
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Deployment of MEADcast in Stub
Software-Defined Networks

Duc Minh Nguyen

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Deployment of MEADcast in Stub
Software-Defined Networks

Duc Minh Nguyen

Aufgabensteller: PD Dr. rer. nat. Vitalian Danciu

Betreuer: Cuong Ngoc Tran

Abgabetermin: 31. März 2019

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 31. März 2019

. .
(Unterschrift des Kandidaten)

Zusammenfassung

Multicasting ist eine Form der simultanen Datenübertragung von einem Sender zu einer
Gruppe von Empfängern. Während Unicast ein Datenpaket an jeden Empfänger senden
muss, reduziert Multicast die benötigte Anzahl von Datenpaketen vom Sender zu den Empfängern.
Dies is besonders vorteilhaft für große Rechnernetze, in denen ein oder mehrere Sender
gleichzeitig Daten an viele Empfänger schickt. Video-Streaming-Dienste können beispiel-
sweise von Multicast profitieren. Obwohl Multicast in der Theorie sehr gut funktioniert,
ist zusätzliche Arbeit nötig um Multicast zu benutzen. Es bedarf beispielsweise die Ein-
richtung von Multicast-Routern durch Netzwerkadministratoren oder die Installation von
zusätzlichen Multicast-Applikationen durch den Benutzer. Dies führt zu mehr Komplexität
und Aufwand und lohnt möglicherweise den Arbeitsaufwand nicht.

Privacy-Preserving Multicast to Explicit Agnostic Destinations protocol (MEADcast) -
bietet eine Sender-zentrierte Multicast Lösung. Der Sender besitzt alle nötigen Informatio-
nen, wie die Netzwerktopologie, die Anzahl der Router im Netz die MEADcast unterstützen,
und die Anzahl der Empfänger. Basierend auf diesen Informationen entscheidet der Sender,
ob die Daten über MEADcast oder Unicast übertragen werden.

Das Ziel dieser Arbeit ist es, MEADcast in einem Software-Defined network (SDN) zu
implementieren. Das SDN wird mit Hilfe von OpenFlow eingerichtet. Das MEADcast-
Protokoll wird in Kombination mit Internet Protocol version 6 (IPv6) und Raw Sockets im-
plementiert. Raw Sockets ermöglichen das Erstellen von eigenen packet headers (zu deutsch:
Kopfdatenbereichen) und ist notwendig um MEADcast in IPv6-Pakete einzubinden. Die Im-
plementierung wird anschließend in verschiedenen Netzen getestet.

Anstatt MEADcast jedoch in einem Netzwerk-Simulator wie ns-2 zu testen, wird eine
realistischere Testumgebung benutzt. Die Implementierung wird durch verschiedene Tests
evaluiert, in denen MEADcast in SDN und Unicast miteinander vergleichen werden.

vii

Abstract

Multicasting is a transmission method for delivering data to a group of destination devices
simultaneously. It makes bandwidth usage more efficient by sending the data to every
interested participant in the multicast group in a single transmission. This is especially
beneficial in big networks involving a 1:n or n:m communication pattern like video streaming
or videoconferencing where one or many senders can send data to all the participants. While
it works great once set up, it still requires a lot of network management to get to that point.
It might for example demand setting up multicast routers or require the configuration of
multicast applications by the end user. This might add more complexity and work to the
network operators and users, which they might not deem worthy of the effort.

The Privacy-Preserving Multicast to Explicit Agnostic Destinations protocol (MEADcast)
offers a sender-centered multicast solution. It achieves that by having the sender be the one
to have all the necessary information about the network topology, the available MEADcast
support of routers in that topology and all intended receivers. The sender decides based on
that information if the data will be transmitted through the MEADcast protocol or through
unicast.

The objective of this thesis is to implement and deploy MEADcast in combination with
Software-Defined Networking (SDN). The MEADcast protocol is implemented with Internet
Protocol version 6 (IPv6) and OpenFLow protocol as an enabler of SDN. Additionally raw
sockets were chosen instead of datagram sockets or stream sockets to allow access to every
section of the data packet to be sent and received. This is required to implement MEADcast.
The implementation is then deployed on a network and tested.

Instead of simulating the deployment on a network simulator like ns-2, which doesn’t
provide a projection of a realistic environment, the implementation is deployed on a more
realistic testbed. The implementation is evaluated through various experiments comparing
traditional unicast and MEADcast in a SDN.

viii

Contents

1. Introduction 1
1.1. Challenges of multicast deployment . 1
1.2. Goal and Contributions . 2
1.3. Approach . 3
1.4. Structure . 3

2. Background and Related Work 4
2.1. Software-Defined Networks . 4

2.1.1. SDN Basics . 4
2.1.2. SDN Controller - RYU . 5
2.1.3. Southbound API - OpenFlow . 6

2.2. Multicast Protocols . 7
2.2.1. IP Multicast . 7
2.2.2. Explicit Multicast . 8
2.2.3. Application Layer Multicast . 9
2.2.4. Multicast in SDN . 9
2.2.5. MEADcast . 10

3. Analysis and prototype design 18
3.1. Different transmission approaches and prototyping 19

3.1.1. Unicast transmission . 19
3.1.2. Ideal MEADcast transmission . 19
3.1.3. MEADcast prototype design I . 20
3.1.4. MEADcast prototype design II . 21

3.2. Implementation of MEADcast on the topology 23

4. Design of the Experiments and Deployment of MEADcast in SDN 31
4.1. Tested Topologies . 31
4.2. Experiment parameters . 32
4.3. Design of the Experiments . 34

5. Results and Evaluation 37

6. Conclusion and Future Work 42
6.1. Conclusion . 42
6.2. Future Work . 42

A. Appendix 43
A.1. Creating the test environment and topologies 43

A.1.1. Topology . 43
A.1.2. Controller . 44

ix

Contents

A.1.3. Switches . 44
A.2. User Manual for Deploying and Testing MEADcast in SDN 45

A.2.1. Components . 45
A.2.2. Sending and receiving MEADcast packets 46
A.2.3. Sending and receiving unicast packets 48
A.2.4. Measuring the packet sizes and traffic volume 49

List of Figures 51

Bibliography 53

x

1. Introduction

As more and more people get connected to the internet and use services like real-time
multimedia streaming, the service provider inevitably has to find a way to meet the demands.
In a unicast streaming scenario the service provider would need to serve all the connected
users individually, which in turn requires more work, processing, network capabilities and
ultimately more expenses. Multicast has the possibility to save a lot of bandwidth and strain
on the network by condensing identical IP packets meant for different targets to a single IP
packet. That IP packet then gets handled by a multicast capable router, duplicated and
distributed among the intended receivers [Dee89].

One of the problems however is that most of todays network infrastructure is built upon
hardware and its own highly specialized firmware. Implementing even old technologies like
multicast on the network would require the change of that hardware and the software that
runs it. It is not surprising that multicast and other efficient technologies haven’t been
utilized more in every aspect of networking, given how large and diverse the amount of
existing hardware is. All this makes our legacy networks very complex, static and hard to
manage [ONF12].

The introduction of Software-defined networking (SDN) makes a network more flexible by
seperating the network control plane and data planes. By moving the entire network control
logic into software it becomes possible to only have switches present that contain nothing
more but forwarding tables. The entire logic would be handled by a controller which is
decoupled from the hardware. This enables the entire network to be more programmable
[FRZ14]. SDN facilitates a more dynamic approach in how network applications and new
technologies are introduced to the network. It becomes possible to push new applications
and protocols to a large amount of switching devices without having to know each and every
technical detail about each specific switch.

SDN makes it easier in theory to implement multicast in networks. A network that has
its network traffic handled by a seperate control plane is not limited by vendor-specific
devices. It enables the network control to become programmable and easier for multicast to
be deployed.

1.1. Challenges of multicast deployment

There are several problems with traditional multicast protocols. The network management
being required to authorize the multicast sessions and possibly having to set up multicast
routers is one of them. Another one is that users may be required to install additional ap-
plications to take part of multcast. There are also privacy concerns about existing multicast
protocols sending partial address lists of group members to each receiver[TD18]. Another
severe problem is that the network as a whole has to support multicast. If the network
doesn’t support multicast or the multicast network happens to fail there is no fallback to
default unicast. The thesis focuses on Multicast to Explicit Agnostic Destinations (MEAD-

1

1. Introduction

cast) [TD18] in a stub SDN as a proposed solution to privacy issues and the varying support
of multicast in individual networks.

Today’s internet can be described as a collection of interconnected routing domains consist-
ing of switches, routers and hosts alike. Each routing domain is under a single administration
and every routing domain is either a transit domain or a stub domain. A stub domain can be
described as a routing domain not capable of transmitting traffic, that did not originate or
terminate in the domain [CDZ97]. Transit domains on the other hand are capable of doing
that. They are responsible for interconnecting stub domains efficiently. The problem this
creates for this thesis is the added time complexity. Not only does the MEADcast router
acting as the border router need to be aware of other connected MEADcast routers, it also
needs to be able to perform all the necessary tasks required for both stub and transit do-
mains. This is the reason why this thesis only focuses on the deployment of MEADcast in
stub SDN.

Stub Domains

Transit Domain

Border Router

Figure 1.1.: Example of the Internet domain structure [CDZ97]

1.2. Goal and Contributions

The goal of this thesis is to implement and deploy of MEADcast in a stub SDN and evaluate
the performance of MEADcast compared to traditional unicast. MEADcast enables sender-
based multicast of IPv6 over the Internet. Advantages of this protocol are the protection of
its recipients anonymity and the possibility to be used on networks with varying amount of
MEADcast routers.

2

1.3. Approach

The thesis presents the feasibility of implementing MEADcast on OpenFlow SDN and the
problems and limitations coming with it. It also contains several tests about how MEADcast
performs over traditional unicast in different scenarios, how their network traffic compares
and if the used OpenFlow version can improve multicast performance or not.

In this thesis, the following contributions are made:

• Implementation of MEADcast in an OpenFlow controller.

• Implementation of MEADcast as a traffic generator on the sender side.

• Deployment of MEADcast in SDN and evaluation of the implementation.

• Comparison between the performance of MEADcast in SDN and unicast in regards to
transmission speed and total traffic volume.

The findings show that MEADcast in OpenFlow SDN is possible, but very limited in
practicality and reliability. It shows that depending on the scenario, using MEADcast in
SDN leads to a reduction in total traffic volume and and in increase in transmission speed
in comparison to unicast.

1.3. Approach

Different network scenarios are created to test and evaluate the protocol. Every network
scenario consists of different virtual machines that act as the controller, the switches or as
hosts. We use the RYU SDN Framework 1 as our base for the controller, which handles the
control plane. The data plane consists of machines that simulate switches and have Open
vSwitch2 as their switch implementation. MEADcast is both implemented on the controller
and on the sender. The Network is generated with a traffic generator that sends both
MEADcast packets and unicast packets. That traffic generator simulates the traffic generated
by the sender. The traffic and other important performance indicators like transmission
speed or individual packet sizes are measured on the network with wireshark3 and results
are compared.

1.4. Structure

The thesis starts with a short introduction. Background and related works are the sec-
ond Chapter, where the motivation and basics behind Multicast, SDN and MEADcast are
explained. It also features a small selection of related work that cover the same topic.

Chapter Three goes more into detail on how the MEADcast protocol was implemented.
Chapter Four describes the experiments and the tested topologies.
Results and evaluation will then be covered in Chapter Five and the thesis ends with a

conclusion and future work chapter.

1https://osrg.github.io/ryu/
2https://openvswitch.org/
3https://www.wireshark.org/

3

2. Background and Related Work

MEADcast is a relatively new multicast protocol. Multicast as one of the fundamentals
behind MEADcast however is not. There have been several protocols in the past that have
proposed a solution to the problems that arise from using multicast. Explicit Multicast
(Xcast) [OFI+07] is one of them and is the protocol that MEADcast is roughly based on. It
will be introduced in this chapter. Additionally, Application Layer Multicast as a different
approach to multicast and is also briefly introduced.

The thesis has the goal of implementing MEADcast in a Software-Defined Network and
hence it is required to include the principles behind the MEADcast protocol itself and SDN.

2.1. Software-Defined Networks

Since MEADcast is implemented in SDN, it is necessary to introduce SDN related informa-
tion.

2.1.1. SDN Basics

Software-Defined Networking (SDN) is a new approach to combat the disadvantages of the
static architecture of legacy networks [KRV+15]. It aims to control, change and manage
network behavior dynamically through open interfaces [HPD+15]. Legacy networks rely on
very specific network devices that differ depending on the vendor. To implement a network-
wide policy for example a network operator may need to change the configuration of multiple
network devices, with each network device having their own vendor-specific instructions.
This may take a lot of time and resources and only gets worse as current networks grow
in size and the requirements of networks change. Automatic reconfiguration depending on
dynamic network requirements is virtually non-existent in legacy networks [KRV+15].

The network devices themselves are very inflexible too, since the control plane and the
data plane are tightly integrated into every device. This means that updates or innovations
to the current architecture may take a very long time or may not even be feasible at all
[KRV+15].

Figure 2.1 shows the three planes of functionality found in networks today: The Manage-
ment plane provides software services for network operators to operate the network device.
Example for such tools can be monitoring, configuration or management services. The Con-
trol plane decides where the traffic is sent. It decides the entries of the forwarding table used
by the data plane. The Data plane, sometimes called the forwarding plane, is responsible
for forwarding traffic to the next hop according to the decisions made by the control plane.

Those network devices that are based on this structure all have their own control and
data plane and are autonomous from other network devices, which leads to the static and
inflexible status quo of networks that is present today.

Figure 2.2 shows the SDN network architecture. SDN separates the control plane from
the data plane and enables the abstraction of the network through a controller that is

4

2.1. Software-Defined Networks

Figure 2.1.: Traditional network architecture [KRV+15].

Figure 2.2.: SDN network architecture [KRV+15].

responsible for multiple devices. Those devices get reduced to simple forwarding devices
that only forward traffic based on the flow table that has been installed on them by the
controller. Each individual flow in that flow table contains packet match fields, flow priority,
actions on how to process the packet and other information. Every incoming packet gets
matched with the flows and dealt accordingly, unmatched packets may get forwarded to
the controller. The Application layer contains traditional network services and applications
like load balancers or firewalls. Instead of using low-level and sometimes very vendor-specific
commands to configure the network devices the application communicates with the controller
to configure the data plane behavior [HPD+15] [Fun12].

2.1.2. SDN Controller - RYU

The control plane that has been traditionally integrated in network devices gets seperated
and becomes its own entity. The SDN controller lies between network devices and the
application layer and communication between those two occurs through the SDN controller.
The communication between the SDN controller and applications like load balancers happens

5

2. Background and Related Work

via northbound interfaces, while the communication between SDN controller and the devices
happen through southbound protocols (see figure 2.2). One major advantage of using a
centralized SDN controller is that the controller has a global network view over the entire
network and is aware of all available paths. Another one is that the controller itself can be
physically detached from the network and still be able to manage the network functionality

Notable SDN Controllers include NOX [GKP+08], POX and OpenDaylight [MVTG14].
This thesis however focuses solely on RYU.

RYU is a component-based SDN framework and aims to be both agile and flexible. Ev-
ery application consists of components and RYU provides several components and libraries
already 1.

2.1.3. Southbound API - OpenFlow

Southbound APIs enable the SDN Controller in the control plane to efficiently configure the
switches in the data plane according to real-time demands and requirements. There are a
variety of southbound API, including Network Configuration Protocol (NetConf) [Enn06]
and Lisp [RNPCE+15], that enable communication between the controller and the switches.

Figure 2.3.: OpenFlow communication between the controller and OpenFlow switch [Cis].

OpenFlow was initially designed to provide a way to run experimental protocols in produc-
tion networks [HPD+15]. It became synonymous with SDN itself however and has become
one, if not the most used southbound application program interface (API) for communica-
tion between a logically centralized controller with switches (see Figure 2.3). It also provides
a logical structure of the network switch functions[Lim12].

SDN controllers communicate with OpenFlow switches through OpenFlow and ideally
via Secure Sockets Layer (SSL). The communication is used for management activities,
like installing flows on the flow tables located on the switches. Each OpenFlow switch can
maintain one or multiple flow tables. The OpenFlow switch matches those flow tables against
incoming packets to determine further procedure[Cis] [Fou12].

Each flow table is made out of the same six components:

1https://osrg.github.io/ryu/

6

2.2. Multicast Protocols

• Match Fields: a field against which a packet is matched. The match fields consist of
the ingress port, used packet headers and optionally metadata.

• Priority: the field that determines the matching precedence of the flow entry.

• Counters: used to update for matching packets. The OpenFlow specification defines a
variety of timers that can be used here.

• Instructions: has the actions that are to be taken if a match occurs.

• Timeouts: shows the maximum amount of time before the flow is expired by the switch.

• Cookies: data values chosen by the SDN controller. It is generally not used for pro-
cessing packets.

OpenFlow provides a vendor-independent standardized way to manage network devices.

2.2. Multicast Protocols

The motivation and idea behind IP multicast is explained in this section. As this thesis
implements the MEADcast protocol, it is included in this chapter. The Xcast protocol and
Application Layer Multicast as alternatives to IP multicast are also looked at.

2.2.1. IP Multicast

The three most basic ways of transmitting data are through unicast, multicast and broadcast.
Unicast describes the transmission of data between a single point to another point in a 1:1
communication pattern. Broadcast refers to a 1:m communication pattern, where a single
point sends data to every single possible endpoint within a network. IP multicasting in
comparison is the transmission of IP datagrams from one or many points to many points
1:m or n:m. The difference between broadcast and multicast is that multicast sends to a
“host group” instead of the entire subnetwork[Dee89].

Host Groups

The membership of a host group is fully optional. The host group can contain either zero
or an unlimited amount of members belonging to the group. The amount of host groups a
host can be part of is not limited either and it is not required to be a member of a specific
host group to send data into it.

Levels of conformance

Three levels of multicast conformance have been specified in RFC 1112 [Dee89].

Level 0: no support for IP multicasting. - Level 0 means no conformance and thus no
support for IP multicasting. The hosts in this group will usually be unaffected by multicast
traffic.

Level 1: support for sending but not receiving multicast IP datagrams. - Hosts in this
group have the ability to send multicast data to multicast groups but not receive multicast
data themselves. It is easy to upgrade from Level 0 to Level 1, because sending to a specific

7

2. Background and Related Work

multicast destination group address is similar to sending an unicast packet to the IP address
of a single host.

Level 2: full support for IP multicasting. - Members in this group may join or leave host
groups at will. Like Level 1 they can send to host groups and can also receive multicast
IP datagrams by being in host groups. Hosts in host groups express their membership in a
group by using mandatory the Internet Group Management Protocol (IGMP) as described
in RFC 3376 [CDK+02] and RFC 4604 [HH06].

Multicast Routing

Many multicast routing algorithm feature a distribution tree. They are used to forward
the data from the sender to the hosts while minimizing the amount of packet duplication.
Fundamentally, there are two different kind of trees:

Source-specific trees: Every sender maintains their own distribution tree and every sender
is the root in that tree. Sender and receiver are connected via the shortest possible path.

Shared trees: Every multicast group uses a shared tree for all sources. The root of the
distribution tree is a router and not a host. That router is sometimes called rendezvous
point.

2.2.2. Explicit Multicast

The Explicit Multicast (Xcast) protocol offers a solution to one of the problems traditional IP
multicast schemes face: the scalability issues with a very large amount of distinct multicast
groups as described in the “Small Group Multicast” draft [BF01] and RFC 5058 [OFI+07].

Xcast supports a large number of multicast groups with a small number of recipients in
each individual group.

Overview

Instead of sending the data to a multicast group address, the sender encodes each destination
IP Address in the Xcast header. The sender then sends the packet to the router, which has
to perform a routing table look up for every destination listed in the Xcast header in order
to determine the next hop of each packet. The router then partitions the destination list
based on the prior step and sends the modified packet with the new Xcast header to the
corresponding path. This continues until there is only one destination left. In this case the
router converts the Xcast packet into a unicast packet in a process called Xcast to Unicast
(X2U) and handles it as a unicast packet.

If the network has routers not capable of Xcast, other mechanisms have to be implemented.
Possible solutions to this problem are tunneling between Xcast capable routers or premature
X2U if a Xcast router detects that its downstream neighbor is not a Xcast router. Another
special solution to this problem is to deploy Xcast by upgrading only the hosts. If a Xcast
capable host receives a packet it can process the other destinations in the Xcast header and
send the packet to the remaining destinations.

Advantages

A lot of advantages of traditional multicast schemes apply to Xcast as well. The main one
being the minimization of bandwidth usage for small groups. An advantage of Xcast is,

8

2.2. Multicast Protocols

that it eliminates the per-session signaling and per-session state information of traditional
multicast schemes, which allows it to support a greater number of multicast sessions. Xcast
itself provides a lot of flexibility too. Depending on the current network situation Xcast can
be used as an alternative to unicast or multicast. Other advantages include simplicity and
no need for multicast routing protocols.

Disadvantages

The router however has to perform a significant amount of work. Every time it has to handle
a Xcast packet it has to look up the routing table for every destination in the Xcast header
and has to create a new header after every hop. If there are hosts available that have been
upgraded due to lack of Xcast support in the network, more disadvantages arise. Since the
host has to perform network functions, which is a disadvantage in itself, and can handle the
Xcast header, it knows the identity of other parties in the session. This is an anonymity and
privacy issue. Since Xcast is designed for multicast sessions with a small number of hosts in
mind it is limited to a smaller range of applications compared to traditional IP multicast.

2.2.3. Application Layer Multicast

Application layer Multicast (ALM) is not based on IP multicasting or data link layer mul-
ticast. ALM is implemented in the application layer and only relies on the network for
basic unicast forwarding. Group specific communication like group management, multicast
tree formation or packet replication are moved to the application layer [KM05]. Compared
to IP multicast it is easier to deploy and doesn’t add additional overhead to the routers
like saving all unique multicast group addresses. in ALM every end-host is responsible for
group membership management and the construction of the overlay network with the goal
of maintaining an efficient overlay for data transmission. Another difference between ALM
and IP multicast is that the data in ALM is duplicated at the end-host which also perform
the necessary network functions.

That raises the issues of privacy and overall efficiency of ALM since the ALM protocol
must send identical packets over the same link [BBK02] [KM05].

2.2.4. Multicast in SDN

A lot of work on SDN in the past has been based on unicast traffic in SDN. This section
features a small selection of related papers and work that deal with multicast in SDN.

Avalanche

Avalanche is a SDN based system that enables multicast in commodity switches, used in data
centers [IKM14]. This paper introduces the Avalanche Routing Algorithm (AvRA), a new
multicast routing algorithm. Avalanche is implemented as an OpenFlow controller module
and AvRA is used with the goal create efficient and near-optimal multicast trees. Avalanche
balances the link utilization by taking advantage of the high path diversity found in data
centers. It is common for data center topologies to have multiple equal length paths between
any given hosts. IP multicast might result in some of those links having a link utilization of
greater than 100%, while other equal links might not get utilized at all. Avalanche balances

9

2. Background and Related Work

link utilization by using all links available and reduces packet loss caused by over utilization
[IKM14].

Recover-aware Steiner Tree

Recover-aware Steiner tree (RST) is a proposed multicast tree for SDN [SHYC15]. It
deals with the problem of the shortest-path tree (SPT), used in current Internet, not be-
ing bandwidth-efficient. RST also deals with the problem of traditional Steiner trees (RT)
not being reliable. This paper introduces an approximation algorithm called Recover Aware
Edge Reduction Algorithm (RAERA) and was also implemented on a SDN. The results show
that RAERA outperforms normal SPT and ST in both real and large synthetic networks,
when considering latency and other factors.

LAMA

In addition to source-specific trees and shared trees found in IP multicast, SDN enables three
additional alternatives to shared trees: per-group shared tree, multi-group shared tree and
single shared tree. LAMA takes advantage of the multi-group shared trees. Locality-aware
multicast approach(LAMA)[LLT+17], constructs multi-group shared trees in SDN, where
one tree covers several multicast groups. This is done by clustering the multicast sources
into a multicast cluster. Similar to IP multicast, a rendezvouz point is selected, in this
case a switch, which has the minimum distance to all multicast sources. A shortest-path
tree from the rendezvouz point to all hosts is constructed and based on that, the controller
installs flows on the flow table of the on-tree switches. This results in a lower amount of
flows installed on each switch.

Multiflow

Lucas Bondan et al developed and evaluated “Multiflow”, clean-slate approach to pro-
grammable networks [BMK13]. It enables traditional IP multicast functions like multicast
group management and multicast transmission. Compared to IP multicast,“Multiflow” is
executed in the SDN controller and has a network-wide global view of all network devices
and routes. “Multiflow” takes advantage of that by creating a more efficient routing for
multicast receivers and the sender. Compared to OpenMcast [BMK13], which offers net-
work behavior similar to what is observed in normal networks, “Multiflow” achieved faster
average time, from the host first joining to the host receiving the first packet.

2.2.5. MEADcast

MEADcast is a multicast protocol that allows sender-based multicast of IPV6[TD18]. It
takes many core concepts and advantageous traits of Xcast (as discussed in 2.1.2). Compared
to Xcast, it takes off a lot of work from the routers by shifting the work to the sender. The
problems mentioned in Application Layer Multicast (as discussed in 2.1.3) are also a non
issue. The end host is agnostic of the technology being used and is not required to have any
MEADcast application deployed to partake in a specific MEADcast session. This results in
a lower average time from the client joining the multicast group to the receipt of the first
packet.

10

2.2. Multicast Protocols

The only entities that have MEADcast implemented are the sender and the routers.
MEADcast also supports the gradual deployment of MEADcast capable routers in networks
and falls back to unicast if there is no MEADcast support in the network.

The information necessary to describe the protocol is as follows:

• the sender

• the set of end hosts

• the set of MEADcast capable routers in the network

• the distance of each MEADcast capable router to the sender in hops

The process from the end host first joining the MEADcast session to the host getting
the data from the sender can be described in two distinct phases: The discovery phase
and the data delivery phase.

MEADcast Protocol Header

MEADcast takes advantage of extension headers and 2.4 shows the most important fields.

IPv6 header
Source address

Destination address

Hop-by-Hop

NBRdst

MEADcast

D R Hopcount
Delivery bitmap
Router bitmap

Destination address 1

Destination address ...

Destination address N

Port 1 Port 2
...

Port 3 Port N

UDP

Figure 2.4.: MEADcast packet headers[TD18]

11

2. Background and Related Work

• IPv6 header

– Source address: IPv6 address of the sender.

– Destination address: IPv6 destination address of the receiver.

• Hop-by-Hop extension header This is required to make every router examine MEAD-
cast packets.

• MEADcast extension header

– NBRdst: number of destinations encoded in the destination address list of the
MEADcast header. This number can not be higher than 64.

– D : single bit to classify the packet as a discovery request or data delivery packet.
If it is set, it is a discovery request packet. If not it is a data delivery packet.

– R : single bit to classify if a discovery request packet is a request or response
packet. If it is set, it is a discovery response packet. If not it is a discovery
request packet.

– Hopcount : stores the distance from a MEADcast capable router to the sender in
hops between each MEADcast routers. It is used in the discovery phase for the
sender to build his own view of the network.

– Router Bitmap: shows the position of MEADcast routers in the destination ad-
dress list. A value of 1 points to a MEADcast router while a value of 0 points to
a receiver.

– Delivery Bitmap: shows if this packet has been received by that specific MEAD-
cast router yet. This information is important to know for the current MEADcast
router that handles this packet, since it will forward or duplicate and forward to
those MEADcast routers depending on this bitmap.

– Destination address 1 . . . n: IPv6 addresses of the receivers and the responsible
MEADcast routers. There can’t be more than 64 IP addresses in this field.

– Port 1 . . . n: the transport layer protocol port number for each corresponding
receiver. In this case UDP port numbers.

• UDP header Since Transmission Control Protocol (TCP) can not be used for multi-
casting, User Datagram Protocol (UDP) is the only available choice.

The phases of the MEADcast transmission process

Each MEADcast entity has different functions that it needs for the successful completion of
each phase. They are further described below. In the following sub chapters the sender is
denoted as S, the set of end hosts as E, the set of MEADcast capable routers as R and the
distance of MEADcast router to the sender in hops as d [TD18].

Discovery phase

The goal of the discovery phase is for the sender to gain knowledge about every MEADcast
capable router and it’s position on the path to the end host. The sender then builds a network
topology from the sender viewpoint based on the distance of each router and their associated

12

2.2. Multicast Protocols

end hosts to the sender. In order to achieve that both the sender and routers are involved
in this process.

1) The multicast session is established
2) The sender starts sending the data to the recipients until step 5) is finished.
3) The sender sends a MEADcast discovery request, which can be denoted as req(E,0)

to each recipient. The 0 in req(E,0) indicates the initial value 0 for the distance d of a
MEADcast router to the sender. In the actual MEADcast header the discovery bit D is set
to 1, the response bit R is clear, the hopcount field, routerbitmap and deliverybitmap are all
empty.

4) Upon receipt of the discovery request packet a normal router forwards the packet
normally to the end host E. If a MEADcast router receives it then the router will duplicate
that packet and increase d of one of the packets by 1 and and forward it to the destination.
The forwarded discovery request packet can be denoted as: req(E, d+1). The Router does
that by incrementing the hopcount field by 1. Additionally the discovery response packet
resp(E, d+1, R) gets sent back to the Sender. The response packet is created by setting the
discovery bit D to 0, the response bit R to 1 and destinationnumber field to 1. The first
destination in the MEADcast header is the IP address of the intended recipient.

This gets repeated for every router on the path to the end host.
5) After the sender receives all the discovery response packets or after a timeout the sender

builds the MEADcast data delivery packet based on the current viewpoint of the topology
the sender has. The viewpoint of the topology gets built at the sender as the discovery
response packets from each MEADcast router arrive.

6) The sender has knowledge about the network topology from its viewpoint now and can
start sending MEADcast data delivery packets or unicast packets to the recipients based on
the topology.

13

2. Background and Related Work

Data delivery phase
7) The sender starts sending the MEADcast packets or unicast packets to the recipients

after finishing the discovery phase.
If a end host is included in the MEADcast packet or receives a unicast packet directly

depends on the implementation. A MEADcast router R1 that has the same amount of end
hosts it’s responsible for should get a higher priority than R2 if R1 has a higher hop count
than R2 for efficiency sakes. It would be a waste of header space for the same reason to
include MEADcast routers with only one responsible end host.

If there are no MEADcast capable routers in the network then no response packages will
be received by the sender. If that is the case then the sender will go back to step 2) and
send the data out in unicast.

8) Upon receiving a MEADcast packet meant for data delivery the MEADcast router
starts a process called Decomposition[TD18], which is the process of decomposing a MEAD-
cast packet. It determines the end hosts it is responsible for, by looking at these fields:
routerbitmap and deliverybitmap and creates unicast packets for each of them with the spec-
ified payload. It will also generate and send modified MEADcast packets based on the
remaining recipients to the remaining routers. When the opposite is true however and more
receivers are present than the maximum amount of encodable addresses in the MEADcast
header, the sender will divide the MEADcast packet into suitable subgroups, each with their
own MEADcast packet.

Example of data transmission in a network with full MEADcast support

S R1

E1 E2

E3

R2

Figure 2.5.: Data transmission in a topology with full MEADcast support.

Figure 2.5 depicts a simple network with one sender S, two MEADcast capable routers R1

and R2 and three receivers E1, E2 and E3.
The communication between the sender S, routers R1 and R2 and receivers E1, E2 and

E3 are as follows:

1. S and E1, E2, E3 establish a MEADcast session through unicast.

2. S starts sending the data via unicast to E1, E2, E3.

14

2.2. Multicast Protocols

3. The unicast packets get forwarded normally by R1 and R2.

4. S creates a MEADcast discovery request packet for each receiver, three in total:
req(E1,0) req(E2,0) req(E3,0) and sends them to R1. The discovery bit is set and
response bit is clear.

5. R1 receives req(E1,0). The discovery bit is set and response bit is clear. R1 is the
router responsible for E1 and sends back a discovery response packet resp(E1, 1, R1).
The response bit of that packet is set.

6. R1 receives req(E2,0). The discovery bit is set and response bit is clear. E2 is not
connected to R1. R1 duplicates the packet, sends back a discovery response packet
resp(E2, 1, R1) to S and furthermore forwards req(E2,1) to R2.

7. R1 receives req(E3,0). The discovery bit is set and response bit is clear. E3 is not
connected to R1. R1 duplicates the packet, sends back a discovery response packet
resp(E3, 1, R1) to S and furthermore forwards req(E3,1) to R2.

8. R2 receives req(E2,1). The discovery bit is set and response bit is clear. R2 is the
router responsible for E2 and sends back a discovery response packet resp(E2, 2, R2)
to S. The response bit of that packet is set.

9. R2 receives req(E3,1). The discovery bit is set and response bit is clear. R2 is the
router responsible for E3 and sends back a discovery response packet resp(E3, 2, R2)
to S. The response bit of that packet is set.

10. R1 receives resp(E2, 2, R2). The discovery bit is set and response bit is set. Since the
response bit is set, R1 forwards the packet to S.

11. R1 receives resp(E3, 2, R2). The discovery bit is set and response bit is set. Since the
response bit is set, R1 forwards the packet to S.

12. E1, E2 and E3 receive the unicast packets sent at step 2 normally. Every MEADcast
packet gets dropped however since they don’t understand it.

13. S receives resp(E1, 1, R1). It starts building the network topology from the sender
viewpoint, based on the response packets so far: (R1, 1, E1).

14. S receives resp(E2, 1, R1). It starts building the network topology from the sender
viewpoint, based on the response packets so far: (R1, 1, E1,E2).

15. S receives resp(E3, 1, R1). It starts building the network topology from the sender
viewpoint, based on the response packets so far: (R1, 1, E1, E2, E3). The current
topology view can be seen in 2.6.

16. S receives resp(E2, 2, R2). It starts building the network topology from the sender
viewpoint, based on the response packets so far: (R1, 1, E1, E2, E3), (R2, 1, E2). Since
R2 has a higher hopcount than R1 for E2, the network topology looks like depicted in
Figure 2.7.

17. S receives resp(E3, 2, R2). It starts building the network topology from the sender
viewpoint, based on the response packets so far: (R1, 1, E1, E2, E3) , (R2, 1, E2,
E3). Since R2 has a higher hopcount than R1 for E3 the network topology looks like
depicted in Figure 2.8.

18. S stops sending unicast packets and begins the MEADcast data delivery phase. The
IP addresses included in the MEADcast header are: (R2, E2, E3). The corresponding

15

2. Background and Related Work

S R1

E1 E2

E3

Figure 2.6.: Network topology from sender viewpoint after receiving the first three response
packets.

Router Bitmap is 100, where 1 marks the router in the destination address list and 0
the end points. Because R1 was only responsible for one receiver E1, they were not
included in the MEADcast header. Both the discovery bit and the response bit are
cleared

19. S starts sending MEADcast packets to R1 and the unicast packet towards E1.

20. R1 receives the unicast packet and forwards it normally to E1.

21. R1 receives the MEADcast packet. The discovery bit is clear and response bit is clear,
which indicates a data delivery packet. It sees that it is not responsible for any hosts
on the destination list. It sees that R2 still has yet to receive the packet. The packet
doesn’t change and R1 forwards the packet to R2.

22. R2 receives the MEADcast packet from R1. It sees that it is responsible for the two
hosts E2 and E3. R2 creates two unicast packets with the payload of the MEADcast
packet and transmits them to E2 and E3. The Bitmap value of 100 shows that R2 is
the last router to receive this MEADcast packet; hence, R2 is not required to forward
the packet.

23. E1, E2 and E3 all receive the unicast packets normally.

16

2.2. Multicast Protocols

S R1

E1 E2

E3

R2

Figure 2.7.: Network topology from sender viewpoint after receiving four response packets.

S R1

E1 E2

E3

R2

Figure 2.8.: Final topology view from sender viewpoint after receiving all response packets.

17

3. Analysis and prototype design

The idea of deploying multicast, or in this case MEADcast, in SDN is an interesting one.
MEADcast can benefit a lot from SDN. One example for this is the discovery phase of
MEADcast. The overall goal of the discovery phase is to create a topology view from the
sender, that shows the most efficient way of forwarding the packet. It is similar to the IP
multicast forwarding tree in that aspect. They both strive to minimize the amount of packet
duplicating and network load.

SDN opens up more possibilities. A SDN controller has a global view over the network
and links between network devices. This can be used to create the most efficient network
topology viewpoint for MEADcast, well in advance and faster than any sender could. It is
possible to take it one step further, by having the controller be the one to act as the root of
the topology. The feasibility and practicability of this approach gets explored in this chapter.

S R2

E2

E1Con

R1

Figure 3.1.: Simple SDN scenario.

A simple scenario is depicted in Figure 3.1. It assumes one sender, two OpenFlow switches,
one controller and two end hosts and will be used to demonstrate the difference between each
approach.

18

3.1. Different transmission approaches and prototyping

3.1. Different transmission approaches and prototyping

This section focuses on different approaches on how the data can get transmitted in the
given scenario. It compares unicast to a number of MEADcast implementation prototypes.

3.1.1. Unicast transmission

S R2

E2

E1

Con

R1

Meadcast packet sent from S

Unicast packets from Con -> E1, E2

Figure 3.2.: Unicast transmission with flows already installed on switches

Figure 3.2 shows how unicast packets would get forwarded in SDN with flows already
installed on the switch. The amount of packets sent, depend on the number of receivers the
sender wishes to address. In this case E1 and E2 are the receivers, thus two unicast packets
are sent out. Unicast results in a total of six transmissions in this scenario. This serves as
the baseline for comparison.

3.1.2. Ideal MEADcast transmission

Figure 3.3 shows how MEADcast would ideally be used to transmit data in this topology.
It only shows the data delivery and assumes that all the necessary flows are already installed
on the switches. The sender sends one MEADcast packet to R1. R1 then forwards it to R2

since it is not responsible for any end hosts. R2 receives the packet and sends the payload
to E1 and E2 in unicast. Transmitting the packets via the ideal MEADcast implementation
results in a total of four packets sent in this scenario.

Since the limitations of the switches prohibit the implementation in that way, an alterna-
tive has to be used. The limitations stem from OpenFlow 1.3 and Open vSwitch. OpenFlow
by design limits the switches ability to process MEADcast packets, even though IPv6 ex-
tension header handling support was introduced with OpenFlow 1.3 1. The switches may
be able to detect packets with extension headers such as the MEADcast header and forward
them based on installed flows, but they can not process the MEADcast packet itself. As
a result, every MEADcast packet has to get sent to the controller for further processing.
Although OpenFlow 1.3 offers extension header support, it is not supported by any version

1https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf

19

3. Analysis and prototype design

S R2

E2

E1Con

R1

Figure 3.3.: Ideal MEADcast data delivery in a SDN.

of Open vSwitch 2. This further limits the switches ability to detect MEADcast packets
and facilitates the need of using alternative ways of processing MEADcast packets. Two
prototypes on how to deal with this problem are suggested in the following subsections.

3.1.3. MEADcast prototype design I

S R2

E2

E1

Con

R1

MEADcast packet from S -> R1-> Con
MEADcast packet from Con -> R1-> R2

Unicast packets from Con -> R2 -> E1, E2

Figure 3.4.: Naive MEADcast implementation in a SDN.

A naive implementation of MEADcast on that scenario is to have the switches act as
MEADcast routers. This can be seen in Figure 3.4, where only the data delivery phase
of the MEADcast transmission is shown. The OpenFlow switches have no control plane
capabilities to process MEADcast packets however and flow tables with their matching fields
are very limited in their use for this case. The controller is forced to handle all MEADcast
packets in this case. That means that every incoming MEADcast packet at every switch is

2https://docs.openvswitch.org/en/latest/topics/openflow/

20

3.1. Different transmission approaches and prototyping

sent to the controller for further processing. This implementation would result in a higher
total traffic volume on the network compared to unicast and thus will be ignored.

3.1.4. MEADcast prototype design II

S R2

E2

E1

Con

R1

Meadcast packet sent from S

Unicast packets from Con -> E1, E2

Figure 3.5.: Chosen approach for deploying MEADcast in a SDN.

Another possible implementation of MEADcast in SDN is to let the controller handle all
MEADcast packets for the switches right away, instead of simulating normal MEADcast
router behavior. This is shown in figure 3.5. Since the controller has a global view of all
connected switches in the network it can generate the necessary unicast packets itself and
send them to the hosts through the switches. The switches only perform simple forwarding
operations in this case. The internal topology of the SDN does not matter. This is because
the controller has a connection to all switches it is responsible for and can use that connection
to send packets to the receivers. This put more load on the connection between the controller
and the switch, since the controller has to create the unicast packet for the hosts now. This
was the chosen prototype and is further explored.

S R2

E2

E1Con

R1

E3

Figure 3.6.: Example SDN with three receivers

Figure 3.6 will be used to demonstrate the MEADcast prototype II.

21

3. Analysis and prototype design

1. Receiver E1, E2, E3 and the sender S establish a MEADcast session.

2. S starts sending the data via unicast to E1, E2, E3.

3. R1 receives the unicast packets sent by S and forwards them normally to the intended
destinations. The same applies to R2.

4. S creates a MEADcast discovery request packet for each receiver, three in total:
req(E1,0) req(E2,0) req(E3,0) and sends them to R1. The discovery bit is set and
response bit is cleared.

5. R1 receives req(E1,0), req(E2,0) and req(E3,0) . The Switch forwards them all to the
controller.

6. The controller Con receives receives req(E1,0), req(E2,0) and req(E3,0) . The discov-
ery bit is set and response bit is clear on all three packets. Since the controller is
responsible for every end host in its SDN it generates three response packets resp(E1,
1, R1), resp(E2, 1, R1) and resp(E3, 1, R1) and sends them back to R1 with further
instructions to forward those MEADcast packets back to S only. The discovery bit
and the response bit were also set to 1.

7. R1 receives resp(E1, 1, R1), resp(E2, 1, R1) and resp(E3, 1, R1) from Con and
forwards them back to S.

8. S receives resp(E1, 1, R1), resp(E2, 1, R1) and resp(E3, 1, R1). It starts building
the network topology from the sender viewpoint based on the response packets so far:
(R1, 1, E1, E2, E3).

S

E1

E2

E3

R1

Figure 3.7.: Network topology from sender viewpoint after receiving the three response pack-
ets.

9. S stops sending unicast packets and begins the MEADcast data delivery phase. The IP
addresses included in the MEADcast header are: (R1, E1, E2, E3). The corresponding
router bitmap is 1000, where 1 marks the router in the destination address list and 0
the end points. Both the discovery bit and the response bit are clear.

10. S starts sending MEADcast packets to R1.

11. R1 receives the MEADcast packet. R1 doesn’t know how to process MEADcast packets,
and sends them to the controller.

22

3.2. Implementation of MEADcast on the topology

12. Con receives the MEADcast packet. Both the discovery bit and the response bit are
clear. The controller processes it further because it is a data delivery packet. It sees
the destination list, delivery bitmap and router bitmap in the MEADcast header and
sees that it is responsible for all receivers listed in the destination list. The controller
creates three unicast packets out of the MEADcast packet for E1, E2 and E3 and sends
them to the corresponding switches. The one unicast packet destined for E1 gets sent
to R1 while the two remaining unicast packets for E1 and E2 are sent to R2.

13. R1 receives the unicast packets sent by con and handles them normally according to
the flow tables and forwards to the intended destinations. The same applies to R2.

14. E1, E2 and E3 all receive the unicast packets normally.

3.2. Implementation of MEADcast on the topology

This section deals with the implementation of the MEADcast prototype II. There are three
applications that had to be implemented: a traffic generator capable of generating MEAD-
cast traffic, a RYU network application that is capable of handling and processing those
MEADcast packets and a UDP server deployed at each receiver.

MEADcast traffic generator

The traffic generator implements the MEADcast protocol on the sender side. It consists of
two parts. The first part is a function responsible for crafting the MEADcast packets. The
second part is the traffic generator that handles the discovery and data delivery phase.

Each MEADcast packet is created by crafting every necessary packet header with raw
socket programming. This is done with a MEADcast packet crafter function mcf(). The
MEADcast packet is a combination of IPv6 header, Hop-by-Hop extension header, MEAD-
cast extension header and the UDP header. The Ipv6 header, Hop-by-Hop extension header
and UDP header follow the header format specified in RFC 2460 [HD98]. IPv6 headers
and UDP headers require additional information about the entire packet. The Ipv6 header
needs to include the payload length. The payload length is a 16-bit unsigned integer and
calculated by summing up the length of the rest of the packet following the IPv6 header,
in octets. Additionally, UDP requires the calculation of a checksum. UDP checksum calcu-
lation is performed over a “pseudo-header”. The “pseudo-header” is a header consisting of
the IP source address, destination address, upper-layer packet length and next header. The
final checksum for UDP is calculated based on that “pseudo-header”.

The MEADcast extension header is made based on the topology viewpoint the sender cur-
rently has. If the topology viewpoint is empty a discovery request packet will be generated.
If the opposite is true, a data delivery packet will be generated. The discovery request packet
can be written as req() and the data delivery packet as deli(). The MEADcast header for
the MEADcast data delivery packet varies in size, since the amount of receivers dictate the
amount of destination addresses and ports encoded in the header. The delivery packet does
not include every IP address and router of the topology network view. It decides based on
the hop count of each MEADcast capable router and the amount of destinations they are
responsible for if they get included or not. This is done by sorting the network topology view
by hop count in descending order and by excluding every router that is only responsible for

23

3. Analysis and prototype design

S

E1

E2

E3

R1

Traffic Generator

discovery request packet

discovery response packets

topology
building

Figure 3.8.: MEADcast traffic generator - topology discovery phase.

one destination. The activity diagram of the MEADcast packet crafter function can be seen
in Figure 3.10.

In order to start the MEADcast data delivery process, the sender has to know the network
topology of all destinations. This is done by sending a req() to every receiver. The traffic
generator then waits until all discovery response packets resp() arrive back at the sender, or
until a certain time threshold has passed. The sender then creates the topology view based
on all the resp() it has received. Because the discovery phase is finished almost instantly for
small topologies like the ones tested, the step where the sender sends unicast packets while
waiting for the response packets gets ignored.

It then uses the MEADcast packet crafter function with the current topology viewpoint
and the payload to create the MEADcast delivery packet deli(). The payload p of the packet
is made by chunking the target file into suitable chunk sizes. The deli(p) is then sent out
in addition to all the unicast packets for receivers not listed in the MEADcast header. The
traffic generator creates as delivery packets as there are chunks and sends them all out in
order. Figure 3.11 shows the MEADcast data transmission activity diagram for the traffic
generator.

MEADcast controller

This application was also written in Python and implements the MEADcast router functions
on the controller. It uses the RYU SDN Framework 3 as a baseline for the controller applica-
tion. The main function of this controller are controlling the flow-table of the switches and
handling packets the switches can’t handle themselves. Communication between the con-
troller and the switch happen via OpenFlow 1.3. The OpenFlow switches run open vSwitch.
The MEADcast controller is also capable of handling and creating MEADcast packets.

The controller gets started with the –observe-links option. This will start the controller
with the topology application provided by RYU and provide the global network view.

Each switch connects to the controller via TCP. The TCP destination port is 6633. Upon

3https://osrg.github.io/ryu/

24

3.2. Implementation of MEADcast on the topology

S

E1

E2

E3

R1

Traffic Generator

MEADcast packet deli()
unicast packet

Figure 3.9.: MEADcast traffic generator - delivery phase.

establishing a connection between controller and switch, two flows get added to the switch.
The first flow is the default flow and instructs the switch to forward every packet to the
controller. The priority of that flow is the lowest value 0, meaning that the switch will only
forward it to the controller if there is no higher priority flow on the flow-table. The second
flow is used to identify MEADcast packets. OpenFlow 1.3 officially supports IPv6 Exten-
sion Header handling4. A new flow match field got implemented, which enables OpenFlow
switches to match for IPv6 extension headers. There is no version of open vSwitch however,
that supports this feature5. As a result, the switch can’t distinguish MEADcast packets
from normal packets. The second flow is a temporary solution to circumvent that problem.
The flow has a priority of 500 and contains the following match rules: IPv6 header, UDP
header and UDP destination port 5005. This means that every incoming IPv6 MEADcast
packet with the UDP destination port 5005 gets sent to the controller. This is used as a
pseudo identifier, instead of the missing extension header handling feature.

For the controller to both handle the MEADcast packet handling and normal controller
activity it is necessary to implement more functions. The two of them being Neighbor
Discovery (ND) and MEADcast packet handling. ND is needed because the global network
view of the controller only includes switches in the network but not the hosts. Figure 3.14
shows the activity diagram for the controller for handling MEADcast packets. It assumes
that the default flow entry and the MEADcast flow entry are already installed on the flow
table of each switch.

ND is performed by using the Neighbor Discovery Protocol (NDP) as specified in RFC
4861 [SNNS07]. NDP is a protocol used with IPv6 and is responsible for gathering informa-
tion required for Internet communication. It defines the Internet Control Message Protocol

4https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
5https://docs.openvswitch.org/en/latest/topics/openflow/

25

3. Analysis and prototype design

traffic generator calls MEADcast packet craft function mcf()

traffic generator passes the
following informations to mcf():
IP address of sender ip_src,
IP address of receiver ip_dst,
UDP source port of sender udp_src,
UDP destination port of receiver
udp_dst,network topology view nwt,
payload plmcf() generates the Hop-by-Hop header hbh_header

mcf() computes udp_length with pl

mcf() calculates the UDP checksum udp_cs with ip_src, ip_dst,
udp_src, udp_dst and pl

mcf() generates the UDP header udp_header with udp_src, udp dst,
udp_length and udp_cs

mfc() generates a MEADcast discovery
header mc_req_header with only the discovery

 bit set and response bit cleared

mfc() generates a MEADcast data delivery
 header mc_deli_header with discovery bit

and response bit cleared

mfc() generates the router bitmap and
destination bitmap based on nwt and adds

them to mc_deli_header

mfc() adds the IP destination
 addresses and UDP destination port

 numbers to the mc_deli_header

mfc() calculates the IPv6 payload length
pll by summing up the length of hbh_header,

 udp_header and mc_deli_header

if nwt is empty if nwt is not empty

mfc() generates the IPv6 header
ipv6_header with ip_src, ip_dst and pll

mfc() generates the MEADcast delivery
packet mc_deli by combining ipv6_header,
 hbh_header, mc_deli_header udp_header

and the payload

mfc() returns mc_deli

An empty network topology view
nwt indicates a discovery request
packet. If nwt is not empty a data
delivery packet will be generated
instead.

mfc() calculates the IPv6 payload length pll
by summing up the length of hbh_header,

udp_header and mc_req_header

mfc() generates the IPv6 header ipv6_header
 with ip_src, ip_dst and pll

mfc() generates the MEADcast discovery request
 packet mc_req by combining ipv6_header,

 hbh_header, mc_deli_header and udp_header

mfc() returns mc_req

Figure 3.10.: MEADcast packet crafter activity diagram.

26

3.2. Implementation of MEADcast on the topology

mfc() receives all the necessary
informationto craft a MEADcast packet.
The network topologyview is empty and
mfc() creates a discovery request packet.
This is done for every receiver that the
senderwants to transmit data to.

mcf() generates discovery request packet req()

traffic generator sends req() to receiver

traffic generator calls MEADcast packet crafting function mcf()

MEADcast capable switch or router sends
 back discovery response packet resp()

traffic generator waits for resp()

traffic generator updates the network
topology view nwt with resp()

if the traffic generator
has not received all resp()

traffic generator calls mfc()

if the traffic generator
has received all resp()

if timeout threshold for resp()
 has been passed

The timeout threshold stands
for the maximum amount of
timethe traffic generator
is willingto wait for discovery
response packets

if resp() arrives
at the sender

traffic generator sends out deli()

if destination addresses
got excluded in deli()

traffic generator sends payload
to excluded destinations via

unicast

mfc() returns req()

if every destination
address got
included in deli()

traffic generator generates the payload

The payload is generated by
splitting up the data in chunks.
This is done by reading the
data bytewise and storing the
bytes in a buffer. Once a deli()
 with the payload has been sent
out the next bytes get read
and stored in the buffer.

mfc() receives all the necessary data
required to generate MEADcast delivery
packets, including the current topology
view and the payload.

if there is still
data left to be
transmitted

if all the data
has been sent

Figure 3.11.: MEADcast traffic generator activity diagram - discovery phase and delivery
phase

27

3. Analysis and prototype design

(ICMP) packet types, of which two of which are used here. They are ICMP type 135 Neigh-
bor Solicitation(NS) for determining the link layer address of a neighbor and ICMP type 136
Neighbor advertisement(NA) for responding to Neighbor Solicitation messages. Figure 3.12
illustrates the path the MEADcast discovery packets take and the interaction of NA and NS
packets between controller, switch and end hosts PC2 and PC3.

Controller

PC1 Switch 1 Switch 2
Switch 3

PC2

PC3

PC4

PC5

discovery response packet

discovery request packet

link between switch and controller

Sender

 Neighbor Solicitation packet

 Neighbor Advertisement packet

Figure 3.12.: MEADcast discovery phase and Neighbor Discovery shown for PC2 and PC3.

The MEADcast packet handler is responsible for handling MEADcast packets. It had to
be implemented because the native RYU packet handler can’t process MEADcast packets.
The MEADcast packet handler detects if it deals with a MEADcast packet by dismantling
the packet into all the headers it is made up of. This means IPv6 header, Hop-by-Hop
extension header, MEADcast extension header and the UDP header. By looking at the next
header field of the Hop-by-Hop header it can determine if it is a MEADcast packet or not.
This happens to be the case if the next header field is 253 or 254. Those two values are used
as experimental code points for the next header field as specified in RFC 4727 [Fen06].

The packet handler will then look after the discovery and response bit in the MEADcast
extension header to determine if it is a discovery request req() packet or a data delivery
packet. If the former is the case, the packet handler floods out a NS packet for the destination
addresses encoded in req() to all switches. If a NA packet confirms the presence of the
destination, a discovery response res() packet will get sent back to the source of the req().
The controller will save the destination IP address and the MAC address parsed from the
NA packet in a dictionary ndp cache db. Additionally the responsible switch and the port
where that NA packet originates from are added to ndp cache db.

28

3.2. Implementation of MEADcast on the topology

Controller

PC1 Switch 1 Switch 2 Switch 3

PC2

PC3

PC4

PC5

unicast packet

MEADcast data delivery packet

link between switch and controller

Sender

Figure 3.13.: MEADcast data delivery phase in SDN

If the packet is a MEADcast data delivery deli() packet, the packet handler will parse
out all the necessary information from the MEADcast extension header. They consist of the
destination bitmap, router bitmap and all destinations and ports encoded in the MEADcast
header. By comparing the destination bitmap with the router bitmap it can determine the
destination addresses the controller is responsible for. The packet handler then parses out the
payload from the deli() packet and constructs a IPv6 packet with an Ethernet frame for the
intended receivers. The MAC address needed for the Ethernet frame is saved in ndp cache db.
The packet handler then sends out an OpenFlow packet to the switch associated with that
IP address by looking it up in ndp cache db. The packet contains the Ethernet header and
the IPv6 as data and instructions about which port it needs to forward the data to.

29

3. Analysis and prototype design

sender sends MEADcast packet
to border switch

border switch sends
MEADcast packet to controller

controller checks if it is a
MEADcast packet

if true else

if discovery request
packet req()

controller decomposes req() and
looks for the intended destination

IP address

controller checks if
 destination address is

in ndp_cache_db
already

if true ndp_cache_db is a dictionary
data structure.It contains
information about IPaddresses
in the SDN, their MAC
addresses,and the switches they
are connected to.

controller generates a MEADcast
discovery response packet resp()

controller floods all switches with
ICMP type 135 packets for the

destination address encoded in req()

switch sends out ICMP type 135
packet on all of its ports

host sends ICMP type 136
packet back to the sender

 of the ICMP type 135 packet

switch sends ICMP type 136
packet to controller

controller does
nothing

controller checks type 136 packet
and checks if it is from

corresponding destination address

if ICMP type
136 packet

if IP address in
ndp_cache_db
already

else

controller sends resp
back to sender of req()

if true

controller stores MAC
address, responsible switch
and port for IP address in

ndp_cache_db

else

else

else

controller does
nothing

controller decomposes deli() and looks
for router bitmap, destination bitmap,

destination IP addresses, UDP
destination ports and the payload.

if data delivery
packet deli()

controller checks which destinations
it is responsible for and generates

unicast packets with the payload and a
corresponding Ethernet frame for

each receiver.

controller looks up ndp_cache_db
to find out the responsible switch for
each receiver and injects the packet
into that switch with instructions on

 which port the switch needs to send
the packet out.

switch forwards the packet
to the port

host receives unicast packet

Figure 3.14.: Controller activity diagram for MEADcast packets handling

30

4. Design of the Experiments and
Deployment of MEADcast in SDN

To test the implementation it is required to conduct meaningful experiments.The main goal
is to gain knowledge about the practicality and efficiency of the deployed MEADcast im-
plementation in SDN. The tested topologies are described and the experiments explained in
this chapter.

4.1. Tested Topologies

The experiments are tested on two different SDN topologies:

Controller

PC1 R1 R2 R3

PC2

PC3

PC4

PC5

1

2

3 1

2
3

4

1
2

3

data network: 2001:db8xxxxxx

2001:db8::1701

::6701 ::2801

::3801 ::5901

::4901

management network : 192.168.0.y

Figure 4.1.: Tested topology 1.

The first topology (Figure 4.1) is relatively small and consists of one sender PC1, three
switches R1, R2 and R3, one controller and four receivers PC2, PC3, PC4 and PC5. The
dotted lines, between R1, R2, R3 and the controller indicate the virtual bridge used for
management between the controller and the three network switches.

The second topology (Figure 4.2) is larger. It has seven switches R1 . . . R7, three routers
R8, R9 and R10, one sender PC1, one controller and nine receivers. The dotted lines between
R7, R8 and R9 indicate the virtual bridge used for management, linking the controller and
all the network devices. It should be noted however that every switch is connected to the
controller in that manner.

31

4. Design of the Experiments and Deployment of MEADcast in SDN

R1 R2

R3 R4

R5 R6

R7 R8

R9

R10

PC1

PC2t

PC3 PC4

PC5 PC6

PC7 PC10

PC9

PC8

Controller con0

1

1

1

1

1

1

1

1

1

1

2
2

2

2

2

2

2

2

3

3
3

3

3

3

3

4

5

4

5

3

fc00::1

fc00::2

fc00::3 fc00::4

fc00::5 fc00::6

fc00::8

fc00::7

fc00::9

fc00::10

4

3 5

0 4

management network: 192.168.0.x

Figure 4.2.: Tested topology 2.

4.2. Experiment parameters

In order to find out significant differences between MEADcast in SDN and unicast in SDN,
it is important to first look at a variety of available parameters and discuss whether they
are relevant for the main goal or not.

Number of distinct MEADcast sessions

The number of distinct MEADcast sessions can have an influence on the overall performance
of MEADcast. Depending on the implementation the controller might get overwhelmed if it
has to process a high quantity of MEADcast packages. Possible observations of this could
include latency or speed issues when it comes to the data delivery via MEADcast. This
parameter however is not included in the experiments, because it might take a large number
of simultaneous sessions to show a significant change in performance.

Amount of differing topologies tested

The keyword here is differing. Topologies itself can have a lot of parameters themselves,
that when changed have a massive impact on the performance. Size, amount of controllers,
amount of connections between switches or even the physical distance of the controller to
the SDN are parameters that change how MEADcast or unicast perform on the topology.
Therefor, this is a important parameters that can be included.

32

4.2. Experiment parameters

Payload size

Maximum amount
of entries in address list

Amount of differing topologies tested
Number of distinct MEADcast sessions

Support of the protocol
 in the network

Amount of participants

2

1MB

5MB

100MB

500MB

1GB

...

100%
75% 50%

25%

1

2

5

10

...

2
4

8
16

32
64

1

2

3

5

...

4

8

16

64
...

32

Figure 4.3.: A selection of possible testable experiment parameters.

Maximum amount of entries in address list

The number of destinations can also affect the overall performance of the protocol since
changing the amount of entries also changes the remaining available space for the payload.
The path maximum transmission unit for example could limit the size of the MEADcast
packet.

If the packet size itself is limited to a smaller size, it might not make sense to take address
the full 64 receivers. As more entries get added to the MEADcast header, the IP destination
address fields reserve a higher percentage of the maximum packet size. This leaves less space
for the payload and might lead to high header overhead. It is a experiment parameter that
can be used to directly influence the performance of the protocol and show how it might
perform under non ideal situations.

Payload size

Payload size can be used in different ways. If experiments are conducted with varying payload
sizes it is possible to directly measure the impact the of itself on MEADcast and unicast.
If used as a constant it is helpful in determining changes of other variables. An example
for that would be to send a 500 MB file from one sender to 10 receivers via MEADcast and
unicast and then measure the amount of time it takes for both to finish sending the file.

Amount of participants

There can be a small or large amount of entities that take part of the experiment. This
affects the performance of both MEADcast and unicast and can show if one of them gets
affected more by an increased amount of participants than the other. Since this is one of
the easiest experiment parameters to change, it is included in the experiment.

33

4. Design of the Experiments and Deployment of MEADcast in SDN

Support of the protocol in the network

This is a good parameter to see if the percentual increase in network support for MEADcast
results in the same percentual increase or decrease of performance.

Bandwidth load of the link to the controller

Albeit very specific this is one of the most important ones. Since the controller handles every
MEADcast packet in the network it needs to be able to handle all incoming and outgoing
MEADcast traffic. The effects of this parameter can be observed by either reducing or
increasing the bandwidth of the controller itself or by increasing the MEADcast traffic and
as a result the load on the link.

4.3. Design of the Experiments

Payload size

1MB

5MB

100MB

500MB

1GB

...

The number of participants

Bandwidth load on the link to the controller

2

4

8

16

32

...

No Load

Medium Load

Maximum Load

Overload

Figure 4.4.: Selected parameters for the experiments.

The experiments have been performed within the space of the selected parameters. Both
unicast and MEADcast have been tested with different payload sizes and on topologies with
different amount of participants. The standard speed at which the sender sends out his
data is 5 KB/s. Different values however are tested to evaluate the reliability of MEADcast
under heavy load compared to unicast. In each experiment PC1 will act as the sender and
all remaining end hosts as receivers.

The following experiments are performed on each topology:

1. A 10 MB file is sent from the sender to every receiver in the topology via MEADcast.

2. A 100 MB file is sent from the sender to every receiver in the topology via MEADcast.

3. A 10 MB file is sent from the sender to every receiver in the topology via unicast.

34

4.3. Design of the Experiments

4. A 100 MB file is sent from the sender to every receiver in the topology via unicast

In addition, each one of those experiments is tested with different transfer speeds. 5 KB/s
was chosen as the base speed and the speed was adjusted up or down until the MEADcast
implementation did not drop any more packets. This was done in order to have comparable
results. Topology 1 with four end hosts got tested with transfer speeds of 4.1 KB/s, 5
KB/s, 6.8 KB/s and 10.2 KB/s. The experiments on topology 2 with nine receivers were
conducted with two different speed values: 5 KB/s and 4.1 KB/s, resulting in a total of
eight experiments for topology 2. The values for each topology were chosen based on the
base value of 5 KB/s. If the controller did not drop packets at 5 KB/s the speed would get
increased until packet loss started occurring. If the other case was the true then the speed
was decreased until no more packet loss could be observed.

The experiments are also conducted with varying number of receivers. The experiments
with two and four receivers were done on the first topology, while the experiments with six
and nine receivers were carried out on topology 2. The two receivers in topology 1 are: PC1
and PC2. The six receivers in topology 2 are: PC2, PC3, PC4, PC5, PC6 and PC7.

There are three variables that are worth observing:

• The amount of time t it takes for every receiver in the network to finish receiving the
data

• The total traffic volume v on the network

• The amount of packet loss occurred pl for each experiment

How each of them is measured depends on if the data was sent via MEADcast or unicast.
The time t is measured by comparing the time from when the sender first starts sending

out the data to the time when every receiver has finished receiving the file.
The volume v is measured with the help of wireshark. Wireshark provides us the in-

formation about the path the packet takes to reach the destination and the packet sizes.
Calculating v for unicast is fairly simple. We observe the path the packet takes from the
sender to the receiver and count the amount of hops h it takes to reach the destination. This
then gets multiplied with the sum of all packet sizes sent out ps and finally summed up for
each receiver r.

v =

r∑
r=1

(h ∗
∑

ps) (4.1)

The traffic volume of MEADcast is calculated slightly different, the additional overhead of
the MEADcast protocol header and OpenFlow header have to be taken into consideration.
Since the discovery phase only takes up a small amount of total volume it will be ignored.
The steps and headers for the transmission of a single packet are as follows:

1. Sender S sends out a MEADcast data delivery packet M with the data d to the router
R. The packet can be depicted as: M(d)

2. R can not process the MEADcast packet and encapsulates the packet with an Open-
Flow header OF. R proceeds to send it to the controller C for further processing. The
current packet: OF (M(d)).

35

4. Design of the Experiments and Deployment of MEADcast in SDN

3. C receives the OpenFlow packet and handles the MEADcast packet inside it. C then
sends out an OpenFlow packet containing a unicast packet U with the data to the
switch that is responsible for the end host it is responsible for.the unicast packet (U(d)
is a simple IPv6 packet containing the data from the MEADcast packet. The OpenFlow
packet contains instructions for the switch on which port it needs to forward the packet
to. The packet from C to the responsible switch looks like this: OF (U(d)).

4. The responsible switch receives OF (U(d)) and forwards the data in that OpenFlow
packet, in this the unicast packet U(d) according to the instructions in the OpenFlow
header.

5. The receiver receives U(d) and has no problems processing it, since it is an IPv6 packet.

This is specific to the topologies used in this thesis, as the sender is only one hop away from
the border switch.

The total traffic for the MEADcast experiments is calculated as follows:

v = p1 +

x∑
x=1

r ∗ p2 (4.2)

where :

• x stands for the amount of packets sent from the sender to the router

• p1 stands for the sum of the packet sizes from step 1 and 2

• r stands for the amount of receivers specified in the MEADcast packet

• p2 stands for the sum of the packet sizes from step 3 and 4

Packet loss pl is measured by summing up the amount of packets received by the receiver
pr and dividing it by the sum of packets sent by the sender ps

pl =
pr

ps
(4.3)

36

5. Results and Evaluation

This chapter shows the results of the performed experiments and the evaluation of those
results.

Table 5.1.: Time to finish transmitting file in seconds

Receivers File size Speed Unicast MEADcast Difference in %

2 100 MB 4.1 480 162 296

4
10 MB 5 846 214 394
100 MB 5 8658 2094 403

4
10 MB 5 846 214 394
100 MB 5 8658 2094 403

4
10 MB 6.8 636 160 398
100 MB 6.8 6293 1592 395

4
10 MB 10.2 21% packet loss 420 -
100 MB 10.2 20% packet loss 4219 -

6 100 MB 4.1 1560 260 600

9
10 MB 4.1 260 2458 920
100 MB 4.1 2701 25902 958

9
10 MB 5 23% packet loss 1893 -
100 MB 5 22% packet loss 19201 -

Table 5.1 shows the amount of time it took for both unicast and MEADcast to finish
transmitting a file. A file is considered transmitted once every receiver in the topology has
received the file. The lower it takes to finish the better. Receivers is the amount of hosts
that are addressed in the MEADcast header and Speed indicates the speed at which the
sender sends out MEADcast packets in KB/s. Difference in % is calculated by dividing the
speed of unicast by the speed of MEADcast. The packet loss is calculated with formula 4.3
and by counting the amount of packets received by each receiver and the amount of packets
sent by the sender.

While MEADcast might look superior to unicast, that might not be the case for MEADcast
in OpenFlow SDN. That very fact can be seen in Table 5.1. If the speed at which the sender
is chosen high enough the controller won’t be able to process all the packets which will in
turn result in packet loss. As a result, there will be cases in this specific implementation
where using unicast instead of MEADcast will improve reliability when it comes to packet
transmission. Unicast is more reliable in every case where packet loss for MEADcast starts
occurring. This means at around 9-10 KB/s for topology 1 and 4-5 KB/s for the topology
2.

There are several possible reasons why the packet loss is present under those conditions:

37

5. Results and Evaluation

0 2 4 6 8 10
0

500

1,000

1,500

2,000

2,500

Receivers

T
im

e
to

tr
a
n
sm

it
a
f
il
e

MEADcast
unicast

Figure 5.1.: Time it takes for MEADcast and unicast to finish transmitting a file.

• One that can never be ignored is the implementation of the MEADcast controller itself.
Inefficient code may result in those packets being lost. The way to determine it, is to
monitor where the packet loss occurs. If there is no packet loss between the sender and
the controller, but packets get lost between the controller and the receiver, the fault
most likely lies in the controller itself. In the case of this implementation, the packet
loss occurs before the controller and thus the controller as the source of packet loss
can be ruled out.

• UDP by design can result in packet loss. It is however impossible to use TCP as an
alternative. MEADcast is a one-to-many communication and TCP requires a one-to-
one handshake to synchronize sequence numbers to avoid packet loss. This can not
be done with multiple receivers. That means that by using MEADcast packet loss is
inevitable.

• The last and most likely reason could be the connection between the controller and
the switches themselves. A feature of SDN is that the control plane is decoupled from
the data plane, meaning that the controller itself can be physically disconnected from
the switches. The only requirement is that they are able to communicate via IP. That
means that the connection that was originally meant to be used for management only
can be the cause of the lost packets, because it is being used to handle the MEADcast
traffic of the entire network. This brings further implications in regards to other issues
like practicality and reliability if this is the case. A heavy load could compromise
the functionality of other tasks and applications, that rely on the connection between
the controller and switch. There is no other way to implement MEADcast in SDN
with OpenFlow, because OpenFlow and open vSwitch in their current form limit the
capabilities of the switches.

On the contrary if MEADcast works it has performance advantages when compared to
unicast. When comparing the observed performance indicators time to finish transmitting
the file and total traffic volume, MEADcast performs better the more receivers are present.

38

The performance difference can be explained by the implementation and the design of the
experiment itself. Since the topologies are deployed on virtual machines the latency between
every switch and controller is almost non existent. This means, that a packet that would
traditionally pass through several dozen switches in the topology via unicast can bypass that
restriction with the use of MEADcast.

The transmission time for a MEADcast packet in this implementation can be described
as:

Transmission time =
∑

Tpsb + Tpbc + Tpcs + Tpsr

One MEADcast packet with n encoded receivers, the maximum value for n being 64 in
this case, can send data to the intended destination in a maximum of a+n*2 hops, regardless
of the internal SDN topology. The variable a is the amount of hops needed from the sender
to the border switch. Unicast however has to traverse every hop in the topology to reach
the receiver. This results in a scenario where MEADcast in SDN becomes more efficient the
larger and more complex the topology becomes. There is a trade off however, this puts the
majority of the load on the link between the controller and switches. Considering that all
switches and the controller are deployed on the same physical machine as virtual machines,
the latency between them is extremely low. As this might not be the case in practice, a more
realistic experiment would have the controller be located in a physically different location,
resulting in more realistic numbers.

Table 5.2.: MEADcast packet sizes for each hop in bytes

r psb pbc pcs psr p1 p2 avg uni

2 1174 1174 1192 1086 2456 2278 1204 1086

4 1214 1322 1192 1086 2536 2278 1476 1086

6 1246 1353 1192 1086 2600 2278 1184 1086

9 1302 1410 1192 1086 2712 2278 1220 1086

Another fact that can not be ignored is the speed at which the sender sends the packets
out itself. Since the Figure 5.1 only shows the transmission times for the speed, at which the
the MEADcast implementation does not drop packets, it is very biased towards MEADcast.
Unicast is capable of sending data way above the speed at which no packet loss for MEADcast
occurs. If the OpenFlow switch were able to handle MEADcast packets themselves, the
aforementioned problems would not occur, because the controller would only be responsible
for management activities. This would reduce the load on the link between the switches and
the controller and would most likely eliminate the need to throttle the speed at the sender
side.

Explanation of the column headers in Table 5.2:

• r stands for the amount of receivers in the topology.

• psb stands for the MEADcast packet sent from the sender to the border switch.

• pbc stands for the OpenFlow packet sent from the border switch to the controller.

• pcs stands for the OpenFlow packet sent from the controller to the switch responsible
for the receiver.

39

5. Results and Evaluation

0 2 4 6 8 10
1,000

1,100

1,200

1,300

1,400

1,500

Receivers

A
v
er
a
g
e
p
a
ck
et
si
z
e
in

by
te
s MEADcast

unicast

Figure 5.2.: Average packet sizes of MEADcast and unicast depending on the amount of
receivers

• psr stands for the IPv6 packet sent from the switch to the receiver.

• p1 the sum of psb and pbc.

• p2 is the sum of pcs and psr.

• avg is the average of psb, pbc,pcs and psr. It is the average MEADcast packet size.

• uni is the unicast payload size in bytes. It is added for reference.

The variables r, p1 and p2 are used in formula 4.2 to calculate the traffic volume of the
MEADcast experiments.

Table 5.3.: Total traffic volume on the network in MB

of receivers File size Unicast MEADcast Difference in %

2 100 636 684 92

4 100 1484 1137 130

6 100 2545 1588 160

9 100 4030 2266 177

Difference in % is calculated by dividing the unicast traffic volume by the MEADcast
traffic volume.

40

0 2 4 6 8 10

1,000

2,000

3,000

4,000

5,000

Receivers

T
ot
a
l
tr
a
f
f
ic

v
ol
u
m
e
in

M
B MEADcast

unicast

Figure 5.3.: Total traffic volume depending on the number of receivers.

Another performance indicator to look at is the total traffic volume as depicted in Table
5.3 or illustrated in Figure 5.3. This performance indicator is much more significant than
the transmission time, because it does not get affected by the slower packet transmission
speed. The only variables that affect this are the amount of hops it takes for the sender to
reach each receiver and the amount of receivers encoded in the MEADcast header. This is
important because the higher the amount of receivers, the more addresses need to be encoded
in the header, resulting in a larger header size. This can be seen in Table 5.2 and Figure
/refpacketsize, where the MEADcast has a higher overall packet size than unicast. Although
MEADcast packets grow in size with larger number of receivers, it has barely any effect on
the total traffic volume. The bigger and more complex the topology, the better MEADcast
performs. The only exception to this are cases where the number of receivers is so small and
the topology so simple, that using MEADcast would result in a higher total traffic volume.
This can be seen in Table 5.3, where MEADcast performs worse than unicast. Since both
MEADcast and unicast require a total of six transmission to transfer the data in this case,
the larger packet size of MEADcast results in a higher total traffic volume.

Link stress is another factor. It can be defined as the number of packets with identical
payload sent by a protocol over each link in the network from sender to the receiver. The
average amount of link stress is naturally lower for MEADcast close to the sender. This is
because MEADcast by design only duplicates packets when needed, instead of duplicating
the packet for each receiver at the sender like unicast.

41

6. Conclusion and Future Work

6.1. Conclusion

Both Software-Defined Networks and MEADcast offer advantages that can’t be overlooked.
SDN decouping the data plane from the control plane enables easier deployment of applica-
tions on the control plane. This eases the implementation and evaluation of new protocols
like MEADcast in SDN.

By implementing MEADcast in SDN and comparing it to unicast the advantages and
disadvantages of MEADcast in OpenFlow SDN are shown. This was done by implementing
both a MEADcast traffic generator and a controller capable of handling MEADcast traffic
and deploying them both on a SDN.

While the transmission speed is a lot faster than unicast, this is only true when the speed at
which the sender sends the data is throttled to a point, where the MEADcast implementation
does not drop any packets. As the speed does not even break 10 KB/s in a topology with
as little as four receivers, the practicality of MEADcast in current OpenFlow SDN can be
described as very limited.

The total traffic volume of MEADcast and unicast display results independent of trans-
mission speed, latency and payload size. The results show, that MEADcast is much more
efficient the more receivers each packet addresses and the more complex the network topol-
ogy is. The only exception can be observed in the experiment with only two receivers, where
the larger MEADcast packet size results in a higher total traffic volume.

6.2. Future Work

There is certainly still a lot of work to be had when it comes to MEADcast in SDN or
multicast in SDN in general. The thesis only explored a small subset of possible parameters
and left many options open. A direction this topic can take in the future is to explore different
implementations of MEADcast in SDN. One could argue that using OpenFlow itself is too
restrictive since manipulating the flow table and flow entries can only achieve so much in
OpenFlow switches. There are more options left to explore however. P4 Programming
[BDG+14] for example takes a more direct approach on switches that could be beneficial
for future MEADcast in SDN development. P4 is designed to program the switch behavior
itself. Giving the switches more ways to interact with incoming packets can ease the work,
the controller has to do in this implementation. This could also solve the other problems
encountered during the deployment of MEADcast in OpenFLow SDN.

While testing the implementation on virtual machines is a step up from using network
simulators like ns-2, it is still far from actual real machines. A possible continuation of this
thesis could include the testing of the MEADcast protocol on real hardware. This could
include having the controller be physically detached from the rest of the network or have a
varying amount of MEADcast capable switches and routers in the network.

42

A. Appendix

A.1. Creating the test environment and topologies

This section describes the process how the topologies got set up for the thesis.

A.1.1. Topology

Xen Project1 is used to create the topologies in a virtual environment. Each topology can
be created by following the instructions in:

https://wiki.xenproject.org/wiki/Xen Project Beginners Guide
To create a virtual machine:

1 x l c r e a t e <c o n f i g f i l e >

An example controller config file could look like this:

1 # sample c o n f i g u r a t i o n
2 # Xen c o n f i g f o r c o n t r o l l e r . c f g
3 ke rne l = ’/ boot /vmlinuz −3.16.0−4−amd64 ’
4 ext ra = ’ e l e v a t o r=noop ’
5 ramdisk = ’/ boot / i n i t r d . img−3.16.0−4−amd64 ’
6 vcpus = ’1 ’
7 memory = ’256 ’
8 maxmem = ’384 ’
9 root = ’/ dev/xvda1 ro ’

10

11 d i sk = [’ f i l e : / xen/domains/ c o n t r o l l e r / d i sk . img , xvda1 ,w’]
12

13 name = ’ c o n t r o l l e r ’ #change t h i s
14

15 # This pc has 2 i n t e r f a c e s , the f i r s t one i s f o r the l i n k to the host , the second one connects i t to a second v i r t u a l machine (another switch in t h i s case)
16 # Change acco rd ing ly
17 v i f = [
18 ’mac=00:16:3E: 0 0 : 0 0 : 0 6 , vifname=c v i f 0 , br idge=br man ’ ,
19 ’mac=00:16:3E : 0 0 : 6 7 : 0 1 : , vifname=c v i f 1 , br idge=br r1c ’ ,
20]
21

22 on powero f f = ’ destroy ’
23 on reboot = ’ r e s t a r t ’
24 on crash = ’ r e s t a r t ’

It is now possible to access each via SSH from the host machine.
1https://xenproject.org/

43

A. Appendix

A.1.2. Controller

To install Ryu on the controller machine, pip can be used:

1 pip i n s t a l l ryu

The default directory for Ryu is:

1 / usr / l o c a l / l i b /python2 .7/ d i s t−packages / ryu/

and contains several example and learning ryu applications in the /app folder.

A.1.3. Switches

A good tutorial for installing openVswitch can be found here:

https://docs.openvswitch.org/en/latest/tutorials/faucet/

To install Open vSwitch on the machines meant to be used as switches, use the following
command:

1 apt−get i n s t a l l openvswitch−switch

To create a new switch (bridge) named br0, the following command should be used:

1 ovs−v s c t l add−br br0

To ease the readability of the switch datapath ID the following command can be used to
change it:

1 ovs−v s c t l s e t br idge br0 other−c o n f i g : datapath−id =0000000000000001

To connect it to the controller:

1 ovs−v s c t l set−c o n t r o l l e r br0 tcp : 1 9 2 . 1 6 8 . 0 . 6 : 6 6 3 3

192.168.0.6 is the IP adress of the controller in this case, 6633 the default TCP port for
ryu controllers.

Depending on the amount of virtual interfaces on the switch, it might be needed to repeat
the following command for each interface:

1 ovs−v s c t l add−port br0 eth0

This adds the port eth0 to br0.

Sometimes it might be necessary to bring up the newly created interface:

1 ip l i n k s e t br0 up

To set the used OpenFlow version to 1.3:

1 ovs−v s c t l s e t Bridge br0 p r o t o c o l s=OpenFlow13

The following command can be used to see an overview of the bridges on the switch:

1 ovs−v s c t l show

It should return something like this:

44

A.2. User Manual for Deploying and Testing MEADcast in SDN

1 root@router3 :˜# ovs−v s c t l show
2 be7b83da−88f5 −46ce−aadf−e530a03c219d
3 Bridge ”br3”
4 C o n t r o l l e r ” tcp : 1 9 2 . 1 6 8 . 0 . 6 : 6 6 3 3 ”
5 f a i l mode : s tanda lone
6 Port ”br3”
7 I n t e r f a c e ”br3”
8 type : i n t e r n a l
9 Port ” eth1 ”

10 I n t e r f a c e ” eth1 ”
11 Port ” eth2 ”
12 I n t e r f a c e ” eth2 ”
13 Port ” eth3 ”
14 I n t e r f a c e ” eth3 ”
15 o v s v e r s i o n : ” 2 . 6 . 2 ”
16 root@router3 :˜#

A.2. User Manual for Deploying and Testing MEADcast in SDN

This section shows the components used for the experiments in the thesis and how they are
deployed on the virtual machines.

A.2.1. Components

These applications and files are the components deployed on the virtual machines and are
to be used with python 2.7:

• mc functions.py

• mc file sender.py

• mc controller.py

• udp file sender.py

• udp file receiver5005.py and udp file receiver5006.py

• ndp.py

mc functions.py is a python file that contains functions related to crafting MEADcast
packets. It gets imported and used by both mc file sender.py and mc controller.py

mc file sender.py is the application that generates traffic on the sender machine. It has
two functions. The first one sends out MEADcast discovery request packets and the other
one waits for MEADcast discovery response packets, generates the topology viewpoint and
sends data to all the receivers.

mc controller.py is an application that acts as a controller in a SDN. It only handles
MEADcast packets and packets related to the Neighbor Discovery Protocol (NDP).

45

A. Appendix

udp file sender.py is a simple application that sends a file to a list of receivers via
unicast.

udp file receiver5005.py and udp file receiver5006.py are both applications that
are run on the receiver machines. udp file receiver5005.py listens on UDP destination
port 5005 and is used for MEADcast testing while udp file receiver5006.py uses UDP
destination port 5006 and is used for unicast testing. udp file receiver5006.py is being
used to avoid the flow installed on every switch, that sends every packet with UDP destina-
tion port 5005 to the controller. An alternative to avoid that flow, would be to delete every
installed flow on all switches, before testing with unicast packets.

ndp.py is the NDP application written by Cuong Ngoc Tran and is used to transmit
unicast packets. It acts as the controller and installs flows on the switches. It is used instead
of simple switch 13.py provided by RYU, because it can handle the loops in topology 2.

A.2.2. Sending and receiving MEADcast packets

To transmit data it is necessary to first run mc controller.py on the controller machine:

1 ryu−manager m c c o n t r o l l e r . py −−observe−l i n k s

–observe-links is necessary for the controller, to view the links between the switches.

For every host that wants to receive the data sent via MEADcast, it is necessary to run this
command on every receiving host machine:

1 python u d p f i l e r e c e i v e r 5 0 0 5 . py

This application will receive unicast packets and listens on UDP destination port 5005.
It tracks the time it takes to finish the file transmission and the total size of all received
packets at the end, and prints them out in the console.

It will look like this while receiving packets:

1 packet number : 1 with packet l ength : 1024
2 t o t a l f i l e s i z e : 1024 cur rent time : 0 .0023552
3 packet number : 2 with packet l ength : 1024
4 t o t a l f i l e s i z e : 2048 cur rent time : 0 .0042721
5 . . .

Once no more packets arrive it will save the file with a randomly generated name in a
subfolder named /filedump

1 packet number : 1023 with packet l ength : 1024
2 t o t a l f i l e s i z e : 1048576 cur rent time : 15.3281741142
3 f i n i s h e d with : sxxbi . jpg
4 f i l e can be found in f i ledump / sxxbi . jpg

For MEADcast file transmission, the latest current time printed is the time it took for the
file transmission to finish.

The sender has to start udp file sender.py twice with different parameters. The first
instance listens to discovery response packets and sends the data:

46

A.2. User Manual for Deploying and Testing MEADcast in SDN

1 python m c f i l e s e n d e r . py senddata < argument1> < argument2>

where < argument1 > is the name of the file that is intended to get sent. < argument1 >
can be any file as long as it is in the same directory as the application. This instance will
wait for discover response packets. It will build the topology viewpoint after every incoming
discovery response packet and will start sending out the data, once 5 seconds have passed
after the last discovery response packet.

The second argument < argument2 > is the delay in seconds between between each packet
that is being sent. It is being used to regulate the speed at which the sender sends out the
packet. A value of 5 translates to 1 packet being sent every 5 seconds, while a value of 0.02
results in 50 packets being sent out per second.

Once the application has been started it will keep printing out:

1 s t i l l empty , cont inue

as long as no MEADcast discovery response packets have been received.
To send the discovery request packets to each receiver:

1 python m c f i l e s e n d e r . py sendd i s co < argument1>

where < argument1 > is the amount of receivers that the sender wants to send discovery
request packets to. Currently 2, 4, 6 and 9 can be chosen as arguments. 2 and 4 only work
for topology 1, while 6 and 9 only work on topology 2.

To create a file with a size of 10MB:

1 dd i f =/dev/ zero o f=10MB. txt count=10 bs =1048576

To start sending the file 10MB.txt from pc1 to 4 receivers, with a delay of 0.02 seconds,
the commands on pc1 would look like this:

1 python m c f i l e s e n d e r . py senddata 10MB. txt 0 .02
2 python m c f i l e s e n d e r . py sendd i s co 4

The first instance of mc file sender.py should print out something similar to this, whenever
a new response packet is received.

1 d i s cove ry response packet in
2 [‘ 2 0 0 1 : db8 : : 7 8 0 7 ’ , ‘ 2001 : db8 : : 2 8 0 1 ’ , 2001 : db8 : : 3 8 0 1 ’]
3 [1 , 0 , 0]
4 [1 , 0 , 0]
5 [0 , 5005 , 5005]

The internal topology view point will be updated with every new response packet and
after a few seconds of not receiving any more packets the application will start sending out
MEADcast packets.

47

A. Appendix

A.2.3. Sending and receiving unicast packets

In order to send unicast packets, it is required to start ndp.py instead of mc controller.py
on the controller machine.

1 ryu−manager ndp . py −−observe−l i n k s

To start the application that receives can receive data on the receiver host machines:

1 python u d p f i l e r e c e i v e r 5 0 0 6 . py

This application listens on UDP port 5006 for incoming packets and behaves the same way
as the application that listens for MEADcast packets on port 5005. To measure the time
it takes for finish the file transmission via unicast, it is necessary to wait until all receivers
finished the file transmission. Once this has been done then, the time on all receivers is
added together to get the end result.

An unicast file transmission to two receivers for example could yield:

1 packet number : 1023 with packet l ength : 1024
2 t o t a l f i l e s i z e : 1048576 cur rent time : 14.9236232882
3 f i n i s h e d with : snoos . jpg
4 f i l e can be found in f i ledump / snoos . jpg

1 packet number : 1023 with packet l ength : 1024
2 t o t a l f i l e s i z e : 1048576 cur rent time : 15.0228192921
3 f i n i s h e d with : a l i s s . jpg
4 f i l e can be found in f i ledump / a l i s s . jpg

The time it took to finish the transmission would be :
14.9236232882 s + 15.0228192921 s = 29.9464425803 s

To start sending unicast packets from the sender:

1 python u d p f i l e s e n d e r . py < argument1> < argument2> < argument3>

The first argument < argument1 > is the amount of receivers the sender wants to address.
Available options are 2, 4, 6 and 9. 2 and 4 only work for topology 1, while 6 and 9 only
work for topology 2.

The second argument < argument2 > is the name of the file.
The third argument < argument3 > is the delay in seconds between each packet that is

being sent. It is being used to regulate the speed at which the sender sends out the packet.
A value of 5 translates to 1 packet being sent every 5 seconds, while a value of 0.02 results
in 50 packets being sent out per second.

If the sender wants to send the file 10MB.txt to 4 receivers in topology 1, with a speed of
100 packets per second (delay of 0.01), the command would look like this:

1 python u d p f i l e s e n d e r . py 4 10MB. txt 0 .01

48

A.2. User Manual for Deploying and Testing MEADcast in SDN

A.2.4. Measuring the packet sizes and traffic volume

In order to find out the packet sizes between each link, any packet sniffer or monitoring
application can be used. Wireshark was used in this thesis.

To install wireshark on your Ubuntu host machine:

1 sudo apt i n s t a l l w i reshark

It might be required to update the APT package repository before with:

1 sudo apt update

Wireshark must be started with root privileges:

1 sudo wireshark

After wireshark has been started, a list with all interfaces and links will show up. Double
click the link that is to be monitored, for example pc1 vif1 for topology 1. This interface
connects the sender pc (pc1) to the first switch. Wireshark will capture all the packets on
pc1 vif1.

If for example

1 python u d p f i l e s e n d e r . py 4 10MB. txt 0 .01

Figure A.1.: Wireshark packet capturing.

has been used to send MEADcast packets, the captured packets in wireshark will show up
as depicted in (Figure A.1)

The length of the packet is 1214 in this case and the payload length is 1024. Additionally it
is possible to measure the total amount of packets sent over that link by going to Statistics -
Ipv6 Statistics - All Addresses in Wireshark. This can be used to calculate the total amount
of traffic on the link. By observing all links that way it is possible to measure the total
traffic volume.

49

A. Appendix

Figure A.2.: Wireshark traffic volume on a single link

50

List of Figures

1.1. Example of the Internet domain structure [CDZ97] 2

2.1. Traditional network architecture [KRV+15]. 5

2.2. SDN network architecture [KRV+15]. 5

2.3. OpenFlow communication between the controller and OpenFlow switch [Cis]. 6

2.4. MEADcast packet headers[TD18] . 11

2.5. Data transmission in a topology with full MEADcast support. 14

2.6. Network topology from sender viewpoint after receiving the first three re-
sponse packets. 16

2.7. Network topology from sender viewpoint after receiving four response packets. 17

2.8. Final topology view from sender viewpoint after receiving all response packets. 17

3.1. Simple SDN scenario. 18

3.2. Unicast transmission with flows already installed on switches 19

3.3. Ideal MEADcast data delivery in a SDN. 20

3.4. Naive MEADcast implementation in a SDN. 20

3.5. Chosen approach for deploying MEADcast in a SDN. 21

3.6. Example SDN with three receivers . 21

3.7. Network topology from sender viewpoint after receiving the three response
packets. 22

3.8. MEADcast traffic generator - topology discovery phase. 24

3.9. MEADcast traffic generator - delivery phase. 25

3.10. MEADcast packet crafter activity diagram. 26

3.11. MEADcast traffic generator activity diagram - discovery phase and delivery
phase . 27

3.12. MEADcast discovery phase and Neighbor Discovery shown for PC2 and PC3. 28

3.13. MEADcast data delivery phase in SDN . 29

3.14. Controller activity diagram for MEADcast packets handling 30

4.1. Tested topology 1. 31

4.2. Tested topology 2. 32

4.3. A selection of possible testable experiment parameters. 33

4.4. Selected parameters for the experiments. 34

5.1. Time it takes for MEADcast and unicast to finish transmitting a file. 38

5.2. Average packet sizes of MEADcast and unicast depending on the amount of
receivers . 40

5.3. Total traffic volume depending on the number of receivers. 41

A.1. Wireshark packet capturing. 49

51

List of Figures

A.2. Wireshark traffic volume on a single link . 50

52

Bibliography

[BBK02] Banerjee, Suman ; Bhattacharjee, Bobby ; Kommareddy, Christopher:
Scalable application layer multicast. ACM, 2002

[BDG+14] Bosshart, Pat ; Daly, Dan ; Gibb, Glen ; Izzard, Martin ; McKeown,
Nick ; Rexford, Jennifer ; Schlesinger, Cole ; Talayco, Dan ; Vahdat,
Amin ; Varghese, George ; Walker, David: P4: Programming Protocol-
independent Packet Processors. In: SIGCOMM Comput. Commun. Rev. 44
(2014), Juli, Nr. 3, 87–95. http://dx.doi.org/10.1145/2656877.2656890.
– DOI 10.1145/2656877.2656890. – ISSN 0146–4833

[BF01] Boivie, Dr. Richard H. ; Feldman, Nancy: Small Group Multicast
/ Internet Engineering Task Force. Version: Februar 2001. https://

datatracker.ietf.org/doc/html/draft-boivie-sgm-02. Internet Engi-
neering Task Force, Februar 2001 (draft-boivie-sgm-02). – Internet-Draft.
– Work in Progress

[BMK13] Bondan, Lucas ; Müller, Lucas F. ; Kist, Maicon: Multiflow: Multicast
clean-slate with anticipated route calculation on OpenFlow programmable
networks. In: Journal of Applied Computing Research 2 (2013), Nr. 2, S.
68–74

[CDK+02] Cain, Brad ; Deering, Steve ; Kouvelas, Isidor ; Fenner, Bill ; Thya-
garajan, Ajit: Internet group management protocol, version 3. 2002. –
Forschungsbericht

[CDZ97] Calvert, Kenneth L. ; Doar, Matthew B. ; Zegura, Ellen W.: Modeling
internet topology. In: IEEE Communications magazine 35 (1997), Nr. 6, S.
160–163

[Cis] Software-Defined Networks and OpenFlow - The Internet Protocol Jour-
nal, Volume 16, No. 1. https://www.cisco.com/c/en/us/about/

press/internet-protocol-journal/back-issues/table-contents-59/

161-sdn.html,

[Dee89] Deering, Steve: RFC 1112: Host extensions for IP multicasting. 1989

[Enn06] Enns, Rob: NETCONF configuration protocol. 2006. – Forschungsbericht

[Fen06] Fenner, Bill: Experimental Values In IPv4, IPv6, ICMPv4, ICMPv6, UDP,
and TCP Headers. RFC 4727. http://dx.doi.org/10.17487/RFC4727.
Version: November 2006 (Request for Comments)

[Fou12] Foundation, Open N.: OpenFlow Switch Specificationl. 2012. – Forschungs-
bericht

53

http://dx.doi.org/10.1145/2656877.2656890
https://datatracker.ietf.org/doc/html/draft-boivie-sgm-02
https://datatracker.ietf.org/doc/html/draft-boivie-sgm-02
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-59/161-sdn.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-59/161-sdn.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-59/161-sdn.html
http://dx.doi.org/10.17487/RFC4727

Bibliography

[FRZ14] Feamster, Nick ; Rexford, Jennifer ; Zegura, Ellen: The Road to SDN:
An Intellectual History of Programmable Networks. In: SIGCOMM Comput.
Commun. Rev. 44 (2014), April, Nr. 2, 87–98. http://dx.doi.org/10.1145/
2602204.2602219. – DOI 10.1145/2602204.2602219. – ISSN 0146–4833

[Fun12] Fundation, Open N.: Software-defined networking: The new norm for net-
works. In: ONF White Paper 2 (2012), S. 2–6

[GKP+08] Gude, Natasha ; Koponen, Teemu ; Pettit, Justin ; Pfaff, Ben ; Casado,
Mart́ın ; McKeown, Nick ; Shenker, Scott: NOX: towards an operating
system for networks. In: ACM SIGCOMM Computer Communication Review
38 (2008), Nr. 3, S. 105–110

[HD98] Hinden, Bob ; Deering, Dr. Steve E.: Internet Protocol, Version 6
(IPv6) Specification. RFC 2460. http://dx.doi.org/10.17487/RFC2460.
Version: Dezember 1998 (Request for Comments)

[HH06] H. Holbrook, Inc. B. Cain Acopia Networks B. Haberman JHU A. Aras-
tra: Using Internet Group Management Protocol Version 3 (IGMPv3) and
Multicast Listener Discovery Protocol Version 2 (MLDv2) for Source-Specific
Multicast. 2006. – Forschungsbericht

[HPD+15] Haleplidis, Evangelos ; Pentikousis, Kostas ; Denazis, Spyros ; Salim,
Jamal H. ; Meyer, David ; Koufopavlou, Odysseas: Software-Defined
Networking (SDN): Layers and Architecture Terminology. RFC 7426. http:

//dx.doi.org/10.17487/RFC7426. Version: Januar 2015 (Request for Com-
ments)

[IKM14] Iyer, Aakash ; Kumar, Praveen ; Mann, Vijay: Avalanche: Data center
multicast using software defined networking. In: 2014 sixth international con-
ference on communication systems and networks (COMSNETS) IEEE, 2014,
S. 1–8

[KM05] In:Katrinis, Kostas ; May, Martin: 11. Application-Layer Multicast. Berlin,
Heidelberg : Springer Berlin Heidelberg, 2005. – ISBN 978–3–540–32047–0,
157–170

[KRV+15] Kreutz, Diego ; Ramos, Fernando M. ; Verissimo, Paulo ; Rothenberg,
Christian E. ; Azodolmolky, Siamak ; Uhlig, Steve: Software-defined
networking: A comprehensive survey. In: Proceedings of the IEEE 103 (2015),
Nr. 1, S. 14–76

[Lim12] Limoncelli, Thomas A.: Openflow: a radical new idea in networking. In:
Queue 10 (2012), Nr. 6, S. 40

[LLT+17] Lin, Ying-Dar ; Lai, Yuan-Cheng ; Teng, Hung-Yi ; Liao, Chun-Chieh ;
Kao, Yi-Chih: Scalable multicasting with multiple shared trees in software
defined networking. In: Journal of Network and Computer Applications 78
(2017), S. 125–133

54

http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.17487/RFC2460
http://dx.doi.org/10.17487/RFC7426
http://dx.doi.org/10.17487/RFC7426

Bibliography

[MVTG14] Medved, Jan ; Varga, Robert ; Tkacik, Anton ; Gray, Ken: Opendaylight:
Towards a model-driven sdn controller architecture. In: Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014 IEEE, 2014, S. 1–6

[OFI+07] Ooms, Dirk ; Feldman, Nancy ; Imai, Yuji ; Livens, Wim P. ; Boivie, Dr.
Richard H.: Explicit Multicast (Xcast) Concepts and Options. RFC 5058.
http://dx.doi.org/10.17487/RFC5058. Version: November 2007 (Request
for Comments)

[ONF12] ONF: Software-Defined Networking: The New Norm for Net-
works / Open Networking Foundation. Version: April 2012. https:

//www.opennetworking.org/images/stories/downloads/sdn-resources/

white-papers/wp-sdn-newnorm.pdf. 2012. – Forschungsbericht

[RNPCE+15] Rodriguez-Natal, Alberto ; Portoles-Comeras, Marc ; Ermagan, Vina
; Lewis, Darrel ; Farinacci, Dino ; Maino, Fabio ; Cabellos-Aparicio,
Albert: LISP: a southbound SDN protocol? In: IEEE Communications
Magazine 53 (2015), Nr. 7, S. 201–207

[SHYC15] Shen, Shan-Hsiang ; Huang, Liang-Hao ; Yang, De-Nian ; Chen, Wen-
Tsuen: Reliable multicast routing for software-defined networks. In: 2015
IEEE Conference on Computer Communications (INFOCOM) IEEE, 2015,
S. 181–189

[SNNS07] Simpson, William A. ; Narten, Dr. T. ; Nordmark, Erik ; Soliman,
Hesham: Neighbor Discovery for IP version 6 (IPv6). RFC 4861. http:

//dx.doi.org/10.17487/RFC4861. Version: September 2007 (Request for
Comments)

[TD18] Tran, Cuong N. ; Danciu, Vitalian: Privacy-preserving multicast to explicit
agnostic destinations. In: The Eighth International Conference on Advanced
Communications and Computation (INFOCOMP 2018), IARIA XPS Press,
2018, S. 60–65

55

http://dx.doi.org/10.17487/RFC5058
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://dx.doi.org/10.17487/RFC4861
http://dx.doi.org/10.17487/RFC4861

	Introduction
	Challenges of multicast deployment
	Goal and Contributions
	Approach
	Structure

	Background and Related Work
	Software-Defined Networks
	SDN Basics
	SDN Controller - RYU
	Southbound API - OpenFlow

	Multicast Protocols
	IP Multicast
	Explicit Multicast
	Application Layer Multicast
	Multicast in SDN
	MEADcast

	Analysis and prototype design
	Different transmission approaches and prototyping
	Unicast transmission
	Ideal MEADcast transmission
	MEADcast prototype design I
	MEADcast prototype design II

	Implementation of MEADcast on the topology

	Design of the Experiments and Deployment of MEADcast in SDN
	Tested Topologies
	Experiment parameters
	Design of the Experiments

	Results and Evaluation
	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Creating the test environment and topologies
	Topology
	Controller
	Switches

	User Manual for Deploying and Testing MEADcast in SDN
	Components
	Sending and receiving MEADcast packets
	Sending and receiving unicast packets
	Measuring the packet sizes and traffic volume

	List of Figures
	Bibliography

