
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Dezentrale Datenverteilung mit
TPM-basierter Authentifizierung

Sebastian Rehms

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Dr. Nils gentschen-Felde
Tobias Guggemos, M.Sc
Stefan Tatschner, M.Sc. (Fraunhofer AISEC)
Norbert Wiedermann, M.Sc. (Fraunhofer AISEC)

Abgabetermin: 22. Januar 2018

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Dezentrale Datenverteilung mit
TPM-basierter Authentifizierung

Sebastian Rehms

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Dr. Nils gentschen-Felde
Tobias Guggemos
Stefan Tatschner, M.Sc. (Fraunhofer AISEC)
Norbert Wiedermann, M.Sc. (Fraunhofer AISEC)

Abgabetermin: 22. Januar 2018

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 22. Januar 2018

. .
(Unterschrift des Kandidaten)

Abstract

By utilizing the potentials of an interconnected world, a transformation of the industry has
been initiated. Changes issued by the implementation of an Industry 4.0 have impact on the
current production landscape. New requirements for infrastructure, communication and data
exchange are identified. Essential for increasing production efficiency towards more autonomy
is the implementation of these requirements in a secure way. In this interconnected world
reliable data distribution becomes a central factor for secure and economic Industry 4.0. In this
thesis three models are presented to analyze data management and distribution: Information
Groups, Logical Connections and Data Flows. Informational Groups adapt aspects of the
Reference Architectural Model for Industry 4.0 (RAMI 4.0) to propose recursive management
shells as an easy way for transparent data management across companies and production sites.
This work presents a concept along with a proof of concept implementation for a decentralized
approach for data distribution to improve availability. By reusing already available basic
building blocks, the Block Exchange Protocol (BEP) is adapted to this industrial use case.
For further hardening of the underlying cryptographic primitives, Trusted Platform Modules
(TPMs) are included as secure key storage as well as to generate cryptographic keys. As part
of this thesis, the TPM connection is realized by adapting interfaces and libraries to enable
applicability in the context of BEP. This hardening prevents the compromise of private keys.
Recent publications such as Heartbleed, Meltdown, or Spectre emphasize the necessity to
secure sensitive information like private keys.

i

Zusammenfassung

Durch die Potentiale, die die fortschreitende Vernetzung der Welt mit sich bringt, ist eine
Transformation der Industrie angestoßen worden. Die Realisierung von Industrie 4.0 bringt
Änderungen in der gegenwärtigen Produktionslandschaft mit sich. An Infrastruktur, Kommu-
nikation und Datenaustausch werden neue Anforderungen gestellt. Um mehr Produktionsef-
fizienz durch Autonomie zu erzielen, ist es essenziell, diesen Anforerungen auch im Hinblick
auf Sicherheit zu genügen. Die verlässliche Verteilung von Daten in dieser vernetzten Welt
spielt eine zentrale Rolle für eine sichere und ökonomische Industrie 4.0. Die vorliegende
Arbeit präsentiert drei Modelle, um Management und Verteilung von Daten zu analysieren:
Informationsgruppen, logische Verbindungen und Datenflüsse. Das Informationsgruppen-
modell adaptiert Aspekte des Reference Architecture Model for Industry 4.0 (RAMI 4.0),
um rekursive Managementschalen vorzuschlagen, welche eine einfache Möglichkeit bieten,
transparentes Datenmanagement über Standort- und Unternehmensgrenzen hinweg zu real-
isieren. Diese Arbeit stellt ein Konzept für einen dezentralen Ansatz der Datenverteilung vor
und liefert einen Machbarkeitsbeweis durch Implementierung. Die Dezntentralität sichert
die Verfügbarkeit von Daten. Indem existierende Komponenten verwendet werden, wird das
Block Exchange Procol (BEP) auf den industriellen Anwendungsfall hin adaptiert. Um die
tieferliegenden kryptografischen Primitiven sicherer zu gestalten, werden Trusted Platform
Modules (TPMs) sowohl als sicherer Speicher als auch als Generator für kryptografische
Schlüssel eingesetzt. Die Arbeit zeigt den Einsatz von TPMs im Kontext des BEPs durch
die Anbindung von Interfaces und Bibliotheken. Diese Härtung der Sicherheit verhindert die
Kompromittierung von privaten Schlüsseln. Jüngste Publikationen wie Heartbleed, Meltdown
und Spectre zeigen die Dringlichkeit, sensible Informationen wie private Schlüssel speziell zu
sichern.

iii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 1
1.3. Structure of the Thesis . 2

2. Scenario and Requirements 3
2.1. Views on the Architecture for Data Distribution 3
2.2. Changes with Industry 4.0 . 5
2.3. Requirements for Secure Data Distribution . 7

2.3.1. Group and Identity Management . 8
2.3.2. Security Objectives . 10
2.3.3. Decentrality . 13

2.4. Scope . 14
2.5. Summary . 14

3. Related Work and Background 17
3.1. Decentralized Data Exchange . 17
3.2. Identity Management . 21
3.3. Hardware Security Modules . 24
3.4. Summary . 25

4. Setup and Implementation 27
4.1. Concept . 27
4.2. Technologies Used in the Setup . 31
4.3. Establishment of the Setup . 33

4.3.1. Hardware and Operating System . 33
4.3.2. Implementation . 34

4.4. Evaluation, Applicability and Further Extensions 39
4.5. Summary . 41

5. Discussion 43
5.1. Discussion of the Requirements . 43
5.2. Discussion of the Exhibit . 44
5.3. Summary . 45

6. Conclusion and Future Work 47

Appendix 49
A. Preparation of the OS . 49
B. Sample Certificate . 50

Bibliography 53

List of Figures 57

Acronyms 59

v

1. Introduction

The combination of computing and communication technologies leads to new ways in the
economy. Secure data sharing between multiple agents is an important factor for benefiting
from the new possibilities. This thesis aims to analyze requirements for the secure distribution
of information in company scenarios and proposes an adequate concept.

1.1. Motivation

With the term Industry 4.0 one refers to a predicted fourth industrial revolution. It is driven
by the possibilities that new technological developments open. Communication between
people, machines, and resources has become easy and the interleaving along value chains is a
main property of this upcoming future. There is a paradigm shift from centralized controls to
decentralized production processes. As the term Industry 4.0 refers to a process that has not
yet terminated - in contrast to the other industry-changing processes which were described in
retrospec - it is possible to shape the upcoming landscape so that the needs and challenges
for the industry are met from the outset and the result is suitable [20].

Data distribution is a central point in Industry 4.0. For reliable and secure data distribution
in industry, IT-protection goals should be taken into account. In an environment where lots
of participants are interconnected, which is one of the driving ideas of Industry 4.0, it is
crucial to secure the communication between members, especially in cross-company scenarios.
Classical security goals are Confidentiality, Integrity and Availability (CIA). With lots of
business-intern entities connected to each other and some of them having connections to the
outside world, being able to tell if a communication partner is who it claims to be, is as well
important [3]. Thus in an Industry 4.0 setup this fourth goal is also a relevant factor, i.e.
Authenticity.

1.2. Problem Statement

Loss of production poses a big threat to companies. Self-organization is a declared goal in
the upcoming world and interruption should only occur in special cases. As this upcoming
terrain of self-organization and cross-border information flow heavily relies on data, one has
to ensure that data gets distributed reliable. Automatizing the distribution process is thus an
implicit objective of Industry 4.0 as the whole point is to profit from the new technological
possibilities and become more efficient. Distributing information has never been easier than
today. This lies mainly in the possible interconnectedness of distributed systems.

Availability plays a major role in the design concepts of Industry 4.0. The above mentioned
paradigm change to decentralized production processes can also be applied to data distribution,
because decentralized structures are much more robust to small or even medium scaled
technical disruptions. As information can easily be shared between partners one can take
advantage of the interconnectedness and build a dependable system in which the failure of

1

1. Introduction

single points does not pose disruptive problems to the information flow of the system. If
relevant data is shared between all agents, one can acquire the data by every agent, not only
a central one.

Under the new conditions the information flows are much more interconnected than today.
Currently, data belonging to a machine is of interest only by the machine itself and the
maintainer of the machine. For self-organizing structures it is required, that data is shared
between all participants to whom the data may be relevant. Data flow across company sites
or even cross-companies is a wishful property of upcoming setups, thus enabling monitoring
and configuration along value chains. Not every bit of data is useful to everybody and, in
particular, information may be classified and should only be accessible by a certain group
of agents. This means that one has to ensure the Confidentiality of data, i.e. enable access
only for those roles which are allowed. Authenticity, Confidentiality and Integrity can all be
achieved by cryptographic means. However, there is need for a root of trust. By providing
essential cryptographic capabilities and storage facilities to all involved partners of a network,
one can make the network harder to penetrate and limit the damage of a security breach.
These capabilities can be provided by Hardware Security Modules (HSMs), which ensure
secure storage of keys that are never directly accessible. Hence, the security of a machine
and of the whole network is strongly supported by hardware.

1.3. Structure of the Thesis

The goal of this thesis is to analyze basic requirements of a decentralized data distribution
infrastructure, which meet the needs of Industry 4.0. A concept is built, which is then
examined through an implementation for an exhibit to analyze the feasibility. In Chapter 2
the requirements are identified. Beforehand, three models are introduced in order to examine
data distribution from different perspectives. In Chapter 3 technological approaches for
decentralized data exchange are examined. Also, other techniques are surveyed which are
relevant in the context of the results of the previous Section. Subsequently, in Chapter 4, the
concept is drawn and an exhibit setup is presented, which tries to implement a subset of the
concept. In Chapter 5 the findings of the thesis are discussed with help of the models from
Chapter 2. The exhibit with view to the requirements is examined, as well as advantages and
drawbacks and improvement possibilities. Lastly, in Chapter 6 a Conclusion together with
proposals for future work is given.

2

2. Scenario and Requirements

It is not the task of this thesis to analyze the exact changes referring to Industry 4.0. However,
to find requirements and to build a concept for decentralized and secure data distribution, at
least the relevant changes and needs have to be examined.

The term Industry 4.0 lacks a concrete definition and thus it is hard to identify and design
corresponding scenarios [30]. Initially, in Section 2.1, possible views will be introduced which
can be taken for exploring data distribution. Secondly, in Section 2.2, changes in the industry
will be discussed which are relevant in the context of this thesis. For this, a Scenario is set
up to provide a link to Industry 4.0. Thereafter, in Section 2.3, the analysis will move to a
more specific investigation with focus on secure data distribution and relevant related topics
in order to infer requirements for the painted scenario. Lastly, in Section 2.4, the scope of
the thesis is defined, to delimit the area it is concerned with.

2.1. Views on the Architecture for Data Distribution

When concerned with data distribution between several agents, one can take different views
which put the focus on various issues. In this Section, three models are proposed, which will
be referred to throughout the thesis.
For distributing data it can be of big concern to whom it is distributed, especially for

enterprises, as it will become clear in Section 2.3. Information is shared between groups of
agents. An agent might be any entity: a production facility, a personal computer but also
bigger and more abstract entities like other companies. An agent might have the role of a
representative for a group. Depending on the taken view, such a representative has different
tasks.

Informational Groups. Figure 2.1 shows a view on data distribution with focus on groups
with a bipartite hierarchical structure. It shows an exemplary configuration. Groups consist
of nodes. For ever group there is a manager node which represents the group to the outside.
Theses managers are decision makers for which information is distributed to other groups.
Hence, there are communication channels between the representatives of the groups. The
internal channels of the groups are not relevant for this informational group view as the
focus is on the separation and classification of information. The question of the exact
internal structure of the groups is of concern with the other two view models. The external
channels accentuate that distribution of information is controlled. More details on this topic
is investigated in Section 2.3.1.

Taking this viewpoint on data distribution, one is concerned with managing the information
which is represented by data. Manager nodes are proposed as abstract entities for supervising
groups. Thus, there is no need to restrict the groups to only one manager node. They are
representatives of an informational group following a group policy.

3

2. Scenario and Requirements

Manager Nodes

Nodes

Information Groups

External Channels

Figure 2.1.: View of Informational Groups for Data Distribution

Logical Connections. Figure 2.2 takes the view of how entities are connected, i.e. which
peers can directly talk to each other.
All peers are organized in Communication Groups. Logical connections between peers

indicate that they can establish a connection to each other, e.g., via a Virtual Private Network
(VPN) or Ethernet. Peers of a given Communication Group can have the role of an internal
peer or of an external peer. An internal peer has connections only to members of its group.
An external peer has connections to other external or internal peers of its own group but also
to external ones of other groups.

Information may be routed to other peers by peers which then act as relays. It is implied
that for one peer of a given group A, it may be necessary to use peers of the same group
A to connect to a distant peer. In Figure 2.2 the right group is structured in this manner.
For any internal peer of a communication group, to connect to a peer of another group, the
connection needs to be relayed through an external peer of the group.

External Peers

Internal Peers

Communication Groups

Logical Connection

Figure 2.2.: View on Logical Connections for Data Distribution

Data Flow. Figure 2.3 represents a view on data distribution with focus on data flow and
communication processes. All nodes are organized in Data Groups. A Master node distributes
data to Slave nodes within a Data Group (Figure 2.3 a)). Also, a Master node can accumulate
data form Slave nodes of a Data Group (Figure 2.3 b)). In the course of this Chapter it will
become more clear why these two are relevant in this thesis.

4

2.2. Changes with Industry 4.0

A Master node has an authoritative function in the group. In Figure 2.3 a) a Master
distributes data, e.g., configuration data, within a group. It is the root of a distribution tree
for that group. In a second step a Slave can act as a second level Master for other Slaves and,
in case, it is the new root of a subtree. The concept can be applied recursively. Thus, nodes
can be made transparent to a Master on a higher level.
In Figure 2.3 b) a Master polls data, e.g., sensor data, from its Slaves. A Slave may

beforehand act as a Master to its own Slaves, accumulating data, which are then passed on
to the root of the tree.

For this view no statement has been made on pushing or pulling data. In case a) of Figure
2.3 a Master could simply push new configuration data to its Slaves; but the Slaves could
also pull changes in configuration data from their Master in timed intervals. The same holds
for data accumulation, in which the Master could periodically pull data from its Slaves; or
the Slaves push changes in data to their Master.

Master

Slaves

Partial Trees

Data Flow

Data
Group

a) Distribution b) Accumulation

Figure 2.3.: View on the Data Flow for Data Distribution

All three views need to take failures into account. If a central point like a Master drops out,
there needs to be a protocol to determine a new Master, e.g., by voting or using a metric like
ping time. If the model allows for multiple centralized points as for the Informational Groups,
redundancy reduces the risk of loss of Availability as it will be discussed in Section 2.3.2.

2.2. Changes with Industry 4.0

The main focus of Industry 4.0 is the establishment of intelligent production processes with
a high amount of flexibility to build personalized products. This implies rapid product
development and flexible production in complex environments [7]. Most of the technologies
are not new. The sum and collaboration of these technologies are the decisive factor that
leads to an evolution in the industry [30].1

One main driving technology for the fourth industrial revolution is the Internet, which
allows for easy communication between entities. As well important is the fusion of physical
systems and the virtual world resulting in integration of computational abilities in physical
machines, namely Cyber Physical Systems (CPSs) [7]. The setups are build on a combination
of Ubiquitous Computing (UC), which means the possibility of every object in a system to

1Using the term ’evolution’ in contrast to ’revolution’ respects the fact, that there is no new decisive
technology which leads to perturbations in the industry.

5

2. Scenario and Requirements

handle and work on data, and the Internet of Things (IoT), which enables those objects to
communicate with each other. This requires an unique identity for every object which is
possible for example due to IPv6 or RFID tags [30].
The possibility of sharing data is the basis for joint collaboration and has becomes easier

[42]. The depth of added-value within one factory and company decreases which leads to
a need for collaborative development and manufacturing environments, especially for small
and medium enterprises. This leads to collaborative networks. A global optimization of
production processes relies heavily on the availability of product and production data across
factories and company boundaries. Such networks are sometimes called virtual corporations
[7]. Today this is not a ubiquitous phenomenon [59].
A more concrete example for a scenario is depicted in Figure 2.4. This example does not

represent a dedicated Industry 4.0 company. It rather offers a picture in which Industry
4.0 takes place. A company A manufactures one or more types of products. It has several
sites (Site 1 and Site 2) which act dependent on each other, for example as suppliers for
components or information. There are also several other supplier companies (in this case
company B). Company A may also act as a supplier to others (Company C) or be a final
seller of their products.

The items are assembled along value chains and the company A plays an major role in this
chain. Along the whole value chain compliance with demands like security standards is of
great importance. Especially with the production processes becoming more digitalized the
surface for attacks grows and the risk of production loss rises.

Company A Company CCompany B

Site 2

Site 1

Figure 2.4.: Organization along a value chain

As Industry 4.0 aims to integrate digitalization to optimize the production along value
chains using emerging technological possibilities like UC and the IoT. Sites of company A
may gather live data and exchange them with each other in order to be more flexible and
reactive to changes for example in production volume. Different sites want to know the status
and progress of production. Data of external suppliers is acquired as well.

Accumulating such information offers opportunities for higher level processes to decide for
certain changes in production schemes. These decisions can be automatized, which is an aim
for Industry 4.0, i.e. autonomous acting systems. Acquired data may also be passed to other
companies for which A acts as a supplier. This all implies a much more network dependent
fabrication. In order to minimize the risk of digital failures, redundancy is as well important
as IT-security. Countermeasures against newly detected cyber-threats have to be build as
soon as possible to minimize the risk of loss of production. However, it is as well important

6

2.3. Requirements for Secure Data Distribution

to protect against theft of knowledge which plays a even more important role to survive on
the market.
A company can be logically modeled as a hierarchical structured pyramid, the so called

automatization pyramid. Figure 2.5 shows the information flow in a pyramid model which
is derived from the IEC62264 norm and also used in the Reference Architecture Model for
Industrie 4.0 (RAMI 4.0), a reference model for Industry 4.0 [60]. In the old model the
structure is given by hardware connected mainly via Local Area Network (LAN). Data flows
linear from one hierarchy level to the next one. Information of one factory is gathered at
Enterprise level and, if needed, forwarded to another site of the same company or an external
supplier, where it is again passed on in a linear way.

Data Flow

1. Field Device

2. Control Device

3. Station

4. Work Centers

5. Enterprise

Factory BFactory A

Figure 2.5.: Data flow between different sites (old world)

In the RAMI 4.0 a breakup of the hierarchy levels is proposed, leading to a strongly
connected network, in which each entity talks to many other entities. Also products should
be part of this network so they might advertise their status to all partners [60].
This model abstracts from some conditions which should be considered if one wants to

derive requirements for a Industry 4.0 scenario. The changes bring new possibilities for
information flow which can be represented on an abstract level by a restructuring of the
automation pyramid as shown in figure 2.6. The shown Figure sticks to the pyramid model
to represent the logical structuring of devices and processes in levels.
While in the old model the information flows linear through all stages of the pyramid in

order to enable communication between different factories, in the new model the exchange of
information can occur among all levels. In the Figure 2.6 an exemplary path is shown.

2.3. Requirements for Secure Data Distribution

Both, humans as well as machines need to know about the physical state of the environment in
order to find reasonable decisions. The IoT together with other agents like real world persons
and abstract entities is called the Internet of Everything (IoE). Getting knowledge of the world-
state requires the aggregation of raw sensor data to higher-value context information. The

7

2. Scenario and Requirements

Possible Data Flows

Exemplary Data Flow1. Field Device

2. Control Device

3. Station

4. Work Centers

5. Enterprise

Factory BFactory A

Figure 2.6.: New possible data flow between different sites

analytics results need to be available to several participants of the IoE, e.g., through assistance
systems. Decentralized decisions rely on this so called transparency of information [42].
Another area, in which data distribution is of great relevance is IT-security. With the

ever growing number of systems connected to the Internet, effective and prompt defense is
essential for solid production. For such areas the reliable and prompt distribution of, e.g.,
signatures of malicious software is important in order to avoid downtimes and information
theft [3].
In order to enable connectedness of different types of entities in a network, common

communication standards are of great importance, especially in cases of modularization
for flexible machine combinations from different vendors [42]. In the following Subsections
requirements for data distribution are deviated. As stated, the picture of interconnected
entities to a IoE simplifies some facts that are of need for a trustworthy industrial environment.

2.3.1. Group and Identity Management

The possibility of sharing data is the basis for joint collaboration and becomes with the IoE
much more easy. Currently, data belonging to a machine is of direct interest only by the
machine itself and the maintainer of the machine. For self-organizing structures, however,
it is required that the data is shared between all participants to whom the data may be
relevant. But the data should only be shared between those entities which it is intended for;
information can be confidential and access needs to be restricted. One of the main obstacles
for close collaboration between companies is trust [7] thus it is of great importance that one
takes care of the information flows. For ensuring trust in collaboration, information needs to
be shared responsible. Data management is required. Still, data flow across company sites or
even cross-companies is a wishful property of upcoming setups, in order to enable monitoring
and configuration along value chains.
In an Industry 4.0 scenario, company A accumulates data of sensors which are then

shared between all sites. It is also available to higher levels of the organizational structure,
independent of the location. Information, e.g., on production status and problems with

8

2.3. Requirements for Secure Data Distribution

respect to Availability, are then passed to second parties for which A acts as a supplier.
On all levels processes also gather and integrate information from other external entities,

for example suppliers, but also on market status or on the cyber-threat landscape. This
information is also propagated to all participants of the network for whom it is intended; and
it should only be forwarded to those agents for whom it is intended. There is also sensible
data that should not be shared with second parties as for example intellectual property or
other classified information like suppliers and incidents.
From a logical perspective this requires a management of Identities or agents which are

subsumed into groups. All participants of a Infromational Group share data. The RAMI 4.0
proposes for every asset of a company to implement its own management shell, which acts
as an interpreter and interface for an asset. Such assets may communicate with each other
using their shells. This is comparable to an IoT gateway [20]. Figure 2.7 shows this concept.
Every asset has its own management shell (blue) with a central interface for other entities to
connect to (black dots). Using the central interfaces the entities can establish communication
channels with each other (black lines).

Figure 2.7.: Communication Between Entities via Management Shells

These shells ensure a common communication basis. Additionally, a shell should hold
all information for an asset. In practice such a shell resides in the digital capacities of a
CPS. It is also possible to represent abstract entities like processes in the digital sphere
which then appear as individual assets or agents represented by a Management Shell. The
entities are assumed to be placed on any hierarchical level of the automatization pyramid as
an interleaving is aspired.
In a next step such agents can form logical entities or groups. For example a group may

represent all stations (the third level in Figure 2.5) or all control devices (the second level).
Those grouped units are again represented and coordinated by management shells of higher
levels, which can be again grouped and so on. Referring back to the different views on
data distribution in Section 2.1 the view of Informational Groups is taken. A high level
management shell corresponds to an Informational Group. On a low level a management
node can have the role of a Master for aggregation. This recursive concept is depicted in in
Figure 2.8. The Figure also embeds the second view of Logical Connections . This emphasizes
the fact that there is no complete intermeshing in a group required.

Every black dot represents an asset or process. In a given shell a node may act as a regular
one but have the role of a management node for a nested shell. It should be stressed that
assets may also be part of different shells. One group X may be formed by all control devices

9

2. Scenario and Requirements

Management nodes

Regular nodes

Management shells

Logical Connection

Figure 2.8.: Recursive Management Shells

of a company across all factories. Another entity on the network may only be interested in
the devices of one particular site, so only these are part of this specific shell Y.
If a process p on the network asks for information from a given shell X it may not be

interested in the information of every asset that is part of this shell. A higher level process
which manages X ’s information is the interface for this process p to gather data. In the
Figure those interfaces are marked by the colored circles around the agents. For an interface
it is necessary to hold all relevant data of its group. Thus they act as managers for their
cluster. For clarity groups of other managers are only indicated in the figure.

If a manager wants to hold all relevant data it has either to be connected to every member
of its shell or information has to be forwarded to him through other nodes which then act
as relays. Those interconnected agents may also act as a coordinator for the group. This
architecture allows a recursive structure in which shells become to a great extent transparent
to agents outside the shell, which means external nodes do not need to care of the inner
structure of another shell.

On the other hand the inner structure is hidden for such external nodes which is relevant
in terms of Confidentiality. In case that a part of the inner workings of a shell are of interest
for an external entity there needs to be an appropriate Informational Group, i.e. a Shell.
Mapped back to the pyramid model the hierarchical structures are given up in order to enable
communication between all network participants. However, a logical hierarchical structure, as
explained, needs to be implemented in order to enable application in an enterprise scenario
for purposes of information transparency and management to ensure confidentiality. The
most last point will be discussed more in depth among others in the next Subsection 2.3.2.

2.3.2. Security Objectives

The IoE is growing. With it being the basis of industry in the future, monetary and political
interests will increase the number of attacks on Industry 4.0 production facilities and, therefore,
increase the need for IT-security [42]. Real world incidents like the Mirai botnet have shown

10

2.3. Requirements for Secure Data Distribution

that the IoT is a critical structure which holds much power meanwhile it is very easy to attack
[13]. For the industry, to use the potentials of the IoT, it is urgent to address information
security.
Objectives for this topic have been standardized by the norm ISO 27000 [37]. This norm

is a standard for implementing Information Security Management Systems. The purpose
of such systems is to assure that certain security objectives are appropriately addressed
through processes like security incident handling or access rights management. The main
three objectives ISO 27000 proposes are Confidentiality, Integrity and Availability, but there
are others too, like Authenticity. In this Subsection security objectives are evaluated as
requirements for this thesis.
Throughout the thesis security objectives are used with a capital letter at the beginning.

The lowercase refers to the regular term, not the security objective.

Confidentiality is defined by the ISO 27000 as the "property that information is not made
available or disclosed to unauthorized individuals, entities, or processes" [37]. Like pointed
out, not every bit of data is useful to everybody and in particular information can be classified
and should only be accessible by a certain groups of agents. For an industry scenario it is
necessary to take this into account.
To ensure Confidentiality, access to sensitive data has to be prohibited. There are lots

of situations that need to be considered like employees accidentally providing sensitive
information by mail. For self managing structures this is not of direct concern. More
importantly, automatized communication processes need to be properly managed to ensure
Confidentiality of data. Data stays private if it is only disclosed to those entities it should
be to. Applying the Group management model from above, access shells can be defined.
Subsequently, the problem is condensed to the statement that for given information this
information is only accessible by an the appropiate Informational Group.

Avoiding access to classified data is mainly realized by two mechanisms. The first one is to
disable handling of the data. This can be realized by a group management infrastructure. If
some agent requests access to information, a management process needs to check if the agent
is part of the group that should have access to it. This means to create the group which
actually holds the data or whose data is accumulated at a central point, which can be refered
to as a Data Group; and another logical group for which the data is intended, which can be
refered to as an Informational Group.
The other possibility is to allow handling of the data but disabling the extraction of the

real useful information by means of cryptography. In practice this means that data is stored
encrypted and only those agents who are part of the appropriate group have access to the
according decryption keys. This implies of course that the cryptography can be trusted. One
also has to ensure that data, which has been accessed by a process, is kept private afterwards.
Additionally, if a memeber leaves a group, the revocation of the membership needs to be
addressed, which is the task of an Identity management process.

Another important point to consider is the data transfer itself. Depending on the channel
it can be easy for third parties to intercept the communication and thus the information if
no precautions are taken. Hence, it can be necessary to set up a secure channel between the
two peers. Encryption is an important method to uphold privacy. Some usable technology
will be discussed in Chapter 3. If the data is encrypted before the transfer, this a minor
problem, granted that there is no confidential data leaked through meta data. However,

11

2. Scenario and Requirements

this still implies the problem of Authenticity of the communication partners which will be
examined as an extra point.

Authenticity is the "property that an entity is what it claims to be" [37]. In order to build
on a reliable infrastructure for Group management it is necessary to integrate the assurance
of Authenticity. A standard technique to gain unauthorized access to data is pretending to
be someone authorized. This is the problem of impersonation. Therefore, Authenticity is
closely related to Confidentiality.

However, avoiding direct disclosure is not the only point. With respect to data distribution
it is possible that some malicious agent distributes faked or manipulated data, e.g., malformed
signatures of malware which subsequently will not be detected. Thus, a data donor has to
prove that it is the one it claims to be and that it is authenticated to distribute the data.
In return, the first peer needs to know with whom it wants to communicate and optionally
hold required information in order to check the Authenticity, like fingerprints of trusted
peers. This will also be explained more closely in Chapter 3. For now it can be stated that
Authenticity mechanisms are an important requirement for an Industry 4.0 scenario as it
ensures reliability of such a system in not fully trusted environments as it is the case for
ubiquitous connectedness and virtual corporations. It addresses two problems. The first one
is the problem of avoiding impersonation. The second one is to proove the membership of a
group.

Integrity. Trustable data is not only addressed by Authenticity but also by Integrity. Data
may become corrupted or manipulated. To ensure data integrity the data must not be altered
and also be complete. This can be realized by checksums, especially cryptographic ones as
they are much harder to fake. To stay with the recent example of malicious signatures one
has to ensure that the delivered signatures are accurate. If not, they are useless to detect
malware. In fact such signatures are also just kind of checksums of malware.

In the context of data distribution Integrity also has the dimension of data consistence. If
data is distributed in a group, the data on every single member should be consistent with the
data of the other membmers.

Availability. Loss of production is a critical situation in industry as it is the core of this
business. Availability is defined as the "property of being accessible and usable upon demand
by an authorized entity" [37]. As explained in Section 2.3 the new industry relies on the
Availability of data. For production facilities which are connected to each other it is required
to evaluate the risks of this connectedness due to an increase of the attack surface. Other
security objectives from above like Authenticity and Integrity are important to be considered
in this course.

One has to ensure these in order to decrease the risk of compromise which can also lead to
not accessible or unusable assets, which is a loss of Availability but also to a loss of privacy.
A direct loss of Availability is also a risk and may occur with denial of service attacks. Ways
for mitigating such risks is not part of this thesis.

It is important to think about the information assets a smart factory relies on. One needs
to take into account situations in which required information is not at hand. If production
must not lack certain data to avoid loss of production, there need to be redundant sources.
This holds true no only in case of criminal activities but also with technical failures.

12

2.3. Requirements for Secure Data Distribution

Generally, redundancy is a valuable possibility to raise Availability. Ubiquitous data sharing
offers great opportunities for reducing the risk of unavailable data. Nevertheless, it should
be accentuated that a more connected infrastructure increases the possibilities for attacks.
However, this is the nature of the idea of Industry 4.0. Thus Availability is on the one hand
increased through the interconnectedness but on the other hand at higher risk by a largely
increased attack surface.

2.3.3. Decentrality

The classical approach for data distribution is a client-server architecture. One client stores
information on a central server and another client pulls it from there. Even for the case that a
client needs to talk directly to another client this is mediated through the central server. This
poses big risks as the server is a single point of failure. The Availability of data is directly lost
with a failure of the central server. It also scales bad with an increasing number of peers due
to an increased amount of data throughput and a larger number of connections all running
through the server [3]. For growing infrastructures more servers are required which need to
be coordinated.
The client-server model is of advantage for application in environments where the clients

have very low computational resources. In the context of data distribution Decentrality
is a long proposed approach. It can ensure the Availability of information, even if single
points drop out. The best known application of this principle is the Internet itself. With
decentralized methods a central point is given up.
Some datum is hold by several peers in the network which ensures redundancy. The

paradigm of decentrality is best realized in Peer-to-Peer (P2P) networks. In so called
structured P2P networks, peers announce their status to their neighbors for self organization.
If some resource is required, e.g., in file sharing, there needs to be a protocol which locates
a provider and the peers may then directly exchange the data or send it via peers which
forward it, acting as relays [3].

Thanks to the possibilities like self organizing design and features like direct communication
a P2P approach greatly correlates with the ideas behind Industry 4.0. Yet a decentralized
environment is only feasible if the peers have enough resources so that every agent can act as
a client and a server at once. The shell conept from Section 2.3.1 allows for a hybrid version
in which the management nodes accumulate data and then act on a higher level as peers in
a decentralized network. This could also be a possible approach for scaling problems. In
Chapter 5 a short discussion of these problems takes place.

One obstacle for a fully decentralized network in a company context is the bootstrapping
problem: If an agent wants to joint the network it somehow has to find an entry point. This
can be resolved by setting up bootstrapping servers. This erodes partly the decentrality
paradigm though. Further, to build a trustable network these servers are also required to
trust the new peer. For example the servers need to have a list of agents who are allowed on
the network. Thus a management of identities is required. Likewise, somehow the peers need
to know of each other whom they can trust, i.e., who is part of the trusted network, which
is a problem of Authenticity and of Identity management. Again, it holds that centralized
servers which act as "identity ledgers" can adopt this task. A distributed data base can also
act as a identity ledger, which again poses the problem of bootstrapping.

The distributed paradigm for system and network management has become more relevant
over the last decades in enterprise networks giving up the paradigm of centrality [40].

13

2. Scenario and Requirements

2.4. Scope

So far it can be concluded that a simplified model in which everything just is connected
falls to short for needs of an industry scenario if one takes information security into account.
In order to achieve a reliable setup lots of problems have to be considered of which each is
not trivial to solve. It is beyond the scope of this thesis to inspect every part in detail. In
Chapter 3 some technical approaches are presented and discussed that relate to the evaluated
requirements. None of them alone claims to solve all problems. The mere task of the thesis
is to show that there are several approaches which can be useful depending on the context.
A second objective is to show the appliance of some of the technologies in order to realize a
decentralized data distribution infrastructures that meets the needs of Industry 4.0. However,
the complexities of this topic force to make several assumptions for the exhibit and the
concept it builds on. The assumptions are:

1. There is an Identity management infrastructure and corresponding processes. This
means that every peer has the knowledge about other peer’s identity that it might need.
This is mainly information about the public keys of the peers.

2. The peers are able to talk to each other over a network, i.e. they are able to address
and establish end-to-end connections to each other. For example the peers reside on
the same production facility. In this case they are on the same LAN. If they are
located at different sites, it is assumed that there is a possibility for them to know each
other - which is realized by assumption 1 - and also to connect to each other. This
implies that obstacles like Network Address Translation (NAT) are ignored. How the
exact communication between factories is realized, is not of concern. In sum network
management is assumed. Referring back to the different models from Section 2.1 this
point excludes problems that are mainly considered in the view of Logical Connections.

3. To simplify the setup and put the focus on relevant aspects, other technical barriers
relevant in industrial context are left aside. For example firewalls or Demilitarized
Zones (DMZs) are omitted. In a productive setting it can be assumed they are installed
and set up with a reasonable rule-set.

4. The problem of data distribution is realized by file exchange. Data can be distributed
in many ways. For example sockets can exchange data with each other. This can of
course be used to transfer files if any upstream protocol specifies a procedure.

5. There is a total ordering on data blocks with respect to change versioning. This means
that for data of version A and the data of version B there is a way to determine the
higher change version of the two.

2.5. Summary

In this Chapter three possible views where proposed which emphasize different factors for
data distribution. The first is concerned with Informational Groups with a bipartite hierarchy,
manager nodes and regular nodes. The second one puts the focus on Logical Connections
and inspects the network connections on a logical level. The third one examines data flow
and communication processes in Data Groups.

14

2.5. Summary

Having established these base terms, changes in the context of Industry 4.0 where surveyed.
Data distribution came up as an important factor. A scenario with the requirement for secure
and reliable data distribution emerged. The first group of requirements was an appropriate
Group and Identity management, which takes the complexities of an industrial context into
account. Management shells can tie communication channels to a common base and abstract
multiple agents on higher levels into Informational Groups.

A second group of requirements were the three classical security objectives defined in the
norm ISO 27000, Confidentiality, Integrity and Availability, where the latter is very important
in industrial settings. Additionally, to ensure these, Authenticity plays an important role for
an Industry 4.0 scenario due to the increased possible threats through interconnectedness.

As a last requirement, Decentrality was examined which reflects the idea behind Industry
4.0 as well as it increases greatly the Availability by avoiding Single Point of Failures (SPFs)
and provides scalability.
Lastly, the scope of the thesis was restricted to decentralized data distribution which

assumes Identity management processes, end-to-end communication and appropriate enterprise
infrastructure like firewalls.

15

3. Related Work and Background

In this Chapter approaches are examined which are relevant in the context of secure data
distribution. First, in Section 3.1 possible approaches for P2P data exchange are discussed.
It also investigates two ways for reducing the load, repeated exchanges may induce. Next, in
Section 3.2 possible approaches for securing the communication between actors are inspected.
Lastly, in Section 3.3 hardware possibilities for security improvements are examined.

3.1. Decentralized Data Exchange

This section is concerned with related approaches for decentralized data exchange. It discusses
several possible designs for decentralized solution as well as proposed ideas for data exchange
between two peers.

The task related tachnologies and algorithms have to fulfill is to build an efficient decentral-
ized data distribution infrastructure. It is motivated by ensuring Availability and to stick to
the paradigm of Industry 4.0 of interconnectedness. The challenges for such an infrastructure
are to ensure the Integrity and Confidentiality of the Data. This is only possible if the
Authenticity of the peers is ensured.

Tracker based Peer Networks. One approach for decentralized data exchange is a P2P
network that uses a tracker topology as shown in Figure 3.1. A central peer acts as a tracker.
Other peers may pull information on the network from this central peers and then connect to
each other based on the information they received from the tracker.

Regular Peer

Tracker

Initial connections

P2P connetions

Figure 3.1.: Tracker based topology

One example implementing this topology is the BitTorrent protocol. For every file a
dedicated peer tracks other peers which hold copies of parts of this file. A peer requiring
the file pulls information from the tracker, which peer holds which part of the file. Next, it
connects to these peers and downloads the single parts.

17

3. Related Work and Background

This approach distributes files efficiently between peers as it uses the capacities of other
peers to distribute the data. Thus, the impact on the bandwidth for a central server is
reduced.

The tracker has the drawback that it still acts as a central distribution server for information
on the network. This implies two main risks which are related to the scenario. The first one
is that the Availability of information on the network partners depends on this SPF. In cases
of downtimes of the tracker devices the network cannot access the data anymore. Connected
with this problem is the scalability as a single tracker may not be able to handle a large
number of queries.
The second risk of this central point is concerned with Authenticity. The information on

the peers of the network is centralized at one device. If the device is corrupted, the whole
network cannot be trusted anymore. Additionally there is no mechanism implemented which
ensures the Authenticity of the other peers. This is not directly a problem as long as the
Integrity of the data is ensured. With BitTorrent this is realized by known hashes for the
single parts of the files. If a malicious peer sends wrong data, the hashes would not match
[49][39]. However, this approach does not satisfy the requirements for secure decentralized
data exchange inf future industrial contexts.

Distributed Hash Tables. In order to avoid the centralized structure, distributed content-
addressable data storage (distributed indexing structures) is proposed. These so called
Distributed Hashtables (DHTs) were developed to provide distributed indexing as well as
scalability, reliability, and fault tolerance. In the literature such P2P networks are also called
structured P2P networks. Commonly, a data item can be retrieved from the network with a
complexity of O(log N) which is equal to the complexity of well-known non-distributed search
and indexing techniques[49]. One example of a DHT algorithm is Kademilla which performs
good compared to other approaches and which has been implemented into BitTorrent [46].

To distribute the information former managed by a central point, every DHT node manages
a small number of references to other nodes. Data items and nodes are mapped into a common
address space, forming a lookup table of (key, value)-pairs which is distributed in parts to all
nodes. Every node is responsible for a certain set of data items. Routing to a node leads
eventually to the data items for which a certain node is responsible, reducing the distance to
the data item. Kademilla uses a Exclusive Or (XOR) metric in order to achieve a targeted
routing.
DHTs provide a global view of data, distributed among many nodes, independent of

the actual location. For decentralized data exchange it is in general a possible approach
which ensures Availability without the drawback of a bottleneck or a SPF like in the tracker
approach.
The two approaches are not directly suitable for enterprise contexts for three reasons.

1. Both strive to make data available to all participants of the network. With refer-
ence to Confidentiality this is not acceptable. As Chapter 2 has already stated, a
system is required which makes information only selectively available to peers, i.e. an
Group management system is required. The existing P2P-approaches do not provide
corresponding features.

2. Both approaches are suitably for retrieving files from the network. This makes it usable
only for situations in which devices actively request files. For the scenario painted in

18

3.1. Decentralized Data Exchange

Chapter 2 the active distribution of data is as well important. There is no way to push
files to a group of peers. If there are changes to a set of files, the peers do not actively
try to get hold of the latest version. A recurring, timed retrieval of n seconds of the
file set would solve this only partly as it would introduce a expected lag of T = n/2
seconds until the change is recognized.

3. Known problems like the Eclipse attack and the Sybil attacks raise concerns with
Authenticity. The Eclipse attack tries to monopolize all connections to a peer. In a
Sybil attack a single malicious device impersonates a bunch of different nodes. The goal
is to isolate one node from the network without the node noticing it. Subsequently the
attacking nodes are able to simulate a network with wrong information to the target.
To prevent this, every node has to prove its Authenticity to each other node.

4. The discussed approaches so far have the drawback that with a change in a file the
whole file has to be retransmitted. To reduce the data throughput it would suffice to
only transmit the changes in the file. Solutions for this problem are discussed now.

Fixed Size Block Hashes. If two files differ only partly there is no need to transfer the
whole file. Rather only the deltas need to be communicated. In order to build an efficient
data exchange infrastructure this has to be addressed.
A common approach to realize this is given by cutting files into blocks. This technique

is used e.g. in BitTorrent1[39] or the Block Exchange Protocol (BEP) [54], which will also
be explained in this Section. By interpreting a file as continuous bytestream it can be split
into blocks of a fixed size. The last block is allowed to be smaller or needs to be padded. In
a next step, for every block a hash value is calculated. Assuming the hash to be collision
resistant, a change in a file would lead to a change of the hash sum of the respective blocks.
By comparing the hash values of the blocks of two files, the differing parts of the files can
rapidly be found. This procedure would allow a peer to ask only for the parts of files that
changed, if it knows the hashes. This implies a two step exchange. First, the block hashes
have to be exchanged and in a second step the concerning blocks.
By using the technique of block hashes not only the data throughput is reduced, it also

ensures the Integrity of the data on application level.

Content Defined Slicing. With a fixed block size only the blocks are transferred that have
changed. The approach of Content Defined Slicing (CDS) tries to address a drawback of this
approach.
Suppose that bits of data not equal to the block size are inserted somewhere in the file

which might happen quite often. Then, from the insertion point on to the end of the file the
bytes are shifted right while the position of the blocks for the hash calculation stays the same.
This is shown in Figure 3.2. As a consequence a change of the hash of all following blocks
occurs starting from the insertion point block. At the end an incomplete block might be
generated whose hash also has to be calculated. In the worst case appending at the beginning
leads to a complete retransfer of the whole file. Essentially no data changed (there was only
data added) but due to the changed hash sums all blocks would be retransmitted.

1BitTorrent splits a file into slices in order to distribute the different parts to different peers. Once all slices
have been distributed to the network, the tracker can be asked for the location of missing slices. This
approach still misses the required use case of retransmission of changes, as there is no way to request the

19

3. Related Work and Background

Figure 3.2.: Change of hash sums of all block from insertion point of data

CDS addresses this problem by using rolling hash algorithms with a following check if
the computed hash fulfills certain criteria. If so the corresponding block is used as a slice.
This results in blocks of different sizes based on the contents which eliminates the problem
of shifted data as long the content does not change. An example application implementing
Content Defined Slicing is BorgBackup using the rolling BUZ Hash [58] [16].
The functioning of a rolling hash is explained in Figure 3.3. A hash window of size 8 is

chosen. In the first step a hash value over the first 8 bits of data is calculated. The resulting
value is 0x1234abcd. This candidate block is then checked against some criterion, e.g., if
the last 2 bytes are 0 using the hash mask 0x0000ffff which extracts the last 2 bytes. In
this case one calculates: 0x1234abcd & 0x0000ffff which is not 0. In the next step the
last 2 bytes of the hash value are 0. So 0x08760000 & 0x0000ffff evaluates to 0 so a block
has been found. In this example it becomes clear that the bit mask is crucial for the block
size. The easier the condition is to match the smaller the blocks will be (if the hash function
produces uniformly distributed results). In the case of BUZ hash the calculation of the hashes
is efficient because for every move of the hash window only two bytes change and the values
for the rest of the bits can be reused. [3].

Figure 3.3.: Rolling hash

BorgBackup thus implements for some occasions a more efficient way for data transfer.
However it is intended as a backup solution. For decentralized data exchange it is not usable

status of single slices.

20

3.2. Identity Management

as it sticks to a client-server-architecture.

Block Exchange Protocol (BEP). The BEP defines a procedure for file synchronization
between multiple devices in a decentralized manner [38]. Every device holds a local model
of the configuration of all tracked folders. Tracking means the contents but also the meta
data like permissions, chage time and other information; particularly the block hashes are
monitored: Every file is split up into blocks of size 128 KiB. The BlockInfo contains the
size2 and position and additionally a hash sum of each block. This information is stored
in the local index records. The union of all files in the highest change version of all peers
is called the global model. The task, the BEP fulfills, is to update the local model of every
peer to the global model. It does this by requesting data from other peers that are more
up-to-date than the local instance. The procedure is as follows (assuming that the peers are
connected and authenticated to each other):
In a first step, each peer advertises the directories it wants to synchronize together with

the devices that are assigned to these directories, as well as other properties 3.
In a second step, the peers advertise their local index records to each other. After a device

has received this information, it can compare the hash of each block of each file to the list
of hashes it got from the peer. If some blocks do not match, a change has occurred in the
file. If so, the peer has to check which version of the file it holds. For the case the other peer
holds a higher change version, it request the not matching blocks in a third step. If it already
holds the latest version, the other peer should request the affected blocks.

3.2. Identity Management

To ensure security in decentralized infrastructures the single devices need to authenticate
themselves to each other, as already motivated by examples like the Eclipse attack or the
Sybil attack. This Section addresses the security goal of Authenticity. Confidentiality and
Integrity of data also can only be ensured if there is no way for an attacker to infiltrate a
distribution infrastructure. It is required for the peers to establish secured and authenticated
end to end connections.

A proper management of Identities is also important for the separation of communication
domains. As motivated in Chapter 2 not every bit of information should be accessible by
everyone, especially for cross company setups.

To ensure Confidentiality for a channel asymmetric cryptography can be used. To motivate
the requirement of Identity management and to show ways for mitigation, a Man In The
Middle (MITM) attack is now explained.

A simplified version of a public key exchange is depicted in Figure 3.4. If A wants securely
communicate with B it sends as step 1 a Hello to B. B knowing that A wants to start a
encrypted session, sends its public key Bpub, step 2. If A sends a message to B, it encrypts
the message using the public key it got from B and only B is able to decrypt it, given that B
is the exclusive owner of the private key. Now they are able to establish a secure connection,

2The size field is required for the last block of a file, which may be smaller than the normal block size.
3Those properties are mainly made up of synchronization information. For example the protocol supports
the skipping of deleted files which then will not be deleted. Other information contains for instance
compression modi.

21

3. Related Work and Background

e.g., A may send an encrypted session key. This is a simplified version of the proceedings. It
shows only the required parts for explaining a MITM attack.

A B

A-Hello

B
pub

B
pub

(Message)

*B decrypts B
pub

(Message) using B
priv

1

2

3

T
im

e

Figure 3.4.: Simplified key exchange for the establishment of a secure channel.

A MITM attack sets in at the key exchange as shown in Figure 3.5. When A sends an
Hello to B, an attacker M intercepts it and forwards it with the modified address pretending
to be A, step 2. When B sends its public key to A (step 3), M might intercept the message
and send its own public key to A pretending to be its desired partner B (step 4). If A wants
to send a message to B it would use the public key it got from M. Now, M can decrypt the
message, read it, and then encrypt is again using the public key it intercepted from B. In this
simple case there is no way for the partners to find out, that their keys have been intercepted
and they are using the wrong key of M.

A M
A-Hello

M
pub

M
pub

(Message)

B

B
pub

B
pub

(Message)

M decrypts M
pub

(Message) using M
priv

A-Hello1 2

34

5 6

T
im

e

Figure 3.5.: MITM attack on Key Exchange

A proper Identity management aims to prevent these kinds of attacks. Protocols like

22

3.2. Identity Management

Transport Layer Security (TLS) provide possibilities for ensuring Authenticity through
asymmetric cryptography. In TLS, public keys are normally distributed through certificates
which hold information on the owner of a public key and the key itself. The Integrity of
such certificates is assured by cryptographic signatures. For the sake of the argument it
is assumed that the certificates are signed using the key pair of the owner. So if M would
intercept a certificate and exchange the public key on it with its own, an integrity check of
the certificate would fail. B would know something is wrong. However M might simply craft
its own certificate with its own public key on it and a correct signature. There is still no
way for B to check the Authenticity of the certificate. Public Key Infrastructures (PKIs) are
designed to use not self signed certificates to solve this problem. Another approach is Public
Key Pinning (PKP). Both are examined now.

Public Key Infrastructures are a common way to ensure Authenticity for TLS. The goal is
to enable devices to verify the binding of a public key to an entity. This commonly happens
by using a Certificate Authority (CA). One reason to implement a PKI is to reduce the
complexity of Identity management.

In PKIs certificates are signed by a Trusted Third Party (TTP). Every entity of a network
would have to generate its own public/private key pair. Then, the single entities have to
approach a CA which issues signed certificates for them. This CA acts as a TTP. The task
of the CA is to ensure the identity of the requesting entity. Any device which receives a peer
certificate for a TLS secured connection has to verify the Integrity of it. Therefore, it needs
to hold the public key of the signer which is the CA. Therefore this approach requires every
entity to have access to the public key of the CA, which is normally distributed in form of
self-signed certificates. In an enterprise the TTP could of course be part of the enterprise
itself. PKIs also allow for certificate chains in which the root CA needs to be trusted. Other
CAs can then be verified in a chain of trust.

A MITM attack would not be possible anymore as the attacker M should not have access
to a certificate signed by an trusted CA. This requires the private keys of the certificates not
to be stolen. For the case of a key compromise a PKI normally has a mechanism in place
through which entities can check received certificates against a list of invalidated ones.
A PKI depends strongly on trust of central entities whose keys must not be stolen. If

so, all certificates issued under the regarded key do not assure Authenticity anymore as the
holder of the stolen key is able to calculate valid signatures. Security Modules are a possible
approach to keep private keys safe; they will be examined in Section 3.3.

The PKI approach is normally taken for large infrastructures due to its good scaling. The
implementation of a PKIs normally requires major conceptual work beforehand due to the
complexity [3]. However, the complexity allows for fine granularity of rights through sub
keys. Another advantage is the implementation of a revocation list. This property fits into
the requirements of an industry context as, e.g., working groups may have only a limited
lifetime and after that time the corresponding information group should be removed; this
could be realized by revoking the corresponding certificates. Another way to realize this is to
confine the liftime of certificate.

A drawback is that the CA is a SPF. If the private key is stolen, all signed certificates are
invalidated at once. Also the management might produce an unnecessary overhead. Some of
the features may not be required.

For realizing proper isolation of shells, as explained in Chapter 2, another process is required

23

3. Related Work and Background

which binds entities to groups. If a peer A asks for data of another peer B, both have to
authenticate themselves to each other. This Authentication is not simply given by each peer
providing its CA signed certificate. It also requires for both peers to check if the other one is
part of the same logical shell.4 PKP enables administrators to take care of this problem on
the application layer above the TLS layer.

Public Key Pinning realizes Authenticity by exchanging the public keys of communication
partners beforehand. Another way is not to exchange the public keys but only cryptographic
fingerprints of the public keys. In either case a peer can compare the public key of a partner’s
certificate with the expected one.
This requires a secure distribution of the public keys. As for every node of a network

all connections to other peers of the network are required to be defined beforehand, the
complexity is strongly dependent on the number of connections, it scales with O(n!) [3].
A benefit of this approach is, that it directly addresses the problem of managing groups.

For a given group, the members of the group are defined by the distributed keys. This allows
for a direct control on the topology of a group as the connections between the peers are
defined individually.

For the case a private key is stolen, all fingerprints of the corresponding public key have to
be invalidated on each partner device. To minimize the risk of private key theft and the work
of reconfiguration of all respective devices, again Security Modules can be used.

3.3. Hardware Security Modules

Security Modules have the task to provide secure storage and generation of cryptographic
material. They are designed as a root of trust for cryptographic operations. Their functionality
is supplemented through a crypto API which provides a machine with hardware supported
crypto functionalities. In the context of this thesis their benefit is to secure end-to-end
communication between entities.

In order to ensure trust, a device should act exactly as one expects. Thus, standards play
an important role for Hardware Security Modules (HSMs).

The cryptographic material is stored on an external physical device which is not accessible
by software but can only be communicated with through an API. The secret keys should
never be accessable outside the device. Thus, the keys are never hold in the memory of a
machine. This ensures that the key cannot be compromised by attacks like RowHammer [11]
or Heartbleed [3].
Examples are smartcards or the Yubikey [57] for single users but also server attachable

devices which can be used in server infrastructures. They are designed to be tamper resistant
which means that they, e.g., delete their memory if one tries to access it physically. In general
side channel attacks should be taken into account. Also, unauthorized access should leave
evidence.

Trusted Platform Modules are a group of HSMs which are designed according to an
international standard written by the Trusted Computing Group (TCG) [28]. Especially a
TPM is able to proof its own Integrity to the user [47]. In the year 2014 the latest version
of the Trusted Platform Module (TPM) specification was published, the version TPM 2.0.

4This might be realized through multiple CAs, each acting as a signer for every logical shell.

24

3.4. Summary

TPMs are microcontrollers that aim to provide a root of trust for maintaining the security
policy of a system, i.e. it allows an independent entity to determine if the trusted computing
base has been compromised. This can be used to prevent a system from starting if it has
been tampered with [25, p. 21].

There is an encryption key permanently embedded into the TPM which cannot be deleted
or altered and which never leaves the device. This Endorsement Key (EK) is the root for all
derived keys. The Cryptography subsystem implements the TPM’s cryptographic functions.
Available operations are

• hash functions,

• asymmetric encryption and decryption,

• asymmetric signing and signature verification,

• symmetric encryption and decryption,

• symmetric signing (only HMAC currently defined) and signature verification,

• key generation [25].

Aside of this subsystem there are several others of which important ones are

• an extra Random Number Generator (RNG) Module. RNG has an entropy collection
module which seeds a mix function (not specified in the standard).

• an Authorization Subsystem. It is called by the Command Dispatch module at the
beginning and end of command execution. Before a command cacn be executed, the
Authorization Subsystem checks that proper authorization for use of each of the Shielded
Locations has been provided. Shielded locations are areas in the TPM which are security
sensitive and, therefore, particularly protected.

• A Non Volatile Memory (NVM) [25].

There is not much space on the TPM, so the preferred way to store information is outside
the device encrypting it by using the EK. This also holds for derived private keys. If one
needs access to the data they have to be decrypted sending them into the TPM where they
are decrypted and sent back out. More detailed functionality is explained in Chapter 4.
TPMs provide a standardized interface, which makes it easy to integrate them into IoT

manager devices for industrial contexts [20]. As they ensure a secure storage of the private
key, they are suitable for hardening the end-to-end communication between peers. Through
the EK they can provide Authenticity of a device if the corresponding public key is known.

3.4. Summary

In Section 3.1 possible approaches for P2P data exchange where discussed. Tracker based
methods where rejected as a possible approach for decentralized data distribution for the
intended context. Firstly, the requirement of Decentrality is not realy satisfied as well as
they lack the possibility of Identity management and related problems. Next, structured P2P
networks where examined, whose distinguishing factor is a DHT. They scale well and are

25

3. Related Work and Background

decentralized. Still, they lack the possibility of Identity and Group management. Additionally,
they lack required features for ensuring Authenticity on a reliable basis. Also, they are
designed for requesting files, not efficiently distributing them in industrial contexts.
For reducing the load of exchanging already shared files, which differ only partly, two

approaches have been discussed. The first one uses fixed sized blocks. Another possibility
is CDS, which tries to overcome the drawback of data shifts resulting from insertions or
deletions.
Having explained fixed block methods, the BEP was introduced as a method for file

synchronization between peers.
In Section 3.2, first, the problem of impersonation was described, which endangers Authen-

ticity. Thereafter, PKIs and PKP where discussed as possible approaches for ensuring this
security objective. Which one to use depends on the case.
Lastly, in Section 3.3, HSMs where propsed for improving the security of data. TPMs

where examined as a subset of HSMs which are standardized by the TCG.

26

4. Setup and Implementation

This Chapter proposes a concept for decentralized data distribution, building on the models
from Chapter 2. It takes into account the respective requirements and additionally the findings
from Chapter 3. Afterward, the setup for an exhibit is shown which aims to implement a
subset of the Concept to examine the Concept. For preparation, in Section 4.2, the used
software and hardware is introduced. Afterwards, the implementation is explained. Lastly,
in Section 4.4, the exhibit is evaluated. The Section surveys the requirements and the
applicability for other cases.

4.1. Concept

The problem to be solved is a decentralized and secure data distribution, which satisfies the
requirements of the new industrial context which was evaluated in Chapter 2. End-to-end
data flows across different sites through the Internet and across different organizational levels
have to be secured. As it emerged in Chapter 3 several P2P approaches are not suitable for
this. One way to realize this is to configure dedicated communication partners in order to
form information groups. In this section a suitable concept is outlined.

The concept is based on the scenario from Chapter 2. The requirements are listed in Table
4.1. From Chapter 3 additional points are derived which are not directly requirements from
the Scenario but are as well relevant for it. They are also included in Table 4.1.

On a single device a wrapper software aggregates data into files and manages the organization
and exchange with other peers like the proposed management shells from the RAMI 4.0
standard. With respect to group management the concept requires to make logical structuring
of groups possible. A management process is assumed and outside of the scope of this thesis,
as stated in Section 2.3 in Chapter 2.

A1

B3

B1
A2

B4

B2

Figure 4.1.: Exemplary Group Setup

27

4. Setup and Implementation

Requirement Short Explanation
Confidentiality If Information is transfered over untrusted networks, e.g. the Internet,

it should stay Confidential. Also Information needs to be separated
according to Informational Groups as proposed in Chapter 2.

Authenticity For companies connecting lots of devices across hierarchical levels and
to external partners, Authenticity is urgent. First, there needs a way
for the devices to avoid MITM attacks. Second, the devices need to
be able to verify the membership in respective Informational Groups
as explained in Chapter 2.

Integrity Data needs to be intact after transfer. Another point is consistency
which can be subsumed under Integrity. It is evaluated as an extra
point in the table.

Availability For industrial contexts Availability is an important security objective.
Availability of data is a major factor in Industry 4.0. Failures of single
devices should lead to a breakdown of the distribution system. The
requirement behind this is, that data should be available when it is
needed.

Decentrality For Industry 4.0 a strong interconnectedness and agile environments,
together with the desire for self organizing setups, Decentrality is a
reasonable requirement. It ensures Scalability and Availability.

Group and Identity
management

There must be a way to separate information for Confidentiality which
refers to Informational Groups. Also, Authenticity must be ensured,
which requires an Identity management.

Delta Exchange There is no need to transfer the complete files if they have changed.
It suffices to exchange only the changed parts in order to reduce the
network load.

Further Hardening For industrial context the loss of important information like encryption
keys can be disruptive. Using HSMs the security can be inceased
significantly.

Data Consistence With Integrity this point is indirectly covered. It stresses the fact that
data distributed to a cluster should eventually be consistent. There
should also be no infinite running loops which relates to Time, the
next point.

Time Data should be distributed in appropriate time. This point is already
included in Availability. The exact time is not of interest. But it is
relevant that data is available if it is needed. If it is needed in real
time an instant distribution is necessary.

Table 4.1.: Summary of the requirements for the exhibit

28

4.1. Concept

For the concept an example is given in Figures 4.1 and 4.2. The first Figure takes the
views of Informational Groups and Logical Connections. The B-nodes form a group. B1 and
B2 act as Management nodes for the group and have connections to other nodes outside the
group. In the real world this setup can be thought of as the group B being an enterprise
which shares certain information with two partners. The intern connections of the group B
are not visible for A1 and A2. Of course it is possible that behind these two also complex
groups are hidden, for which the two act as Manager nodes. The same holds for B3 and B4.
Thus it becomes clear that data distribution for a single group has to be examined. If data
has to be forwarded to nested groups the concept can be applied recursive.
Next, the third view of Data Flows needs to be taken into account. To recall, for a data

group there exists one Master which has an authoritative function. Exemplary it is assumed
that there are configuration data to be distributed to the peers in group B. Let B1 be the
Master for the group. The new data are made available for B1 and have to be distributed to
its Slaves. This is shown in Figure 4.2. The role of the Master is not bound to a dedicated
device. With the concrete view of Data Flow each member of a Data Group may be the
Master, leaving aside computational requirements. This does not hold for the Informational
Group view. Here the Manager is required to be appropriately connected and configured, as
it represents the group to external entities and needs to filter information.

P1

B4B2

B1

B3

Figure 4.2.: Data Flow for the exemplary Setup

of the single files. If for every node its local model equals the master model the data has
been distributed successfully. This description is inspired by the BEP [54].
Figure 4.3 proposes a concept for the communication steps required.

1. The Master initializes the connection.

2. The two partners establish a secure channel to protect further communication, e.g.,
TLS. This step is abstracted, as it may be realized in several ways. Any reliable method
can be inserted here.

3. Each partner authenticates itself to the other. This step is also abstracted. It should
ensure that a) every partner is who it claims to be and b) that they are indeed members
of the same Data Group, including the roles.

4. The Master pushes meta info of its model including the change version.

29

4. Setup and Implementation

Master

Hello

Master Model

1

Authentication

Request required Blocks

3

4

5

6

Delta Exchange7

Slave

2 Handshake

T
im

e

Compare Local
Model to Master
Model

Figure 4.3.: Communication Concept between a Master and a Slave

5. The Slave compares for every file its local change version with the one it got from its
Master.

6. The Slave sends a request for all differences in files of which it does not hold the latest
version.

7. The Master pushes the differences to the Slave.

Each of the endpoints has to authenticate itself to the other. The connection must be
secured end to end, thus the network in between is assumed to not be trustable. In Figure 4.3
the Master initiated the connection. In this way the Master can transfer new data without
delay to its Slaves. Another approach would be to let the Slaves periodically connect to their
Master. This would invert step 1. For an interval of time T the mean waiting time until the
transfer starts would then be T/2. It depends on the concrete case which approach fits best.
Step 4 to 7 can also be realized the other way around: The Slave could send its local model
to the Master. The Master would then compare it to its own model and push the differences.
In the concept above the case of distributing data from one Master to several Slaves has

been illustrated. For the case that, e.g., sensor data are aggregated by the Master, the
approach still works. Depending on the concrete case, a change in the local model of a Slave
may trigger the communication to the Master or the Master periodically asks for changes.
The same holds for steps 4 to 7. There is no concrete direction required. The ordering of the
change version allows for both ways.
Availability is to be realized by building on the paradigm of Decentrality. Thus, there

should be no server required which acts as a storage center for nodes sharing data. The
Concept above requires a node to have the role of the Master. If the Master drops out there
needs to be a protocol how the Master can be replaced by another node.

30

4.2. Technologies Used in the Setup

Confidentiality and Integrity of the data is to be realized by cryptographic means. As
already mentioned a standardized way of secure communication like TLS is favorable. In the
concept this is abstracted from in step 2.
Authenticity is of great importance as Confidentiality and Integrity of data can only be

assured by reliable Authenticity. If it is compromised the other two are not ensured anymore.
In the concept above Authenticity consists not only of assuring the peer’s identity but also of
ensuring the membership of the relevant group.

Taking again the view of Informational groups, there is the case of multiple Manager nodes.
The concept from above forces one node to be the Master. Given the version ordering there
should be no problem as for every file the latest version is defined. The role of Manager nodes
is not to be confused with the role of a Master. If for an Informational Group files simply
need to be synchronized between all members or between two Managers, this can be realized
by applying the concept from above multiple times as shown in Figure 4.4.

P2

P1

P3

P2

P1

P3P2

P1

P3P2

P1

P2

P1

P2

P1

P2

P1

P3

Figure 4.4.: Distribution Between Equal Nodes

The remaining part of the Chapter explains the realization of an exhibit. Its goal is to
show how the evaluated requirements can be implemented building on the explained concept
of data exchange. To simplify the setup and to be able to put focus on relevant aspects,
again, assumptions are made that where already enumerated at the end of Chapter 2. In a
productive setting it can be assumed that solutions for these assumptions are installed and
setup with a reasonable rule-set. These are an appropriate Identity management, a network
with possibility for each device to connect to each other, and properly configured firewalls.

The exhibit implements an exemplary part of the concept. It shows the data exchange for
two devices with possibility for expansion in mind.

4.2. Technologies Used in the Setup

The exhibit setup emerged out from the idea of using Infineon Iridium SLB 9670 TPM 2.0 SPI
Boards [32] for securing end to end communication. This evaluation board allows interfacing
over SPI. Infineon provides a patch for Raspian, a dedicated Debian-based Linux distribution

31

4. Setup and Implementation

for the Raspberry Pi (RPi) [33]. Using the open source Linux kernel has the advantage, that
the code can be investigated for security issues. It is also modifiable to adjust it to special
situations. As Raspian was chosen as Operating System (OS), corresponding boards, RPis,
where used. These mini-computers are suitable as they provide pins which are configurable
for SPI and also have Ethernet ports, which were used for setting up a LAN.
In order to realize decentralized data distribution, the program Syncthing was used [38].

The software implements decentralized data exchange using the BEP. It is publicized under
the Mozilla Public License 2.0 which allows to examine and modify the code. The Authenticity
is ensured on application level using PKP. The certificate of a peer, sent for a TLS handshake,
is only checked for Integrity.

Another reason for choosing this software is its general approach for communication based on
TLS. Communication standards are of high importance for Industry 4.0 as already mentioned.
Building on this approved standard ensures security through well tested technologies. Using
a management shell for a device which makes use of uniform communication channels has
already been motivated. Syncthing can be interpreted as a simplified version of a management
shell which aggregates data on a device and shares it with others.

Syncthing is written in the memory safe programming language Go [50]. This reduces the
risk of possible attacks and errors like buffer overflows. Through its static typing system it
also reduces the possible errors. Its platform independence is also of advantage. Syncthing
aims to be secure against attackers and be safe from data loss or corruption. The exhibit
implements an approach for improving the security by using TPMs. The part for this task
was also written in Go.

For addressing peers Internet Protocol Version 6 (IPv6) was used. This has several
advantages as for example it enables end-to-end addressing. The exhibit should show a
possible implementation for an Industry 4.0 scenario which relies presumably on IPv6.
Before the implementation of the exhibit is explained, relevant basics for the TPM are

introduced as it is necessary for using it. As already, stated a TPM has so called shielded
areas. Those may only by accessed if proper authentication is provided, given authentication
is configured. For accessing shielded locations a TPM uses handles or objects which need to
be referenced or loaded into the TPM. A handle references one action. This is necessary as
actions depend on different hierarchical areas.
Hierarchical areas are, e.g., the owner of the TPM who may set authentication values

(ownerAuth). Another area is the endorsement hierarchy for normal storage and handling
(endorsementAuth). A third one is the lockout area which manages the dictionary attack
prevention mechanism (lockoutAuth). If the TPM is reset or cleared these values are
empty [25].
Handles are needed to reference structures in the TPM which should be manipulated.

These handles are values which the TPM sets. A handle identifies the shielded location and
is only required if such areas are accessed. A handle may require authorization values loaded
into the TPM. Using TPM objects allows to store the context of commands which means,
e.g., necessary internal environment variables and also the handle of the action, making it
possible to use the commands in a non chained manner by loading these context objects.
This was used in the implementation.

In order to use a TPM for cryptographic actions using secret keys, these keys need to be
generated and stored. For storage a Storage Parent is required which grants protection for
the area in which the respective keys are stored. Such a Storage Parent key can be generated

32

4.3. Establishment of the Setup

from the Storage Primary Seed (SPS)1. It is generated new at restart or when clearing the
TPM. A SPS is used for the Random Number Generator (RNG) module as seed to generate
keys. If a SPS changes, all objects in the corresponding Storage Hierarchy are invalidated
thus the data is not recreatable [25].

For communicating with devices designed according to the standard, the Trusted Computing
Group made the code for the TPM2 Software Stack (TSS) available [36]. It is based on the
specification for the TSS System Level API [53]. The TCG also provides the code for the
TPM2 tools, which builds on the TSS and makes tools available to interface easily with the
TPM device [35]. Both are used for the TPM addition.

4.3. Establishment of the Setup

In this Section the realization of the exhibit is explained in two steps. First, the hardware
setup is shown. Afterwards, the software and written code is explained.

4.3.1. Hardware and Operating System

The exhibit consists of two RPis connected to a switch using Ethernet cables thus forming a
LAN. The configuration is shown in Figure 4.5. On each of the two RPis a TPM is attached,
indicated by the black boxes. The controlling machine is also attached to the switch and is
used to log into the RPis via SSH. The two mini computers have fixed Internet Protocol (IP)
addresses for their interfaces eth0 and use the Internet Protocol Version 4 (IPv4) and IPv6
address of the controlling machine as default gateway as shown in the Figure. For purposes of
installing necessary software the controlling machine was configured with network forwarding
and NAT using iptables.

eth0:
10.0.0.3/24
1::3/124

eth0:
10.0.0.2/24
1::2/124

enx:
10.0.0.1/24
1::1/124

TPMTPM

Figure 4.5.: Schema of the Setup

Each of the two RPis runs a modified version of the Raspian OS, with the available Infineon
patch for using the TPM evaluation board compiled into the kernel [33]. The exact steps for
this are available in the Appendix of this thesis.

1A Primary Seed is required to have at least twice the number of bits as the security strength of any
symmetric or asymmetric algorithm implemented on the TPM

33

4. Setup and Implementation

With the kernel being able to use a TPM device at /dev/tpm0, the required tools where
installed, i.e. the TPM software stack and the TPM tools, for which the steps can also be
found in the Appendix.

4.3.2. Implementation

Now the implementation of the exhibit is explained. First it is shown how decentralized data
distribution was realized. Afterwards it is explained, how TPMs where used to increase the
security.

Implementing Decentralized Data Distribution

The data exchange between peers is realized by installing Syncthing on the two RPis. This
provides exchange via the Block Exchange Protocol. This protocol defines procedures for
communication, authentication and file synchronization between devices [38] as explained in
Chapter 3.

To summarize, the BEP uses index records to update the local model of every peer to the
global model, which is defined as the set of all files in the highest change version. To realize
deduplication, files are managed as blocks of a fixed size.
Step 2 of Figure 4.3 is realized by Syncthing through a TLS handshake, exchanging self

signed certificates. The handshake is initialized by a BEP Helo message which indicates the
start of an synchronization wish (step 1). After the certificate exchange a secure channel
based on the included public keys is possible. The two devices then arrange a symmetric
session key.

Step 3 is then realized by PKP. The Authenticity is ensured through IDs, which have to be
manually added to the single devices and consist of the base32 encoded SHA256 sums of the
public keys, with added correction bits based on the Luhn algorithm [54]. PKP has already
been motivated in Chapter 3 as a possible method for ensuring appropriate Authenticity.
Step 4 from the concept is split into two parts. First, each peer advertises the tracked

directories and the associated peers. Then the peers advertise their local index records to
each other, compare them to their local model and request missing or depricated blocks (step
5). This procedure has already been examined in Chapter 3 and corresponds to step 4 of the
concept.

In the implementation of the exhibit a comparison of the local models of the peers occurs
based on a time interval of 30 seconds. Syncthing also supports a reactive behavior, which
initializes a connection after files changed in any of the monitored folders. On Linux this
feature builds on the inotify kernel module [22].

The BEP, as implemented by Syncthing, realized the Concept from above in a modified way.
If the steps from Figure 4.3 are applied twice, one time in the mirrored way, the implemented
procedure is realized, comparable to Figure 4.4.

Security Improvement through TPMs

The certificates are stored in a local config directory, including the private key. This poses
risks on two levels. Firstly, the private key can be accessed by the user, under which the
process runs. Thus a secure handling is not ensured, especially if someone gets unauthorized
access to the account. Secondly, in the process of the certificate generation as well as in the
process of the TLS handshake the private key is stored in the memory of the devices.

34

4.3. Establishment of the Setup

In order to address the problems, efforts for hardening were undertaken. In Chapter 3 it
has already been motivated, that this kind of problems can be addressed by TPMs. The
approach aimed to integrate TPMs in order to provide secure storage for the private keys.
This part of the exhibit consists of three code files. The first one implements functions

for a TPM library. The second file implements a simple server which builds on this library
for creating a Certificate with the private key stored on a TPM. This certificate is used for
providing a TLS port for connecting to the server. For the handshake the TPM is required
as the private key is stored on it. The third file implements a client connecting to a server.
It uses one function of the library for PKP which compares a given fingerprint with the
fingerprint of the servers public key it wants connect to.

The implemented TPM library builds on two interfaces provided by the Go crypto library
[31]. These two interfaces act as hooks to implement own subroutines for asymmetric
encryption which can be used in the Go tls stack. In Go interfaces are satisfied implicitly
by simply implementing the functions an interface type requires. This Section sticks to the
Go convention, in which capitalizing names of functions and variables makes them public.
Library references and basic types are in lowercase, e.g., ’crypto’ refers to the library, ’struct’
refers to a struct type and ’crypto.PublicKey’ referst to a public accessable type of the library.
The first type is the Decrypter interface which requires the two functions, Public() and

Decrypt(). Any self defined type which implements these two function can be used as an
opaque private key in Go asymmetric cryptography for decryption.
The second one is the Signer interface which also requires the Public() function and

additionally the Sign() function. An opaque private key type implementing this interface is
usable for Signing.
Any self defined private key, implementing both interface is fully capable of asymmetric

cryptography as used in TLS. The Go library calls the private key therefore an opaque key.
The two interface suffice and there is no additional function like encrypt() needed due to
the nature of asymmetric cryptography: If any data requires to be encrypted for a receiver,
one uses the public key of the receiver to do so. The private key is needed by the receiver
to decrypt the data which is ensured through the Decrypt() function. The second case
that the private key is required is for signing which is implemented by the Sign() function.
Using the private key for encryption would not make sense as the public key for decrypting is
public. The public key is available through Public() which is only required for distribution
to communication partners, e.g., by including it into a certificate.
This architecture allows to store the private key in a TPM and define the three function

Decrypt(), Sign() and Public() for a indirect usage of the private key. The exhibit’s TPM
library does so by implementing them for an own type - Tpm struct - which can then act as
an opaque private key for asymmetric cryptography. The struct contains the following fields:

Tpm struct:

• PublicKey. A crypto.PublicKey which is an abstract type and in practice is an
untyped pointer. This field is implemented in the struct to satisfy the interfaces.

• PrivateKey. A crypto.PrivateKey, same as PublicKey.

• WorkingDirectory. A string which points to a directory on the system. This directory is
the working directory for the TPM actions. In this directory, e.g., the context structures
are stored and also other outputs like random numbers or signatures.

35

4. Setup and Implementation

• Certificate. A tls.Certificate. There exist two certificate types in the crypto library
which are used in a TLS connection in the setup. The first one is the tls.Certificate.
It stores information relevant for managing TLS connections. Most important an
instance contains an opaque private key and an unparsed DER encoded certificate.2

The second type is x509.Certificate. This type works as a container for attributes of a
x509 standardized certificate. The leaf attribute of a tls.Certificate is of this type
and can automatically be parsed from a bytearray which holds a raw DER encoded
certificate.

The Tpm struct thus has two tasks. First one is to store relevant information like the
working directory and a tls.Certificate which also contains the encoded certificate. The
second one is to act as an opaque private key. It is the receiver for the implementation of
the interface required functions which will be explained in detail later. Next, the flow of the
exhibit is explained step by step. For the Tpm struct a New() function is implemented.

New() function: This function takes care for the exhibit to reset the working directory and
fill all required fields in the Tpm struct. It also initializes all required keys by calling the
InitKeys() function and uses these keys for generating a x509 certificate. For this it also
uses the random module of the TPM, which will be explained a bit later.

InitKeys() function: The purpose of it is to get the TPM device ready for TLS communi-
cation. It traverses the following steps:

1. Clearing the TPM ownership. After a restart the authentication values are empty.
However, if the TPM was not restarted this approach ensures a smooth usage of the
device as proposed by the manual [34].

2. Creating a primary key for storage. This key acts as the Storage Parent for keys created
in a storage hierarchy as explained in Section 4.2. The name of the TPM object required
to work on this is computed using the SHA256 algorithm and stored as a file in the
working directory. The chosen encryption mechanism is RSA.

3. Creating a keypair. The public part is included in a x509 Certificate in the next
step. The private part is used for signing of this certificate and decrypting of messages
encrypted with the public key. Again a TPM object is created as output which is
required for the keys to be used. The used algorithms are the same as for the primary
key.

After the initialization of the required keys, a x509 certificate is created. The fields for
the certificate are mainly adopted from the implementation of Syncthing [51]. An example
certificate can be found in the Appendix.

Read() function: Like in Syncthing, the Serial Number is generated randomly. In the
implementation for the exhibit, a Random Reader type is included which satisfies the go
Reader interface. Using the Read() function, random bytes can be generated using the TPM

2The opaque private key only needs to satisfy the explained interfaces for getting the program compiled.
It should, however, use the corresponding key to the public key of the encoded certificate. Otherwise
cryptography will fail.

36

4.3. Establishment of the Setup

device. In this way the Serial Number is generated. The higher bit is masked in order to
ensure a positive interpretation of the 64 bit integer.

The certificate is self signed. For creating it, the opaque private is passed to the generator
function. As all steps so far work on the Tpm struct it can use itself for the private key. Also,
the public part of the key pair which has been initialized by InitKeys() is included in the
certificate.

Public() function: For accessing the public part the Public() function is implemented as
required by the two private key interfaces. This function reads the public key file generated
with the initialization. It contains the public key unencrypted. In practice the file is a TPM
generated struct and the public key has to be extracted. The function first creates a PublicKey
struct from the go rsa library which contains the two fields Modulus and Exponent. The
latter is a fixed value, as the TPM specification proposes, 65537. This is also recommended
by RFC 4871 [5]. The Modulus can be read from the public key file. However, the object
also contains data for the TPM device. It is defined in the TPM specification. The object
created by TPM2_Create is a TPMT_PUBLIC object which also stores information on the
type, the used algorithm and several other fields [25, p. 174] [27, p. 45]. The relevant bytes
are the bytes 102 to 358 [26, p. 135]. The file is read and the the relevant trunk is converted
to an Integer and set for the Modulus.

Sign() function: The Sign() function uses the TPM and the keys generated in the
InitKeys() function to sign a given digest. It assumes, that some text for which a sig-
nature should be created, is not directly passed to the function but a hash sum of the text.
Two TPM related calls are required to achieve this. The first loads the required data into
the TPM which are stored external. This produces a new TPM object file which contains
information about this load action and is required for the loaded data to be used. The second
call then outputs a RSA signature of the input digest. Such an action also produces a file
which documents the action. After reading the digest from the relevant file, all data which is
not relevant anymore is deleted.
The output file containing the digest is also a TPM object analogously to the public key.

The relevant bytes start from 6 on to the end. In the course of the New() function the
SHA256 sum of the public key is printed to stdout. It works as a fingerprint for the public
key. This string can be passed to to any client which wants to pin the generated public key.
The described library also implements a function for doing so and will be explained later.

After the creation of the x509 certificate the DER encoded bytes are added to the Certificate
field of the Tpm struct which is a tls.Certificate. This struct already contains the opaque
private key.
With the tls.Certificate struct available a server can be initialized listening for TLS

connections. The usage of the required functions is shown in code snippet 4.1:

Listing 4.1: Code snippet from the TPM TLS server
1 var tpmHandle *tpm.Tpm = tpm.New("/path/to/workingdirectory")
2

3 cert := tpmHandle.Certificate
4

5 config := &tls.Config{
6 InsecureSkipVerify: true,

37

4. Setup and Implementation

7 CipherSuites: []uint16{
8 tls.TLS_RSA_WITH_AES_256_CBC_SHA ,
9 tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA ,

10 tls.TLS_RSA_WITH_AES_128_CBC_SHA ,
11 tls.TLS_RSA_WITH_AES_256_CBC_SHA ,
12 tls.TLS_RSA_WITH_AES_128_GCM_SHA256 ,
13 tls.TLS_RSA_WITH_AES_256_GCM_SHA384 ,
14 },
15 Certificates: []tls.Certificate{cert},
16 }
17

18 ln, err := tls.Listen("tcp", ":443", config)

Line 1: A Tpm struct is created. By calling the New() function the TPM attached to
the device is cleared and a new key pair is created, as explained above.

Line 3: The certificate stored in the tpmHandle is extracted. This is not required but
makes the usage more clear. This variable will be used in line 15.

Line 5 to 17: A TLS configuration is implemented. First, in line 6 the validation
of the TLS Certificates in the handshake is deactivated. It is assumed to be done by
each client through PKP. The following lines set the supported ciphers for the TLS
connection. The implemented server supports all TLS ciphers of Go tls, which are
based on RSA for the TLS handshake.

Line 15: The required certificate (a tls.Certificate struct) is set for the config. It
was extracted in line 3. With this config a basic TLS server can be run, listening on
port 443. This happens at line 18.

An instance of the server listening for connections sends the generated certificate whenever
a clients initializes a handshake. The client will then normally use the public key from the
sent certificate to encrypt messages to the server.

These are decrypted using the Decrypt() function. Like the Sign() function, it takes two
steps. First, the required data structures are loaded into the TPM. In a second step the main
task is fulfilled by decrypting the encrypted file to which the cipher text was written to. This
time the output file contains the required text in pure form and not embedded in a special
TPM struct. So the content of the file can simply be read and returned by the function.

CheckPeerCert() function: A TLS server using the TPM for secure generation and storage
of keys is implemented by the explained code so far. The library also offers the function
CheckPeerCert() which implements a technique comparable to Syncthing. Syncthing com-
pares the fingerprint of a peer’s public key to the ID listed in the configuration. The described
function does the same. It marshals the public key of a TLS certificate 3 and compares its
SHA256 hash value to a given fingerprint. The client implementation does so by reading the
fingerprint from the first command line argument. Exemplary usage is shown in code snippet
4.2:

3The received certificate of a connection is stored in a struct, ConnectionState, from which it is extracted.

38

4.4. Evaluation, Applicability and Further Extensions

Listing 4.2: Usage of the CheckPeerCert() function for a Client
1 conf := &tls.Config{
2 InsecureSkipVerify: true,
3 }
4

5 conn, err := tls.Dial("tcp", "[1::2]:443", conf)
6 defer conn.Close()
7 fingerprint, err := hex.DecodeString(os.Args[1])
8 if err != nil {panic("could not parse server fingerprint given via command line")}
9 b := tpm.CheckPeerCert(conn, fingerprint)

10 if (b) {...}
11 else {...}

Lines 1 to 3: A TLS configuration is set. The verification of the server certificate is
deactivated as PKP is used to verify the partner.

Line 5 and 6: The connection is initialized with the given configuration. After this point
there is an active connection between the two. The closing of the connection is ensured
through the defer statement.

Line 7: The first command line argument is read and decoded as hex string. Using hex
values is the standard way for encoding SHA256 hashes.

Line 9: The CheckPeerCert function is called to compare the parsed fingerprint with the
hash of the public key in the active TLS connection.

4.4. Evaluation, Applicability and Further Extensions

The exhibit consists of a LAN of two devices. Through Syncthing they build on the BEP to
synchronize data, as described in the concept. TPMs where added to the exhibit. This part
relies on a TPM device attached to the system using the TPM2 tools.
In Section 4.1, requirements where gathered. They are summarized and evaluated in

Table 4.2.
In the way the exhibit is build, it is easy to add other devices. For time reasons this has not

been realized in this thesis. The additional benefit would not be large if there is only a third
device added. However, the devices added could take other roles, e.g. the role of Discovery
Servers or Relay Servers, which are also specified and implemented by Syncthing. Using such
entities would reduce the grade of Decentrality. For an industrial context this might be a
necessary flaw, as assuming a single LAN is not realistic for an Industry 4.0 scenario: As
layed out in Chapter 2 cross factory communication is important. For traversing NAT, Raly
Servers can be used [10]. Assuming the possibility of end-to-end connection over IPv6 is not
affected by this. These issues will be discussed in more detail in Chapter 5.

The exhibit should show the implementation of technical concepts for an industry context.
Therefore it aimed to implement high security. The impact of a compromise of a peer can be
reduced by preventing the private keys to be stored on the devices. Also, exploiting memory
leaks is mitigated. An approach for ensuring this has been taken but not fully implemented.
The corresponding part of the exhibit is a TPM integration into the crypto library of Go.

The application in Syncthing has not been realized due to time issues. However, the
implementation is a generic one, using the Go TLS software stack. Thus an integration into

39

4. Setup and Implementation

Requirement Evaluation
Confidentiality Through TLS Confidentiality is realized. TLS is a standard way for

securing network traffic through the Internet. As mentioned, standard-
ized technologies have several advantages.

Authenticity The communication partners verify themselves to each other using
PKP. This implies that the respective public key fingerprints where
exchanged in advance. The membership of the Informational Group
is thus satisfied implicitly: for a device knowing the fingerprint of a
partner implies that the presumed Identity management process has
taken care of this problem. The role of the Management node is given
implicitly: an External peer (in the Logical Connections model) fulfills
the task if it is accordingly configured.

Integrity Integrity during transfer is realized through the downstream protocols
of the BEP, i.e., TLS and TCP. On application level the BEP ensures
the Integrity through hash sums on block level of the files.

Availability The exhibit consists of two devices. Thus this point is not directly
satisfied, as if one device fails there is no communication anymore.
However, the use of Syncthing implies Decentrality. Depending on
the setup with more devices this point can be satisfied: With a higher
meshing, increased Availability is given. If all devices build a chain
with single connections between the devices, the chain is broken with
one device failing. This point is best examined in the view of Logical
Connections and is investigated shortly in Chapter 5.

Decentrality As Syncthing uses a decentralized approach this is satisfied.
Group and Identity
management

Through PKP this is satisfied as a process is assumed. The imple-
mentation supports a mechanism for a management as demanded.
However, there remains a scaling problem. If a peer is excluded from
an Informational Group all ex-peers need to be reconfigured. This is
discussed in more detail in Chapter 5.

Delta Exchange Syncthing uses blocks of fixed size together with hashes of these blocks
to find differences in the data. As explained in Chapter 3 there exists
Content Defined Slicing which can be more effective. Thus, this is
only partly satisfied.

Further Hardening In the implementation TPMs where used to provide a secure storage
and handling of private keys. Due to lack of time this has not been
integrated into Syncthing. It has been shown, that the approach works.

Data Consistence Syncthing uses a versioning of blocks to guarantee a consistency in
the data in order to reach a global model. Thus, this is satisfied.

Time In the current implementation Syncthing scans regularly for changes
and distributes data if any changes occurred. The software also
supports using the inotify subsystem of the Linux kernel to trigger
distribution on change.

Table 4.2.: Summary of the requirements for the exhibit

40

4.5. Summary

any software written in Go, which builds on TLS for ensuring a secure communication, should
be easily be possible. This includes Syncthing. The applicability is not limited to Syncthing,
though. The authentication in the implementation is realized by using PKP. The server
sets the option InsecureSkipVerify, which disables the signature check of Certificates as
they are self signed. It would be possible to add a modification of the New() function which
simply loads a CA signed certificate , thus offering the applicability for a PKI. The private
key can then still be stored in the TPM.
As this module does not implement any data exchange, but only security for a TLS

connection, for almost all further investigations an integration into other software like in
Syncthing is required. In order to test the scalability, e.g., in an emulated enterprise network
there is also the possibility of virtualized TPMs: IBM makes a virtualized TPM software
available which implements the TCG TPM specifications [23]. It also offers a compatible
TPM software stack [24] which should make it easy to use virtualized TPMs in the context
of the exhibit implementation.
Currently, there is no way to store generated keys and certificates after a restart of the

devices. The certificate is saved in a file in the working directory. One could implement a
function which reads the file and includes it in a TLS server configuration. This would only
make sense if the TPM keys would not get invalidated after a restart of the device. This can
be realized using the TPM2 tools function TPM2_EvictControl to make the storage primary
key persistent [34]. For an application outside of an exhibit this is necessary, as the keys must
be persistent on the devices. Otherwise, the keys on every device have to be regenerated
after each restart and the fingerprint of the public key has to be re-transfered.

A risk the current application holds is that files in the working directory may be altered by
other processes. One could implement locks to ensure that the files are not touched until the
application has terminated.
It would also be possible not to use the TPM2 tools binaries but communicate directly

over the sockets provided by the TPM software stack.

4.5. Summary

The requirements for the Concept and the exhibit where gathered in Table 4.1. The Concept
shows, how data distribution for a Master-Slave model can be realized, considering how data
duplication can be prevented. It builds on models between partners, whose differences are
exchanged.
For the exhibit there where Infineon TPMs together with RPis used. As software there

was Syncthing chosen, which is written in Go and builds on the BEP. For securing the
setup, interfaces of the Go crypto library where implemented to incorporate TPMs in a
TLS connection. The TPM acts as a required device for creating x509 certificates and for
establishing connections using them. PKP is added as a way to secure the Authenticity. It is
realized by using SHA256 sums of the public keys.
The evaluation is gathered in Table 4.2. Almost all requirements have been satisfied or

at least it would be not too hard to realize them. There are ways to improve, though. The
implemenation of the TPM library is a generic one and it is easily possible to use the code
for other Go projects which use the crypto library. It also has weaknesses like the working
directory.

41

5. Discussion

In this Chapter different parts of the thesis are revised and discussed. Firstly, the requirements
for an industrial context are examined under the different viewpoints. Secondly, some general
considerations for the exhibit and the concept are undertaken.

5.1. Discussion of the Requirements

In Section 2.1 three models where proposed for analyzing the problem of data distribution.
The requirements from Chapter 2 are now discussed in the context of these models. If any
requirement from Section 2 is not discussed, it is not seen as relevant in the respective model.

Informational Groups. Taking this viewpoint, one is mainly concerned with matters of
information asset management in a company. The central requirement emerging out of this
model is a need for Group and Identity management, as the view emphasizes exactly the
pattern of distrinct groups. If one is looking at data distribution for Industry 4.0 contexts an
simplified interconnectedness does fall too short; especially if the goals for this development
include data sharing along whole value chains with multiple enterprises along it.
Confidentiality as a requirement follows directly from this analysis as it means exactly

to avoid disclosure to outgroups. Throughout the thesis Integrity fell a bit short. For data
distribution it is an implicit goal. Assuming that data is not useful if the Integrity is not
ensured, this requirement plays a natural role. What exactly the conditions for Integrity in
the view of Informational Groups are, depends on the individual case.

Availability as a requirement is also of interest in this view. How important the access to
information for every group is can be best analyzed in this view. The results from this analysis
can then be used for the model of Logical Connections to ensure the required Availability.

Authenticity has to be satisfied for group membership. Any node has to have the possibility
to ensure the group membership of a communication partner.

Logical Connections. This view has been partly excluded from the scope of the thesis.
It is still relevant regarding end-to-end connections and in terms of Availability. Securing
end-to-end connections has been addressed in the exhibit through securing the private keys
for TLS connections. This feature can be seen as relevant for the view of Logical Connections.
Thus, the exhibit also shows how a need for an Identity management can be located in this
view and how it is correlated to Authenticity.

The other relevant requirement for this view is Availability, which can be realized through a
sense-full network layout. Decentrality is directly connected with this. Assuming a centralized
network, for a network of n peers there can be n! connections. This is the case in the left part
of Figure 5.1. If any peer fails, the Availability is still fully assured. On the other extreme,
every peer is only connected with one or two other peers forming a chain. The chain is broken

43

5. Discussion

Figure 5.1.: Two Possibilities of Interconnectedness

if any middle peer fails, cutting the possibility of transfer. The same holds for a centralized
server.
By using, e.g., PKP, as in the exhibit, the Scalability is of great concern in this view.

Scalability has been included in the requirements only partly in the context of Decentrality.
Thus the thesis falls short in the discussion of such issues. How to design such networks with
a good tradeoff of Availabiliy and Scalability in mind is a complex matter, which is outside
the scope.

Data Flow. A management of groups is implicitly required in this model as a Master is
always the Master for a group. A management of identities is better called a role management.
The identities of the single nodes is not of question and is addressed through the other views.
This view requires a assignment of a Master. It also has to be assured that there is always a
Master. As already proposed there might be a protocol for choosing a new one if the old one
drops out. This ensures Availability.
Assuming a group management process, Confidentiality is not of concern for this view as

the members of a group should already be in the same Informational Group. The same holds
for the requirements of Integrity and Authenticity.

5.2. Discussion of the Exhibit

At the end of Chapter 4 the results where gathered in Table 4.1. In this Section a more
general inspection of the exhibit is conducted. As one can see in the Table the requirement
of Group and Identity management is realized in the exhibit through PKP. In Section 5.1, in
the discussion of the view of Logical Connections, it has already been stated that there is a
trade off between reliability of such a setup and the number of connections. In the solution
of the exhibit every connection between every node has to be configured manually. This
scales bad for a large number of members. The approach does, however, open the possibility
for granular control of group membership as well as connections through a direct Identity
management. The configuration work scales with the number of connections in the network.
If a node leaves an Informational group, all its ex-peers need to be reconfigured to not trust
this agent anymore.

The exhibit aimed to show how a subset of the Concept from Chapter 4 can be realized. It
has been put in place through the BEP implemented by Syncthing. The program does not
include roles like Masters or Slaves. Every peer is equal. It rather implements the situation
shown in Figure 4.4. For the special case of distributing files from one Master to several
Slaves this can be realized through a feature of Syncthing: by allowing only one node to write
files. The other peers only synchronize their local files with the Master peer. The case of
accumulating information at a Master is not implemented. Rather the data is accumulated

44

5.3. Summary

on every peer, not a central one. It can be argued, that all connected peers act as a Master,
as long as they do not write data (in the accumulation case, only the Master does not add
data).
Considering the management overhead for the need of configuration of all single points

in a network, it is obvious to introduce a centralized Identity management structure. An
example for this is the RADIUS protocol. However, it would be as well easy to have a central
server which takes care of configuring the single devices remotely. This is possible through
Syncthings REST API, which allows for remote configuration. Thus, the Decentrality of the
informational network is preserved, only the configuration is centralized.
By using TPMs for private key storage in TLS connections it can be guaranteed that an

attacker getting unauthorized access to a device, does not get hold of the private key. The
corrupted device itself still would act as a regular device in the group and there is no obvious
way for a communication partner to identify a malicious device. Thus, the Confidentiality of
the data is corrupted too.

The main security improvement lies in the fact that the key never leaves the TPM and is
subsequently never stored in the RAM. An attacker exploiting vulnerabilities and aiming
to get access to information on the device would not be able to steal the private key. Thus,
attacks like Heartbleed are excluded which allow to gain access to sensitive data through a
out-of-bounds-read [43]. This makes it much harder for an attacker to impersonate devices on
the network. Another advantage is given if a device gets corrupted and is sanitized afterwards.
There is no need for reconfiguration of the peered nodes. This would be the case if the private
key was stolen, as the derived public key is used for configuration of the peering.
During the work on the thesis a flaw in the RSA key generation procedure of the used

Infineon TPMs was discovered. An attacker can use the vulnerability to compute the private
key from the public key [19]. Thus, it would be possible to impersonate the attacked device,
decrypt traffic and forge the signatures. Subsequently, the Authenticity and Confidentiality is
threatened. The implementation is not build on the specific model so it would easily be possible
to use another TPM device or change the used methods to Elliptic Curve Cryptography
(ECC).

5.3. Summary

The discussion of the three models from Chapter 2 made clear, how the different requirements
can emerge from the different viewpoints. The model of Informational Groups is the main
viewpoint from which the requirements are infered from. The other two are more concerned
with how to realize the requirements.

The exhibit has met several requirements but is not applicable to every scenario. The
use of Syncthing allows for dynamic configuartion of partners and groups. However, the
drawback is the configuration overhead. Through the usage of TPMs there has been assured
that exploits reading memory can not access to the private key which enhances Authenticity
greatly in defense against impersonation. Through a possible exploit in the used TPM models
the security is strongly reduced in the present setup. There is need for either changing the
hardware or the used cryptography to ECC.

45

6. Conclusion and Future Work

This thesis was set in the context of Industry 4.0. It aimed to find requirements for data
distribution with a focus on Decentrality. For this, it defined three views or models one can
take to approach this topic. In the single views the focus is shifted towards different problems
and requirements.
For the IT-security perspective each of the models made other requirements stand out.

The three classical security objectives, Confidentiality, Integrity and Availability are emerging
out of the view of Informational groups, as this view emphasizes information on an abstract
level. It underlines the separation of information against out-groups, the usability of the
information and the accessibility of required information, if it is needed. The other two views
are more technical. The three objectives are not directly derived from these. For them it is
more of concern, how the objectives can be achieved.
Authenticity has the two dimensions of group membership and communication partner

Authenticity for a single connection. Closely connected with the first point is the requirement
of an appropriate Group and Identity management. This has been realized in the demonstrator
through configuration of the single communication partners by defining all other partners
through IDs. The Authenticity of communication partners has been implemented using TLS
in combination with PKP. For securing the Authenticity, an implementation for using TPMs
has been undertaken. Thus it becomes harder to disrupt the Authenticity of the partners by
stealing their identities, i.e. their private keys.
As stated in Chapter 5 this end-to-end configuration scales bad for large infrastructures.

Future work could try to find a more efficient approach. The most obvious one is to introduce
a kind of identity broker comparable to approaches like the RADIUS protocol which, however,
is a centralized solution. A hybrid version would be an interesting subject. As already
proposed in Chapter 5, building on the REST API of Syncthing, it would also be helpful to
have a central management point which configures the network as needed.

If one sticks to the implemented approach it would be feasible to develop a procedure for
efficient connection topologies. This topic has also shortly been touched in Chapter 5 in the
discussion of Logical Connections. How a meshing of a network is efficiently realized, which
finds a tradeoff between Availability, Scalability and network load, is subject to another field
of research.
Industry 4.0 aims for autonomous processes whith as little as possible required human

intervention. Management of identities is something which is hard to automatize as there
are decisions required which are substantial for companies and their confidential information.
Developing techniques for automatizing these processes could be an essential area to profit
from the ideas of Industry 4.0.

47

Appendix

A. Preparation of the OS

In this Section the steps are described that where taken to make the TPM device available
for the OS.

In a first step the Raspian OS was flashed to a SD card. The exact version of the OS is lo-
cated at this url: downloads.raspberrypi.org/raspbian/images/raspbian-2017-01-10/
2017-01-11-raspbian-jessie.zip
Using the tool raspi-config, SPI was configured to be loaded by default. From the

modified OS the Linux kernel configuration was extracted using modprobe config. The
config.gz file in the system directory /proc contained the current kernel configuration. This
kernel configuration was used when patching the Linux kernel for using the Infineon TPM.
For configuring the kernel it was downloaded from github.com/raspberrypi/linux.

git-brpi-4.4.y. This version was used because for this kernel Infineon already made
a patch available which enabled TPM communication [33]. The diff file was applied to
the downloaded Linux kernel. Now the driver for the TPM had to be activated. These
two commands where used to enter the configuration menu in which the appropriate TPM
Hardware Support was enabled.

make ARCH=arm CROSS_COMPILE=arm-Linux-gnueabihf- olddefconfig
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig

Afterwards it was crosscompiled using the kernel configuration extracted from the modified
Raspian OS:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- -j3 zImage modules dtbs1

After the crosscompiling did succeed the modified kernel was installed onto the SD card with
the Raspian OS by issuing:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- modules_install \\
INSTALL_MOD_PATH=[/path/to/root/filesystem]/

As a last step the new kernel image and additional configuration files where copied to the
boot partition on the SD card.

scripts/mkknlimg arch/arm/boot/zImage [/path/to/sd/card]/boot/$KERNEL.img
cp arch/arm/boot/dts/*.dtb [/path/to/sd/card]/boot/

1The switch -j3 makes the compiler using three cores.

49

downloads.raspberrypi.org/raspbian/images/raspbian-2017-01-10/2017-01-11-raspbian-jessie.zip
downloads.raspberrypi.org/raspbian/images/raspbian-2017-01-10/2017-01-11-raspbian-jessie.zip
github.com/raspberrypi/linux.git -b rpi-4.4.y
github.com/raspberrypi/linux.git -b rpi-4.4.y

6. Conclusion and Future Work

cp arch/arm/boot/dts/overlays/*.dtb* [/path/to/sd/card]/boot/overlays/

Now the attached TPM was available in the running OS as a device at /dev/tpm0. For com-
municating with it the TCG made the code for the TPM2 Software Stack (TSS) available [36]
which enables communication with the TPM, based on the specification for the TSS System
Level API [53]. The TCG also provides the code for the TPM2 tools, which builds on the TSS
and makes tools available to interface easily with the TPM device [35]. Both where downloaded
from Github, compiled and installed. Subsequently, the TPM2 tools binaries where available
on the systems. The TSS provides the resource manager which is required to be running
in order to use the tools. The following line was added to /etc/rc.local to make it start at boot.

nohup sudo resourcemgr &

The resource manager is a system daemon with a TCP/IP interface over sockets. The TPM2
tools use this interface for communication with the TPM. The task of the tools is to simplify
the interaction by marshaling bytestreams to the TPM and unmarshalling bytestream from
device. It also multiplexes access to the TPM which enables different programs to use the it
[34].

B. Sample Certificate

In the following a sample x509 certificate is shown generated by the TPM library.

1 Certificate:
2 Data:
3 Version: 3 (0x2)
4 Serial Number: 6890850733611472929 (0x5fa1383ba126d821)
5 Signature Algorithm: sha256WithRSAEncryption
6 Issuer: CN = syncthing
7 Validity
8 Not Before: Oct 5 15:20:58 2017 GMT
9 Not After : Dec 31 23:59:59 2049 GMT

10 Subject: CN = syncthing
11 Subject Public Key Info:
12 Public Key Algorithm: rsaEncryption
13 Public-Key: (2048 bit)
14 Modulus:
15 00:97:95:94:8f:45:ed:75:67:cf:95:df:90:c6:af:
16 ef:c5:f9:eb:d4:af:9b:60:58:c4:78:df:40:6c:a3:
17 b2:95:b0:ba:41:82:ae:e7:9e:40:0a:1c:d6:e6:e6:
18 a0:4d:be:5d:a9:6e:bc:1d:a0:d7:93:ad:ed:69:ec:
19 c6:71:e7:88:a3:5b:1f:db:48:b5:4c:2b:6a:ba:37:
20 4f:88:d4:d2:2e:7d:b7:03:65:d3:6f:5e:20:a4:cb:
21 50:b9:f5:a7:dd:ad:9a:6e:c4:45:2f:ec:c9:33:a5:
22 3a:46:9e:39:7b:c5:d8:7f:22:fd:91:55:0a:9e:f9:
23 5b:92:b3:e4:3d:f4:32:72:ff:94:19:4c:29:99:7d:
24 d6:af:de:06:c1:b8:5d:57:f6:2b:78:ee:60:e6:67:
25 18:06:31:da:ef:3e:2a:e5:17:05:20:08:c0:48:53:
26 1b:a9:ee:92:2e:fa:57:0b:62:35:9a:5e:78:48:93:
27 ca:24:8b:54:ba:98:62:79:3d:77:7d:de:c0:e6:52:

50

B. Sample Certificate

28 96:c6:8f:65:05:c1:d8:a3:e6:71:b2:f9:6a:5d:79:
29 0e:07:38:69:89:b0:cf:b2:c9:b0:eb:8b:8e:d4:83:
30 a7:04:1e:13:44:cc:ec:56:f2:5b:01:29:e1:72:5c:
31 4b:44:59:cc:70:6f:2a:81:1e:5f:79:47:b6:d7:1c:
32 39:15
33 Exponent: 65537 (0x10001)
34 X509v3 extensions:
35 X509v3 Key Usage: critical
36 Digital Signature, Key Encipherment
37 X509v3 Extended Key Usage:
38 TLS Web Server Authentication, TLS Web Client Authentication
39 X509v3 Basic Constraints: critical
40 CA:FALSE
41 Signature Algorithm: sha256WithRSAEncryption
42 8e:e1:10:86:e0:8b:0d:67:f0:19:8c:d9:7b:83:40:ff:bd:9b:
43 bf:22:b7:d4:54:97:59:fe:e8:5f:94:e1:a5:c4:39:08:0d:07:
44 a5:36:3c:a0:f0:7b:29:b5:ea:dd:84:65:15:a5:30:4d:13:1a:
45 02:60:b1:4f:0c:42:7e:3b:5e:92:03:21:f8:3f:ac:91:50:7d:
46 84:b3:85:d9:c4:11:80:f1:f0:22:ce:d8:c4:37:d8:5e:27:a3:
47 5a:7d:fb:03:eb:3d:67:1a:40:bf:2c:b2:75:5e:e3:ff:ae:22:
48 0a:bd:ae:6b:24:3d:5f:8f:6c:81:4b:dd:d9:a1:37:c7:ce:c4:
49 19:3f:21:bc:d0:d8:66:c9:81:bf:1c:68:84:63:ee:8e:6f:51:
50 ae:cb:1e:2e:80:2e:58:09:f7:80:c0:91:a7:17:41:63:6c:33:
51 7d:9c:8b:86:ef:d1:d3:70:c5:dc:28:48:0d:0c:e7:7e:ce:79:
52 5b:e7:e1:4f:f3:b9:bf:18:9f:9a:9e:43:42:96:20:46:c4:53:
53 ba:fb:e6:a3:c8:f1:12:ed:3c:36:08:00:95:a3:03:66:b0:72:
54 fd:2b:a2:1b:c9:06:af:8c:55:00:75:d9:3e:63:a0:0f:42:ce:
55 e6:db:ba:09:79:eb:fa:b9:70:ea:38:13:db:09:97:ce:8f:b7:
56 7f:14:73:66

51

Bibliography

[1] R. L. A. Buldas A. Kroonmaa. Keyless Signatures’ Infrastructure: How to Build Global
Distributed Hash-Trees. Tech. rep. Gollmann D. (eds) Secure IT Systems, 2013.

[2] U. G. C. S. Advise. Distributed Ledger Technology: beyond block chain. seen 23. Novem-
ber 2017. 2016. url: https://www.gov.uk/government/uploads/system/uploads/
attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf.

[3] F. I. AISEC. AP 4. Secure Environments. Konzepte zur sicheren Verteilung von Daten
entlang der Wertschöpfungsketten. Tech. rep. Fraunhofer Institut AISEC, 2017.

[4] C. R. et al. RFC 2865. seen 5. December 2017. 2000. url: https://tools.ietf.
org/html/rfc2865.

[5] E. A. et al. RFC 4871. seen 30. November 2017. 2007. url: https://www.ietf.org/
rfc/rfc4871.txt.

[6] J. R. et al. RFC3489. seen 23. November 2017. Mar. 2003. url: https://tools.
ietf.org/html/rfc3498.

[7] M. B. et al. “How Virtualization, Decentralization and Network Building Change the
Manufacturing Landscape: An Industry 4.0 Perspective”. In: International journal of
mechanical, aerospace, industrial and mechatronics engineering 8.1 (2014), pp. 37–44.

[8] M. Y. et al. practical robust communication in dhts tolerating a byzantine adversary.
Tech. rep. ieee 30th international conference on distributed computing systems, 2010.

[9] O. T. et al. RFC 7157. seen 24. November 2017. 2014. url: https://tools.ietf.
org/html/rfc7157.

[10] R. M. et al. RFC 8155. seen 19. January 2018. 2010. url: https://tools.ietf.
org/html/rfc5766.

[11] Y. K. et al. Flipping Bits in Memory Without Accessing Them: An Experimental Study
of DRAM Disturbance Errors. Tech. rep. Carnegie Mellon University, Intel Lab, 2014.

[12] K. K. B. Möller T. Duong. Libtorrent library. seen 17. November 2017. 2014. url:
https://www.openssl.org/~bodo/ssl-poodle.pdf.

[13] E. Bertino and N. Islam. “Botnets and Internet of Things Security”. In: Computer 50.2
(Feb. 2017), pp. 76–79. doi: 10.1109/MC.2017.62.

[14] BitTorrent. utorrent. seen 15. November 2017. 2017. url: https://www.utorrent.
com/.

[15] J. Borg. Connection over UDP. sen 4. December 2017. 2017. url: https://forum.
syncthing.net/t/connections-over-udp/9382.

[16] T. B. Collective. Borg. Data structures and file formats. seen 11. December 2017.
2015. url: https://borgbackup.readthedocs.io/en/stable/internals/data-
structures.html.

53

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://tools.ietf.org/html/rfc2865
https://tools.ietf.org/html/rfc2865
https://www.ietf.org/rfc/rfc4871.txt
https://www.ietf.org/rfc/rfc4871.txt
https://tools.ietf.org/html/rfc3498
https://tools.ietf.org/html/rfc3498
https://tools.ietf.org/html/rfc7157
https://tools.ietf.org/html/rfc7157
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://doi.org/10.1109/MC.2017.62
https://www.utorrent.com/
https://www.utorrent.com/
https://forum.syncthing.net/t/connections-over-udp/9382
https://forum.syncthing.net/t/connections-over-udp/9382
https://borgbackup.readthedocs.io/en/stable/internals/data-structures.html
https://borgbackup.readthedocs.io/en/stable/internals/data-structures.html

Bibliography

[17] M. G. R. P. F. S. D. Goldschlag. “Onion Routing for Anonymous and Private Internet
Connections”. In: Communications of the ACM 42.2 (1999).

[18] J. A. Donenfeld. Tox Handshake Vulnerability. seen 19. November 2017. 2017. url:
https://github.com/TokTok/c-toxcore/issues/426.

[19] C. F. U. o. V. Enigma Bridge Ltd. ROCA: Vulnerable RSA generation (CVE-2017-
15361). seen 3. January 2018. 2017. url: https://crocs.fi.muni.cz/public/
papers/rsa_ccs17.

[20] T. Flexible and S. E.-E. C. in Industry 4.0. Design Principles for Industrie 4.0 Scenarios.
Tech. rep. IEEE 15th International Conference on Industrial Informatics INDIN’2017,
2017.

[21] L. Foundation. Linux Foundation Unites Industry Leaders to Advance Blockchain
Technology. seen 22. November 2017. 2015. url: https://www.linuxfoundation.
org/press-release/linux-foundation-unites-industry-leaders-to-advance-
blockchain-technology/#.WZ8FmCiG.

[22] S. Frei. syncthing-inotify. seen 21. November 2017. 2017. url: https://github.
com/syncthing/syncthing-inotify.

[23] K. Goldman. IBM’s Software TPM 2.0. sen 4. December 2017. 2017. url: https:
//sourceforge.net/projects/ibmswtpm2/.

[24] K. Goldman. IBM’s TPM 2.0 TSS. sen 4. December 2017. 2017. url: https:
//sourceforge.net/projects/ibmtpm20tss/.

[25] T. C. Group. TCG Releases TPM 2.0 Specification for Improved Platform and De-
vice Security Part 1: Architecture. sen 23. November 2017. 2014. url: https:
//trustedcomputinggroup.org/wp- content/uploads/TPM- Rev- 2.0- Part- 1-
Architecture-01.38.pdf.

[26] T. C. Group. TCG Releases TPM 2.0 Specification for Improved Platform and De-
vice Security Part 2: Structures. sen 30. November 2017. 2014. url: https :
//trustedcomputinggroup.org/wp- content/uploads/TPM- Rev- 2.0- Part- 2-
Structures-01.38.pdf.

[27] T. C. Group. TCG Releases TPM 2.0 Specification for Improved Platform and De-
vice Security Part 3: Commands. sen 30. November 2017. 2014. url: https:
//trustedcomputinggroup.org/wp- content/uploads/TPM- Rev- 2.0- Part- 3-
Commands-01.38.pdf.

[28] T. C. Group. TPM Main Specification. seen 23. November 2017. 2011. url: https:
//trustedcomputinggroup.org/tpm-main-specification/.

[29] T. C. Group. Trusted Computing Group Releases TPM 2.0 Specification for Improved
Platform and Device Security. sen 23. November 2017. 2014. url: https://
trustedcomputinggroup.org/trusted- computing- group- releases- tpm- 2- 0-
specification-improved-platform-device-security/.

[30] A. R. (Hrsg.) Einführung und Umsetzung von Industrie 4.0. 1. Springer, Apr. 2016.

[31] G. Inc. Package crypto. sen 4. December 2017. 2017. url: https://golang.org/
pkg/crypto/.

54

https://github.com/TokTok/c-toxcore/issues/426
https://crocs.fi.muni.cz/public/papers/rsa_ccs17
https://crocs.fi.muni.cz/public/papers/rsa_ccs17
https://www.linuxfoundation.org/press-release/linux-foundation-unites-industry-leaders-to-advance-blockchain-technology/#.WZ8FmCiG
https://www.linuxfoundation.org/press-release/linux-foundation-unites-industry-leaders-to-advance-blockchain-technology/#.WZ8FmCiG
https://www.linuxfoundation.org/press-release/linux-foundation-unites-industry-leaders-to-advance-blockchain-technology/#.WZ8FmCiG
https://github.com/syncthing/syncthing-inotify
https://github.com/syncthing/syncthing-inotify
https://sourceforge.net/projects/ibmswtpm2/
https://sourceforge.net/projects/ibmswtpm2/
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20tss/
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/trusted-computing-group-releases-tpm-2-0-specification-improved-platform-device-security/
https://trustedcomputinggroup.org/trusted-computing-group-releases-tpm-2-0-specification-improved-platform-device-security/
https://trustedcomputinggroup.org/trusted-computing-group-releases-tpm-2-0-specification-improved-platform-device-security/
https://golang.org/pkg/crypto/
https://golang.org/pkg/crypto/

Bibliography

[32] Infineon. IRIDIUM9670 TPM2.0 LINUX. seen 27. November 2017. 2017. url:
https://www.infineon.com/cms/de/product/evaluation-boards/iridium9670-
tpm2.0-linux/#support.

[33] Infineon. SLB 9670 VQ1.2 FW6.40. seen 27. November 2017. 2017. url: https://
www.infineon.com/dgdl/Infineon-%20SLB%209645_SLB%209670%20TPM%201.2%20-
AN-v06_16-EN.zip?fileId=5546d46255a50e820155b535d44d754f.

[34] Infineon. TPM Application Note. Tech. rep. Infineon Technologies AG, 2017.

[35] Intel. tpm2-tools. seen 28. November 2017. 2017. url: https://github.com/intel/
tpm2-tools.

[36] Intel. tpm2-tss. seen 28. November 2017. 2017. url: https://github.com/intel/
tpm2-tss.

[37] ISO/IEC 27000:2016. 4th ed. International Organization for Standardization. ISO/IEC
JTC 1/SC 27 IT Security techniques, Feb. 2016. url: https://www.iso.org/
standard/66435.html.

[38] A. B. u. a. J. Borg. Syncthing Projekt Seite. seen 14. November 2017. 2016. url:
https://syncthing.net/.

[39] S. B. J.A. Johnsen L.E. Karlsen. Peer-to-peer networking with BitTorrent. Tech. rep.
Department of Telematics, NTNU, 2005.

[40] J. H. JP. Martin-Flatin S. Znaty. “A Survey of Distributed Enterprise Network and
Systems Management Paradigms”. In: Journal of Network and Systems Management
7.1 (Mar. 1999), pp. 9–26. doi: 10.1023/A:1018761615354. url: https://doi.
org/10.1023/A:101876161535.

[41] B. L. M. Castro. Practical Byzantine Fault Tolerance. Tech. rep. Massachusetts
Institute of Technology, 1999.

[42] B. O. M. Hermann T. Pentek. Design Principles for Industrie 4.0 Scenarios. Tech. rep.
Hawaii International Conference on System Science, 2016.

[43] N. Mehta. CVE-2014-0160. seen 7. January 2018. 2014. url: https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2014-0160.

[44] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. seen 23. November
2017. 2009. url: https://bitcoin.org/bitcoin.pdf.

[45] A. Norberg. Libtorrent library. seen 17. November 2017. 2012. url: http://
libtorrent.org/reference.html.

[46] D. M. P. Maymounkov. Kademlia: A Peer-to-peer Information System Based on the
XOR Metric. Tech. rep. In: Druschel P., Kaashoek F., Rowstron A. (eds) Peer-to-Peer
Systems. IPTPS 2002, 2002.

[47] R. Pfitzer. Trusted Computing. 1. Verlag Recht und Wirtschaft, Apr. 2004.

[48] L. P. R. Fagin P. G. Kolaitis. “Data exchange: getting to the core”. In: ACM
Transactions on Database Systems (TODS) 30 (Mar. 2005), pp. 174–210.

[49] K. W. (R. Steinmez. Peer-to-Peer Systemes and applications. 1. Springer, 2005.

[50] K. R.Griesemer R. Pike. The Go Programming Language. seen 13. December 2017.
2017. url: https://golang.org/.

55

https://www.infineon.com/cms/de/product/evaluation-boards/iridium9670-tpm2.0-linux/#support
https://www.infineon.com/cms/de/product/evaluation-boards/iridium9670-tpm2.0-linux/#support
https://www.infineon.com/dgdl/Infineon-%20SLB%209645_SLB%209670%20TPM%201.2%20-AN-v06_16-EN.zip?fileId=5546d46255a50e820155b535d44d754f
https://www.infineon.com/dgdl/Infineon-%20SLB%209645_SLB%209670%20TPM%201.2%20-AN-v06_16-EN.zip?fileId=5546d46255a50e820155b535d44d754f
https://www.infineon.com/dgdl/Infineon-%20SLB%209645_SLB%209670%20TPM%201.2%20-AN-v06_16-EN.zip?fileId=5546d46255a50e820155b535d44d754f
https://github.com/intel/tpm2-tools
https://github.com/intel/tpm2-tools
https://github.com/intel/tpm2-tss
https://github.com/intel/tpm2-tss
https://www.iso.org/standard/66435.html
https://www.iso.org/standard/66435.html
https://syncthing.net/
https://doi.org/10.1023/A:1018761615354
https://doi.org/10.1023/A:101876161535
https://doi.org/10.1023/A:101876161535
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://bitcoin.org/bitcoin.pdf
http://libtorrent.org/reference.html
http://libtorrent.org/reference.html
https://golang.org/

Bibliography

[51] Syncthing. Syncthing tlsutil.go. seen 30. November 2017. 2017. url: https :
//github.com/syncthing/syncthing/blob/master/lib/tlsutil/tlsutil.go.

[52] M. K. T. Kivinen. RFC 3526. seen 15. November 2017. 2003. url: https://tools.
ietf.org/html/rfc3526#section-8.

[53] TCG. TSS System Level API and TPM Command Transmission Interface Specification.
seen 29. November 2017. 2017. url: https://trustedcomputinggroup.org/tss-
system-level-api-tpm-command-transmission-interface-specification/.

[54] S. Team. Local Discovery Protocol. seen 21. November 2017. 2017. url: https:
//docs.syncthing.net/specs/.

[55] T. Team. Tox FAQ. seen 19. November 2017. 2017. url: https://wiki.tox.chat/
users/techfaq.

[56] T. Team. Tox specification. seen 18. November 2017. 2017. url: https://toktok.
ltd/spec.html.

[57] yubico team. yubico website. seen 11. December 2017. 2017. url: https://www.
yubico.com/.

[58] R. Uzgalis. BUZ Hash. seen 15. November 2017. 1995. url: http://www.serve.
net/buz/Notes.1st.year/HTML/C6/rand.012.html.

[59] P. M. V. Corvello. “Virtual forms for the organization of production: A comparative
analysis”. In: International Journal of Production Economics 110 (Feb. 2007), pp. 5–15.

[60] B. für Wirtschaft und Energie. Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0).
seen 7. November 2017. 2016. url: https :/ / www. plattform - i40 . de/ I40/
Redaktion/DE/Downloads/Publikation/rami40-eine-einfuehrung.pdf?__blob=
publicationFile&v=7.

56

https://github.com/syncthing/syncthing/blob/master/lib/tlsutil/tlsutil.go
https://github.com/syncthing/syncthing/blob/master/lib/tlsutil/tlsutil.go
https://tools.ietf.org/html/rfc3526#section-8
https://tools.ietf.org/html/rfc3526#section-8
https://trustedcomputinggroup.org/tss-system-level-api-tpm-command-transmission-interface-specification/
https://trustedcomputinggroup.org/tss-system-level-api-tpm-command-transmission-interface-specification/
https://docs.syncthing.net/specs/
https://docs.syncthing.net/specs/
https://wiki.tox.chat/users/techfaq
https://wiki.tox.chat/users/techfaq
https://toktok.ltd/spec.html
https://toktok.ltd/spec.html
https://www.yubico.com/
https://www.yubico.com/
http://www.serve.net/buz/Notes.1st.year/HTML/C6/rand.012.html
http://www.serve.net/buz/Notes.1st.year/HTML/C6/rand.012.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/rami40-eine-einfuehrung.pdf?__blob=publicationFile&v=7
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/rami40-eine-einfuehrung.pdf?__blob=publicationFile&v=7
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/rami40-eine-einfuehrung.pdf?__blob=publicationFile&v=7

List of Figures

2.1. View of Informational Groups for Data Distribution 4
2.2. View on Logical Connections for Data Distribution 4
2.3. View on the Data Flow for Data Distribution 5
2.4. Organization along a value chain . 6
2.5. Data flow between different sites (old world) 7
2.6. New possible data flow between different sites 8
2.7. Communication Between Entities via Management Shells 9
2.8. Recursive Management Shells . 10

3.1. Tracker based topology . 17
3.2. Change of hash sums of all block from insertion point of data 20
3.3. Rolling hash . 20
3.4. Simplified key exchange for the establishment of a secure channel. . 22
3.5. MITM attack on Key Exchange . 22

4.1. Exemplary Group Setup . 27
4.2. Data Flow for the exemplary Setup . 29
4.3. Communication Concept between a Master and a Slave 30
4.4. Distribution Between Equal Nodes . 31
4.5. Schema of the Setup . 33

5.1. Two Possibilities of Interconnectedness 44

57

Acronyms

BEP Block Exchange Protocol

CA Certificate Authority

CDS Content Defined Slicing

CPS Cyber Physical System

DHT Distributed Hashtable

EK Endorsement Key

HSM Hardware Security Module

IoE Internet of Everything

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

LAN Local Area Network

MITM Man In The Middle

NAT Network Address Translation

NVM Non Volatile Memory

OS Operating System

P2P Peer-to-Peer

PKI Public Key Infrastructure

PKP Public Key Pinning

RAMI 4.0 Reference Architecture Model for Industrie 4.0

RPi Raspberry Pi

59

Acronyms

SPF Single Point of Failure

SPS Storage Primary Seed

SSH Secure Shell

TLS Transport Layer Security

TPM Trusted Platform Module

TTP Trusted Third Party

UC Ubiquitous Computing

XOR Exclusive Or

60

	Introduction
	Motivation
	Problem Statement
	Structure of the Thesis

	Scenario and Requirements
	Views on the Architecture for Data Distribution
	Changes with Industry 4.0
	Requirements for Secure Data Distribution
	Group and Identity Management
	Security Objectives
	Decentrality

	Scope
	Summary

	Related Work and Background
	Decentralized Data Exchange
	Identity Management
	Hardware Security Modules
	Summary

	Setup and Implementation
	Concept
	Technologies Used in the Setup
	Establishment of the Setup
	Hardware and Operating System
	Implementation

	Evaluation, Applicability and Further Extensions
	Summary

	Discussion
	Discussion of the Requirements
	Discussion of the Exhibit
	Summary

	Conclusion and Future Work
	Appendix
	Preparation of the OS
	Sample Certificate

	Bibliography
	List of Figures
	Acronyms

