Step 2: Server Public key is distributed to sensors

Step 3: Sensors use the servers public key to send encrypted messages.
Each message has the sensors public key prepended, 

to allow the server to authenticate and decrypt the message

1

1

2 3

Figure 5.7: Netcap collection server
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5.14.2 Batch Decryption

When receiving an encrypted batch from a sensor, the server needs to trim off the first
32 bytes, to get the public key of the sensor. Now the message can be decrypted, and
decompressed. The resulting bytes are serialized data for a batch protocol buffer. After un-
marshalling them into the batch structure, the server can append the serialized audit records
carried by the batch, into the corresponding audit record file for the provided client identifier.

PUBLIC KEY CLIENT PAYLOAD

UDP Payload

32 byte encrypted bytes

PAYLOAD

gzipped bytes

Step 1: decrypt

Step 2: decompress

Step 3: unmarshal batch CLIENT ID MESSAGE TYPE

BATCH

SIZE LENGTH AUDIT RECORD LENGTH AUDIT RECORD …

META INFORMATION

string types.Type

SERIALIZED AUDIT RECORDS

int32 varint bytes varint bytes

Figure 5.8: Netcap batch decryption
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5.15 Packages

5.15.1 Cmd Package

The cmd package contains the command-line application. It receives configuration param-
eters from command-line flags, creates and configures a collector instance, and then starts
collecting data from the desired source.

5.15.2 Types Package

The types package contains types.CSV interface implementations for each supported pro-
tocol, to enable converting data to the CSV format. For this purpose, each protocol must
provide a CSVRecord() []string and a CSVHeader() []string function. Additionally, a Net-
capTimestamp() string function that returns the Netcap timestamp must be implemented.

5.15.3 Label Package

The label package contains the code for creating labeled datasets. For now, the suricata IDS
/ IPS engine is used to scan the input PCAP and generate alerts. In the future, support could
also be added for using YARA. Alerts are then parsed with regular expressions and trans-
formed into the label.SuricataAlert type. This could also be replaced by parsing suricatas
eve.json event logs in upcoming versions. A suricata alert contains the following information:

1 // SuricataAlert is a summary structure of an alerts contents

2 type SuricataAlert struct {

3 Timestamp string

4 Proto string

5 SrcIP string

6 SrcPort int

7 DstIP string

8 DstPort int

9 Classification string

10 Description string

11 }

In the next iteration, the gathered alerts are mapped onto the collected data. For layer
types which are not handled separately, this is currently by using solely the timestamp of
the packet, since this is the only field required by Netcap, however multiple alerts might exist
for the same timestamp. To detect this and throw an error, the -strict flag can be used. The
default is to ignore duplicate alerts for the same timestamp, use the first encountered label
and ignore the rest. Another option is to collect all labels that match the timestamp, and
append them to the final label with the -collect flag. To allow filtering out classifications
that shall be excluded, the -excluded flag can be used. Alerts matching the excluded classi-
fication will then be ignored when collecting the generated alerts. Flow, Connection, HTTP
and TLS records mapping logic also takes source and destination information into consider-
ation. The created output files follow the naming convention: NetcapType labeled.csv. The
label package includes a standalone command-line application in label/cmd .
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5.15.4 Sensor Package

The sensor package contains the code for a standalone sensor agent, that captures live from
an interface and exports the collected data to a central collection server via batched UDP
requests.

5.15.5 Server Package

The server package implements the UDP collection server, that continuously receives audit
data from sensors and stores them on the file system separately for each client.

5.15.6 Utils Package

The utils package contains shared utility functions used by several other packages.

5.15.7 Encoder Package

The encoder package implements conversion of decoded network protocols to protocol buffers.
This has to be defined for each supported protocol. Two types of encoders exist: The
LayerEncoder and the CustomEncoder .

Layer Encoder

A LayerEncoder operates on a gopacket.Layer and has to provide the gopacket.LayerType
constant, as well a handler function to receive the layer and the timestamp and convert it
into a protocol buffer.

1 // LayerEncoder contructor

2 func CreateLayerEncoder(

3 lt gopacket.LayerType ,

4 handler LayerEncoderHandler

5 ) *LayerEncoder

6
7 // LayerEncoder instance

8 type LayerEncoder

9 func (d *LayerEncoder) Decode(l gopacket.Layer , timestamp time.Time) error

10 func (d *LayerEncoder) Destroy () (name string , size int64)

11 func (d *LayerEncoder) GetChan () <-chan []byte

12 func (d *LayerEncoder) Init(

13 buffer , compress , csv bool ,

14 out string ,

15 writeChan bool

16 )

17
18 // Handler function

19 type LayerEncoderHandler = func(

20 layer gopacket.Layer ,

21 timestamp string

22 ) proto.Message

60

https://github.com/dreadl0ck/netcap/tree/master/sensor
https://github.com/dreadl0ck/netcap/tree/master/server
https://github.com/dreadl0ck/netcap/tree/master/utils
https://github.com/dreadl0ck/netcap/tree/master/encoder
https://github.com/dreadl0ck/netcap/tree/master/encoder/layerEncoder.go
https://github.com/dreadl0ck/netcap/tree/master/encoder/customEncoder.go
https://github.com/dreadl0ck/netcap/tree/master/encoder/layerEncoder.go
https://godoc.org/github.com/google/gopacket/layers
https://godoc.org/github.com/google/gopacket#LayerType


5 Implementation

Example: Ethernet Encoder

The following shows the implementation of the ethernet encoder in netcap/encoder/eth.go:

1 var ethernetEncoder = CreateLayerEncoder(

2 layers.LayerTypeEthernet ,

3 func(layer gopacket.Layer , timestamp string) proto.Message {

4 if eth , ok := layer .(* layers.Ethernet ); ok {

5 return &netcap.Ethernet{

6 Timestamp: timestamp ,

7 SrcMAC: eth.SrcMAC.String(),

8 DstMAC: eth.DstMAC.String(),

9 EthernetType: int32(eth.EthernetType),

10 PayloadEntropy: Entropy(eth.Payload),

11 PayloadSize: int32(len(eth.Payload)),

12 }

13 }

14 return nil

15 },

16 )

Custom Encoder

A CustomEncoder operates on a gopacket.Packet and is used to decode traffic into abstrac-
tions such as Flows or Connections. To create it a name has to be supplied among three
different handler functions to control initialization, decoding and deinitialization. Its handler
function receives a gopacket.Packet interface type and returns a proto.Message. The postinit
function is called after the initial initialization has taken place, the deinit function is used
to teardown any additionally created structures for a clean exit. Both functions are optional
and can be omitted by supplying nil as value.

1 // CustomEncoder constructor

2 func CreateCustomEncoder(

3 name string ,

4 postinit func(* CustomEncoder) error ,

5 handler CustomEncoderHandler ,

6 deinit func() error

7 ) *CustomEncoder

8
9 // CustomEncoder instance

10 type CustomEncoder

11 func (d *CustomEncoder) Decode(info *PacketInfo)

12 func (d *CustomEncoder) Destroy () (name string , size int64)

13 func (d *CustomEncoder) Init(buffer , compress , csv bool)

14
15 // Handler function

16 type CustomEncoderHandler = func(info *PacketInfo) proto.Message
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5.15.8 Collector Package

The collector package provides an interface for fetching packets from a data source, this can
either be a PCAP / PCAPNG file or directly from a named network interface. It is used to
implement the command-line interface for Netcap. The following shows an overview of the
exported API:

1 func DumpProto(pb proto.Message)

2 func Entropy(data []byte) (entropy float64)

3 func GetChan(typ string) <-chan []byte

4 func NewAtomicPcapGoWriter(w *pcapgo.Writer) *atomicPcapGoWriter

5 type BatchInfo

6 type Collector

7 func New(config Config) *Collector

8 func (c *Collector) CollectBPF(path string , bpf string)

9 func (c *Collector) CollectBatch(

10 typ string ,

11 maxSize int ,

12 bpf string ,

13 in string ,

14 ) (* types.Batch , error)

15 func (c *Collector) CollectLive(i string , bpf string)

16 func (c *Collector) CollectPcap(path string)

17 func (c *Collector) CollectPcapNG(path string)

18 func (c *Collector) Init()

19 func (c *Collector) InitBatching(

20 maxSize int ,

21 bpf string ,

22 in string ,

23 ) ([] BatchInfo , *pcap.Handle)

24 type Config

5.16 Unit Tests

Unit tests have been implemented for parts of the core functionality. Currently there are
benchmarks for reading pcap and pcapng data, as well as tests and benchmarks for common
utility functions, such progress displaying and time conversions. The tests and benchmarks
can be executed from the repository root by running:

$ go test -v -bench=. ./...

# github.com/dreadl0ck/netcap/collector.test

? github.com/dreadl0ck/netcap [no test files]

? github.com/dreadl0ck/netcap/cmd [no test files]

goos: darwin

goarch: amd64

pkg: github.com/dreadl0ck/netcap/collector

BenchmarkReadPcapNG -12 1000000 1242 ns/op 1231 B/op 1 allocs/op

BenchmarkReadPcapNGZeroCopy -12 2000000 853 ns/op 0 B/op 0 allocs/op

BenchmarkReadPcap -12 10000000 185 ns/op 98 B/op 0 allocs/op

PASS

ok github.com/dreadl0ck/netcap/collector 5.858s

? github.com/dreadl0ck/netcap/encoder [no test files]

? github.com/dreadl0ck/netcap/label [no test files]

? github.com/dreadl0ck/netcap/sensor [no test files]

? github.com/dreadl0ck/netcap/server [no test files]

? github.com/dreadl0ck/netcap/types [no test files]

=== RUN TestTimeToString

--- PASS: TestTimeToString (0.00s)

=== RUN TestStringToTime
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--- PASS: TestStringToTime (0.00s)

goos: darwin

goarch: amd64

pkg: github.com/dreadl0ck/netcap/utils

BenchmarkTimeToStringOld -12 5000000 230 ns/op 64 B/op 4 allocs/op

BenchmarkTimeToString -12 20000000 120 ns/op 80 B/op 3 allocs/op

BenchmarkStringToTime -12 20000000 115 ns/op 32 B/op 1 allocs/op

BenchmarkStringToTimeFieldsFunc -12 10000000 165 ns/op 32 B/op 1 allocs/op

BenchmarkProgressOld -12 30000000 39.5 ns/op 3 B/op 1 allocs/op

BenchmarkProgress -12 30000000 46.8 ns/op 16 B/op 2 allocs/op

PASS

ok github.com/dreadl0ck/netcap/utils 10.868s

5.17 Data Race Detection Builds

In concurrent programming, shared resources need to be synchronized, in order to guarantee
their state when modifying or reading them. If access is not synchronized, race conditions
occur, which will lead to faulty program behavior. To avoid this and detect race conditions
early in the development cycle, the go toolchain offers compiling the program with the race
detector enabled. This will let the application crash with stack traces to assist the developer
in debugging, if a data race occurs. Programs with active race detection are slower by the
factor of 10 to 100. To compile a Go program with the race detection enabled the -race flag
must be added to the compilation command.

5.18 Extension

To add support for a new protocol or custom abstraction the following steps need to be
performed. First, a type definition of the new audit record type must be added to the
netcap.proto protocol buffers definitions, as well as a Type enumeration following the naming
convention with the NC prefix. After recompiling the protocol buffers, a file for the new
encoder named after the protocol must be created in the encoder package. The new file must
contain a variable created with CreateLayerEncoder or CreateCustomEncoder depending on
the desired encoder type. Depending on the choice of the encoder type, the new variable must
be added to the customEncoderSlice in encoder/customEncoder.go or layerEncoderSlice in
encoder/layerEncoder.go. Next, the interface for conversion to CSV must be implemented
in the types package, by creating a new file with the protocol name and implementing
the CSVHeader() []string, CSVRecord() []string, NetcapTimestamp() string functions of the
types.CSV interface. If the new protocol contains sub-structures, functions to convert them
to strings need to be implemented as well. Finally, the InitRecord(typ types.Type) (record
proto.Message) function in netcap.go needs to be updated, to initialize the structure for the
new type.
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5.19 Caveats

Protocol buffers have a few caveats that developers and researchers should be aware of. First,
there are no types for 16 bit signed (int16 ) and unsigned (uint16 ) integers in protobuf, also
there is no type for unsigned 8 bit integers (uint8 ). This data type is seen a lot in network
protocols, so the question arises how to represent it in protocol buffers. The non-fixed integer
types use variable length encoding, so int32 is used instead. The variable-length encoding
will take care of not sending the bytes that are not being used. Unfortunately, the mu type
is too short for this purpose. Second, protocol buffers require all strings to be encoded as
valid UTF-8, otherwise encoding to proto will fail. This means all input data that will be
encoded as a string in protobuf must be checked to contain valid UTF-8, or they will create
an error upon serialization and end up in the errors.pcap file. If this behavior is not desired
strings must be filtered prior to setting them on the protocol buffer instances. Another thing
that has to be kept in mind is that Netcap processes packets in parallel, thus the order in
which packets are written to the dump file is not guaranteed. In experiments, no mixup
was detected, and records were tracked in the correct order. However, under heavy load
conditions or with a high number of workers, this might be different. Because of this caveat,
the Netcap specification requires each record to preserve the timestamp, in order to allow
sorting the packets afterwards, if required.

5.20 Benchmarks

Processing time depends heavily on the type of traffic, configuration and system performance.
Processing times on the development machine (a recent MacBook Pro with 32 GB 2400 MHz
DDR4, 2,9 GHz Intel Core i9, running macOS Mojave 10.14), using the default configuration
with 4096 byte buffers, compression, all 40+ encoders, 1000 workers and a packet buffer size
of 100, can be found in the experiments section in the evaluation chapter.

5.21 Disclaimer

Netcap was developed in a short timeframe as a research project and thus was neither tested
nor developed to run in a production environment. The project may contain bugs, that have
not yet been discovered. Error handling is not very graceful, in many cases that could have
been handled otherwise, the program panics in order to assist in debugging with a stack
trace. Until there are further unit tests and the error handling is more robust, using Netcap
for other purposes than research is not recommended!

5.22 License

Netcap is licensed under the GNU General Public License v3, which is a very permissive open
source license, that allows others to do almost anything they want with the project, except
to distribute closed source versions. This license type was chosen with Netcaps research
purpose in mind, and in the hope that it leads to further improvements and new capabilities
contributed by other researchers on the long term.
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5.23 Code Statistics

The following shows a summary of statistics regarding lines of code (LoC) in Netcap version
0.3.3 (excluding generated code for the protocol buffers):

Package Language Files Blank Comment Code

collector Go 13 273 371 882
types Go 38 232 465 1721
label Go 15 365 413 1266
encoder Go 48 559 957 3299
cmd Go 3 57 64 282
utils Go 2 39 44 156
netcap.proto Protobuf 1 93 100 660
total Go 126 1693 2520 8296

Table 5.14: Netcap code statistics for version 0.3.3

The Netcap source code contains many descriptive comments (2.5k lines of comments on 8.2k
lines of code as of version 0.3.3), in order to ease future development by other researchers
and to make implementation details comprehensible.
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6 Evaluation

This chapter demonstrates installation and basic usage of the Netcap command-line tool and
library interface. Afterwards a series of experiments is conducted, in which features from
a recent dataset in PCAPNG format will be extracted with Netcap, labeled, and used for
classification of malicious behavior with Tensorflow and a deep neural network.

6.1 Setup

The repository is available on github (github.com/dreadl0ck/netcap).

6.1.1 Installation

Installation via go get:

$ go get -u github.com/dreadl0ck/netcap /...

To install the command-line tool:

$ go build -o $(go env GOPATH )/bin/netcap -i github.com/dreadl0ck/netcap/cmd

To cross compile for other architectures, set the GOARCH and GOOS environment vari-
ables. For example to cross compile a binary for linux amd64 :

$ GOARCH=amd64 GOOS=linux go build -o netcap -i github.com/dreadl0ck/netcap/cmd

6.1.2 Buildsystem

Netcap uses the zeus buildsystem, it can be found on github along with installation in-
structions: github.com/dreadl0ck/zeus. However, the project can easily be installed without
zeus. All shell scripts needed for installation can be found in the zeus/generated directory
as standalone versions.

To install the Netcap command-line tool and the library with zeus, run:

$ zeus install
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6.2 Netcap command-line Tool

In the following common Netcap operations on the command-line are presented and ex-
plained. If output was truncated for brevity, it will be denoted by three dots.

6.2.1 Help

The -h flag can be used to print an overview of all available command-line flags and their
default values to the terminal:

Usage of netcap:

-allowmissinginit

support streams without SYN/SYN+ACK/ACK sequence

-assembly_debug_log

If true , the github.com/google/gopacket/reassembly library

will log verbose debugging information (at least one line per packet)

-assembly_memuse_log

If true , the github.com/google/gopacket/reassembly library

will log information regarding its memory use every once in a while.

-bpf string

supply a BPF filter to use prior to processing packets with netcap

-buf

buffer data in memory before writing to disk (default true)

-check

check number of occurences of the separator , in fields of an audit record file

-checksum

check TCP checksum

-comp

compress output with gzip (default true)

-conn -flush -interval int

flush connections every X flows (default 10000)

-conn -timeout int

close connections older than X seconds (default 60)

-cpuprof

create cpu profile

-csv

print output data as csv with header line

-debug

display debug information

-dump

dump HTTP request/response as hex

-encoders

show all available encoders

-exclude string

exclude specific encoders

-fields

print available fields for an audit record file and exit

-files string

path to create file for HTTP 200 OK responses

-flow -flush -interval int

flush flows every X flows (default 2000)

-flow -timeout int

close flows older than X seconds (default 30)

-flushevery int

flush assembler every N packets (default 10000)

-header

print audit record file header and exit

-iface string

attach to network interface and capture in live mode

-ignore -unknown

disable writing unknown packets into a pcap file

-ignorefsmerr

ignore TCP FSM errors
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-include string

include specific encoders

-memprof

create memory profile

-memprofile string

write memory profile

-nodefrag

if true , do not do IPv4 defrag

-nohttp

disable HTTP parsing

-nooptcheck

do not check TCP options (useful to ignore MSS on captures with TSO)

-out string

specify output directory , will be created if it does not exist

-overview

print a list of all available encoders and fields

-pbuf int

set packet buffer size , for channels that feed data to workers (default 100)

-promisc

toggle promiscous mode for live capture (default true)

-quiet

be quiet regarding errors (default true)

-r string

read specified file , can either be a pcap or netcap audit record file

-select string

select specific fields of an audit records when generating csv or tables

-sep string

set separator string for csv output (default ",")

-snaplen int

configure snaplen for live capture from interface (default 1024)

-struc

print output as structured objects

-table

print output as table view (thanks @evilsocket)

-tcp -close -timeout int

close tcp streams if older than X seconds

(set to 0 to keep long lived streams alive) (default 180)

-tcp -timeout int

close streams waiting for packets older than X seconds (default 120)

-ts2utc string

util to convert sencods.microseconds timestamp to UTC

-tsv

print output as tab separated values

-utc

print timestamps as UTC when using select csv

-verbose

be verbose

-version

print netcap package version and exit

-workers int

number of workers (default 1000)

-writeincomplete

write incomplete response
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6.2.2 Show Audit Record File Header

To display the header of the supplied audit record file, the -header flag can be used:

$ netcap -r TCP.ncap.gz -header

+----------+---------------------------------------+

| Field | Value |

+----------+---------------------------------------+

| Created | 2018 -11 -15 04:42:22.411785 +0000 UTC |

| Source | Wednesday -WorkingHours.pcap |

| Version | v0.3.3 |

| Type | NC_TCP |

+----------+---------------------------------------+

6.2.3 Print Structured Audit Records

Audit records can be printed structured, this makes use of the proto.MarshalTextString()
function. This is sometimes useful for debugging, but very verbose.

$ netcap -r TCP.ncap.gz -struc

...

NC_TCP

Timestamp: "1499255023.848884"

SrcPort: 80

DstPort: 49472

SeqNum: 1959843981

AckNum: 3666268230

DataOffset: 5

ACK: true

Window: 1025

Checksum: 2348

PayloadEntropy: 7.836586993143013

PayloadSize: 1460

...

6.2.4 Print as CSV

This is the default behavior. First line contains all field names.

$ netcap -r TCP.ncap.gz

Timestamp ,SrcPort ,DstPort ,SeqNum ,AckNum ,DataOffset ,FIN ,SYN ,RST ,PSH ,ACK ,URG ,...

1499254962.234259 ,443 ,49461 ,1185870107 ,2940396492 ,5 , false ,false ,false ,true ,true ,false ,...

1499254962.282063 ,49461 ,443 ,2940396492 ,1185870976 ,5 , false ,false ,false ,false ,true ,false ,...

...
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6.2.5 Print as Tab Separated Values

To use a tab as separator, the -tsv flag can be supplied:

$ netcap -r TCP.ncap.gz -tsv

Timestamp SrcPort DstPort Length Checksum PayloadEntropy PayloadSize

1499254962.084372 49792 1900 145 34831 5.19616448 137

1499254962.084377 49792 1900 145 34831 5.19616448 137

1499254962.084378 49792 1900 145 34831 5.19616448 137

1499254962.084379 49792 1900 145 34831 5.19616448 137

...

6.2.6 Print as Table

The -table flag can be used to print output as a table. Every 100 entries the table is printed
to stdout.

$ netcap -r UDP.ncap.gz -table -select Timestamp ,SrcPort ,DstPort ,Length ,Checksum

+--------------------+----------+----------+---------+-----------+

| Timestamp | SrcPort | DstPort | Length | Checksum |

+--------------------+----------+----------+---------+-----------+

| 1499255691.722212 | 62109 | 53 | 43 | 38025 |

| 1499255691.722216 | 62109 | 53 | 43 | 38025 |

| 1499255691.722363 | 53 | 62109 | 59 | 37492 |

| 1499255691.722366 | 53 | 62109 | 59 | 37492 |

| 1499255691.723146 | 56977 | 53 | 43 | 7337 |

| 1499255691.723149 | 56977 | 53 | 43 | 7337 |

| 1499255691.723283 | 53 | 56977 | 59 | 6804 |

| 1499255691.723286 | 53 | 56977 | 59 | 6804 |

| 1499255691.723531 | 63427 | 53 | 43 | 17441 |

| 1499255691.723534 | 63427 | 53 | 43 | 17441 |

| 1499255691.723682 | 53 | 63427 | 87 | 14671 |

...

6.2.7 Print with Custom Separator

Output can also be generated with a custom separator:

$ netcap -r TCP.ncap.gz -sep ";"

Timestamp;SrcPort;DstPort;Length;Checksum;PayloadEntropy;PayloadSize

1499254962.084372;49792;1900;145;34831;5.19616448;137

1499254962.084377;49792;1900;145;34831;5.19616448;137

1499254962.084378;49792;1900;145;34831;5.19616448;137

...

6.2.8 Validate generated Output

To ensure values in the generated CSV would not contain the separator string, the -check
flag can be used. This will determine the expected number of separators for the audit
record type, and print all lines to stdout that do not have the expected number of separator
symbols. The separator symbol will be colored red with ansi escape secquences and each line
is followed by the number of separators in red color. The -sep flag can be used to specify a
custom separator.

$ netcap -r TCP.ncap.gz -check

$ netcap -r TCP.ncap.gz -check -sep =";"
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6.2.9 Filtering and Export

Netcap offers a simple command-line interface to select fields of interest from the gathered
audit records.

Example: Filtering UDP audit records

Show available header fields:

$ netcap -r UDP.ncap.gz -fields

Timestamp ,SrcPort ,DstPort ,Length ,Checksum ,PayloadEntropy ,PayloadSize

Print all fields for the supplied audit record:

$ netcap -r UDP.ncap.gz

1331904607.100000 ,53 ,42665 ,120 ,41265 ,4.863994469989251 ,112

1331904607.100000 ,42665 ,53 ,53 ,1764 ,4.0625550894074385 ,45

1331904607.290000 ,51190 ,53 ,39 ,22601 ,3.1861758166070766 ,31

1331904607.290000 ,56434 ,53 ,39 ,37381 ,3.290856864924384 ,31

1331904607.330000 ,137 ,137 ,58 ,64220 ,3.0267194361875682 ,50

...

Selecting fields will also define their order:

$ netcap -r UDP.ncap.gz -select Length ,SrcPort ,DstPort ,Timestamp

Length ,SrcPort ,DstPort ,Timestamp

145 ,49792 ,1900 ,1499254962.084372

145 ,49792 ,1900 ,1499254962.084377

145 ,49792 ,1900 ,1499254962.084378

145 ,49792 ,1900 ,1499254962.084379

145 ,49792 ,1900 ,1499254962.084380

...

Print selection in the supplied order and convert timestamps to UTC time:

$ netcap -r UDP.ncap.gz -select Timestamp ,SrcPort ,DstPort ,Length -utc

2012 -03 -16 13:30:07.1 +0000 UTC ,53 ,42665 ,120

2012 -03 -16 13:30:07.1 +0000 UTC ,42665 ,53 ,53

2012 -03 -16 13:30:07.29 +0000 UTC ,51190 ,53 ,39

2012 -03 -16 13:30:07.29 +0000 UTC ,56434 ,53 ,39

2012 -03 -16 13:30:07.33 +0000 UTC ,137 ,137 ,58

...

To save the output into a new file, simply redirect the standard output:

$ netcap -r UDP.ncap.gz -select Timestamp ,SrcPort ,DstPort ,Length -utc > UDP.csv

71



6 Evaluation

6.2.10 Inclusion & Exclusion of Encoders

The -encoders flag can be used to list all available encoders. In case not all of them are de-
sired, selective inlcusion and exclusion is possible, by using the -include and -exclude flags.

List all encoders:

$ netcap -encoders

custom:

+ TLS

+ LinkFlow

+ NetworkFlow

+ TransportFlow

+ HTTP

+ Flow

+ Connection

layer:

+ TCP

+ UDP

+ IPv4

+ IPv6

+ DHCPv4

+ DHCPv6

+ ICMPv4

+ ICMPv6

+ ICMPv6Echo

...

Include specific encoders (only those named will be used):

$ netcap -r traffic.pcap -include Ethernet ,Dot1Q ,IPv4 ,IPv6 ,TCP ,UDP ,DNS

Exclude encoders (this will prevent decoding of layers encapsulated by the excluded ones):

$ netcap -in traffic.pcap -exclude TCP ,UDP

6.2.11 Applying Berkeley Packet Filters

Netcap will decode all traffic it is exposed to, therefore it might be desired to set a berkeley
packet filter, to reduce the workload imposed on Netcap. This is possible for both live and
offline operation. In case a BPF should be set for offline use, the gopacket/pcap package
with bindings to the libpcap will be used, since setting BPF filters is not yet supported by
the native pcapgo package.

When capturing live from an interface:

$ netcap -iface en0 -bpf "host 192.168.1.1"

When reading offline dump files:

$ netcap -r traffic.pcap -bpf "host 192.168.1.1"
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6.2.12 Usage Examples

Read traffic live from interface, stop with Ctrl-C (SIGINT):

$ netcap -iface eth0

Read traffic from a dump file (supports PCAP or PCAPNG):

$ netcap -r traffic.pcap

Read a netcap dumpfile and print to stdout as CSV:

$ netcap -r TCP.ncap.gz

Show the available fields for a specific Netcap dump file:

$ netcap -fields -r TCP.ncap.gz

Print only selected fields and output as CSV:

$ netcap -in TCP.ncap.gz -select Timestamp ,SrcPort ,DstPort

Save CSV output to file:

$ netcap -r TCP.ncap.gz -select Timestamp ,SrcPort ,DstPort > tcp.csv

Print output separated with tabs:

$ netcap -r TPC.ncap.gz -tsv

Run with 24 workers and disable gzip compression and buffering:

$ netcap -workers 24 -buf false -comp false -in traffic.pcapng

Parse pcap and write all data to output directory (will be created if it does not exist):

$ netcap -r traffic.pcap -out traffic_ncap

Convert timestamps to UTC:

$ netcap -r TCP.ncap.gz -select Timestamp ,SrcPort ,Dstport -utc
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6.2.13 Example Output

Running Netcap with a PCAP dumpfile prints the following output to the terminals stdout:

$ netcap -r netdump.pcap

/ |

_______ ______ _10 |_ _______ ______ ______

/ / \ / / \ / 01/ | / / | / / \ / / \

0010100 /|/011010 /|101010/ /0101010/ 001010 |/100110 |

01 | 00 |00 00 | 10 | __ 00 | / 10 |00 | 01 |

10 | 01 |01001010/ 00 |/ |01 \_____ /0101000 |00 |__10/|

10 | 00 |00/ / | 10 00/ 00/ / |00 00 |00/ 00/

00/ 10/ 0101000/ 0010/ 0010010/ 0010100/ 1010100/

00 |

Network Protocol Analysis Toolkit 00 |

created by Philipp Mieden , 2018 00/

v0.3.3

+---------------+--------+

| Setting | Value |

+---------------+--------+

| Workers | 100 |

| MemBuffer | true |

| Compression | true |

| PacketBuffer | 100 |

+---------------+--------+

opening netdump.pcap | size: 206 MB

counting packets ... done. 256449 packets found in 237.263746 ms

initialized 29 layer encoders | buffer size: 4096

initialized 7 custom encoders | buffer size: 4096

done.

Processed 256449 packets (202434809 bytes) in 14.412113465s (errors: 114785 , type :4)

Final flush: 43 closed

TCP stats:

+------------------------+------------+

| Description | Value |

+------------------------+------------+

| IPdefrag | 0 |

| missed bytes | 96245216 |

| total packets | 67640 |

| rejected FSM | 462 |

| rejected Options | 114076 |

| reassembled bytes | 39126253 |

| total TCP bytes | 188067731 |

| conn rejected FSM | 135 |

| reassembled chunks | 153 |

| out -of-order packets | 5844 |

| out -of-order bytes | 2813069 |

| biggest -chunk packets | 1740 |

| biggest -chunk bytes | 65145 |

| overlap packets | 44 |

| overlap bytes | 6746 |

+------------------------+------------+

Errors: 114785

+---------------------+---------+

| Error | Count |

+---------------------+---------+

| OptionChecker | 114076 |

| FSM | 462 |
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| HTTP -response -body | 69 |

| HTTP -response | 178 |

+---------------------+---------+

flushed 0 http events. requests 1880 responses 1793

+-----------+-------------+-------------+

| Protocol | NumPackets | Share |

+-----------+-------------+-------------+

| Payload | 175840 | 68.56724% |

| UDP | 1014 | 0.39540% |

| ARP | 383 | 0.14935% |

| DHCPv4 | 2 | 0.00078% |

| IGMP | 2 | 0.00078% |

| DNS | 837 | 0.32638% |

| TCP | 255044 | 99.45213% |

| ICMPv4 | 6 | 0.00234% |

| Ethernet | 256449 | 100.00000% |

| IPv4 | 256066 | 99.85065% |

+-----------+-------------+-------------+

-> total bytes of data written to disk: 13 MB

Active Custom Encoders:

+ TLS

+ LinkFlow

+ NetworkFlow

+ TransportFlow

+ HTTP

+ Flow

+ Connection

done in 14.445120991s
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Error log example (file errors.log):

2012 -03 -16 13:51:04.16 +0100 CET

Error: Layer type not currently supported

Packet:

-- FULL PACKET DATA (78 bytes) ------------------------------------

00000000 01 00 5e 00 00 0a 00 16 47 9d f2 cd 81 00 c0 d6 |..^.....G.......|

00000010 08 00 45 c0 00 3c 00 00 00 00 02 58 40 f6 c0 a8 |..E.. <.....X@...|

00000020 d6 01 e0 00 00 0a 02 05 ec 6c 00 00 00 00 00 00 |.........l......|

00000030 00 00 00 00 00 00 00 00 00 64 00 01 00 0c 01 00 |.........d......|

00000040 01 00 00 00 00 0f 00 04 00 08 0c 02 03 00 |..............|

--- Layer 1 ---

Ethernet {

Contents =[..14..]

Payload =[..64..]

SrcMAC =00:16:47:9d:f2:cd

DstMAC =01:00:5e:00:00:0a

EthernetType=Dot1Q

Length =0

}

00000000 01 00 5e 00 00 0a 00 16 47 9d f2 cd 81 00 |..^.....G.....|

--- Layer 2 ---

Dot1Q {

Contents =[192, 214, 8, 0]

Payload =[..60..]

Priority =6

DropEligible=false

VLANIdentifier =214

Type=IPv4

}

00000000 c0 d6 08 00 |....|

--- Layer 3 ---

IPv4 {

Contents =[..20..]

Payload =[..40..]

Version =4

IHL=5

TOS =192

Length =60

Id=0

Flags=

FragOffset =0

TTL=2

Protocol=UnknownIPProtocol

Checksum =16630

SrcIP =192.168.214.1

DstIP =224.0.0.10

Options =[]

Padding =[]

}

00000000 45 c0 00 3c 00 00 00 00 02 58 40 f6 c0 a8 d6 01 |E.. <.....X@ .....|

00000010 e0 00 00 0a |....|

--- Layer 4 ---

DecodeFailure Packet decoding error: Layer type not currently supported

00000000 02 05 ec 6c 00 00 00 00 00 00 00 00 00 00 00 00 |...l............|

00000010 00 00 00 64 00 01 00 0c 01 00 01 00 00 00 00 0f |...d............|

00000020 00 04 00 08 0c 02 03 00
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6.3 Netlabel command-line Tool

In the following common operations with the netlabel tool on the command-line are presented
and explained.

6.3.1 Help

To display the available command-line flags, the -h flag must be used:

$ netlabel -h

Usage of netlabel:

-collect

append classifications from alert with duplicate timestamps

to the generated label

-description

use attack description instead of classification for labels

-disable -layers

do not map layer types by timestamp

-exclude string

specify a comma separated list of suricata classifications

that shall be excluded from the generated labeled csv

-out string

specify output directory , will be created if it does not exist

-progress

use progress bars

-r string

read specified file , can either be a pcap or netcap audit record file

-sep string

set separator string for csv output (default ",")

-strict

fail when there is more than one alert for the same timestamp

6.3.2 Usage Examples

Scan input pcap and create labeled csv files by mapping audit records in the current direc-
tory:

$ netlabel -r traffic.pcap

Scan input pcap and create output files by mapping audit records from the output directory:

$ netlabel -r traffic.pcap -out output_dir

Abort if there is more than one alert for the same timestamp:

$ netlabel -r taffic.pcap -strict

Display progress bar while processing input (experimental):

$ netlabel -r taffic.pcap -progress

Append classifications for duplicate labels:

$ netlabel -r taffic.pcap -collect
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6.4 Sensors & Collection Server

Both sensor and client can be configured by using the -addr flag to specify an ip address
and port. To generate a keypair for the server, the -gen-keypair flag must be used:

$ netcap -server -gen -keypair

wrote keys

$ ls

priv.key pub.key

Now, the server can be started, the location of the file containing the private key must be
supplied:

$ netcap -server -privkey priv.key -addr 127.0.0.1:4200

The server will now be listening for incoming messages. Next, the sensor must be configured.
The keypair for the sensor will be generated on startup, but the public key of the server
must be provided:

$ netcap -sensor -pubkey pub.key -addr 127.0.0.1:4200

got 126 bytes of type NC_ICMPv6RouterAdvertisement expected [126]

got size [73] for type NC_Ethernet

got 73 bytes of type NC_Ethernet expected [73]

got size [27] for type NC_ICMPv6

got size [126] for type NC_ICMPv6RouterAdvertisement

got 126 bytes of type NC_ICMPv6RouterAdvertisement expected [126]

got size [75] for type NC_IPv6

got 75 bytes of type NC_IPv6 expected [75]

got 27 bytes of type NC_ICMPv6 expected [27]

The client will now collect the traffic live from the specified interface, and send it to the
configured server, once a batch for an audit record type is complete. The server will log all
received messages:

$ netcap -server -privkey priv.key -addr 127.0.0.1:4200

packet -received: bytes =2412 from =127.0.0.1:57368

decoded batch NC_Ethernet from client xyz

new file xyz/Ethernet.ncap

packet -received: bytes =2701 from =127.0.0.1:65050

decoded batch NC_IPv4 from client xyz

new file xyz/IPv4.ncap

...

When stopping the server with a SIGINT, all audit record file handles will be flushed and
closed properly.
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6.5 Library Usage

6.5.1 Golang Library

The Netcap Go library (github.com/dreadl0ck/netcap) provides support for capturing Netcap
audit records either live or offline, and for reading back data from disk.

1 func Count(filename string) (count int64)

2 func InitRecord(typ types.Type) (record proto.Message)

3
4 // Reader instance

5 type Reader

6 func Open(file string) (*Reader , error)

7 func (r *Reader) Close() error

8 func (r *Reader) Next(msg proto.Message) error

9 func (r *Reader) ReadHeader () *types.Header

6.5.2 Reading Netcap Data

Reading Netcap audit records from disk can be done via the netcap.Open function:

1 var (

2 r, err = netcap.Open("test")

3 packet = new(netcap.TCP)

4 )

5 if err != nil {

6 panic(err)

7 }

8 defer r.Close()

9
10 for {

11 err := r.Next(packet)

12 if err == io.EOF {

13 println("EOF")

14 break

15 } else if err != nil {

16 panic(err)

17 }

18
19 fmt.Println(packet)

20 }
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6.5.3 Dataset Labeling

To create a labeled dataset, first the Netcap dump files must be generated from a PCAP
input source. If capture should happen live from an interface, wireshark or tcpdump should
be used to obtain the PCAP file, as this file is needed for being scanned with suricata to
obtain the alerts.

Collect traffic from interface:

$ tcpdump -w traffic.pcap -i eth0

After obtaining traffic, collect netcap audit records from PCAP dump file:

$ netcap -r traffic.pcap

Afterwards, the input file can be scanned and results mapped onto all generated data. For
this purpose, the initially used PCAP dump file must be supplied, along with the -label
command-line flag. Note for this step, the suricata IDS must be installed and configured
with a ruleset on the analysis machine. Emerging Threats offers a extensive public ruleset,
that is also recommended by the suricata authors. Using the suricata-update script for in-
stalling the ruleset, offers a convient and fast way of installing the rules and keeping them
up to date. [sur18] The version of the ruleset used for the experiments contained a total of
23947 rules, of which 19017 were enabled. After setting everything up, the following Netcap
command must be executed to generate the labeled data:

Create labels:

$ netcap -r traffic.pcap -label

The emitted files are encoded as CSV and will have the labeled.csv file extension. A new
column will be appended to the end, named ’result’. This column contains a value for each
row, either ’normal’ or the classification of the observed malicious behavior.
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6.6 Deep Learning with Tensorflow

TensorFlow is an open source software framework accelerated numerical computation, and
was released by Google in 2015. It features a flexible architecture, that allows deployment
of computation procedures across many different platforms. These include CPUs, GPUs,
TPUs, and deployment options range from desktop computers, to server clusters and mobile
devices. Tensorflow comes with powerful capabilities for machine learning and deep neural
networks, although its flexible numerical computation core is utilized across various other
scientific domains. Tensorflow is currently available in version 1.12. On the development
machine the latest supported version (1.12.0) for macOS is installed. It is important to
note that there is no GPU support on macOS, so the CPU will be used for computation.
Alternatively, Tensorflow could be executed within a docker container running linux. [ten18]

6.6.1 Introduction

Use of Tensorflow for classification of the KDD dataset has been demonstrated in the Wash-
ington University Course T81-558: Applications of Deep Neural Networks, by Prof. Jeff
Heaton. [jef18] His approach will be adopted to work with labeled data produced by Netcap,
which can be generated from any PCAP dump file or from live traffic.

Deep Learning

Deep Learning is a very popular type of machine learning, that is based upon the original
neural networks developed in the 1980’s. Todays implementations don’t differ much from the
original neural networks. The term deep neural networks simply refers to neural networks
with multiple layers. While creation and calculation of deep neural networks has been
possible for the last 20 years, effective means of training them have been a long time problem.
Deep learning provides efficient means to train deep neural networks and solve this problem.
[jef18]

Choosing a Dataset

Anomaly-based intrusion detection approaches suffer from the lack of reliable datasets for
testing and verification. Evaluations of the eleven datasets that exist since 1998, conducted
by the Canadian Institute of Cybersecurity, have shown that most datasets are out of date
and unreliable for evaluation purposes. While some of these datasets fail to provide suf-
ficient diversity and volume of network traffic, some do not contain latest attack patterns
or anonymize packet payload data, which limits research capabilities. Additionally, some
are also lacking feature set and metadata information. [cic18] An interesting approach to-
wards the creation of realistic datasets was presented in 2015, when researchers from the TU
Darmstadt released their framework for injecting attacks into existing datasets. [CVM+15]
Although their tool was not used in this research, it is an promising option for future exper-
iments.
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CIC IDS 2017 Dataset

The CIC-IDS-2017 dataset has been chosen as the most up to date and most extensively
documented dataset, and will be used for the following experiments. The dataset consists
of CSV flow records generated with CICFlowMeter, and the PCAP files used for creation.
Data was captured for a total of five days and no anonymization has been performed on
the dataset. The total size of all included PCAP dumpfiles is 48,9 GB. Attacks have been
carried out on the working days Tuesday, Wednesday, Thursday and Friday, in both morning
and afternoon. The implemented attacks include DoS & DDoS (Wednesday), Heartbleed
(Wednesday), Web Attacks (Thursday), FTP Brute Force & SSH Brute Force (Tuesday),
Infiltration (Thursday), Botnet traffic and Port Scans (Friday). Monday is the normal day
and includes only legitimate traffic. Detailed information on the dataset and the testbed
architecture can be found in the corresponding research paper [SHLG18] and on the CIC
website [cic18].

6.6.2 Feature Collection

To get an impression about the data we are dealing with, the capinfos tool from wireshark
can be used:

$ capinfos Thursday -WorkingHours.pcap

File name: Thursday -WorkingHours.pcap

File type: Wireshark /... - pcapng

File encapsulation: Ethernet

File timestamp precision: microseconds (6)

Packet size limit: file hdr: (not set)

Number of packets: 9322 k

File size: 8302 MB

Data size: 7992 MB

Capture duration: 29145.871747 seconds

First packet time: 2017 -07 -06 13:58:58.492265

Last packet time: 2017 -07 -06 22:04:44.364012

Data byte rate: 274 kBps

Data bit rate: 2193 kbps

Average packet size: 857.39 bytes

Average packet rate: 319 packets/s

SHA256: 38 f8b1bb276849bf1721f7c4de22bebfa7f59a74e52286d4c0a37edbb118fe01

RIPEMD160: e34ba9cf32ee15838585564d881ff1415fb8beb6

SHA1: 21450 a49b206d60107d16e0918f26e4b74afadad

Strict time order: False

Capture oper -sys: Linux 4.8.0-22- generic

Capture application: mergecap

Number of interfaces in file: 1

Interface #0 info:

Encapsulation = Ethernet (1 - ether)

Capture length = 262144

Time precision = microseconds (6)

Time ticks per second = 1000000

Number of stat entries = 0

Number of packets = 9322025

It can be seen that the dump actually has the PCAPNG format, despite its .pcap extension.
Baselayer is Ethernet, capture was performed from one interface, average packet rate is 319
packets/s, average packet size is 857.39 bytes and the total size of the dump file is 8302 MB.
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Now feature collection with Netcap can begin. The default configuration will be used, output
will be written in a separate folder, specified with the -out flag.

$ netcap -r Thursday -WorkingHours.pcap -out Thursday -WorkingHours -workers 1000

/ |

_______ ______ _10 |_ _______ ______ ______

/ / \ / / \ / 01/ | / / | / / \ / / \

0010100 /|/011010 /|101010/ /0101010/ 001010 |/100110 |

01 | 00 |00 00 | 10 | __ 00 | / 10 |00 | 01 |

10 | 01 |01001010/ 00 |/ |01 \_____ /0101000 |00 |__10/|

10 | 00 |00/ / | 10 00/ 00/ / |00 00 |00/ 00/

00/ 10/ 0101000/ 0010/ 0010010/ 0010100/ 1010100/

00 |

Network Protocol Analysis Framework 00 |

created by Philipp Mieden , 2018 00/

v0.3.2

+---------------+--------+

| Setting | Value |

+---------------+--------+

| Workers | 1000 |

| MemBuffer | true |

| Compression | true |

| PacketBuffer | 100 |

+---------------+--------+

opening Thursday -WorkingHours.pcap | size: 8.3 GB

counting packets ... done. 9322025 packets found in 8.154473734s

spawned 1000 workers

initialized 29 layer encoders | buffer size: 4096

initialized 7 custom encoders | buffer size: 4096

done.

Processed 9322025 packets (7992634369 bytes) in 11m50 .325536666s (errors: 1456226 , type :6)

Final flush: 870 closed

TCP stats:

+------------------------+-------------+

| Description | Value |

+------------------------+-------------+

| IPdefrag | 92 |

| missed bytes | 4012192822 |

| total packets | 3387720 |

| rejected FSM | 105624 |

| rejected Options | 1347376 |

| reassembled bytes | 3292334514 |

| total TCP bytes | 7390883110 |

| conn rejected FSM | 58312 |

| reassembled chunks | 527546 |

| out -of-order packets | 2051020 |

| out -of-order bytes | 2763558926 |

| biggest -chunk packets | 1487 |

| biggest -chunk bytes | 1287117 |

| overlap packets | 135828 |

| overlap bytes | 2934887 |

+------------------------+-------------+

Errors: 1456244

+---------------------+----------+

| Error | Count |

+---------------------+----------+

| FSM | 105624 |

| OptionChecker | 1347376 |
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| HTTP -response -body | 3028 |

| HTTP -request -body | 33 |

| HTTP -response | 176 |

| HTTP -request | 7 |

+---------------------+----------+

flushed 0 http events. requests 54122 responses 37007

-> total bytes of data written to disk: 518 MB

-> 0.09766% of packets (9104) written to unknown.pcap

-> 0.00009% of packets (8) written to errors.pcap

+-------------------------------+-------------+-------------+

| Protocol | NumPackets | Share |

+-------------------------------+-------------+-------------+

| Ethernet | 9322025 | 100.00000% |

| SNAP | 7344 | 0.07878% |

| CiscoDiscovery | 7344 | 0.07878% |

| IPv4 | 9240723 | 99.12785% |

| TCP | 8538148 | 91.59113% |

| DNS | 644796 | 6.91691% |

| NTP | 14160 | 0.15190% |

| ICMPv6NeighborAdvertisement | 8 | 0.00009% |

| Geneve | 2 | 0.00002% |

| UDP | 726608 | 7.79453% |

| ICMPv6NeighborSolicitation | 182 | 0.00195% |

| ICMPv4 | 1429 | 0.01533% |

| VXLAN | 2 | 0.00002% |

| Payload | 4517774 | 48.46344% |

| ICMPv6 | 2342 | 0.02512% |

| MLDv2MulticastListenerReport | 1660 | 0.01781% |

| DecodeFailure | 6 | 0.00006% |

| ARP | 45829 | 0.49162% |

| IPv6 | 28030 | 0.30069% |

| DHCPv6 | 20927 | 0.22449% |

| LinkLayerDiscoveryInfo | 99 | 0.00106% |

| LLC | 7344 | 0.07878% |

| ICMPv6RouterSolicitation | 492 | 0.00528% |

| LinkLayerDiscovery | 99 | 0.00106% |

| IGMP | 130 | 0.00139% |

| IPv6HopByHop | 1660 | 0.01781% |

| Fragment | 96 | 0.00103% |

+-------------------------------+-------------+-------------+

Active Custom Encoders:

+ TLS

+ LinkFlow

+ NetworkFlow

+ TransportFlow

+ HTTP

+ Flow

+ Connection

[ERROR] BFD packet length does not match COUNT: 2

[ERROR] invalid first SIP line: ’staticccmbgcom ,staticccmbgcomedgekeynet .5e12525d ’ COUNT: 2

[ERROR] Unable to decode EthernetType 26996 COUNT: 2

[ERROR] GTP packet too small: 76 bytes COUNT: 2

done in 11m50 .423536122s
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The following files were generated:

$ du -h Thursday -WorkingHours /*

256K Thursday -WorkingHours/ARP.ncap.gz

16M Thursday -WorkingHours/Connection.ncap.gz

128K Thursday -WorkingHours/DHCPv6.ncap.gz

13M Thursday -WorkingHours/DNS.ncap.gz

107M Thursday -WorkingHours/Ethernet.ncap.gz

30M Thursday -WorkingHours/Flow.ncap.gz

2.1M Thursday -WorkingHours/HTTP.ncap.gz

12K Thursday -WorkingHours/ICMPv4.ncap.gz

12K Thursday -WorkingHours/ICMPv6.ncap.gz

4.0K Thursday -WorkingHours/ICMPv6NeighborAdvertisement.ncap.gz

4.0K Thursday -WorkingHours/ICMPv6NeighborSolicitation.ncap.gz

4.0K Thursday -WorkingHours/ICMPv6RouterSolicitation.ncap.gz

4.0K Thursday -WorkingHours/IGMP.ncap.gz

160M Thursday -WorkingHours/IPv4.ncap.gz

192K Thursday -WorkingHours/IPv6.ncap.gz

8.0K Thursday -WorkingHours/IPv6HopByHop.ncap.gz

48K Thursday -WorkingHours/LLC.ncap.gz

8.0K Thursday -WorkingHours/LinkFlow.ncap.gz

4.0K Thursday -WorkingHours/LinkLayerDiscovery.ncap.gz

4.0K Thursday -WorkingHours/LinkLayerDiscoveryInfo.ncap.gz

384K Thursday -WorkingHours/NTP.ncap.gz

2.1M Thursday -WorkingHours/NetworkFlow.ncap.gz

48K Thursday -WorkingHours/SNAP.ncap.gz

171M Thursday -WorkingHours/TCP.ncap.gz

4.1M Thursday -WorkingHours/TLS.ncap.gz

9.1M Thursday -WorkingHours/TransportFlow.ncap.gz

10M Thursday -WorkingHours/UDP.ncap.gz

4.0K Thursday -WorkingHours/errors.pcap

4.1M Thursday -WorkingHours/unknown.pcap

20K Thursday -WorkingHours/errors.log

This step has to be repeated for all files in the dataset that should be analyzed. Note, that
the Monday file will not be further evaluated since on Monday no attacks were performed.
Table 6.1 displays a summary of the processing with Netcap:

File Num Packets Size Processing Time Extracted Data

Tuesday-WorkingHours.pcap 11551954 11 GB 11m11.918614271s 440 MB
Wednesday-WorkingHours.pcap 13788878 13 GB 12m58.13498869s 536 MB
Thursday-WorkingHours.pcap 9322025 8.3 GB 8m39.274062535s 369 MB
Friday-WorkingHours.pcap 9997874 8.8 GB 9m0.653867719s 410 MB

Table 6.1: Statistics for processing input pcaps

85



6 Evaluation

6.6.3 Labeling

To label the generated data, the netlabel tool must be used. After the suricata scan on
the input file completed, a summary table of alerts will be shown. Then, labeling of each
generated audit record will be performed asnychronously for each audit record type. Once
complete and if labels were applied, the record will be added to the summary.

Example for Thursday-WorkingHours.pcap

$ netlabel -r Thursday -WorkingHours.pcap -out Thursday -WorkingHours

scanning Thursday -WorkingHours.pcap with suricata ...

done. reading logs from Thursday -WorkingHours/fast.log

got 29913 labels

+------------------------------------------+--------+

| Classification | Count |

+------------------------------------------+--------+

| Not Suspicious Traffic | 90 |

| Potentially Bad Traffic | 5 |

| A Network Trojan was detected | 23737 |

| Successful Administrator Privilege Gain | 5 |

| Attempted Information Leak | 2 |

| Misc Attack | 22 |

| Potential Corporate Privacy Violation | 6 |

| Misc activity | 4 |

| Web Application Attack | 96 |

| Generic Protocol Command Decode | 5946 |

+------------------------------------------+--------+

+ Connection_labeled.csv 100% labels: 1870

+ DNS_labeled.csv 100% labels: 5

+ Ethernet_labeled.csv 100% labels: 27147

+ Flow_labeled.csv 100% labels: 4121

+ HTTP_labeled.csv 100% labels: 5093

+ IPv4_labeled.csv 100% labels: 27147

+ NTP_labeled.csv 100% labels: 22

+ TCP_labeled.csv 100% labels: 27120

+ TransportFlow_labeled.csv 100% labels: 2

+ UDP_labeled.csv 100% labels: 27

done in 7m7 .841170332s

The following files were generated:

$ du -h Thursday -WorkingHours /*.csv

57M Thursday -WorkingHours/Connection_labeled.csv

128M Thursday -WorkingHours/DNS_labeled.csv

704M Thursday -WorkingHours/Ethernet_labeled.csv

128M Thursday -WorkingHours/Flow_labeled.csv

15M Thursday -WorkingHours/HTTP_labeled.csv

880M Thursday -WorkingHours/IPv4_labeled.csv

2.0M Thursday -WorkingHours/NTP_labeled.csv

1.2G Thursday -WorkingHours/TCP_labeled.csv

8.0M Thursday -WorkingHours/TransportFlow_labeled.csv

40M Thursday -WorkingHours/UDP_labeled.csv
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6.6.4 Labeling Results

The following section shows the alerts generated by suricata for each file of the dataset, as
well as a summary of the total number of labels per file and the time it took for Netcap to
map them onto the derived data.

Tuesday-WorkingHours.pcap

Classification Count

Generic Protocol Command Decode 6449
Attempted Information Leak 3
Not Suspicious Traffic 80
Potential Corporate Privacy Violation 12
Potentially Bad Traffic 25
Misc Attack 18

Table 6.2: Suricata alerts for file Tuesday-WorkingHours.pcap

Wednesday-WorkingHours.pcap

Classification Count

Not Suspicious Traffic 50
Potential Corporate Privacy Violation 5
Misc Attack 25
Attempted Information Leak 2
Web Application Attack 8
Potentially Bad Traffic 15
Generic Protocol Command Decode 8095

Table 6.3: Suricata alerts for file Wednesday-WorkingHours.pcap
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Thursday-WorkingHours.pcap

Classification Count

Generic Protocol Command Decode 5946
Potential Corporate Privacy Violation 6
Attempted Information Leak 2
A Network Trojan was detected 23761
Web Application Attack 96
Misc Attack 23
Not Suspicious Traffic 90
Potentially Bad Traffic 5
Successful Administrator Privilege Gain 5
Misc activity 4

Table 6.4: Suricata alerts for file Thursday-WorkingHours.pcap

Friday-WorkingHours.pcap

Classification Count

Not Suspicious Traffic 115
Attempted Information Leak 3
Potentially Bad Traffic 30
Misc activity 4
Generic Protocol Command Decode 6016
Potential Corporate Privacy Violation 21

Table 6.5: Suricata alerts for file Friday-WorkingHours.pcap

Statistics

Table 6.6 displays the number of alerts for each file and the total processing time for mapping
the alerts to the corresponding audit records with Netcap:

File Labels Processing Time

Tuesday-WorkingHours.pcap 6656 29m 33s
Wednesday-WorkingHours.pcap 7793 52m 56s
Thursday-WorkingHours.pcap 29912 2h 13m 21s
Friday-WorkingHours.pcap 5626 40m 53s

Table 6.6: Statistics for label generation with Netcap v0.3.2
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6.7 TensorFlow Deep Neural Network

6.7.1 Overview

The implementation of the Deep Neural Network uses the Keras toolkit, the created model
has the type sequential, which is a linear stack of layers. Five layers are being added with
kernel initializer type normal and activation type relu. The input shape is specified via the
input dim parameter and is set dynamically. The model is compiled with the loss function
categorical crossentropy and the adam optimizer.

6.7.2 Preparations

Jeff Heatons implementation needed to be modified in order to work with data produced by
Netcap. First, explicitely setting the expected columns was removed, as CSV data generated
by Netcap contains the correct fields as first line.

Because Netcap data can contain boolean values, a function was added to encode them
to numeric values:

1 # this creates a boolean series

2 # casting to int converts True and False to 1 and 0 respectively

3 def encode_bool(df , name):

4 print(colored("encode_bool " + name , "yellow"))

5 df[name] = df[name]. astype(int)

To allow encoding also if there are missing values (NaN), the encode text index and en-
code numeric zscore functions were slightly modified. Prior to encoding, all missing values
will be replaced with the zero value for the expected data type, that is an empty string literal
for encode text index, and 0 for encode numeric zscore.

1 # Encode text values to indexes(i.e. [1] ,[2] ,[3] for red ,green ,blue).

2 def encode_text_index(df, name):

3 # replace missing values (NaN) with an empty string

4 df[name]. fillna(’’,inplace=True)

5 print(colored("encode_text_index " + name , "yellow"))

6 le = preprocessing.LabelEncoder ()

7 df[name] = le.fit_transform(df[name])

8 return le.classes_

9
10 # Encode a numeric column as zscores

11 def encode_numeric_zscore(df , name , mean=None , sd=None):

12 # replace missing values (NaN) with a 0

13 df[name]. fillna(0,inplace=True)

14 print(colored("encode_numeric_zscore " + name , "yellow"))

15 if mean is None:

16 mean = df[name].mean()

17
18 if sd is None:

19 sd = df[name].std()

20
21 df[name] = (df[name] - mean) / sd
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The function encode string decides at runtime which method to pick for encoding alphanu-
meric values:

1 def encode_string(df, name):

2 """

3 Encode string decides which method for encoding strings will be called.

4 """

5 if arguments.string_index:

6 encode_text_index(df, col)

7 if arguments.string_dummy:

8 encode_text_dummy(df, col)

To enhance readability of the generated output, a primitive for coloring strings was imported:

1 from termcolor import colored

To display the size of the input file, two utility functions were added:

1 def convert_bytes(num):

2 for x in [’bytes ’, ’KB’, ’MB’, ’GB’, ’TB’]:

3 if num < 1024.0:

4 return "%3.1f %s" % (num , x)

5 num /= 1024.0

6
7
8 def file_size(file_path ):

9 if os.path.isfile(file_path ):

10 file_info = os.stat(file_path)

11 return convert_bytes(file_info.st_size)

To make the program configurable from the command-line, flags have been added. Printing
the help with the -h flag yields the following output:

usage: netcap -tf-dnn.py [-h] -read READ [-drop DROP] [-sample [SAMPLE ]]

[-dropna] [-string_dummy] [-string_index]

[-test_size TEST_SIZE] [-loss LOSS]

[-optimizer OPTIMIZER]

NETCAP compatible implementation of Network Anomaly Detection with a Deep

Neural Network and TensorFlow

optional arguments:

-h, --help show this help message and exit

-read READ Labeled input CSV file to read from (required)

-drop DROP optionally drop specified columns , supply multiple

with comma

-sample [SAMPLE] optionally sample only a fraction of records

-dropna drop rows with missing values

-string_dummy encode strings as dummy variables

-string_index encode strings as indices (default)

-test_size TEST_SIZE specify size of the test data in percent (default:

0.25)

-loss LOSS set function (default: categorical_crossentropy)

-optimizer OPTIMIZER set optimizer (default: adam)
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In the following, example usage of the command-line flags is demonstrated:

$ python netcap -tf -dnn.py -r Connection_labeled.csv -sample 0.5 -drop SrcIP ,DstIP

$ python netcap -tf -dnn.py -r Connection_labeled.csv -string_dummy -dropna

$ python netcap -tf -dnn.py -r Connection_labeled.csv -dropna -drop SrcMAC

Installation can be performed using the provided install.sh script from the project root.

6.7.3 Encoding of Features

Features need to be encoded to numeric values for each column of the dataset. Numeric val-
ues are normalized with the standard score, also called zscore, which is the signed number
of standard deviations by which the value of the current data point is above the mean value
of all observations. Observed values below the mean have negative standard scores, while
values above the mean have positive standard scores. Alphanumeric values (strings) will be
encoded to dummy variables. For example the strings red, green and blue will be encoded as
[1,0,0],[0,1,0] and [0,0,1]. Encoding takes a while, depending on the size of the dataset. To
enable working with different types of datasets, an encoder dictionary was added, to lookup
column names and provide the appropriate encoder function. In the future, this could be
refactored to infer the datatype and the appropriate encoder for the datatype, based on the
first line of values, instead of having to define the explicitely for each column name. Features
that are guaranteed to be unique for each record, namingly the UID of LayerFlows and the
SessionID of TLS handshakes, are always dropped from the dataset.

The following shows an excerpt of the implemented encoders dictionary in python. Field
names are mapped to the desired encoding function.

1 # encoder dictionary

2 encoders = {

3 # Flow / Connection

4 ’TimestampFirst ’ : encode_numeric_zscore ,

5 ’LinkProto ’ : encode_string ,

6 ’NetworkProto ’ : encode_string ,

7 ’TransportProto ’ : encode_string ,

8 ’ApplicationProto ’ : encode_string ,

9 ’SrcMAC ’ : encode_string ,

10 ’DstMAC ’ : encode_string ,

11 ’SrcIP’ : encode_string ,

12 ’SrcPort ’ : encode_numeric_zscore ,

13 ’DstIP’ : encode_string ,

14 ’DstPort ’ : encode_numeric_zscore ,

15 ’Size’ : encode_numeric_zscore ,

16 ’AppPayloadSize ’ : encode_numeric_zscore ,

17 ’NumPackets ’ : encode_numeric_zscore ,

18 ’UID’ : encode_string ,

19 ’Duration ’ : encode_numeric_zscore ,

20 ’TimestampLast ’ : encode_numeric_zscore ,

21
22 # UDP specific fields

23 ’Length ’ : encode_numeric_zscore ,

24 ’Checksum ’ : encode_numeric_zscore ,

25 ’PayloadEntropy ’ : encode_numeric_zscore ,

26 ’PayloadSize ’ : encode_numeric_zscore ,

27 ’Timestamp ’ : encode_numeric_zscore ,

28 ...

29 }
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6.7.4 Training & Validation

For training the deep neural network, a test / train split is created. A share of 25% is used as
test dataset for verification. To avoid overfitting, training the model will be stopped, once
the validation accuracy starts to decrease. After verification the program prints out the
validation score. The validation score represents the accuracy of the models classifications,
and can be interpreted as a percentage value. For example, a validation score of 1.0 means
all labels have been classified correctly. The following python code creates the test split,
performs training and runs validation:

1 print("breaking into predictors and prediction ...")

2
3 # Break into X (predictors) & y (prediction)

4 x, y = to_xy(df,’result ’)

5
6 print("creating train/test split")

7
8 # Create a test/train split. 25% test

9 # Split into train/test

10 x_train , x_test , y_train , y_test = train_test_split(x, y, test_size =0.25, random_state =42)

11
12 print("creating neural network ...")

13
14 # Create neural network

15 model = Sequential ()

16 model.add(Dense(10, input_dim=x.shape[1], kernel_initializer=’normal ’, activation=’relu’))

17 model.add(Dense(50, input_dim=x.shape[1], kernel_initializer=’normal ’, activation=’relu’))

18 model.add(Dense(10, input_dim=x.shape[1], kernel_initializer=’normal ’, activation=’relu’))

19 model.add(Dense(1, kernel_initializer=’normal ’))

20 model.add(Dense(y.shape[1], activation=’softmax ’))

21 model.compile(loss=’categorical_crossentropy ’, optimizer=’adam’)

22 monitor = EarlyStopping(

23 monitor=’val_loss ’,

24 min_delta =1e-3,

25 patience=5,

26 verbose=1,

27 mode=’auto’

28 )

29
30 print("fitting model ...")

31 model.fit(

32 x_train ,

33 y_train ,

34 validation_data =(x_test ,y_test),

35 callbacks =[ monitor],

36 verbose=2,

37 epochs =1000

38 )

39
40 print("measuring accuracy ...")

41 pred = model.predict(x_test)

42 pred = np.argmax(pred ,axis =1)

43 y_eval = np.argmax(y_test ,axis =1)

44 score = metrics.accuracy_score(y_eval , pred)

45
46 print("Validation score: {}".format(colored(score , ’yellow ’)))

47 print("Exec Time: {}".format(colored(display_time(time.time() - start_time), ’yellow ’)))

48 print("done.")
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6.7.5 Scripts

Since these steps have to be repeated for each file in the dataset, scripts have been created for
executing the experiments. The following shows the bash script run exp1.sh for executing
experiment 1:

1 #!/bin/bash

2
3 NUM=1

4
5 echo "[INFO] running experiment $NUM"

6 echo "[INFO] parsing data"

7 netcap -r Tuesday -WorkingHours.pcap -out Tuesday -WorkingHours -$NUM

8 netcap -r Wednesday -WorkingHours.pcap -out Wednesday -WorkingHours -$NUM

9 netcap -r Thursday -WorkingHours.pcap -out Thursday -WorkingHours -$NUM

10 netcap -r Friday -WorkingHours.pcap -out Friday -WorkingHours -$NUM

11
12 echo "[INFO] labeling data"

13 netlabel -r Tuesday -WorkingHours.pcap -out Tuesday -WorkingHours -$NUM

14 netlabel -r Wednesday -WorkingHours.pcap -out Wednesday -WorkingHours -$NUM

15 netlabel -r Thursday -WorkingHours.pcap -out Thursday -WorkingHours -$NUM

16 netlabel -r Friday -WorkingHours.pcap -out Friday -WorkingHours -$NUM

17
18 echo "[INFO] evaluating"

19 eval.sh Tuesday -WorkingHours -$NUM -string_dummy

20 eval.sh Wednesday -WorkingHours -$NUM -string_dummy

21 eval.sh Thursday -WorkingHours -$NUM -string_dummy

22 eval.sh Friday -WorkingHours -$NUM -string_dummy

23
24 echo "[INFO] stats"

25 stats.sh Tuesday -WorkingHours -$NUM

26 stats.sh Wednesday -WorkingHours -$NUM

27 stats.sh Thursday -WorkingHours -$NUM

28 stats.sh Friday -WorkingHours -$NUM

29
30 echo "[INFO] done."

The eval.sh script receives a path to the directory containing the labeled CSV files, and calls
the python program to read, encode, train and validate each file and save the log.

1 #!/bin/bash

2
3 if [[ $1 == "" ]]; then

4 echo "[ERROR] need a path as argument"

5 exit 1

6 fi

7
8 for f in $(ls $1/* _labeled.csv); do

9 echo "[INFO] processing $f"

10 # "${@:2}" passes down all arguments after the directory name

11 netcap -tf-dnn.py -read $f "${@:2}" | tee "${f%_labeled.csv}_RESULT.txt"

12 done

The stats.sh script parses the generated result files and displays a table summary. The
experiments are started from the datasets PCAPs directory, using the UNIX time program
to track execution time. Output is piped into tee, which displays it on the terminal and
writes it into the named logfile on disk for later analysis.

$ time run_exp1.sh | tee run_exp1.log
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6.7.6 Classification Results Experiment 1

For experiment number one, all numeric values will be zscored. Strings will be encoded as
dummy variables, which creates a new column for each unique entry and deletes the original
column from the dataset afterwards. Booleans are encoded to numeric values, 0 for false,
1 for true. The first run of experiment 1 was stopped after 12 hours, after hanging for
more than 7 hours at the dummy variable encoding of the Answers columns from Tuesday-
WorkingHours-1/DNS labeled.csv. In order to reduce the amount of data that has to be
processed, the sample size was dropped from 1.0 to 0.5. This means only 50% of the available
data will be used. However, the next run also did not complete in a reasonable amount of
time, and was stopped after 8 hours, hanging at the same place like before. After starting
a third run, while sampling only 20% of the available data, the experiment finished after
over 29 hours. Experiment one was conducted with an early version of Netcap, and was not
repeated. It is shown here for completeness and because following experiments were adapted
after observations from this one. Entries marked with ”-” contained only one label type after
sampling, thus no prediction was possible and the Keras library aborted.

Tuesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 284166 51 MB 2119 50s 0.9919065381096488
DNS labeled.csv 700447 144 MB 33 3h 27m 0.9999428946692174
Ethernet labeled.csv 11551954 880 MB 3556 6m 49s 0.9996693201846267
Flow labeled.csv 647294 112 MB 4852 4m 2s 0.9904835470415573
HTTP labeled.csv 45852 14 MB 5609 21s 0.9637554585152839
IPv4 labeled.csv 11469736 1.0 GB 3555 - -
NTP labeled.csv 15507 2.1 MB 18 2s 0.9987113402061856
TCP labeled.csv 10710230 1.5 GB 3504 - -
TransportFlow labeled.csv 91861 5.8 MB 11 8s 0.9999059354717336
UDP labeled.csv 787015 44 MB 51 27s 0.9999491753703845

Table 6.7: Classification results experiment 1 Tuesday-WorkingHours.pcap
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Wednesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

ARP labeled.csv 45243 3.5 MB 1 - -
Connection labeled.csv 333653 60 MB 8408 59s 0.9757837319426962
DNS labeled.csv 714164 145 MB 22 2h 52m 0.9999719958553865
Ethernet labeled.csv 13788878 1.0 G 4420 7m 40s 0.9997070102865497
Flow labeled.csv 1029945 192 MB 29583 7m 35s 0.9707755640995767
HTTP labeled.csv 212324 56 MB 171933 36m 24s 0.9877439426793627
IPv4 labeled.csv 13705555 1.3 GB 4419 - -
NTP labeled.csv 12624 2.0 MB 25 1s 0.9968354430379747
TCP labeled.csv 12943316 1.8 GB 4372 - -
TLS labeled.csv 12943316 23 MB 1 - -
TransportFlow labeled.csv 95768 6.1 MB 8 8s 1.0
UDP labeled.csv 787951 44 MB 47 27s 0.9999746180009138

Table 6.8: Classification results experiment 1 Wednesday-WorkingHours.pcap

Thursday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 317531 57 MB 1870 52s 0.993449644139321
DNS labeled.csv 644796 128 MB 5 2h 5m 1.0
Ethernet labeled.csv 9322025 704 MB 27169 5m 37s 0.9989186916168564
Flow labeled.csv 680753 128 MB 4121 4m 7s 0.9947999294905694
HTTP labeled.csv 54221 15 MB 5090 23s 0.9678729689807977
IPv4 labeled.csv 9240723 880 MB 27169 - -
NTP labeled.csv 14160 2.0 MB 22 1s 0.9971751412429378
TCP labeled.csv 8538148 1.2 GB 27142 - -
TransportFlow labeled.csv 116637 8.0 MB 3 - -
UDP labeled.csv 726608 40 MB 27 27s 0.9999174258897361

Table 6.9: Classification results experiment 1 Thursday-WorkingHours.pcap
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Friday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 445148 80 MB 1971 1m 21s 0.9940246203612184
DNS labeled.csv 668172 128 MB 36 2h 27m 0.9999401358915262
Ethernet labeled.csv 9997874 753 MB 3413 5m 39s 0.9996259206951874
Flow labeled.csv 1091900 192 MB 4363 6m 50s 0.9963183441707116
HTTP labeled.csv 140888 23 MB 97062 57s 0.985939497230507
IPv4 labeled.csv 9915680 928 MB 3413 - -
TCP labeled.csv 9191727 1.3 GB 3377 - -
TransportFlow labeled.csv 167351 12 MB 21 11s 1.0
UDP labeled.csv 750104 42 MB 36 25s 0.9999466751986349

Table 6.10: Classification results experiment 1 Friday-WorkingHours.pcap

Observations

Using the dummy variable method for encoding strings delivered a good detection accuracy
of around 99%, however it is impractical for operating on large datasets, due to the very
high time for encoding of features. Because each unique string will lead to the creation of
a new column, the dataset grows in width tremendously. For the evaluation of KDD-99
this strategy of encoding strings might have been possible, but regarding the size of modern
datasets, another approach is needed. Dropping columns with a high amount of unique
entries (such as DNS Answers, IP adresses) was not considered, because this first series of
experiments aims to create a baseline of detection accuracy with the complete data that
Netcap delivers. Entries with ”-” have failed when entering the training phase, because after
sampling and encoding, the subset did only contain normal labels and none of the malicious
types.
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6.7.7 Classification Results Experiment 2

For experiment number two, encoding will be slightly modified in order to reduce the time
needed for the encoding stage. All numeric values will be zscored like before. Booleans are
encoded to numeric values, 0 for false, 1 for true. Instead of choosing dummy variables,
strings will be encoded as indices this time. This keeps the original column in the dataset
and creates a new one containing a unique integer for each unique string. Originally this was
used to encode only the result column, the following experiment evaluates the use of this
string encoding method for the whole dataset. Experiment 2 had a total processing time of
over 8 hours.

Tuesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 284166 51M 1807 49s 0.9936375665099518
DNS labeled.csv 700447 144M 38 1m 57s 0.9999600255836265
Ethernet labeled.csv 11551954 880M 3549 33m 41s 0.9996984060534857
Flow labeled.csv 647294 112M 3340 1m 51s 0.9946855843385406
HTTP labeled.csv 45800 14M 4214 38s 0.9275109170305676
NTP labeled.csv 15507 3.0M 11 4s 0.9989682744389993
NetworkFlow labeled.csv 29094 4.0M 1291 15s 0.9573824580698378
TCP labeled.csv 10710230 1.5G 3450 29m 59s 0.9996728362186739
TransportFlow labeled.csv 212613 20M 1721 44s 0.99153403318659
UDP labeled.csv 787015 43M 44 2m 2s 0.9999440926232758

Table 6.11: Classification results experiment 2 Tuesday-WorkingHours.pcap

Wednesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 333653 60M 2223 54s 0.9937060925024577
DNS labeled.csv 714164 144M 49 2m 10s 0.9999551923647789
Ethernet labeled.csv 13788878 1.0G 4147 38m 16s 0.9996965670888426
Flow labeled.csv 1029945 190M 3493 3m 21s 0.9965396311270084
HTTP labeled.csv 70243 20M 27675 45s 0.9412903593189453
NTP labeled.csv 12624 2.0M 19 3s 0.9987325728770595
NetworkFlow labeled.csv 29495 4.0M 1361 15s 0.9555193924599946
TCP labeled.csv 12943316 1.8G 3649 36m 31s 0.9997150652892968
TransportFlow labeled.csv 212502 20M 2159 48s 0.9896096073485675
UDP labeled.csv 787951 43M 33 2m 3s 0.9999796941945702

Table 6.12: Classification results experiment 2 Wednesday-WorkingHours.pcap
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Thursday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 317531 57M 1784 54s 0.9940163511079199
DNS labeled.csv 644796 122M 9 1m 44s 0.9999813894627138
Ethernet labeled.csv 9322025 701M 27145 27m 60s 0.9970607254129681
Flow labeled.csv 680753 128M 3189 3m 5s 0.9955461281281399
HTTP labeled.csv 54137 15M 3265 44s 0.949907646841522
NTP labeled.csv 14160 2.0M 20 3s 0.9994350282485875
NetworkFlow labeled.csv 27921 4.0M 1206 10s 0.9610371007019052
TCP labeled.csv 8538148 1.2G 27066 27m 43s 0.9989238884123348
TransportFlow labeled.csv 256349 23M 1691 46s 0.99344651104731
UDP labeled.csv 726608 40M 23 2m 7s 0.9999779798736045

Table 6.13: Classification results experiment 2 Thursday-WorkingHours.pcap

Friday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 445148 80M 1561 1m 27s 0.99656743375237
DNS labeled.csv 668172 128M 38 2m 6s 0.9999521081398203
Ethernet labeled.csv 9997874 752M 3163 36m 17s 0.9996703299780874
Flow labeled.csv 1091900 192M 2841 3m 20s 0.9973074457367891
HTTP labeled.csv 113138 20M 4032 46s 0.9664840021212657
NetworkFlow labeled.csv 25837 3.0M 1137 11s 0.9600619195046439
TCP labeled.csv 9191727 1.3G 3088 33m 47s 0.9996596940205367
TransportFlow labeled.csv 311675 29M 1395 1m 19s 0.9952771467806312
UDP labeled.csv 750104 41M 35 2m 7s 0.9999360088734363

Table 6.14: Classification results experiment 2 Friday-WorkingHours.pcap

Observations

Processing time for encoding is now much better. Detection accuracy on HTTP traffic
declined, most notably on the Tuesday-WorkingHours dump. Others slightly increased, for
example the Tuesday-WorkingHours/Connection labeled.csv detection accuracy increased
from 99,19% to 99,21%. Accuracy for detecting flows stayed almost the same.
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6.7.8 Classification Results Experiment 3

For experiment number three, encoding will be the same as in experiment two. However,
for labeling this experiment will use the attack descriptions generated by suricata, instead
of the attack classes. Furthermore all lines that contain missing numeric values (NaNs) will
dropped from the dataset. Alphanumeric values are not affected by this, because for example
an HTTP request that has no referrer should also be taken into consideration. Experiment
3 had a processing time of over 9 hours. By checking the logs for the number of dropped
entries, it can be seen that no data was discarded.

Labeling Results

The following new labels were generated and mapped onto the data:

Tuesday-WorkingHours.pcap

Classification Count

SURICATA TLS invalid record/traffic 3078
ET POLICY Vulnerable Java Version 1.8.x Detected 1
ET POLICY curl User-Agent Outbound 1
SURICATA HTTP Request abnormal Content-Encoding header 6
SURICATA HTTP gzip decompression failed 17
ET TOR Known Tor Relay/Router (Not Exit) Node Traffic group 455 18
SURICATA TLS error message encountered 26
ET DNS Query to a *.pw domain - Likely Hostile 24
SURICATA TLS invalid record type 16
ET POLICY DNS Query For XXX Adult Site Top Level Domain 9
SURICATA HTTP unable to match response to request 233
SURICATA HTTP Host header invalid 1
SURICATA TLS invalid record version 3072
ET POLICY Python-urllib/ Suspicious User Agent 2
ET POLICY GNU/Linux APT User-Agent Outbound likely related to package
management

80

ET POLICY PE EXE or DLL Windows file download HTTP 3

Table 6.16: Suricata alerts for file Tuesday-WorkingHours.pcap
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Wednesday-WorkingHours.pcap

Classification Count

ET CURRENT EVENTS Possible OpenSSL HeartBleed Large HeartBeat Re-
sponse (Client Init Vuln Server)

1

ET CURRENT EVENTS Possible OpenSSL HeartBleed Large HeartBeat Re-
sponse (Server Init Vuln Client)

1

SURICATA TLS invalid record version 2896
ET POLICY PE EXE or DLL Windows file download HTTP 3
SURICATA HTTP unable to match response to request 2313
SURICATA TLS invalid certificate 2
ET DNS Query for .su TLD (Soviet Union) Often Malware Related 8
SURICATA TLS invalid record/traffic 2928
SURICATA HTTP invalid response chunk len 6
SURICATA TLS error message encountered 34
ET POLICY Self Signed SSL Certificate (SomeOrganizationalUnit) 2
SURICATA HTTP Request abnormal Content-Encoding header 2
ET DNS Query to a *.pw domain - Likely Hostile 5
ET POLICY GNU/Linux APT User-Agent Outbound likely related to package
management

48

ET POLICY Python-urllib/ Suspicious User Agent 2
ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O) 2
SURICATA TLS invalid record type 34
SURICATA TLS invalid SSLv2 header 2
ET TOR Known Tor Relay/Router (Not Exit) Node Traffic group 166 25
SURICATA HTTP gzip decompression failed 33
ET WEB CLIENT Possible HTTP 500 XSS Attempt (External Source) 8
SURICATA TLS invalid handshake message 2

Table 6.18: Suricata alerts for file Wednesday-WorkingHours.pcap
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Thursday-WorkingHours.pcap

Classification Count

SURICATA TLS invalid record/traffic 2802
ET TOR Known Tor Relay/Router (Not Exit) Node Traffic group 166 21
ET POLICY GNU/Linux APT User-Agent Outbound likely related to package
management

90

ET POLICY Possible IP Check api.ipify.org 1
ET CURRENT EVENTS Possible Phishing Redirect Dec 13 2016 2
ET SCAN Behavioral Unusual Port 135 traffic Potential Scan or Infection 4
SURICATA HTTP gzip decompression failed 22
SURICATA HTTP Request abnormal Content-Encoding header 2
ET POLICY Vulnerable Java Version 1.8.x Detected 2
SURICATA HTTP invalid response chunk len 3
ET POLICY Python-urllib/ Suspicious User Agent 2
SURICATA TLS error message encountered 32
ET DNS Query for .su TLD (Soviet Union) Often Malware Related 3
GPL EXPLOIT Microsoft cmd.exe banner 5
ET TROJAN Windows dir Microsoft Windows DOS prompt command exit
OUTBOUND

3

ET SCAN Possible Nmap User-Agent Observed 96
ET POLICY SSLv3 outbound connection from client vulnerable to POODLE
attack

1

SURICATA TLS invalid record version 2802
ET POLICY PE EXE or DLL Windows file download HTTP 4
SURICATA HTTP unable to match response to request 269
ET TOR Known Tor Relay/Router (Not Exit) Node Traffic group 455 1
SURICATA TLS invalid record type 14
ET TROJAN Windows Microsoft Windows DOS prompt command Error not
recognized

23731

Table 6.20: Suricata alerts for file Thursday-WorkingHours.pcap
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Friday-WorkingHours.pcap

Classification Count

SURICATA TLS invalid record type 17
SURICATA TLS invalid handshake message 4
SURICATA HTTP invalid response chunk len 8
ET POLICY DNS Query For XXX Adult Site Top Level Domain 6
ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O) 4
ET POLICY Possible IP Check api.ipify.org 9
ET POLICY GNU/Linux APT User-Agent Outbound likely related to package
management

111

ET POLICY Python-urllib/ Suspicious User Agent 3
ET POLICY Vulnerable Java Version 1.8.x Detected 1
ET SCAN Behavioral Unusual Port 1433 traffic Potential Scan or Infection 2
ET DNS Query for .su TLD (Soviet Union) Often Malware Related 5
SURICATA TLS invalid record version 2790
ET POLICY PE EXE or DLL Windows file download HTTP 6
SURICATA HTTP gzip decompression failed 27
SURICATA TLS error message encountered 24
ET SCAN Behavioral Unusual Port 1434 traffic Potential Scan or Infection 2
SURICATA TLS invalid record/traffic 2793
SURICATA HTTP Request abnormal Content-Encoding header 5
ET DNS Query to a *.pw domain - Likely Hostile 24
SURICATA HTTP unable to match response to request 346

Table 6.22: Suricata alerts for file Friday-WorkingHours.pcap
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Experiment 3 Results

Tuesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 284166 51M 1803 1m 21s 0.9929900622167168
DNS labeled.csv 700447 145M 38 2m 48s 0.999965736214537
Ethernet labeled.csv 11551954 880M 3547 43m 36s 0.9996973672683657
Flow labeled.csv 647294 111M 3334 1m 57s 0.9947412003163931
HTTP labeled.csv 45795 14M 4206 38s 0.9336186566512359
NTP labeled.csv 15507 2.1M 16 6s 0.9987103430487491
NetworkFlow labeled.csv 29094 4.0M 1288 6s 0.9586197415452296
TCP labeled.csv 10710230 1.5G 3444 29m 26s 0.9996728362186739
TransportFlow labeled.csv 212613 20M 1715 34s 0.9918350453399556
UDP labeled.csv 787015 43M 49 2m 1s 0.9999339276456896

Table 6.23: Classification results experiment 3 Tuesday-WorkingHours.pcap

Wednesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 333653 60M 2095 1m 32s 0.99357422015489
DNS labeled.csv 714164 145M 36 1m 56s 0.9999607933191816
Ethernet labeled.csv 13788878 1.0G 3815 36m 28s 0.9997200642836837
Flow labeled.csv 1029945 192M 3211 7m 15s 0.9970095577640813
HTTP labeled.csv 70239 20M 27897 45s 0.9280182232346241
NTP labeled.csv 12624 1.7M 21 4s 0.9987325728770595
NetworkFlow labeled.csv 29495 4.0M 1338 12s 0.9560618388934092
TCP labeled.csv 12943316 1.8G 3348 38m 20s 0.99974040655424
TransportFlow labeled.csv 212502 20M 2042 40s 0.9907954673794376
UDP labeled.csv 787951 43M 35 2m 18s 0.9999746177432128

Table 6.24: Classification results experiment 3 Wednesday-WorkingHours.pcap
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Thursday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 317531 57M 1782 3m 0s 0.9942556970636031
DNS labeled.csv 644796 129M 10 1m 60s 0.9999627789254276
Ethernet labeled.csv 9322025 705M 27145 28m 10s 0.9970590090482457
Flow labeled.csv 680753 128M 3187 4m 57s 0.9952347096463343
HTTP labeled.csv 54131 15M 3262 35s 0.9462055715658021
NTP labeled.csv 14160 1.9M 20 4s 0.9994350282485875
NetworkFlow labeled.csv 27921 4.0M 1205 15s 0.9591749033089815
TCP labeled.csv 8538148 1.2G 27067 26m 46s 0.9991942046448481
TransportFlow labeled.csv 256349 23M 1691 1m 18s 0.9932904755960554
UDP labeled.csv 726608 40M 23 2m 11s 0.9999779798736045

Table 6.25: Classification results experiment 3 Thursday-WorkingHours.pcap

Friday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 445148 79M 1523 1m 23s 0.9967651208137518
DNS labeled.csv 668172 127M 38 2m 3s 0.9999640811048652
Ethernet labeled.csv 9997874 750M 3109 30m 13s 0.9996779315926703
Flow labeled.csv 1091900 181M 2776 7m 3s 0.99753090942394
HTTP labeled.csv 113140 20M 4259 1m 41s 0.9663425844086971
NetworkFlow labeled.csv 25837 2.9M 1107 9s 0.9580495356037152
TCP labeled.csv 9191727 1.3G 3029 28m 19s 0.9996636105855178
TransportFlow labeled.csv 311675 28M 1355 1m 26s 0.9956236604679218
UDP labeled.csv 750104 41M 35 2m 13s 0.9999360088734363

Table 6.26: Classification results experiment 3 Friday-WorkingHours.pcap

Observations

Classification results are comparable to the ones from the previous run and in this case do
not seem to be influenced by the higher amount of unique labels. This is quite interesting,
because classifying specific attacks could generate more specific alerts, which would provide
more value to the analyst.
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6.7.9 Classification Results Experiment 4

In experiment 4, the description will be used for labeling again and strings are encoded as
indices, same as in experiment 3. Missing numeric values will not be dropped, but instead
all columns containing source or destination IP adresses will be dropped from the dataset,
in order to observe the effect on classification accuracy. Experiment 4 had a processing time
of 12 hours.

Tuesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 284166 51M 1803 1m 31s 0.9936516426902395
DNS labeled.csv 700447 134M 36 2m 9s 0.999965736214537
Ethernet labeled.csv 11551954 870M 3550 34m 58s 0.9996987523151923
Flow labeled.csv 647294 111M 3334 2m 24s 0.9947720980818667
HTTP labeled.csv 45823 13M 4206 31s 0.9397695530726257
NTP labeled.csv 15507 2.1M 17 6s 0.9987103430487491
NetworkFlow labeled.csv 29094 4.0M 1288 17s 0.9558702227110256
TCP labeled.csv 10710230 1.5G 3444 32m 53s 0.9996720892694014
TransportFlow labeled.csv 212613 20M 1715 58s 0.9916657260036874
UDP labeled.csv 787015 43M 50 2m 7s 0.9999288451568964

Table 6.27: Classification results experiment 4 Tuesday-WorkingHours.pcap

Wednesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 333653 60M 2199 1m 3s 0.9933943942263889
DNS labeled.csv 714164 135M 43 2m 15s 0.9999383895015711
Ethernet labeled.csv 13788878 1.0G 4033 42m 38s 0.9996933761117655
Flow labeled.csv 1029945 177M 3393 3m 19s 0.9966561418634727
HTTP labeled.csv 70260 20M 28191 18s 0.9161969826359238
NTP labeled.csv 12624 1.7M 20 3s 0.9987325728770595
NetworkFlow labeled.csv 29495 4.0M 1361 21s 0.9534852183346895
TCP labeled.csv 12943316 1.8G 3539 39m 17s 0.9997197008865425
TransportFlow labeled.csv 212502 20M 2151 1m 6s 0.9899672476753378
UDP labeled.csv 787951 43M 36 2m 10s 0.9999746177432128

Table 6.28: Classification results experiment 4 Wednesday-WorkingHours.pcap
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Thursday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 317531 56M 1782 57s 0.9944950430192863
DNS labeled.csv 644796 121M 8 1m 53s 0.9999689824378564
Ethernet labeled.csv 9322025 702M 27138 26m 36s 0.9970654454159545
Flow labeled.csv 680753 117M 3187 2m 3s 0.9957459060221283
HTTP labeled.csv 54151 14M 3264 34s 0.9497710149209632
NTP labeled.csv 14160 1.9M 20 6s 0.9994350282485875
NetworkFlow labeled.csv 27921 3.2M 1205 12s 0.9561667382896433
TCP labeled.csv 8538148 1.2G 27059 32m 57s 0.9992209083281293
TransportFlow labeled.csv 256349 23M 1692 1m 12s 0.9937117713144427
UDP labeled.csv 726608 40M 23 3m 14s 0.9999779798736045

Table 6.29: Classification results experiment 4 Thursday-WorkingHours.pcap

Friday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 445148 79M 1500 2m 6s 0.9963967040175402
DNS labeled.csv 668172 127M 37 2m 56s 0.9999640811048652
Ethernet labeled.csv 9997874 750M 3055 45m 39s 0.9996871335471654
Flow labeled.csv 1091900 181M 2732 4m 37s 0.9974759593369357
HTTP labeled.csv 113141 20M 3838 46s 0.9645761153927738
NetworkFlow labeled.csv 25837 2.9M 1091 17s 0.9586687306501548
TCP labeled.csv 9191727 1.3G 2981 31m 20s 0.9996710085415931
TransportFlow labeled.csv 311675 28M 1333 1m 54s 0.9954183190236015
UDP labeled.csv 750104 41M 35 2m 21s 0.9999360088734363

Table 6.30: Classification results experiment 4 Friday-WorkingHours.pcap

Observations

Classification accuracy only slightly decreased for most audit record types, probably because
identification of communicating clients is still possible by their hardware (MAC) addresses.
Since the HTTP audit record type currently does not preserve the hardware addresses, it
was more affected by this than other audit record types.
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6.7.10 Classification Results Experiment 5

In experiment 5, the attack classes will be used again, encoding is the same as in experiment 2.
The attack class ”Generic Protocol Command Decode” (general decoding errors, i.e. invalid
TLS handshakes) will be excluded, in order to observe the effect on accuracy. Experiment 5
had a processing time of 7 hours.

Tuesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 284166 51M 67 53s 0.9998170096562596
DNS labeled.csv 700447 133M 33 2m 0s 0.999965736214537
Ethernet labeled.csv 11551954 868M 121 31m 1s 0.9999885733636797
Flow labeled.csv 647294 111M 49 1m 47s 0.9999258453628633
HTTP labeled.csv 45800 13M 1461 16s 0.9939737991266375
NTP labeled.csv 15507 2.1M 13 5s 0.9989682744389993
NetworkFlow labeled.csv 29094 3.3M 33 5s 0.9989001924663184
TCP labeled.csv 10710230 1.5G 75 28m 47s 0.9999925305072757
TransportFlow labeled.csv 212613 19M 59 33s 0.9996613613274636
UDP labeled.csv 787015 43M 46 2m 1s 0.9999390101344826

Table 6.31: Classification results experiment 5 Tuesday-WorkingHours.pcap

Wednesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 333653 60M 54 55s 0.9999040928381326
DNS labeled.csv 714164 133M 14 1m 55s 0.9999831971367921
Ethernet labeled.csv 13788878 1.0G 94 36m 43s 0.9999924576905449
Flow labeled.csv 1029945 177M 33 2m 59s 0.9999572793966297
HTTP labeled.csv 70243 19M 1444 12s 0.9789305848186322
NTP labeled.csv 12624 1.7M 22 4s 0.9984157160963245
NetworkFlow labeled.csv 29495 3.3M 35 5s 0.9987794955248169
TCP labeled.csv 12943316 1.8G 58 36m 19s 0.9999941282434888
TransportFlow labeled.csv 212502 19M 39 33s 0.9998117682490683
UDP labeled.csv 787951 43M 36 2m 3s 0.9999746177432128

Table 6.32: Classification results experiment 5 Wednesday-WorkingHours.pcap
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Thursday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 317531 57M 161 53s 0.999357545066324
DNS labeled.csv 644796 129M 4 1m 39s 0.9999937964875713
Ethernet labeled.csv 9322025 704M 23951 24m 22s 0.9974108638163284
Flow labeled.csv 680753 128M 145 1m 57s 0.9998002221060116
HTTP labeled.csv 54137 15M 1075 15s 0.9915035094200222
NTP labeled.csv 14160 1.9M 20 4s 0.9994350282485875
NetworkFlow labeled.csv 27921 4.0M 54 5s 0.9988540323735855
TCP labeled.csv 8538148 1.2G 23911 23m 31s 0.9996013186934685
TransportFlow labeled.csv 256349 23M 140 42s 0.9992198227437273
UDP labeled.csv 726608 40M 23 1m 52s 0.9999779798736045

Table 6.33: Classification results experiment 5 Thursday-WorkingHours.pcap

Friday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 445148 80M 83 1m 14s 0.9998112987141355
DNS labeled.csv 668172 129M 35 1m 47s 0.9999640811048652
Ethernet labeled.csv 9997874 752M 156 27m 1s 0.999983996600878
Flow labeled.csv 1091900 192M 68 3m 3s 0.9999303965564612
HTTP labeled.csv 113138 20M 981 45s 0.9965352660420718
NetworkFlow labeled.csv 25837 3.0M 42 4s 0.9979876160990712
TCP labeled.csv 9191727 1.3G 118 24m 12s 0.9999921668700379
TransportFlow labeled.csv 311675 29M 76 47s 0.9997304893543295
UDP labeled.csv 750104 42M 35 1m 56s 0.9999360088734363

Table 6.34: Classification results experiment 5 Friday-WorkingHours.pcap

Observations

Apparently this improved the classification accuracy for the HTTP audit record type. Accu-
racy on other audit record types looks also promising. We can assume this alert type created
a lot of noise in previous experiments.
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6.7.11 Classification Results Experiment 6

In experiment 6, the attack classes will be used again and encoding is the same as in experi-
ment 2. If there are multiple classifications for the same audit record, the label will collect all
of them, i.e. if a TCP record matches ”Suspicious Traffic” and ”Web Application Attack”,
the final label will be: ”Suspicious Traffic | Web Application Attack”. Classifications will
not be duplicated, i.e. in case there two alerts for ”Suspicious Traffic” it will only be added
once to the label. Experiment 6 had a processing time of 9,5 hours.

Tuesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 284166 51M 1809 1m 14s 0.9936234903296641
DNS labeled.csv 700447 144M 37 2m 3s 0.999965736214537
Ethernet labeled.csv 11551954 880M 3551 32m 24s 0.999699098576899
Flow labeled.csv 647294 112M 3340 1m 57s 0.9946855843385406
HTTP labeled.csv 45800 14M 4214 39s 0.9363318777292576
NTP labeled.csv 15507 3.0M 13 5s 0.9987103430487491
NetworkFlow labeled.csv 29094 4.0M 1292 9s 0.9572449821281276
TCP labeled.csv 10710230 1.5G 3450 30m 59s 0.9996720892694014
TransportFlow labeled.csv 212613 20M 1721 43s 0.99153403318659
UDP labeled.csv 787015 43M 46 2m 9s 0.9999390101344826

Table 6.35: Classification results experiment 6 Tuesday-WorkingHours.pcap

Wednesday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

ARP labeled.csv 48910 4.0M 1 9s 1.0
Connection labeled.csv 333653 60M 2233 59s 0.9935022897834895
DNS labeled.csv 714164 144M 51 2m 3s 0.9999271875927658
Ethernet labeled.csv 13788878 1.0G 4161 38m 9s 0.9996907653123387
Flow labeled.csv 1029945 192M 3492 3m 4s 0.9965007942148536
HTTP labeled.csv 70243 20M 28167 27s 0.9209042765218381
NTP labeled.csv 12624 2.0M 22 3s 0.9984157160963245
NetworkFlow labeled.csv 29495 4.0M 1353 13s 0.9559262272850556
TCP labeled.csv 12943316 1.8G 3640 37m 39s 0.9997144472096641
TransportFlow labeled.csv 212502 20M 2180 1m 11s 0.9891390279712382
UDP labeled.csv 787951 43M 36 2m 9s 0.9999695412918553

Table 6.36: Classification results experiment 6 Wednesday-WorkingHours.pcap

109



6 Evaluation

Thursday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 317531 57M 1784 57s 0.9940541425746067
DNS labeled.csv 644796 128M 8 1m 51s 0.9999875929751425
Ethernet labeled.csv 9322025 704M 27145 26m 24s 0.9970581508658846
Flow labeled.csv 680753 128M 3189 2m 4s 0.9955461281281399
HTTP labeled.csv 54137 15M 3265 23s 0.9488732914665682
NTP labeled.csv 14160 2.0M 20 3s 0.9994350282485875
NetworkFlow labeled.csv 27921 4.0M 1206 11s 0.9610371007019052
TCP labeled.csv 8538148 1.2G 27067 24m 54s 0.9990410098302348
TransportFlow labeled.csv 256349 23M 1692 58s 0.9934621145924354
UDP labeled.csv 726608 40M 23 1m 59s 0.9999779798736045

Table 6.37: Classification results experiment 6 Thursday-WorkingHours.pcap

Friday-WorkingHours.pcap

File Num Records Size Labels Exec Time Validation Score

Connection labeled.csv 445148 80M 1557 1m 32s 0.9964955475482311
DNS labeled.csv 668172 128M 39 1m 56s 0.9999521081398203
Ethernet labeled.csv 9997874 752M 3166 26m 41s 0.9996743308278678
Flow labeled.csv 1091900 192M 2839 3m 0s 0.9973440791281253
HTTP labeled.csv 113138 20M 3850 36s 0.971115432207884
NetworkFlow labeled.csv 25837 3.0M 1131 11s 0.9600619195046439
TCP labeled.csv 9191727 1.3G 3090 24m 30s 0.99965925884665
TransportFlow labeled.csv 311675 29M 1390 1m 5s 0.9953028144611712
UDP labeled.csv 750104 41M 35 2m 2s 0.9999360088734363

Table 6.38: Classification results experiment 6 Friday-WorkingHours.pcap

Observations

This seems to influence the accuracy for classification of network layer flows and HTTP
records. Regarding the high accurarcy in the obtained results for the remaining audit record
types, this way of dealing with multiple alerts for the same audit records looks very promising
and should be subject to further experiments. With this approach, all information that was
collected when labeling the data is preserved and therefore is made available to the analyst.
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6.7.12 Summary

Results show that accurate classification of malicious or unwanted behavior is possible, with
a feature set consisting mainly of collected and only a handful of generated features. Fur-
thermore classification achieved better results when applied to specific protocols, compared
to classification of summary structures such as flows and connections. The time needed
to encode the data to a numeric feature vector, heavily depends on the strategy used for
encoding alphanumeric values (strings). Encoding strings as indices performed better in the
encoding phase, but required more time for training the deep neural network, compared to
encoding them as dummy variables. Using attack descriptions instead of attack classes as
labels delivered comparable results and should be subject to further experiments. Due to
the fact that there might be several alerts for the same audit records, a strategy for handling
this must be chosen. Collecting all classifications and merging them into a final label has
shown great results, and should be further investigated in combination with using specific
attack descriptions instead of attack classes.
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7 Conclusion

The implemented solution is referred to as secure, because parsing the network traffic is im-
plemented in a memory-safe language. It is scalable because Netcap can increase throughput
with more processing cores and can be used in a distributed monitoring setup. Tensorflow
can take advantage of multi-core architectures as well as GPUs, in order to accelerate the
computations for the Deep Neural Network. Results from the series of experiments show
that classification of labeled audit records is possible with a high accuracy, while only using
a reduced feature subset compared to previous research in the area. Netcap is meant to be
a useful tool in the process of feature collection, selection and generation for research on
anomaly-based intrusion detection strategies. By providing the generated data in separate
files, Netcap enables other applications that consume its output to implement a concurrent
design as well. Choosing a platform neutral format for serialized structured data, greatly in-
creases accessibility of the generated audit records for experiments across all major program-
ming languages. The landscape of interesting libraries and techniques is constantly evolving,
and so are the possibilities and options for experiments. Implementing the framework in Go
helps in reducing syntactic complexity, increases performance compared to implementations
in scripting languages, and provides memory safety. The fact that memory safety is a big
problem for todays intrusion detection frameworks has been recognized by the authors of
suricata, which have begun to port parts of their protocol decoding logic to Rust, and the
authors of Bro / Zeek that use a parser generation framework to accomplish safe protocol
parsing. Although, these countermeasures are a good step forward, they only reduce the
attack surface partially, since the remaining parts of the frameworks are still written in a
language that is affected by this category of vulnerabilities. A key takeaway from the series
of experiments is the absence of many computationally expensive extracted features, while
still achieving very high classification results. Questioning the need for those features comes
with the possibility to improve the performance of network monitoring systems. The fewer
data is needed for classification of malicious behavior, the more efficient implementations
for feature collection and extraction can become. By publishing the developed tooling, the
experiments are made reproducible for other researchers, which will hopefully lead to more
academic publications and novel research in the area. However, the problem is not and
will never be solved simply by deploying an intrusion detection system - there is always the
need for an analyst that monitors the alerts and events and takes appropriate action. It is
important to keep in mind, that network monitoring systems can be evaded as well and may
even provide an increased attack surface to the system or network they were supposed to
protect. To counter this development, frequent updates to defensive strategies and tools are
necessary.
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8 Future Perspectives

Future development on Netcap will target increasing the unit test coverage, as well as adding
more benchmarks for performance critical operations. Additionally, the output of Netcap
will be compared to those of other tools, to ensure no data is missed or misinterpreted. Net-
cap will be extended with further functionality in the future, for example by adding support
for extracted features that have proven value in other academic publications. Furthermore,
Netcap should be used for experiments on other datasets, to explore its capabilities in deliv-
ering the necessary intelligence for accurate predictions on network data. Encoding of the
feature vectors could also be implemented as part of the Netcap framework, as this would
tremendously speed up processing compared to conducting encoding in a scripting language.
An interface for adding additional application layer encoders that require stream reassembly
is also planned. The project will be evaluated for monitoring industrial control systems
communication, as recent efforts have been made by contributors to gopacket to implement
support for Modbus, Ethernet/IP (ENIP), and the Common Industrial Protocol (CIP). A
DPI module could help identify app layer protocols, before discarding the packet payloads.
Another interesting candidate for future integration, is the recently open sourced fingerprint-
ing strategy for SSH handshakes (HASSH) by salesforce. An in-depth performance analysis
of Netcap will be carried out, as many parts of the framework can be further optimized.
Robustness tests need to be performed and error handling improved to be more graceful
and prevent the monitor from crashing in edge cases. Several exporters for the most com-
mon SIEM and data analytics solutions will be added, in order to visualize and organize
data produced by Netcap for human analysts. Protocol coverage will be increased, as there
are still protocols offered by gopacket that are not yet integrated into Netcap, i.e: IPSec,
MLDv2MulticastListenerReport, Geneve, VXLAN, USB and more. To satisfy the need for
large scale monitoring, tooling needs to be created to manage a multi instance architecture
and deliver specific traffic to selected instances. The Canadian Institute for Cybersecurity
meanwhile has published their newest dataset from 2018 (CSE-CIC-IDS2018). This dataset
has an overall size of almost 500GB and will be evaluated with Netcap in the future as well.
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8 Future Perspectives

The need for accurate and efficient intrusion detection systems is even greater today
than it was in the early 1980s, when initial research started and the first frameworks were
born. Next generation intrusion detection systems should be completely created in a secure
programming language, and offer extensibility and scalability to meet todays demands for
monitoring of complex large scale networks. Although network security monitoring is very
effective, it is not the only security measure that can be put into place. A recent trend to
secure networks is also the use of honeypots, which are intentionally vulnerable and serve as
a trap for intruders. Placing those inside a cooperate network can help to identify an intruder
in his early stages of lateral movement. Using honeypots as canaries is not a replacement
for an intrusion detection system, but may serve well as an addition. The publication of a
POSIX compliant kernel written in Golang [CKM18] as well as the first go network driver
ixy-go [Voi18], are promising developments around the topic of memory safe system design.
Netcap is not only restricted to network protocols - the gopacket library does also offer
support for decoding USB traffic for example. Adding this functionality to Netcap can be
done with little effort. However, maybe anomaly detection alone is not the solution to the
problem: There should also be a critical discussion of the anomaly detection paradigm, as
conducted by Gates et al. [GT07].
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Glossary

Machine Learning The science of training computers to learn and behave like humans. By
supplying data and information in the form of observations, the goal is to improve the
learning process over time in autonomous fashion.

Artificial Intelligence Intelligence demonstrated by machines through implementing specific
algorithms, mimicing natural intelligence displayed by humans and animals.

Data Mining The procedure of analyzing large volume data sets to recognize patterns and
establish relationships between them, in order to solve problems or extract information
from the input data set.

Turing Complete A computational system that is able to compute every Turing-computable
function is referred to as Turing-complete (or Turing-powerful). Alternatively, a turing
complete system is one that is able to simulate a universal Turing machine.

Deep Neural Network A set of algorithms designed to recognize patterns, inspired by the
human brain. A deep neural network is basically an artificial neural network (ANN)
with multiple layers between the input and output layers.
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Acronyms

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

SFTP Secure File Transfer Protocol

SMTP Simple Mail Transfer Service

DNS Domain Name System

TCP Transmission Control Protocol

UDP User Datagram Protocol

IP Internet Protocol

MTU Maximum Transmission Unit

TTL Time To Live

TLS Transport Layer Security

SSL Secure Socket Layer

NAT Network Address Translation

VPN Virtual Private Network

POP3 Post Office Protocol

IMAP Internet Message Access Protocol

ICMP Internet Control Message Protocol

SIP Session Initiation Protocol

RPC Remote Procedure Call

JSON Javascript Object Notation
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Acronyms

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

TPM Trusted Platform Module

MAC Media Access Control

PAT Port Address Translation

VHDL Very High Speed Integrated Circuit Hardware Description Language

IDEA International Data Encryption Algorithm

WMR Weight by Maximum Relevance

ASIC Application-Specific Integrated Circuit

RAM Random Access Memory

IoT Internet of Things

DMA Direct Memory Access

DGA Domain Generation Algorithms

MD5 Message Digest Algorithm 5

CSV Comma-separated values

AV Anti Virus

HTTPS Hypertext Transfer Protocol Secure

BitTorrent BitTorrent File Transfer Protocol

DMZ Demilitarized Zone

VR Virtual Reality

LoC Lines of Code

PCAP Packet Capture

PCAPNG Packet Capture Next Generation

OS Operating System
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Acronyms

DPI Deep Packet Inspection

IPS Intrusion Prevention System

IDS Intrusion Detection System

API Application Programming Interface

NIC Network Interface Card

URL Uniform Resource Locator

REST Representational State Transfer

SOC Security Operation Centers

IoC Indicators Of Compromise

LRZ Leibniz Rechenzentrum

MWN Münchener Wissenschaftsnetzwek

DHCP Dynamic Host Configuration Protocol

GRE Generic Routing Encapsulation

SSH Secure Shell

FIDS Flow-based Intrusion Detection System

OSI Open Systems Interconnection

LDA Linear Discriminant Analysis

SIEM Security Information and Event Management

IDES Intrusion Detection Expert System

CIDF Common Intrusion Detection Framework

FUD Fully Undetectable

CPU Central Processing Unit

IPFIX Internet Protocol Flow Information Export

IETF Internet Engineering Task Force
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Acronyms

NSM Network Security Monitoring

NSA National Security Agency

IRC Internet Relay Chat

QUIC Quick UDP Internet Connections

BPF Berkeley Packet Filter

eBPF Berkeley Packet Filter

RFC Request For Comments

SVD Singular Value Decomposition

PCA Principal Component Analysis

NGO Non-Governmental Organisation

OISF Open Information Security Foundation

IEEE Institute of Electrical and Electronics Engineers

ISO International Institute for Standardization

ML Machine Learning

AI Artificial Intelligence

ANN Artificial Neural Network

HMM Hidden Markov Models

GA Genetic Algorithms

GP Genetic Programming

SVM Support Vector Machines

DoS Denial Of Service

DDoS Distributed Denial Of Service

MitM Man in the Middle
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