
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

SIMD processing

of AES on the
Raspberry Pi’s GPU

Yannek Rixen

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

SIMD processing

of AES on the
Raspberry Pi’s GPU

Yannek Rixen

Aufgabensteller: Prof. Dr. D. Kranzlmüller

Betreuer: Tobias Guggemos
Jan Schmidt

Abgabetermin: 9. Dezember 2019

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den December 18, 2019

. .
(Unterschrift des Kandidaten)

Abstract

The Raspberry Pi’s GPU, called VideoCore IV 3D, is integrated on the SoC. Because Rasp-
berry Pi’s are often used without a monitor connected to it, it is massively underutilized
while holding most of the Raspberry Pi’s computing capability. The QPULib, a C++ library
for easy programming of VideoCore IV 3Ds computing cores, called QPUs, provides an ab-
straction layer between the software and hardware. The Advanced Encryption Standard is
of the most used encryption algorithms and is used in all kinds of applications. To take the
workload from the CPU, we implemented the Advanced Encryption Standard’s ECB Mode
on the Raspberry Pi’s GPU and built an OpenSSL-engine with it. The implementation
was held back by hardware features that could not be accessed using the library without
making alterations to it. In the end, we found a slight performance improvement over the
CPU implementation of OpenSSL on a Raspberry Pi 2 depending on the Raspberry Pi’s
configuration and data length to be encrypted. With more optimizations, the results could
be more promising.

vii

Contents

1 Introduction 1

2 Background 3
2.1 The Advanced Encryption Standard . 3

2.1.1 Rijndael . 3
2.1.2 Algorithm Overview . 4
2.1.3 Modes of Operation . 9

2.2 Raspberry Pi . 12
2.3 The QPULib . 17

2.3.1 Software Architecture . 17
2.4 Related Work . 21
2.5 Summary . 22

3 Additions to the QPULib 23
3.1 Char . 23

3.1.1 4x8-bit Vector Implementation . 24
3.1.2 Concept Packing and Unpacking 8-bit Vectors 25

3.2 Summary . 27

4 AES Implementation 29
4.1 Parallelization Concept . 29
4.2 First AES Implementation . 29

4.2.1 Key Expansion . 29
4.2.2 Add Round Key . 30
4.2.3 Sub Bytes . 31
4.2.4 Shift Rows . 31
4.2.5 Mix Columns . 32
4.2.6 Complete Algorithm . 34
4.2.7 Summary . 35

4.3 AES Implementation Using Packed Data . 35
4.3.1 The Key . 36
4.3.2 Sub Bytes . 36
4.3.3 Shift Rows . 37
4.3.4 Mix Columns . 38
4.3.5 Decryption . 41

4.4 Summary . 41

5 Evaluation 43
5.1 Test Preparation . 43
5.2 Performance . 44
5.3 Problems . 46

ix

Contents

6 Conclusion 49

7 Appendix 51

List of Figures 59

Bibliography 61

x

1 Introduction

In times where clock speed increases are stagnating, where memory accesses are slow and
manufacturing nodes seem to come to a halt, there are only a few ways left to improve
computing performance: increasingly complex architectures for more instructions per clock,
purpose-built ICs, and parallelization. All of them are complex, but most computing plat-
forms already have all the preconditions implemented to parallelize on a scale far greater
than any modern CPU could: A GPU. This is not just true for desktop PCs, but also lap-
tops and even handheld devices, like mobile phones. On most of these tiny devices, the SoC
(System on Chip) integrates the CPU, the RAM, and also the GPU. The Raspberry Pi is
no exception. This tiny device, even though it weighs just 7 to 45grams, depending on the
revision and model, and exceeds a credit card just in a single dimension, can host a full
Linux system or even a Windows 10 IoT Core. While the ARM Cortex based CPU lacks
speed, the VideoCore IV 3D GPU of the Raspberry Pi is a highly parallelized subsystem
with loads of power, compared to its CPU.

The Advanced Encryption Standard (AES) is one of the few widespread encryption algo-
rithms used in all kinds of applications. It is so common that AMD and Intel even implement
the AES-NI instruction set, which can speed up AES encryption and decryption significantly,
into their CPUs since AMD’s Bulldozer and Intel’s Clarkdale (first Core i-series) architec-
tures respectively.

The Raspberry Pi’s GPU is highly underutilized, especially if it is in a headless setup,
without a monitor connected, and no GUI is loaded. Here lies most of its computing power.
The VideoCore IV 3D GPU of the Raspberry Pi is capable of up to 24 GFLOPS (floating-
point operations per second) while the CPU on the same System-On-A-Chip (SoC) is not
even capable of 1 GFLOPS in the case of the Raspberry Pi 1 Model B. Currently, there is
no viable implementation of AES for the VideoCore IV 3D available. To offload the work
of encryption from the busy CPU to the possibly idle GPU of the Raspberry Pi, a new
implementation of AES for its GPU is needed. Ideally, the implementation on the GPU can
also provide a speedup over AES on the Raspberry Pi’s CPU.

Approach of this Thesis

First, we have a look into Rijndael and the AES algorithm in the first chapter. At this
stage, we focus on the details of the algorithm and try to get a profound understanding of
it. Then, a general understanding of the architecture of the Raspberry Pi’s GPU hardware
is required to be able to get to an in-depth view of the VideoCore IV 3D architecture and
its instruction set. We explain the functionality and structure of the QPULib, a library that
we use for our implementation, and get to know its features and limitations. At the end of
chapter two, we introduce some related work.

1

1 Introduction

In the third chapter, two concepts for extending the QPULib are shown, and one of them
implemented. This implementation comes in handy later in the actual implementation of
AES in the fourth chapter. There, two AES different approaches to implementing the AES
on the Raspberry Pi’s GPU using the QPULib are implemented.

In the fifth chapter, the latter implementation is tested and compared to the OpenSSL’s
CPU implementation on the Raspberry Pi. The thesis is closed with summing up the results
and a look into future work.

2

2 Background

In this chapter, we are trying to gather all the necessary information for our implementation.
We need to know what and how we can parallelize using the Raspberry Pis GPU. First, we
need to figure out the Advanced Encryption Standard, what it does, and how it works. An
early idea of the restrictions by the Raspberry Pis hardware is an obvious benefit to the first
success of the implementation that should be standing at the end of this thesis. We also
need to figure out if there is any software available that provides an abstraction layer for the
hardware and could, therefore, help with more straightforward implementation. At the end
of this chapter, we are having a look at other works that are closely related to ours.

2.1 The Advanced Encryption Standard

The Advanced Encryption Standard is the successor of the Data Encryption Standard. The
Rijndael algorithm has been selected from a total of 14 candidates accepted to The First
Advanced Encryption Standard Candidate Conference held by the National Institute of Stan-
dards and Technology (NIST) in August 1998. After the conference, these 14 algorithms
were evaluated by NIST for security, cost of implementation, and algorithm- and implemen-
tation characteristics. Only non-licensed and non-patented algorithms would be accepted as
candidates.

At the second AES conference, held in Rome in March 1999 together with the Fast Software
Encryption Workshop, it became clear that Rijndael was not only one of the fastest on a
then-popular Intel Pentium processor, but it also fitted 8-bit processors exceptionally well.
Later, in August 1999, Rijndael was announced to be one of the five finalists and on the 2nd
October 2002, to be the winner of the AES selection [DR02].

Rijndael appears to be consistently a very good performer in both hardware and
software across a wide range of computing environments regardless of its use
in feedback or non-feedback modes. Its key setup time is excellent, and its key
agility is good. Rijndael’s very low memory requirements make it very well suited
for restrictedspace environments, in which it also demonstrates excellent perfor-
mance. Rijndael’s operations are among the easiest to defend against power
and timing attacks. Additionally, it appears that some defense can be provided
against such attacks without significantly impacting Rijndael’s performance. Fi-
nally, Rijndael’s internal round structure appears to have good potential to ben-
efit from instruction-level parallelism. ([DR02, 23])

2.1.1 Rijndael

The Rijndael algorithm is a round-based block cipher developed by Vincent Rijmen and
Joan Daemen from Belgium. Its block length can be any multiple of 32 bits in the range of

3

2 Background

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.1: Byte Order for 128-bit block size and key-lengths in Rijndael

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 2.2: Byte Order for 192-bit block size and key-lengths in Rijndael

128 to 256 bits. The block that the Rijndael algorithm operates on is called state. The one-
dimensional byte vector from main memory is represented as a matrix with the byte order
shown in 2.1. This applies to all steps of the algorithm and also the key. While Rijndaels
block length and key size can be any multiple of 32 bits in the range of 128 to 256, AES
limits the block length to 128 bits and key lengths of either 128 bit, 192 bit or 256 bit. These
variations are known as AES128, AES192 and AES256 respectively [DR02, 31].

2.1.2 Algorithm Overview

For all operations the byte order of the state matrix is as shown in figure 2.1. This also
applies for the key. For keys longer than 128-bit, the block is extended by columns to
the right. The algorithm starts with a key-addition described in 2.1.2, followed by several
rounds of byte-substitution, row-shifting, column-mixing, and further key-additions. The
exact number of rounds for each algorithm variant is shown in table 2.1. The final ”round”
lacks the Mix Columns step.

1 f unc t i on ae s enc rypt (char ∗ s ta te , char ∗ expanded key , i n t max rounds) {
2 i n t rounds = 0 ; // 10 f o r 128 b i t key s i z e ; 12 f o r 192 b i t key s i z e ; 14 f o r

256 b i t key s i z e
3

4 add round key(&state , &expanded key , round) ;
5

6 whi le (round++ < max rounds) {
7 sub bytes (& s t a t e) ;

4

2.1 The Advanced Encryption Standard

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 2.3: Byte Order for 256-bit block size and key-lengths in Rijndael

8 s h i f t r ow s (& s t a t e) ;
9 mix columns(& s t a t e) ;

10 add round key(&state , &expanded key , round) ;
11 }
12

13 sub bytes (& s t a t e) ;
14 s h i f t r ow s (& s t a t e) ;
15 add round key(&state , &expanded key , round) ;
16 re turn ;
17 }

Listing 2.1: AES encryption function

Decryption The decryption block cipher is exactly the encryption block cipher in reverse,
with all function calls reversed and all functions implement their counterparts inverse func-
tionality. The block lengths, key lengths and numbers of rounds stay the same.

1 f unc t i on ae s dec rypt (char ∗ s ta te , char ∗ expanded key , i n t rounds) {
2 i n t round = rounds ; // 10 f o r 128 b i t key s i z e ; 12 f o r 192 b i t key s i z e ; 14

f o r 256 b i t key s i z e
3

4 add round key(&state , &expanded key , round) ;
5 s h i f t r ow s i n v e r s e (& s t a t e) ;
6 s ub by t e s i nv e r s e (& s t a t e) ;
7

8 whi le (round−− > 0) {
9 add round key(&state , &expanded key , round) ;

10 mix co lumns inverse (& s t a t e) ;
11 s h i f t r ow s i n v e r s e (& s t a t e) ;
12 s ub by t e s i nv e r s e (& s t a t e) ;
13 }
14

15 add round key(&state , &expanded key , round) ;
16 re turn ;
17 }

Listing 2.2: AES decryption function

5

2 Background

length of input key
rounds

length of expanded key multiple of input key length
bits bytes bytes

128 16 10 176 11
192 24 12 208 8
256 32 14 240 7

Table 2.1: Key lengths in AES

Expand Key

In AES, the key length can be either 128, 192, or 256 bits. Together with the changing num-
ber of rounds depending on the key length, they form the differentiation between AES128,
AES192, and AES256, respectively. The length of the expanded key in bytes is a fixed mul-
tiple of the block size for each of the input key lengths so that in each round a different part
of the expanded key can be applied to the state matrix.

Add Round Key

Figure 2.4: Add Round Key visualisation [Haa08]

The application of the expanded key to the state matrix is a simple XOR of consecutive
16 bytes with the state matrix beginning with the first 16 bytes of the input key.

6

2.1 The Advanced Encryption Standard

Algorithm 1 Add Round Key

Input: expanded key[rounds][16]
state matrix[16]

Output: state matrix[16]
for 0 ≤ i < 16 do

state matrix[i] = state matrix[i]expanded key[round][i]
end for
return state matrix

Sub Bytes

Figure 2.5: Sub Bytes visualisation [Haa08]

In the Sub Bytes step, every byte of the state matrix is substituted by a byte from a non-
linear substitution box. This substitution box is filled with each multiplicative inverse in the
Galois Field GF (28) at the position of its original value.

SBox[x] = x−1

For the inverse of this step an inverse substitution box is used, where the index and its
corresponding value are swapped to form a new inverse substitution box.

inverseSBox[x] = SBox[x−1]

These substitution boxes are used as lookup tables. This way we don’t have to compute
each value on the fly every time.

7

2 Background

Algorithm 2 Add Round Key

Input: sub box[256]
state matrix[16]

Output: state matrix[16]
for 0 ≤ i < 16 do

state matrix[i] = sub box[state matrix[i]]
end for
return state matrix

Shift Rows

Figure 2.6: Shift Rows visualization [Haa08]

In shift rows, each row of the state matrix is rotated by its row’s index, meaning the first
row is not shifted left, the second row by one Byte, the third by two Bytes and the fourth
by three Bytes.

Algorithm 3 Shift Rows

Input: state matrix[4][4]
Output: state matrix[4][4]
for 0 ≤ i < 4 do

rotate state matrix[i] left by i
end for
return state matrix

Mix Columns

Most of the complexity of the AES algorithm comes from the mix columns operation. Each
column of the state matrix is multiplied by a circulant maximum-distance-separable (MDS)
matrix in the Rijndael finite Galois Field GF (28). The Galois multiplication, with the second
operand being 2, is called ”xtime” [DR02, 53]. Multiplications with constants in the Galois
Finite Field can be implemented using chaining of the xtime function and exclusive-ors with
the state in between. Addition in the Galois Field is a simple exclusive-or operation [DR02,
54]

8

2.1 The Advanced Encryption Standard

Figure 2.7: Mix Columns visualisation [Haa08]

Algorithm 4 Mix Columns

Input: state matrix[4][4]
Output: state matrix[4][4]

for 0 ≤ i < 4 do
state matrix0,i
state matrix1,i
state matrix2,i
state matrix3,i

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ∗

state matrix0,i
state matrix1,i
state matrix2,i
state matrix3,i

end for
return state matrix

2.1.3 Modes of Operation

AES is a block cipher algorithm. The algorithm describes how a single block of the size of its
state matrix is to be encrypted. The mode of operation describes how a multiple of blocks are
processed and linked using the given block cipher algorithm. The encryption and decryption
modes CTR and ECB do not depend on any previous blocks. Therefor several blocks can
be encrypted or decrypted at the same time. Encryption of CBC, PCBC, CFB, and OFB
modes depend on all previous blocks of ciphertext and are not parallelizable for more than
a single block at a time. Internally, every single block can be encrypted in parallel, but the
parallelization of multiple blocks is possible only in some modes. In PCBC and OFB modes,
decryption is also not parallelizable, while in CFB and CBC modes, data can be decrypted in
parallel. In modes where decryption is parallelizable, random read access on the encrypted
data is possible since these are not relying on any previous blocks. In contrast, for reading
access to data encrypted with non-parallelizable decryption, all of the data up to the point
interest have to be decrypted.

Electronic Codebook (ECB)

Electronic Codebook is the most straightforward mode of AES. Each block of ciphertext has
one unaltered block of plaintext as the input. The main disadvantage of ECB is the same

9

2 Background

Figure 2.8: EBC Mode [Com07]

16bytes of data is always encrypted to the same ciphertext. In other words, a repeated block
in the plaintext is encrypted to repeated blocks in the ciphertext. This is called ’ghosting’.
ECB is fully parallelizable, as no block any dependency on any previous blocks.

Cipher Block Chaining (CBC)

Figure 2.9: CBC Mode [Com07]

In Cipher Block Chaining mode, each plaintext is altered by an excluding-or operation with
the ciphertext of the block before. Because of diffusion from factoring in previous blocks,
blocks of the same plaintext are not identifiable in the ciphertext, meaning no ghosting
occurs. Every block of data fed to the AES block cipher depends on the previous block
of ciphertext, and therefor only one block can be processed at a time. The first round is
initialized with an Initialization Vector. Decryption, on the other hand, is parallelizable in
CBC mode, since the exclusive-or operation with ciphertext is done after the decryption
rounds.

Propagating Cipher Block Chaining (PCBC)

In PCBC, each plaintext is altered by an XOR with the plaintext- and the ciphertext of the
previous block. Only a single block can be processed at a time since each block depends
on the ciphertext of the previous block. The first block is initialized with an Initialization
Vector. Unlike CBC, PCBC decryption is not parallelizable, since decryption depends on
the plaintext of the previous block.

10

2.1 The Advanced Encryption Standard

Figure 2.10: PCBC Mode [Com07]

Cipher Feedback (CFB)

Figure 2.11: CFB Mode [Com07]

In CFB mode, each cipher output is altered by an excluding or operation with the plaintext
of its block. The cipher input is ciphertext of the previous block, therefor CFB encryption is
not parallelizable. The first block is initialized with an Initialization Vector. CFB decryption
uses the AES encryption block cipher. In CFB, decryption is parallelizable since the XOR
operation with the ciphertext is not dependent on the plaintext of the previous block.

Output Feedback (OFB)

Figure 2.12: OFB Mode [Com07]

11

2 Background

The OFB mode encryption feeds the block cipher output to the next block cipher before
altering it by an excluding-or operation with the plaintext to form the ciphertext. OFB
decryption uses the AES encryption block cipher and is not parallelizable due to the depen-
dency on the block cipher output of the previous block.

Counter (CTR)

Figure 2.13: CTR Mode [Com07]

In CTR mode, an Initialization Vector is block ciphered and only then altered by an
excluding-or operation with the plaintext of the corresponding block to form the ciphertext.
For the next block, the initialization vector is incremented by one. Since the initialization
vector for every block is predictable when known, CTR encryption is parallelizable. CTR
decryption uses the AES encryption block cipher. For decryption, the initialization vector is
fed to the encryption block cipher and an excluding-or operation performed on the output
to get the plaintext. Counter mode is effectively a stream cipher operation mode in that it
doesn’t decrypt the plaintext using the block cipher, but rather encrypts the counter and
exclusive-ors it with the next block of 16 bytes of plaintext.

Mode Encryption parallelizable Decryption parallelizable random read access

ECB yes yes yes
CBC no yes yes

PCBC no no no
CFB no yes yes
OFB no no no
CTR yes yes yes

Table 2.2: Parallelization capability of AES modes

2.2 Raspberry Pi

The Raspberry Pi is an accessible single-board computer. The heart of the Raspberry Pi is
a Broadcom BCM2835, BCM2836 or BCM2837/BCM2837B0 System-on-a-Chip (SoC) that
integrates an ARM CPU with either one core in case of the Raspberry Pi 1 and Raspberry
Pi Zero or a quad-core in case the Raspberry Pi 2 and 3. Integrated with the Broadcom SoC

12

2.2 Raspberry Pi

of all Raspberry Pis of Series 1 to 3 is a Broadcom VideoCore IV 3D system. Raspberry Pis
are often used without a monitor connected. In this case, the 3D system remains unused,
and with it, most of the Raspberry Pis compute capability, as shown in figure 2.3.

Processing Unit Frequency Cores parallelism OPS

ARM1176JZF-S (Pi 1 / Zero) 700-1000MHz 1 1 0.7 - 1G
Cortex-A7/-A53 (Pi 2/3) 900-1400MHz 4 1 3.6 - 5.6G

VideoCore IV 3D (Pi GPU) 250-400MHz 12 4*2 ALUs 24 - 38.4G

Table 2.3: Compute capability the Raspberry Pi

VideoCore IV

The VideoCore IV 3D architecture’s main purpose is, of course, processing and displaying of
graphics. All of the subsystems of the VideoCore IV 3D are specially designed for processing
graphics, and only some of them can be used for general-purpose computing. In figure 7.1,
all subsystems of the VideoCore IV 3D are shown. The ones that are not of interest to
general-purpose computing are greyed out [Bro13].

Slice

Slices are wrappers for four QPUs. Each Slice shares two Texture and Memory Lookup
Units, a Uniforms Cache, an Instruction Cache, and a Special Function Unit that can be
accessed by the four QPUs on the Slice. Per Slice, a single program can run at any given
time.

Vertex Pipe Memory

The Vertex Pipe Memory (VPM) is a virtual 48kB cache, with each QPU having access to
4kB. Each of the QPUs have their own FIFOs, one for reads and one for writes to through
the Vertex Pipe Memory. Each of the read and write FIFOs can store up to two queued
vectors. For reading from the VPM, an access mode, either horizontal or vertical, has to
be selected and a configuration of either packed or laned data chosen. This configuration
must be written to the VPMVCD RD SETUP register. For writing through the VPM, a
similar configuration has to be written to the VPMVCD WR SETUP register. The VPM
can be set up to fill the read FIFO of a QPU with up to 16 consecutive reads from the
main memory automatically. Setting up a read requires three instructions of latency before
actually reading the data from the VPM. A read from the VPM stalls the QPU until data
is available.

VPM Access Data written to the VPM can be configured to be read in different ways by
the QPUs. Either a horizontal or a vertical configuration can be selected and the chunk of
data to read configured by its Y and B values in a horizontal configuration, or by the Y, X,
and B/H values in case of the vertical configuration. Two visualizations of the access modes
are available in figure 7.3 and 7.4.

13

2 Background

Vertex Cache Manager & DMA

Reads from the main memory by the VPM are executed via the Vertex Cache Manager
(VCM) and Vertex Cache DMA (VCD). The VCD and VCM place data read from the main
memory into the VPMs QPU read FIFO. For general-purpose computing, the only the VCD
is utilized. When using direct memory access (DMA), we can only ever fetch a sequence of
16 32-bit words from the main memory. Each word referenced in the elements of the pointer
vector is fetched from the main memory or the level 2 cache individually.

VPM DMA Writer

The VPM DMA Writer (VDW) writes data from the QPUs VPM-write-FIFO to the main
memory after being set up to do so. The setup works similarly to the setup of the VCD,
except for the VDW not being able to store data consecutively.

Level 2 Cache

The Level 2 Cache (L2C) is a shared cache between the ARM CPU and the VideoCore IV.
It has a size of 128kB and is accessed by the VideoCore IV via the Texture Memory Lookup
Units 2.2, the instruction cache, and the uniforms cache. From the GPU perspective, the
L2C is read-only.

Texture and Memory Lookup Unit

Each of the 3 Slices has two Texture and Memory Lookup Units (TMUs), TMU0, and
TMU1. TMU0 and TMU1 are swapped from the perspective of QPU2 and QPU3 so that
when utilizing TMU0 only, just 2 QPUs actually share TMU0. For each of the four QPUs
per Slice, a TMU holds a Vector FIFO of size four. Because of this FIFO, each QPU can
request up to four vectors from memory, before reading the first one. The Texture and
Memory Lookup Unit fetches data from main memory via a small internal cache per TMU,
and the Level 2 Cache shared between all TMUs, so repeatedly reading the same values
by the TMU is a lot faster than reading random data from main memory. The TMU is a
Lookup Unit, which means it has no writing capability to main memory or any of the caches.
Storing data to it is not possible apart from temporary storage in the FIFO by requesting
data from the main memory. General-purpose data can be requested by writing a vector of
addresses to the register TMUx S with ’x’ being TMU0 or TMU1.

3D Pipeline The Control List Executor, Primitive Tile Buffer, Primitive Setup Engine,
and Front End Pipe are of solely use for graphics processing and are of no use for general-
purpose computing as the data formats and automatic scheduling and pipeline feeding are
too specific for general usage.

The QPUs

A Quad Processing Unit (QPU) is a 16-way SIMD vector processing unit. As the name
suggests, it operates on four-element vectors, the so-called quads. The operations are mul-
tiplexed over four clock cycles to form 16-way SIMD.

14

2.2 Raspberry Pi

Figure 2.14: QPU Core Pipeline

Processor Registers Each QPU has two local address spaces comprised of 32 general-
purpose physical registers, and 32 I/O and Special Function register each. These 32 I/O
registers are not actually existing two times, but are actually a single virtual space of regis-
ters. The 32 I/O registers consist of:

• 4 general purpose accumulators (r0 - r3) with no latency.

• A read only Accumulator, that provides data from the Special Function Unit and the
Texture Lookup Unit to the ALUs.

• Interface registers to the Special Function Unit, the Texture Memory Lookup Unit,
the Vertex Pipe Memory, Tile Buffer and other graphics related registers.

Most of the I/O registers are read-only or have different functions mapped to them when
comparing reading and writing. Another I/O register worth mentioning is the NOP-register,
which is written to in every ALU instruction by one of both ALUs to prevent side effects
since both ALUs are operating, even if just a single ALU is effectively processing data.
After a write to a physical register of one of the register-files, one instruction of latency
must be considered before reading from that register again. For intermediate results, a QPU
can, however, write to one of four general-purpose accumulators that have no latency to be
considered. The Special Function Unit provides results via Accumulator r4 three instructions
after the data to be processed is written to any of the Special Function Unit registers.

15

2 Background

Figure 2.15: A lane of data in a QPU-register

Pack & Unpack Register File A supports unpacking and packing of four vectors of 8-bit
lanes or two vectors of 16-bit data into a single 32-bit wide vector register. A lane is a vector
of sub-words spread out over all 16 elements of a register, as shown in figure 2.15. The
Accumulator r4 also supports packing, but no unpacking of data. Unpacking and packing is
encoded into every single instruction. When packing for a write, or unpacking while reading,
only the corresponding lane of data is changed, all other lanes remain as they were.

Arithmetic Logic Unit Each QPU has two separate, independent arithmetic logic units
(ALU), one multiplication ALU, and one addition ALU. The add-ALU performs Integer
and bitwise operations, while the mul-ALU performs floating point multiplications, Integer
multiplications, and operations on packed 8bit data. Both ALUs perform operations at the
same time, and both ALUs have their own operations encoded in each ALU instruction.
While this theoretically doubles the performance of the VideoCore IV, utilizing both ALUs
of each QPU requires incredible amounts of assembler optimizations and is only suitable for
a limited amount of algorithms, due to both add- and mul-ALUs reading from the same
registers. The ALUs either read one value from Register File A and one from Register File
B, or they read one from Register File A and load a value called small-immediate. The
small-immediate is encoded into the 6-bit field of the Register-address of Register File B. If
the add-ALU is configured to write to Register File A, the mul-ALU automatically writes
its result to register file B and vice versa. Both ALUs can be configured to write to different
register addresses at the same time. A special note to the Integer multiplication in the
mul-ALU; the operation masks the lower 24 bits of the input vectors, treating the upper 8
bits as zero.

16

2.3 The QPULib

Figure 2.16: ALU Instructions

The mul a, mul b, add a and add b fields in the encoding describe the source of each
operand a and b that can either be one of the two register-files or one of the accumulators.
For writes, there is no mux, as all outputs are written to the register space A or B, even
when writing to one of the Accumulators. See write address encoding 2.2.

Figure 2.17: Mux encoding

Both ALUs perform instructions on four vector elements per clock, hence the name Quad
Processing Unit. It takes an ALU a total of four clocks to process a complete vector of
16 elements. In each of these four clocks, a quarter of the 16-element is fetched, and the
operation started.

2.3 The QPULib

The QPULib is a C++ library for programming the VideoCore IV 3D GPU of the Raspberry
Pi in the versions 1 - 3. As of December 2019, it remains in version 0.1.0. The library was
first published in 2016 under the MIT license [Nay16].

2.3.1 Software Architecture

The QPULib effectively defines its own language. This Source Code (2.3.1) is stored as an
array of statements at the beginning of compiling. This array gets then translated to an
intermediate language which is effectively a list of Instruction struct that in the final step
is encoded to an array of binary instructions (bytecode), that is fed to the instruction cache
of the VideoCore IV 3D, or interpreted by the emulator 2.3.1.

17

2 Background

Figure 2.18: add-ALU Operations

Data Types

Currently, the QPULib only implements two datatypes, Integers of 32bit length and Floats
of 32-bit length. Both these types are vector types, and all their corresponding operations
are always performed on all of the 16 vector elements. For the operations implemented in the
VideoCore IV 3D see 2.4. Not all of the operations are accessible via the QPULib, though,
as shown in figure 2.4. Additional operations, e.g., special functions from the SFU (2.2), are
not implemented at the moment.

Missing Datatypes In the previous section, we learned that the QPUs Register File A
could handle packed data (see 2.2), and the mul-ALU can handle several operations on 8-bit
datatypes 2.19. Especially an unsigned Integer of length 8-bit (Uint8) would make sense to
be implemented for further flexibility for the user.

This could be either implemented as a packed data-type where four lanes of unsigned

18

2.3 The QPULib

Figure 2.19: mul-ALU Operations

8-bit Integers stay packed and are operated on all lanes at once using the v8-instructions,
or it could be implemented using the pack and unpack functionality of Register File A. The
latter would then be interpreted as 32-bit Integers by the ALUs after unpacking to the ALUs
and written back as 8-bit unsigned Integers using the pack-functionality. We have a more
in-depth look into the issue in chapter 3.

Operation Code
Description operator Int Float

Addition + add fadd
Subtraction − sub fsub

Multiplication ∗ mul24 fmul
Minimum min() min fmin
Maximum max() max fmax
shift right ushr() shr -

arithmetic shift right >> asr -
rotate right ror() ror -

shift left << shl -
bitwise AND & and -
bitwise OR | or -

bitwise XOR ˆ xor -
bitwise NOT ˜ not -

Table 2.4: Implemented Operators and their corresponding hardware-operation

Source Code

The Source code written by the user is C++ code that is easily distinguishable from code
that is not run on the QPUs. Its look is defined by some macros that distinguish classic C++
’if’, ’else’, and other conditional keywords from the conditionals executed on the QPUs. The
QPULib’s conditionals are shown in listing 2.3.

1 #de f i n e I f (c) I f (c) ; {
2 #de f i n e Else } El s e () ; {
3 #de f i n e End } End () ;

19

2 Background

4 #de f i n e While (c) While (c) ; {
5 #de f i n e Where (b) Where (b) ; {
6 #de f i n e For (i n i t , cond , inc) \
7 { i n i t ; \
8 For (cond) ; \
9 i n c ; \

10 ForBody () ;

Listing 2.3: Conditional Macros

1 Int my method (Int a , Int b) {
2 Int c ;
3 Where(a > b)
4 c = a − b ;
5 Else
6 c = b − a ;
7 End
8 re turn c ;
9 }

Listing 2.4: Simple Source Code Example

The Source Code can combine code that runs on the QPUs and C++ code that runs
during the runtime compilation for the QPUs. This can, for example, be used for loop
unrolling, or dynamic allocation of arrays of vectors. Here in the second line, the array is
taken care of by the C++ compiler, not the QPULib’s compiler. The same applies to the
’for’-loops, for loop-unrolling, but not the ’For’-loops.

1 Int my other method (Int x) {
2 Int v [5] ; // array o f 5 vector s , combined QPU and C++ code
3

4 f o r (i n t i = 0 ; i < 5 ; i++) { // non−QPU code
5 For (Int j = 0 , j < x , j++) // QPU code
6 v [i] = v [i] ∗ 2 ; // combined QPU and C++ code
7 End // QPU code
8 } // non−QPU code
9

10 f o r (i n t i = 1 ; i < 5 ; i++) { // non−QPU code
11 v [0] = v [0] + v [i] ; // combined QPU and C++ code
12 } // non−QPU code
13

14 re turn v [0] ; // combined QPU and C++ code
15 }

Listing 2.5: Loop unrolling Example

Target Code

Target code is an intermediate code that can either be run by the emulator directly or
compiled to bytecode by the QPULib’s compiler 2.3.1 to run on the QPUs.

Emulator

An emulator built into the QPULib can be used for development and debug purposes. If
the Emulator is set active by compiling without the QPU = 1 flag, the source code is not
compiled into bytecode, but compilation stops at the intermediate Target Code, which is then

20

2.4 Related Work

interpreted at runtime. For easy debugging and algorithm development in Emulator-mode,
the QPULib offers print functions that can be written in the source code. The compiler
ignores these if the QPU = 1 flag is set and the QPUs are invoked.

The Compiler The compiler compiles our Source Code at runtime to bytecode to be ex-
ecuted by the QPUs. While the compiler runs at the runtime of a C++ program, it still
is technically a compiler and not an interpreter, because it finishes compiling to bytecode
before running the program on the QPUs. The following list explains the major steps that
are performed to form the final Target Code:

1. Straightforward translation to intermediate Target Code.

2. Insert code to terminate the program at the end.

3. Set up read- and write-instructions.

4. Compute a control flow graph and create jump labels.

5. Allocate a register for each variable.

6. Insert move-to-accumulator instructions where hardware constraints don’t allow in-
structions directly with a read from a register.

7. Insert NOP (no operation) instructions where necessary, to satisfy hardware constraints
of the VideoCore IV 3D architecture.

8. Replace branch-label with branch-target instructions.

Afterwards, the Target Code is encoded into an bytecode array of 32-bit words, that is
stored an fetched from the instruction cache by the QPUs.

2.4 Related Work

Since AES is used that much, there are several implementations of AES on GPUs. P. Pauls
implemented AES on the Raspberry Pi’s VideoCore IV already using Assembly but could
not find a performance benefit over the OpenSSL implementation on the very same plat-
form, due to problems with accessing the VPM [Pau17]. In general, it is possible to speed
up the parallelizable AES block cipher modes on GPUs. Some publications have already
proven this. The exact speedup is, however, heavily dependent on the compared CPU and
GPU and of course, the quality of the implementation. The fastest implementation today
on a single GPU was written at the American University in Cairo, where they managed
to achieve a throughput of up to 279.86 Gigabits per second (Gbps) in AES128 encryption
on an Nvidia GTX 1080 using CUDA [AFD17]. Another example is the implementation of
AES on an Nvidia GeForce 940MX, which is a mobile chip for use inside of laptops, again
using the Compute Unified Device Architecture (CUDA) [WC19]. Compared to the Intel
Core i5-7200U in the same machine, they saw a speedup of close to factor 30. A significant
drawback of all AES implementations on highly parallelized machines is that only the CTR
and ECB modes can be parallelized. There is no solution for running encryption of other

21

2 Background

modes efficiently on GPUs.

The Raspberry Pi is a very popular device. It comes with no surprise that several libraries,
especially for general-purpose computing on the Raspberry Pi’s GPU, have been developed.
There is an OpenCL implementation for the Raspberry Pi’s VideoCore IV 3D GPU available
[RP17]. It is called VC4CL and implements the OpenCL 1.2 standard. The project is
split into a runtime-library, a compiler, and a standard-library, all specifically developed for
the Raspberry Pi’s VideoCore IV 3D GPU. Another framework for general-purpose GPU
programming for the Raspberry Pi is the ’PyVideoCore’ library [nin15]. It is written in
Python and is a lower-level library, requiring more in-depth knowledge of the hardware
compared to the QPULib.

2.5 Summary

This chapter gave an introduction to the Advanced Encryption Standard. We got an idea
of how it works and learned that there are different modes. Some of these modes are not
parallelizable for multiple blocks. These modes would be much slower on highly parallelized
hardware and are therefore not suitable for implementation on GPUs. We also learned
about the Raspberry Pi’s VideoCore IV 3D GPU. It integrates 12 cores, the so-called QPUs.
Each of them is a 16-way SIMD vector-processor. The hardware is complex, and most
subsystems are not suitable for general-purpose use. As a high-level interface to it, we use
the QPULib. Although it is not complete yet and lacks to address some crucial hardware
features, the QPULib is usable and provides a straightforward entry into vector processing
on the VideoCore IV 3D GPU. The development of several further features was started but
has been paused since July of 2018.

22

3 Additions to the QPULib

The QPULib does not cover all hardware-implemented functionality of the VideoCore IV 3D.
For general-purpose computing, broader hardware support could be useful. The following
list is not complete but rather lists obvious, missing functionality that is implemented in
hardware on the VideoCore IV 3D.

• The Special Function Unit (SFU) that can compute the mathematical functions; square
root, reciprocal of a square root, logarithm and exponentiation.

• Features for pre-programming of the Vertex Pipe Memory (VPM) could automatically
fill the VPM with data from the main memory.

• Operation codes for other datatypes than 32-bit Integers and 32-bit Floats, namely
8-bit unsigned Integers, 16-bit Integers and 16-bit Floats.

• Unpack and pack functionality that could make way for fast and easy access to sub-
words of the 32-bit Vectors.

However, we focus on the features that are most useful for the implementation of AES. Since
the AES does not rely on the functions provided by the Special Function Unit, we do not
need to have the SFU-functions implemented. A pre-programmed setup of the VPM could
be useful for filling the VPM and providing data for the next AES blocks to the QPUs
automatically from the main memory. Unpacking and packing can speed up some steps in
AES. However, because AES’s word-size is an 8-bit wide, we chose the implementation of
software support for 8-bit unsigned Integers.

3.1 Char

The word size of the AES-algorithm is a byte of 8 bit. All of the available datatypes in the
QPULib are 32 bit wide. If we assign a single byte to each vector element of the QPU, the
upper 24 bits are always zero. When loading data from the main memory to the QPUs,
those 24 bit and therefore three-quarters of the available bandwidth are wasted with data
we know is zero.

The VideoCore IV 3D architecture supports unpacking of 32-bit fields from Register File
A for the ALUs and packing them back into a 32-bit field when writing back to Register
File A. The packed data can be either interpreted as unsigned 8-bit Integers, signed 16-bit
Integers or 16-bit Floats. Since there is no use for signed 16-bit values in AES, the focus lies
on unsigned 8-bit Integers. The pack- and unpack-modes are encoded in reserved bit-fields
in the instructions. Bits 59 to 57 select the unpack mode, which is only available in case of
an ALU operation. Bits 55 to 52 select the pack-mode, and bit 56 is the pack/unpack-select
bit. In case of using the unpack or pack functionality of Register File A, the pack/unpack

23

3 Additions to the QPULib

select bit has to be set to zero.

The unpack and pack functionality is useful in all cases where we are operating on packed
8-bit data, as shown in 2.2. Otherwise, masking out the unused bytes does require a masking-,
and a shift- operation when reading or writing lanes to a register.

1 Int byte lane b = (0 x0000 f f00 & data) >> 8 ;

Listing 3.1: Unpacking packed data without unpack functionality

Packing data back to a register is even more complicated and requires a total of 4 opera-
tions without using the pack functionality that Register File A provides.

1 Int my reg i s t e r = x ;
2 my reg i s t e r = ((0 x000000 f f & data) << 8) | (my reg i s t e r & 0 x f f f f 0 0 f f) ;

Listing 3.2: Packing data without pack functionality

3.1.1 4x8-bit Vector Implementation

Interpreting the 32-bit words from the vector registers of the QPU as unsigned 8-bit Inte-
gers and performing the same operation on all of them is relatively straight forward. The
QPUs implement the operations called v8adds, v8subs, and v8muld in the mul-ALU. These
operations perform additions, subtractions, and multiplications on each of the four 8bit sub
words per register element. v8min and v8max, which are also hardware-implemented, return
a vector comprised of the minimum or maximum respectively per vector element sub-word.

Vector element
sub-word

A B C D total

0 byte byte byte byte 32 bit
1 byte byte byte byte 32 bit
2 byte byte byte byte 32 bit
3 byte byte byte byte 32 bit
4 byte byte byte byte 32 bit
5 byte byte byte byte 32 bit
6 byte byte byte byte 32 bit
7 byte byte byte byte 32 bit
8 byte byte byte byte 32 bit
9 byte byte byte byte 32 bit
10 byte byte byte byte 32 bit
11 byte byte byte byte 32 bit
12 byte byte byte byte 32 bit
13 byte byte byte byte 32 bit
14 byte byte byte byte 32 bit
15 byte byte byte byte 32 bit

Table 3.1: Interpretation of a vector for v8 operations

The v8-operations have not been made use of in the original implementation of the library.
Either a new datatype or new operators have to be implemented for the source code syntax,

24

3.1 Char

and the translation to target code and instructions have to be fitted. To avoid confusion with
the ’Int’-datatype, which was already implemented, a new ’Char’-datatype is introduced.
The main difference to the ’Int’-implementation are the different ALU-operations encoded
for the same operator; these are shown in table 3.2. A new C++ ’struct’, similar to that of
the ’Int’-datatype was implemented, the only difference being the different operators. Next,
some new op-codes are introduced, next to the ones already existing in the QPULib, and the
corresponding switch-cases updated. As a final step, the Emulator had to be extended by the
newly introduced operation codes. This was straightforward because the actual emulation
of the operations is just packaged in a switch-case block.

Description Operator
Operation Code

Int Float Char (4*8-bit)

Addition + add fadd v8adds
Subtraction − sub fsub v8subs

Multiplication ∗ mul24 fmul v8muld
Minimum min() min fmin v8min
Maximum max() max fmax v8max
shift right ushr() shr - -

arithmetic shift right >> asr - -
rotate right ror() ror - -

shift left << shl - -
bitwise AND & and - and
bitwise OR | or - or

bitwise XOR ˆ xor - xor
bitwise NOT ˜ not - not

Table 3.2: Operators for each Datatype

3.1.2 Concept Packing and Unpacking 8-bit Vectors

The idea of this datatype is using the unpack functionality of Regfile A or Accumulator R4
to load a vector consisting of a single lane of 8-bit sub-words into the ALUs instead of the
whole 32-bit words from each element. For this datatype, two new methods would have to
be deeply implemented into the QPULib. The following lines of code show exemplary usage
of them. In the first example, the second-least-significant lane from data is unpacked and
stored in the new variable ’bytelane b’. Unpacking of unsigned 8-bit Integers, without a
following ’pack’, should always write to an Integer for data integrity.

1 Char data = x ;
2 Int byte lane b = unpack (data , SUBWORDB) ;

Listing 3.3: Unpacking data using unpack functionality

In the following second example, an Integer, where only the lower 8-bit are filled, is packed
to a new variable. Packing should always write to the packed datatype ’Char’, introduced
in 3.1.1.

1 Int data = x ;
2 Char my reg i s t e r ;

25

3 Additions to the QPULib

3 pack (my reg i s t e r , SUBWORDB, data) ;

Listing 3.4: Packing data using pack functionality

When a write to a register occurs, the data has to be packed back into a given sub-word
again. Packing also is only possible to Register File A. Register File B does not support
the packing or unpacking of vectors, so special attention has to be directed to optimizing
register allocation for each variable that is unpacked from or packed. If an operand is stored
in Register File B, a move to Regfile A has to be performed first, and both operands have
to be loaded from Regfile A in the case of an operation on two lanes of sub-words that
are directly loaded. In this case, the accumulator must be used, and two consecutive loads
from Regfile A have to be performed. The first one is unpacking to the ALUs without data
alteration and storing it to one of the accumulators. The following operation must unpack
the second operand from Regfile A and the load the first operand from the accumulator we
previously wrote to.

The following line of code would be translated exemplarily to assembly similar to the
pseudocode in algorithm 5. It would unpack two lanes of unsigned 8-bit Integers, perform
a multiplication, and write them back to a new variable called ’product’. Note that in this
example, no packing functionality is used.

1 Int product = unpack (x , SUBWORDC) ∗ unpack (y , SUBWORDC) ;

Listing 3.5: Multiplication of two sub-words

Algorithm 5 Unpacking of two registers for an ALU instruction

Input: V ector x
V ector y

Output: product of x and y
move x to a register of Regfile A
unpack subword C of y and store it in accumulator 1
unpack subword C of x and multiply with y, store in variable product
return product

When several consecutive operations are done on the same data, the accumulator can
be used and filled with unpacked data ready for the next operation. Writing and reading
from accumulators is faster than using the physical register files since a write to a register
of Register File A or B can not be followed by a read from the same register in the next
instruction [Bro13, 37].

Implementation Complexity The QPULib is a quite complex construct, so implementing
the unpack- and pack-functionality is not entirely straightforward. Unpack- and pack-flags
would have to be carried all the way from Source Code to Target Code, and to the encoded
instructions. Register allocation, and specially optimized register allocation, to actually see
a performance gain, would require alterations to deeply nested functions. Even the Emulator
would need some adaptations.

26

3.2 Summary

3.2 Summary

The VideoCore IV 3D GPU has hardware-support for operations for 8-bit datatypes and the
packing and unpacking of 8-bit lanes. Unfortunately, the QPULib didn’t provide access to
those features yet. It is still unfinished at this point, and some branches for the development
of further features exist in the GitHub-repository [Nay16]. We implemented a new datatype
called ’Char’, that operates on 64 unsigned 8-bit Integers at per instruction. The concept
for unpacking and packing of lanes was evaluated but exceeded the scope of this work.

27

4 AES Implementation

In this chapter we are focusing on the actual implementation of the Advanced Encryption
Standard on the VideoCore IV 3D using the QPULib. At first, we focus on the implemen-
tation without the additions to the QPULib described in chapter 3. Later, in section 4.3,
an optimized version of the algorithm, operating on four AES state matrices at once, is
implemented.

4.1 Parallelization Concept

There are two ways to parellelize AES. One way is to operate on all bytes of a state matrix
at once. The other is to operate several state matrices at once. The VideoCore IV 3D can
do both at the same time. Each block can be put in a single 16-element vector and operated
on with a single instruction. This is called Single-Instruction-Multiple-Data (SIMD). Since
the VideoCoreIV has 12 QPUs that can execute instructions simultaneously, 12 vectors can
be operated on at any given moment. In 2.2 we showed which AES-modes are parallelizable
in encryption and decryption. This graphic is to be interpreted as following: In every mode
every state matrix can be operated on as a 16-element vector with SIMD, but parellelising
several blocks at once is impossible when each block depends on the previous block. In
general the operations on each state matrix are the same, but not every element experiences
the same operations in a scalar AES algorithm. For example in Shift Rows the first row
is not shifted at all, while all others are, but all by different values. Another example is
the Galois Multiplication used in Mix Columns, where each byte takes different branches
depending on its own value and the value of the other operand. Where necessary the QPUs
can write the result of an ALU operation back to a subset of the vectors elements using the
conditional flags. Where a low number of elements are configured to be written to using the
conditional flags, a lot of the compute capability of the QPU is wasted.

4.2 First AES Implementation

Here we want to have a look of what an implementation of a naive approach to implementing
AES on the VideoCore IV using the QPULib looks like. We are going to use the QPULib as
found on github at the time of the beginning of this thesis. For this we just take 16 Integers
from main memory. These were filled with one byte of the state matrix beforehand each.
This byte sits at the LSB side of the Integer.

4.2.1 Key Expansion

In AES the same key is used to encrypt all data blocks and thus only ever has to be ex-
panded once during initialisation by the key schedule. The expanded key can be stored
in main memory and accessed by either a direct memory load or through the Texture and

29

4 AES Implementation

Vector Element index
32-bit Integer

MS LS
byte byte byte byte

0 0 0 0 state[0]
1 0 0 0 state[1]
2 0 0 0 state[2]
3 0 0 0 state[3]
4 0 0 0 state[4]
5 0 0 0 state[5]
6 0 0 0 state[6]
7 0 0 0 state[7]
8 0 0 0 state[8]
9 0 0 0 state[9]
10 0 0 0 state[10]
11 0 0 0 state[11]
12 0 0 0 state[12]
13 0 0 0 state[13]
14 0 0 0 state[14]
15 0 0 0 state[15]

Table 4.1: A register filled with a single dimension representation of the state matrix

Memory Lookup Unit. Or it can be stored in the QPUs registers and accessed extremely fast
from there. Since the key can be stored and is not altered, the key schedule is not critical
for performance and can be done on the CPU for simplicity.

4.2.2 Add Round Key

Each round a different 16-element part of the expanded key is used to bitwise exlusive or the
each of the 16 state elements respectively. When expanding the key, we made sure the key
is in the same format as the state matrix, using only the least significant 8 bit of a 32-bit
Integer. Using SIMD instructions the exclusive or is a single operation, preceded by fetching
the correct part of the key from main memory.

1 Int add round key (Int s tate , Ptr<Int> key po in t e r) {
2 Int key = ∗(key po in t e r + (round << 4)) ; // round ∗ 16
3 s t a t e = s t a t e ˆ key ;
4 re turn s t a t e ;
5 }

Listing 4.1: shift rows code

30

4.2 First AES Implementation

4.2.3 Sub Bytes

Values that are read repeatedly through the TMU will stay in the Level 2 Cache of the
VideoCore IV as long as the value is not altered. The level 2 cache can not be written to,
so values that have changed will have to be read from the much slower main memory again.
In each round 16 values are read from the S-Box, one for each byte. In the case of a 128-bit
key this leads to 176 bytes read from the S-Box for each AES-block processed, meaning
there are 11 times more memory accesses from substitutioning bytes than there are reading
blocks of plaintext. With greater key lengths come more memory accesses per AES-block.
Luckily the S-Box is a constant and will be in the Level 2 Cache completely after just a
few processed AES-blocks. Again, the SBox is formatted to only fill the least significant 8
bit of 32-bit Integers. We are always fetching 32-bit words from memory with each access.
Since each byte needs to be substituted by the value at its own values position in the SBoxs
one-dimensional representation we are using, we can simply add a each value from the state
matrix to a vector of pointers all pointing to the 0-element of the SBox. This newly formed
vector now points to the addresses where the corresponding substitution value lies. A new
vector is then gathered by the TMU and returned into the TMUs FIFO for the requesting
QPU.

1 /∗∗
2 ∗ @param s t a t e the s t a t e matrix one−dimens iona l in a vec to r
3 ∗ @param s box po in t e r uniform po in t e r to s box [0]
4 ∗/
5 Int gpu sub bytes (Int s ta te , Ptr<Int> s box po in t e r) {
6 gather (s box po in t e r + s t a t e) ;
7 r e c e i v e (s t a t e) ;
8 re turn s t a t e ;
9 }

Listing 4.2: Sub Bytes implementation

4.2.4 Shift Rows

In Shift Rows the last 3 rows of a state matrix are to be shifted to the left by one, two
and three bytes respectively as described in 2.1.2. Since our state matrix is represented one
dimensional in the vector and we got three different operands, these need to be represented
in SIMD instructions as well. The elements that are in the correct position after each of the
different 3 rotations performed, need to written to be set in place by writing to a set of state
vector elements. This is done by setting the conditional flags set using the Where keyword.

31

4 AES Implementation

1 Int gpu sh i f t r ows (Int s t a t e) {
2 Int s h i f t = ((index () ∗ 5) & 0x0F) − index () ; // A he lp ing vec to r with

g ene r i c va lue s i nd i c a t e where a value needs to be s e t a f t e r r o t a t i n g the
vec to r .

3 Int o l d s t a t e = s t a t e ; // The o r i g i n a l s t a t e be f o r e s h i f t i n g
4

5 Where ((s h i f t == −12) | | (s h i f t == 4))
6 s t a t e = ro ta t e (o l d s t a t e , 12) ;
7 End
8 Where ((s h i f t & 0x0F) == 8)
9 s t a t e = ro ta t e (o l d s t a t e , 8) ;

10 End
11 Where ((s h i f t == −4) | | (s h i f t == 12))
12 s t a t e = ro ta t e (o l d s t a t e , 4) ;
13 End
14

15 re turn s t a t e ;
16 }

Listing 4.3: Shift Rows implementation

4.2.5 Mix Columns

In Mix Columns, each column of the state matrix is to be multiplied by a matrix in the Galois
Field GF (28), as explained in 2.1.2. To do the matrix multiplication, we first need to form
four vectors where we then can efficiently multiply with a state matrix on all 16 elements
at once. For that also the matrix has to be in a corresponding form. For optimization
purposes, the MDS matrix is written to a register once and then rotated 3 times to match
the corresponding column of the state each step. The four products of the multiplications
are then added in GF (28) with exclusive or operations.

1 Int mix columns (Int s ta te , Int mix column vector) {
2 Int v0 = s t a t e ;
3 Int v1 = ro ta t e (s ta te , 1) ;
4 Int v2 = ro ta t e (s ta te , 2) ;
5 Int v3 = v1 ;
6 Int rot14 = ro ta t e (s ta te , 14) ;
7 Int rot15 = ro ta t e (s ta te , 15) ;
8 Int x = index () & 0x03 ;
9

10 Where(x == 0x00)
11 v1 = rot15 ;
12 v2 = rot14 ;
13 v3 = ro ta t e (s ta te , 13) ;
14 End
15 Where(x == 0x01)
16 v0 = v1 ;
17 v1 = s t a t e ;
18 v2 = rot15 ;
19 v3 = rot14 ;
20 End
21 Where(x == 0x02)
22 v0 = v2 ;
23 v2 = s t a t e ;
24 v3 = rot15 ;
25 End

32

4.2 First AES Implementation

26 Where(x == 0x03)
27 v3 = v1 ;
28 v0 = ro ta t e (s ta te , 3) ;
29 v1 = v2 ;
30 v2 = v3 ; // ex v1
31 v3 = s t a t e ;
32 End
33

34 v0 = ga l o i s mu l (mix column vector , v0) ;
35 v1 = ga l o i s mu l (r o t a t e (mix column vector , 1) , v1) ;
36 v2 = ga l o i s mu l (r o t a t e (mix column vector , 2) , v2) ;
37 v3 = ga l o i s mu l (r o t a t e (mix column vector , 3) , v3) ;
38

39 re turn (v0 ˆ v1 ˆ v2 ˆ v3) ;
40 }

Listing 4.4: Mix Columns implementation

1 u i n t 8 t ga l o i s mu l (u i n t 8 t a , u i n t 8 t b) {
2 u i n t 8 t p = 0 ; // p as the product o f the mu l t i p l i c a t i o n
3

4 whi le (b) {
5 i f (b & 1) { // I f b odd , then add corre spond ing a to p
6 p = p ˆ a ; // In GF (2ˆ8) , add i t i on i s XOR
7 }
8 i f (a & 0x80) { // I f a >= 128 i t w i l l over f l ow when s h i f t e d l e f t , so

reduce
9 a = (a << 1) ˆ 0x11b ; // XOR with p r im i t i v e polynomial xˆ8 + xˆ4 + xˆ3

+ x + 1
10 } e l s e {
11 a <<= 1 ; // Mult ip ly a by 2
12 }
13 b >>= 1 ; // Divide b by 2
14 }
15 re turn p ;
16 }

Listing 4.5: Galois Multiplication on CPU

The Galois-multiplication shifts the parameter b right by one bit, dividing it by 2, eight
times, but the result gets updated only if b is greater than zero. Since the Galois-multiplication
is commutative, the parameters can be swapped with no effect on the result. In the AES
algorithm, the the value of the second parameter in the Galois-multiplication is never bigger
than 3 which is 0b11 binary and uses only two bits, resulting in maximum two right shifts
by one bit before becoming zero, indicating the multiplication is complete. The algorithm
can be shortened to two right shifts of b, and two result updates dependent on parameter
a. The instructions and computing time can be cut down to less than 1/6 of the original
algorithm. See fig. 7.3

1 Int ga l o i s mu l op t im i z ed (Int b , Int a) {
2 Int p = 0 ;
3

4 Where ((b & 0x01) != 0) // i f b odd then add correspond ing a to r . When b i s
uniform , no ’Where ’ needed .

5 p = p ˆ a ; // In GF(2 exp 8) , add i t i on i s XOR

33

4 AES Implementation

6 End
7

8 // No ’Where (b > 0) ’ necessary , s i n c e when arguments are 2 or 3 , b i s 0
a f t e r the same number o f i t e r a t i o n s everywhere , namely a f t e r 2 i t e r a t i o n s .

9 Int oldA = a ;
10 a = a << 1 ; // mult ip ly by 2
11

12 Where ((oldA & 0x80) != 0) // i f a >= 128 i t w i l l over f l ow when s h i f t e d l e f t ,
so reduce

13 a = (oldA << 1) ˆ 0x11b ; // XOR with p r im i t i v e polynomial xˆ8 + xˆ4 + xˆ3
+ x + 1

14 End
15

16 b = b >> 1 ; // d iv id e by 2
17

18 Where ((b & 0x01) != 0)
19 p = p ˆ a ;
20 End
21

22 re turn p ;
23 }

Listing 4.6: For values 1, 2, and 3 optimized Galois Multiplication on QPU

4.2.6 Complete Algorithm

1 void gpu a e s 1 28 s i n g l e b l o c k (Ptr<Int> s t a t e p t r , Ptr<Int> keyPtr , Ptr<Int>
sub box ptr , Ptr<Int> mix column ptr) {

2

3 /∗ Caution s t a t e p t r i s uniform po in t e r to f i r s t vec to r element
4 ∗ This i s on purpose to avoid sub t ra c t i ng index () .
5 ∗/
6 Int s t a t e = ∗ s t a t e p t r ;
7 Int mix column vec = ∗mix column ptr ; // a he lp ing vec to r comprised o f the

MDS−matrix used in AES
8

9 s t a t e = gpu add round key (s ta te , ∗ key ptr) ;
10

11 For (Int round = 1 , round < 10 , round = round + 1) //
12 s t a t e = gpu sbox (sub box ptr , s t a t e) ;
13 s t a t e = gpu sh i f t r ows (s t a t e) ;
14 s t a t e = gpu mix columns (s ta te , mix column vec) ;
15 s t a t e = gpu add round key (s ta te , ∗(key ptr + (round << 4))) ;
16 End
17

18 s t a t e = gpu sbox (sub box ptr , s t a t e) ;
19 s t a t e = gpu sh i f t r ows (s t a t e) ;
20 s t a t e = gpu add round key (s ta te , ∗(key ptr + 160)) ;
21

22 s t o r e (s ta te , s t a t e p t r + index ()) ; // s t o r e block to main memory
23 }

Listing 4.7: AES128 GPU algorithm

34

4.3 AES Implementation Using Packed Data

32-bit Integer
sub-word

LS MS
AES-Block Vector Element a b c d

0

0 state0,3 state0,2 state0,1 state0,0
1 state0,7 state0,6 state0,5 state0,4
2 state0,11 state0,10 state0,9 state0,8
3 state0,15 state0,14 state0,13 state0,12

1

4 state1,3 state1,2 state1,1 state1,0
5 state1,7 state1,6 state1,5 state1,4
6 state1,11 state1,10 state1,9 state1,8
7 state1,15 state1,14 state1,13 state1,12

2

8 state2,3 state2,2 state2,1 state2,0
9 state2,7 state2,6 state2,5 state2,4
10 state2,11 state2,10 state2,9 state2,8
11 state2,15 state2,14 state2,13 state2,12

3

12 state3,3 state3,2 state3,1 state3,0
13 state3,7 state3,6 state3,5 state3,4
14 state3,11 state3,10 state3,9 state3,8
15 state3,15 state3,14 state3,13 state3,12

Table 4.2: A register filled with 4 AES Blocks interpreted vertically

4.2.7 Summary

We have managed to implement the algorithm using SIMD instructions. Up to this point,
the upper 24 bits of each vector element has been zero, and only the lower 8 bits are filled
with data. Also the Byte order of the state in our registers has caused a hard to read and slow
implementation, making a lot of slow rotations and setting of conditional flags necessary.
These are all operations, where we don’t actually manipulate the bytes, and are, therefore,
seen as overhead.

4.3 AES Implementation Using Packed Data

With the vector interpreted as a horizontal element with the bytes of each vector element
interpreted as being vertically aligned, we can interpret the state matrix as being in the byte
order intended by the Rijndael algorithm 2.1. A horizontal rotation is now a vector rotation
and a vertical rotation is an Integer rotation. Using the QPULib, we can rotate a vector

1 Int vec to r ;
2 r o t a t e (vector , 1) ; // ho r i z on t a l r o t a t i on r i gh t by one element

Listing 4.8: Horizontal rotation

1 Int vec to r ;

35

4 AES Implementation

Figure 4.1: Single AES block interpreted horizontally

2 ro r (vector , 8) ; // v e r t i c a l r o t a t i on down by one Byte

Listing 4.9: Vertical rotation

The horizontal rotation comes in very handy with Mix Columns,

4.3.1 The Key

We can reuse our previous implementation of the Key Expansion, see 4.2.1. Since our state
matrix is now aligned differently, the key also has to be aligned correctly for the Add Round
Key step. Instead of expanding the key into an Integer array where the upper 24 bits of each
32-bit wide Integer is always zero, we are now expanding the key into an array of 8-bit wide
unsigned chars. The first 16 Byte of the key is now in the same byte order and alignment
as the state matrix. For each round, the same key has to be added to all four state matrices
in our vector. To achieve this, we can use the Texture Memory Lookup Unit and replicate
the key lying in four consecutive 32-bit wide fields four times into a single vector.

1 Int add round key (Int s tate , Int round , Ptr<Int> key po in t e r) {
2 Int key ;
3 gather (key po in t e r + (round << 2) + (index () & 0x03)) ; // r e p l i c a t e key o f

round four t imes
4 r e c e i v e (key) ;
5 re turn s t a t e ˆ key ;
6 }

Listing 4.10: Load key for a defined round

4.3.2 Sub Bytes

We filled the S-Box the same way as in our previous, naive implementation. The upper 24
bits are always zero. This leaves the 256-Byte S-Box with a footprint of 1024 Bytes. This is,
however, necessary for gathering the data efficiently. We can now unpack each of the four
8-bit lanes, and add the values to a uniform base pointer that points to the zero-element of
the S-Box. This leaves us with vectors of address pointers to the correct positions of each
substitution Byte. Now we can call gather with these vectors and receive the substituted
bytes into a temporary variable, from which we can pack the lanes back into the state vector
using masks.

36

4.3 AES Implementation Using Packed Data

1 Int subBytes (Int s ta te , Ptr<Int> sBox) {
2 gather (sBox + (s t a t e & 0 x f f)) ; // lane 0
3 gather (sBox + shr ((s t a t e & 0 x f f 0 0) , 8)) ; // lane 1
4 gather (sBox + shr ((s t a t e & 0 x f f 0000) , 16)) ; // lane 2
5 gather (sBox + shr ((s t a t e & 0 xf f000000) , 24)) ; // lane 3 (msb)
6 // TMU FIFO f u l l
7 Int lane ; // temporary va r i ab l e f o r r e c e i v i n g without data l o s s
8 r e c e i v e (s t a t e) ; // lane 0 (l s b) set , upper 24−b i t s are zero at t h i s po int
9

10 r e c e i v e (lane) ; // r e c e i v e lane 1
11 s t a t e = s t a t e | (lane << 8) ; // lane 1 s e t
12

13 r e c e i v e (lane) ; // r e c e i v e lane 2
14 s t a t e = s t a t e | (lane << 16) ; // lane 2 s e t
15

16 r e c e i v e (lane) ; // r e c e i v e lane 3
17 // TMU FIFO empty
18 re turn (s t a t e | (lane << 24)) ; // lane 3 (msb) s e t
19 }

Listing 4.11: Sub Bytes in lanes

Optimization potential The total number of required instructions amounts to 16 for the
gathers, including unpacking of the state matrix. Another 16 instructions of receiving and
packing the data back into the state vector are needed. In between, especially if the S-Box
is not in cache completely yet, latency has to be considered to collect the data placed into
accumulator r4 by the TMU upon receiving from the TMUs FIFO. A solution for this would
be to utilize the packing and unpacking functionality of Register File A. For the gathers for
the lanes, a total of only four instructions, one per gather, would be necessary. The writes
to the state vector could see a theoretical decrease of instructions to a total of eight. For
each lane, one to receive the substituted Bytes to accumulator r4, and another instruction
to pack them into the state vector.

4.3.3 Shift Rows

When interpreting a QPUs vector as being horizontal, the rotation of each row is just a
vector rotation. With the rotation, the state matrices are flowing over to their neighboring
state matrices, as shown in figure 4.2.

Figure 4.2: State vector with 4 AES blocks after Shift Rows without a counter rotation

37

4 AES Implementation

A counter-rotation has to be performed to accommodate the overflows, and the vector
has to be updated where an overflow happened. In 4.12 line 5, 11 and 17 perform the first
rotation of for each lane. Line 7, 13, and 19 perform the counter rotations. Line 9, 15, and
21 write the rotated lanes back to a temporary vector, effectively packing it lane by lane.
4.3 shows the first state matrix in a vector after shift rows.

Figure 4.3: State vector with 4 AES blocks after Shift Rows

1 Int shi f tRows (Int s t a t e) {
2 Int rotHe lper = index () & 0x03 ;
3 Int tmpState = s t a t e & 0 x f f ;
4

5 Int tmpRotation = ro ta t e (s t a t e & 0 xf f00 , 15) ;
6 Where(rotHe lper == 3)
7 tmpRotation = ro ta t e (tmpRotation , 4) ;
8 End
9 tmpState = tmpState | tmpRotation ;

10

11 tmpRotation = ro ta t e (s t a t e & 0 xf f0000 , 14) ;
12 Where(rotHe lper > 1)
13 tmpRotation = ro ta t e (tmpRotation , 4) ;
14 End
15 tmpState = tmpState | tmpRotation ;
16

17 tmpRotation = ro ta t e (s t a t e & 0 xf f000000 , 13) ;
18 Where(rotHe lper > 0)
19 tmpRotation = ro ta t e (tmpRotation , 4) ;
20 End
21 re turn tmpState | tmpRotation ;
22 }

Listing 4.12: Shift Rows in lanes

4.3.4 Mix Columns

Compared to our previous, naive implementation of Mix Columns, the 8-bit implementation
is significantly shorter. Here, all Integers are rotated up by a Bytes width, using an Integer
rotation right by 8 bit, and then multiplied in GF (28) by 2, rotated again by to align the
next Byte and multiplied by 3. In the next two rotations, the state would need to be
multiplied by 1 both times, but a Multiplication by 1 does not alter the value in GF (28).
At last, the additions of the intermediate products, as necessary in a matrix multiplication
are performed by performing exclusive-or operations. This way, each column of the state,
respectively, in each element of the vector, is multiplied by the MDS matrix. To speed

38

4.3 AES Implementation Using Packed Data

up the computationally expensive Galois-multiplication, we had to make sure the second
operand to the Galois-multiplication is a uniform vector. Because exclusive-or operations
are commutative, we were able to align the Integer rotations and the matrix. This way,
conditional execution of operations can be reduced to a minimum. 4.3.4

2.1.2

1 Int mix columns (Int s t a t e) {
2 re turn xtime (s t a t e) ˆ ga lo i s mul64Byte3 (ro r (s ta te , 8)) ˆ ro r (s ta te , 16) ˆ

ro r (s ta te , 24) ;
3 }

Listing 4.13: GPU implementation of Mix Columns

Galois Multiplication The Galois Multiplication can be executed on all 64 Bytes per state
vector at once. To accomplish this and speed it up at the same time, we need a uniform and
small operand. Luckily, the Mix Columns step can be restructured to provide both thanks
to the addition in GF (28) being commutative. Now that one of the operands is known to
be either 2 or 3, we can produce two highly optimized algorithms. There is just a small
problem that needed to be solved first. The other operand can’t be controlled, since each
of the states Bytes is random, from the methods point of view. Still, we can’t get rid of
one conditional operation: the reduction by the irreducible polynomial 0x11b. But we can
mask out the bytes where this operation does not apply. This is made possible by the newly
introduced 8-bit based instruction ”muld”. We take the most significant bit (MSB) from
each of the Bytes and replicate it across the Byte by multiplying it by 253. The mul-ALU
interprets both operands of the muld-operation as being in the range of 0.0 to 1.0. See 3.2
and 2.19. The value interpreted by the muld-operation can be approximated by dividing the
actual value by 255. In line 4 of listing 4.14, the multiplication of the high bit, with a value
of 128/255 = 0.5 by 253/255 = 0, 99 results in a replication of the high across the Byte.
This can now be used as a mask for writing back results of the reduction by the irreducible
polynomial only where the mask applies.

1 Int gpu xtime (Int s t a t e) { // Galo i s mu l t i p l i c a t i o n by 2
2 Char a = toChar (to In t (toChar (s t a t e) & (char) 0x7F) << 1) ;
3 Char mask = toChar (s t a t e) & (char) 0x80 ;
4 re turn to In t (a ˆ ((char) 0x1B & (mask | muld (mask , (char) 253)))) ;
5 }
6

7 Int ga lo i s mul64Byte3 (Int s t a t e) { // g a l o i s mu l t i p l i c a t i o n by 3
8 re turn s t a t e ˆ gpu xtime (s t a t e) ;
9 }

Listing 4.14: Shift Rows in lanes

39

4 AES Implementation

Complete Algorithm In the end, we bring all the steps together while following the spec-
ification exactly to form an algorithm similar to the example in 2.1. In between, several
gathers through the TMU are performed to pre-fetch data as early as possible.

1 void gpu enc k e rn e l f un c t i on (Ptr<Int> ba s e s t a t e p t r , Ptr<Int> key ptr , Ptr<
Int> sub box ptr , Int aes rounds , Int n) {

2 Int key ;
3 Int s t a t e ;
4 Ptr<Int> s t a t e p t r = ba s e s t a t e p t r + index () + (me() << 4) ;
5 Int increment = numQPUs() << 4 ;
6 gather (s t a t e p t r) ;
7

8 For (Int i = 0 , i < n , i = i + increment)
9 gather (key ptr + (index () & 0x03)) ; // gather the f i r s t Round Key from

the main memory / Leve l 2 Cache
10 r e c e i v e (s t a t e) ;
11 r e c e i v e (key) ;
12

13 s t a t e = s t a t e ˆ key ; // Add Round Key
14

15 For (Int round = 1 , round < aes rounds , round = round + 1)
16 s t a t e = sub bytes (s ta te , sub box ptr) ; // Sub Bytes
17 gather (key ptr + (round << 2) + (index () & 0x03)) ; // gather the

next Round Key from the main memory / Level 2 Cache
18 s t a t e = mix columns (s h i f t r ow s (s t a t e)) ; // Sh i f t Rows and

immediately Mix Columns to avoid wr i t i ng to a r e g i s t e r
19 r e c e i v e (key) ; // r e c e i v e Key from TMU FIFO
20 s t a t e = s t a t e ˆ key ; // Add Round Key
21 End
22

23 s t a t e = sub bytes (s ta te , sub box ptr) ; // Sub Bytes
24 gather (key ptr + (aes rounds << 2) + (index () & 0x03)) ; // gather the

l a s t Round Key from the main memory / Leve l 2 Cache
25 gather (s t a t e p t r + i + increment) ; // a l r eady gather the next block f o r

encrypt ion
26 s t a t e = sh i f t r ow s (s t a t e) ; // Sh i f t Rows
27 r e c e i v e (key) ; // r e c e i v e Key from TMU FIFO
28 s t o r e (s t a t e ˆ key , s t a t e p t r + i) ; // Add Round Key and s t o r e the

encrypted block to the main memory
29 End
30 r e c e i v e (s t a t e) ; // empty the FIFO
31 re turn ;
32 }

Listing 4.15: The complete algorithm for AES encryption

40

4.4 Summary

4.3.5 Decryption

For decryption, all steps are in reversed order. All steps also reverse their corresponding
steps of encryption. The inverted methods can be found in the appendix 7.

1 void gpu de c k e rn e l f un c t i on (Ptr<Int> ba s e s t a t e p t r , Ptr<Int> key ptr , Ptr<
Int> sub box ptr , Int aes rounds , Int n) {

2 Int key ;
3 Int s t a t e ;
4 Ptr<Int> s t a t e p t r = ba s e s t a t e p t r + index () + (me() << 4) ;
5 Int increment = numQPUs() << 4 ;
6 gather (s t a t e p t r) ; //
7

8

9 For (Int i = 0 , i < n , i = i + increment)
10 gather (key ptr + (aes rounds << 2) + (index () & 0x03)) ;
11 r e c e i v e (s t a t e) ;
12 r e c e i v e (key) ;
13

14 s t a t e = s t a t e ˆ key ; // Add Round Key
15

16 For (Int round = aes rounds −1, round > 0 , round = round − 1)
17 s t a t e = i n v s h i f t r ow s (s t a t e) ; // Sh i f t Rows i nv e r s e
18 s t a t e = sub bytes (s ta te , sub box ptr) ; // Sub Bytes i nv e r s e
19 gather (key ptr + (round << 2) + (index () & 0x03)) ;
20 r e c e i v e (key) ;
21 s t a t e = s t a t e ˆ key ; // Add Round Key
22 s t a t e = inverse mix co lumns (s t a t e) ; // Mix Columns i nv e r s e
23 End
24

25 s t a t e = i n v s h i f t r ow s (s t a t e) ; // Sh i f t Rows i nv e r s e
26 s t a t e = sub bytes (s ta te , sub box ptr) ; // Sub Bytes i nv e r s e
27 gather (key ptr + (index () & 0x03)) ;
28 gather (s t a t e p t r + i + increment) ;
29 r e c e i v e (key) ;
30 s t o r e (s t a t e ˆ key , s t a t e p t r + i) ; // Add Round Key and s t o r e

decrypted block
31 End
32 r e c e i v e (s t a t e) ;
33 re turn ;
34 }

Listing 4.16: The complete algorithm for AES decryption

4.4 Summary

In this chapter, we implemented two different encryption algorithms, the former operat-
ing on 32-bit Integers and the latter operating on packed 8-bit Integers, making use of
just one unsigned 8-bit Integer instruction. The first implementation was slow and wasted
three-quarters of its used bandwidth. But it was the first proof that AES can indeed be
implemented on the Raspberry Pi’s GPU using the QPULib. The latter implementation
had a different approach and packed four whole state-blocks per register. The QPUs hard-
ware implementation of 8-bit datatypes wasn’t as necessary as expected for that. Only the
’v8muld’-operation provides a significant advantage over the existing operations for 32-bit
Integers in our implementation. The ’v8muld’-operation is used in the performance-critical

41

4 AES Implementation

Galois-multiplication, where its usage resulted in a significant decrease of instructions for
the function. We also implemented a decryption-algorithm, that reuses several functions of
the encryption-algorithm. All of the steps of AES are of the same complexity for decryption
as for encryption, except for the greater values used in the inverted Mix Columns function,
compared to the forward Mix Columns function. Because of that, it takes the decryption a
higher amount of instructions to terminate, which must results in a lower throughput if the
algorithm is not memory-bound.

42

5 Evaluation

In this chapter, we test our implementations for performance. For comparison, we put
up the OpenSSL implementation of AES running on the Raspberry Pi’s ARM cores. All
tests, unless otherwise stated, have been conducted on a Raspberry Pi 2 Model B running
Raspbian Stretch. The implementations have been checked for correctness by encrypting
using our engine and decrypting using OpenSSL’s internal AES engine using OpenSSL 1.1.0.
Decryption has also been checked by encrypting using OpenSSL’s engine and decrypting
using ours. All tests show results for AES-128 in ECB mode, as this is the only mode
implemented in our engine.

5.1 Test Preparation

For testing, we built an OpenSSL engine that implements the VideoCore IV 3D AES imple-
mentation 4.3. We can now encrypt data with the command shown in 5.1.

1 $ sudo opens s l enc −eng ine ‘pwd‘ /QPUAESEngine . so AES−128−ECB

Listing 5.1: Encrypt using our OpenSSL engine

First, we benchmark OpenSSL’s internal AES engine, that we can call by the following
command:

1 $ sudo opens s l speed −eng ine ‘pwd‘ /QPUAESEngine . so −evp AES−128−ECB −e lapsed

Listing 5.2: Benchmark our GPU OpenSSL engine

We can also use our engine for comparison with OpenSSL’s benchmarking tool ’speed’
using the following command:

1 $ opens s l speed −evp AES−128−ECB

Listing 5.3: Benchmark OpenSSL’s internal engine

To measure the CPU overhead of compiling the QPULib’s Source Code (See 2.3.1) of
our AES kernel function, we put timers around the compile-function that calls the Kernel’s
constructor. To measure the kernel time of the AES implementation on the QPUs we
measured in the same way.

1 auto s t a r t = h i g h r e s o l u t i o n c l o c k : : now() ;
2 auto a e s k e r n e l = compile (e n c r yp t i on a e s k e r n e l) ; // c a l l s the QPULib ’ s Kernel

c on s t ruc to r
3 auto stop = h i g h r e s o l u t i o n c l o c k : : now() ;
4 auto durat ion = dura t i on ca s t<microseconds>(stop−s t a r t) ;

Listing 5.4: Benchmark our GPU OpenSSL engine

The OpenSSL ’speed’-benchmark only measures data batches of up to 16384 Bytes. While
testing, we found that the QPUs invocation-overhead still takes a big hit on performance at
that batch size. To be able to compare batch-sizes larger than that directly, we introduced

43

5 Evaluation

a factor-constant that replicates the encryption data a given number of times and performs
and writes it back to the output repeatedly before terminating. The absolute batch-size
encrypted by the QPUs can be accurately simulated this way up to the size of the QPU’s
shared memory.

While testing, we also found that a quite big chunk of the encryption time in our imple-
mentation is spent copying memory from the input into the shared memory between CPU
and the GPU. To show what the core algorithm is capable of, we subtracted the overhead
of copying memory and calculated the throughput, therefore, without any other overhead
than invocation alone.

5.2 Performance

Encryption

OpenSSL’s benchmark of its internal engine yields results of 19068 kB/s for blockwise pro-
cessing of 16 Bytes, one AES block, and an 18.6% faster 22446 kB/s for processing 1024
blocks per batch on the test platform. The difference in performance for the different batch
sizes can be explained with overhead from invoking the algorithm more often for the same
amount of data processed when using smaller batches. In between, the overhead becomes
less and less significant to the complete process. Because we measured with the internal
OpenSSL benchmark, values that are not provided by the benchmark are not available in
our result table. For larger data batches of more than 214 (16384) Bytes, we don’t expect
any significant speedup over the biggest tested batch size.

Data length (Bytes) OpenSSL 1 QPU 12 QPUs 12 QPUs (kernel time)

24 19068 65 66 153
26 21435 261 265 615
28 22250 819 1034 2415
210 22393 1533 3715 8063
212 na 2298 10307 18618
214 22446 2635 13912 27769
216 na 2699 16896 31890
218 na 2808 21483 32576
220 na 2833 22220 33043
222 na 2840 23150 33279
224 na 2863 24309 33391
226 na na 24993 33467
227 na na 25087 33481

Table 5.1: Encryption throughput comparison. Results in kB/s

In the second result column for encryption, we tested throughput for a single QPU. For
that, we had set the number of QPUs to one by adding the line kernel.setNumQPUs(1);.
The throughput starts with a merely 65 kB/s for the smallest batch size of 24 (16) Bytes.
At this point, OpenSSL’s implementation is roughly 324 times faster than ours. With big-
ger batch sizes, the overhead of invoking the kernel becomes less significant, and a gradual
speedup can be observed up to 2863 kB/s. Already at 212 (4096) Bytes, the single QPU is

44

5.2 Performance

at ˜80% of its maximum observed performance at 224 Bytes. Results for batch sizes larger
than 224 are not available due to a kernel time of more than 10 seconds, which is not allowed
by the VideoCore IV 3D.

Next up is the column for 12 QPUs doing the encryption. At 24 (16) Bytes processed,
no significant speedup over the single QPU can be observed. For the larger batches, the
12 QPUs ramp-up significantly faster than the single QPU from roughly 210 Bytes of batch
size, but are far away from a theoretically perfect scaling factor of 12 over the single QPU at
this point. At 212 Bytes, we are only at roughly 41% of the maximum observed throughput
of 25087 kB/s at 22 Bytes. The difference of ˜80% of its maximum speed for the single QPU
at 212 Bytes of batch size, compared to the ˜41% for the 12 QPUs at the same batch-size, is
suspected to be caused by more caches and pipes having to be filled up. At the maximum
tested batch-size, a scaling factor of ˜8.7 over the single QPU can be observed. This leads
to the conclusion, that once all pipes and caches are filled, the algorithm scales well with
the number of available QPUs.

To show how much time is spent outside the kernel, we include a further column, where
kernel time only was measured, and the throughput, that is shown, calculated from it. Here
we can see that a minimum of 25% of the engine’s runtime is spent outside the kernel
function that is running on the QPUs. Most of the overhead implicitly shown here comes
from copying the plaintext to the shared memory between CPU and GPU, and copying it
back to the output after the kernel terminated.

Overclocking the GPU The base frequency of the Raspberry Pi’s GPU is 250 MHz, but
it can be easily overclocked to 500 MHz without any instability issues. To do so, the line
”qpu freq=500” was added to ”/boot/config.txt”, and the Raspberry Pi was rebooted. With
an overclocked Raspberry Pi, the maximum throughput we measured was 38567 kB/s at a
batch-size of 226 Bytes, including overhead from copying data to and fro the shared memory.
Excluding overhead, with only kernel time measured to calculate the throughput, a massive
66274 kB/s was measured, again at a batch-size of 226 Bytes. However, while the perfor-
mance was better throughout the range, it varied widely from run to run due to throttling.
Interestingly, the GPU does not change clock speeds while a program is running on it.

Decryption

Again, OpenSSL’s engine is very fast, as one can see in the first column of our results in table
5.2. Even from the smallest batch-size on, it reaches ˜76% of the maximum performance we
measured at a batch-size of 214 Bytes.

For our decryption implementation, the runtime of Shift Rows, the round-key addition,
and the Byte substitution is the same as for encryption. Mix Columns, however, takes more
instructions to terminate in comparison to the encryption algorithm. The second operand
for decryption is greater in decryption and will, therefore, take more steps, as explained
in 2.1.2. The algorithm to perform the Galois multiplication for decryption has also not
been optimized and computes the result of each lane (2.15) individually. This leads to a
substantial slowdown compared to our encryption algorithm.

45

5 Evaluation

The column showing results for a single QPU, shows similar behavior to its encryption
counterpart, just slower, due to the unoptimized algorithm. At a batch-size of 212 Bytes, it
hits ˜97% of its maximum performance. The 12-QPU column also shows similar behavior to
its encryption-counterpart, again being slower, in any case. It ramps up a bit quicker than
its counterpart, already performing at ˜69% of its maximum performance at a batch-size
of 212. The relatively smaller overhead, compared to the complexity of the algorithm, can
explain the quicker ramp-up to maximum throughput. While the overhead stays the same for
encryption and decryption, the complexity of the algorithm is greater for decryption. Also,
the slow memory accesses stay the same compared to the encryption algorithm. Together
with the increased complexity, this leads to better scaling over more QPUs, coming in at
11.35, and just missing the optimum scaling factor of 12. Of course, a faster algorithm would
be preferred over a better scaling factor.

Data length (Bytes) OpenSSL 1 QPU 12 QPUs

24 17083 38 37
26 20629 149 143
28 21825 229 566
210 22146 303 1320
212 na 332 2667
214 22249 339 3391
216 na 340 3582
218 na 342 3794
220 na 342 3857
222 na na 3860
224 na na 3883

Table 5.2: Unoptimized decryption throughput comparison including overhead

Decryption on Overclocked GPU Similarly to encryption, we tested decryption with an
overclocked Raspberry Pi 2 Model B. Here, the maximum throughput nearly doubled, max-
ing out at 7512 kB/s the maximum tested batch-size of 226 Bytes, including overhead from
copying memory around. Without the overhead, a maximum throughput of 8180 kB/s was
observed.

5.3 Problems

In the evaluation phase, some problems with our implementation arose.

Overhead of the QPULib

The kernel is compiled at runtime, which makes up a significant overhead each time the
algorithm is set up. Compiling the AES encryption implementation to bytecode at runtime
took a minimum of 88ms, and compiling the unoptimized decryption algorithm a minimum
of 288 milliseconds on a Raspberry Pi 2 Model B. The minimum invocation and termination
time of the compiled kernel, performing encryption on just a single block of 16 Bytes, came
in at minimum of 97 microseconds in case of encryption and a minimum of 270 microseconds

46

5.3 Problems

in case of decryption. This leaves the implementation impractical for processing of small
batches of data.

Raspberry Pi 4

The Raspberry Pi 4 is incompatible to the QPULib and our implementation due to its
VideoCore VI GPU.

47

6 Conclusion

The main goal of the thesis was to evaluate if AES on the Raspberry Pi’s GPU can be practi-
cal. We managed to implement hardware-accelerated AES on the Raspberry Pi’s GPU using
the especially for the VideoCore IV 3D designed QPULib-library. The first implementation
was correct, but not particularly fast or practical, since it wasted most of the bandwidth
and also took four times more space in the shared memory than necessary.

We extended the QPULib by the datatype ’Char’ for optimizations of our implementa-
tion. This datatype operates on all 64 Bytes that fit into a 16-element vector of 32-bit
wide elements at once, making it effectively 64-way SIMD for some operations. The ’Char’-
implementation can not only be used for AES, but for all kinds of other Byte-based algo-
rithms that are parallelizable as well.

Another, faster version was then implemented, using the extensions to the QPULib, that
we previously made. The second algorithm is faster and does not use any more bandwidth
to the main memory than necessary. It is also less impractical since it also does not waste
space in the memory shared between GPU and CPU anymore. Copying memory is faster
too because no write-stride is any longer necessary. The algorithm has been checked for
correctness using OpenSSL and can thus be used in real-world implementations. While
the implementation takes the workload from the CPU, it does not provide any significant
speedup. The performance was held back by CPU overhead for copying memory mostly.
Unfortunately, there is no know way around that. The algorithm itself, however, is well
suited for a SIMD implementation. Further optimizations, as described in 6, could speed up
the implementation and possibly even make it practical.

Future Work

To make the implementation faster and, therefore, more practical, several more measures
can be taken.

Manual optimization The QPULib offers a high-level interface to the VideoCore IV 3D.
While the generated bytecode seems to be generally good and reliable, a manually optimized
algorithm could be faster by making use of unimplemented operators, side effects, and more
flexible register allocation.

Pack and Unpack functionality for Vectors Implement the concept of individual 8-bit
vectors shown in 3.1.2. Using the pack and unpack functionality would result in a significant
speedup of the evaluated algorithm. An example of the potential is described here 4.3.2.

49

6 Conclusion

Automatically filled pipeline The Vertex Pipe Memory offers pre-programmed reads from
the main memory. These offer a potential speed up to the algorithm due to latency for
each read of an AES plaintext block from the main memory. Each read of the next state
block is predictable and can, therefore, be pre-programmed. This would also reduce the
computational overhead for setting up reads via the TMU, which is already heavily utilized
by repeated fast memory lookups for the Sub Bytes step and the key-addition.

Performance Counters As a final optimization measure to the AES algorithm on the QPUs,
Performance Counters could be used. Performance Counters are hardware implemented in
the QPUs and offer a set of counters that can be read as a vector by the QPU. A total of
16 out of 30 available Performance Counters can be set up and read at different times while
the program runs on the QPUs. Results can then be interpreted by the programmer and
optimizations evaluated accordingly. See figure 7.2 for implemented counters.

AES Modes Currently, our implementation only features the AES-128-ECB Mode 2.2, a
mode that is not used very often because of its security flaws. For modes that are not
parallelizable, this would come with a very significant performance hit, however. In these
modes, paired with an implementation similar to ours, a hardware register would only be
filled up to a quarter, leaving three-quarters of the resources of a QPU unused, and would,
therefore, be precisely four times slower than our single-QPU benchmarking results shown
in table 5.1.

Speedup decryption With little work, the Galois multiplication used in our decryption
algorithm can be optimized and sped up. This could result in a decryption throughput close
to our encryption throughput.

50

7 Appendix

Figure 7.1: VideoCore IV 3D archtitecture overview, graphics only hardware is greyed out.

51

7 Appendix

Figure 7.2: Available Performance Counters on the Raspberry Pi’s GPU to measure various
performance critical aspects of a program run on it

Performance measurements

52

numQPUs no-pre-fetch, blocking stores pre-fetch, no wait for store

1 270 ms 73 ms
2 185 ms 63 ms
3 185 ms 63 ms
4 185 ms 63 ms
5 185 ms 63 ms
6 184 ms 63 ms
7 184 ms 63 ms
8 184 ms 63 ms
9 184 ms 63 ms
10 184 ms 63 ms
11 185 ms 63 ms
12 184 ms 63 ms

Table 7.1: Comparing memory performance of a simple ’a + b = c’ loop iterated over 1.6
million values. The first result column shows blocking loads and blocking stores,
which stall the QPUs until completed before performing the next instruction.
The second result column shows times for the same algorithm without waiting for
stores to main memory to be completed, and with a pre-fetch of one value via the
TMU.

Active QPUs
Clock high Clock high

load via VPM load via TMU

1 591ms 350 ms
2 345ms 175 ms
3 234ms 116 ms
4 205ms 87 ms
5 202ms 70 ms
6 201ms 64 ms
7 203ms 64 ms
8 202ms 64 ms
9 202ms 64 ms
10 202ms 64 ms
11 202ms 64 ms
12 202ms 64 ms

Table 7.2: Comparison of an unoptimized galois multiplication with blocking load and store
operations via VPM versus loads via the TMU and non-blocking stores. Results
show times for processing of 1.6M values in milliseconds.

53

7 Appendix

Active QPUs original algor. original algor. parameters switched optimized algor.
1 162 66 25 ms
2 81 33 12 ms
3 54 22 8 ms
4 40 16 6 ms
5 32 13 5 ms
6 27 11 4 ms
7 23 9 3 ms
8 20 8 3 ms
9 18 9 2 ms
10 16 6 2 ms
11 14 6 2 ms
12 13 6 2 ms

Table 7.3: Unknown operands implementation of the Galois multiplication versus optimized
algorithm for values that occur in AES encryption. Results show times for pro-
cessing of 1.0M values, clock high

numQPUs time in milliseconds throughput in kB/s

1 QPUs 1683 ms 594 kB/s
2 QPUs 842 ms 1187 kB/s
3 QPUs 562 ms 1779 kB/s
4 QPUs 421 ms 2375 kB/s
5 QPUs 337 ms 2967 kB/s
6 QPUs 281 ms 3558 kB/s
7 QPUs 240 ms 4166 kB/s
8 QPUs 210 ms 4761 kB/s
9 QPUs 188 ms 5319 kB/s
10 QPUs 168 ms 5952 kB/s
11 QPUs 153 ms 6535 kB/s
12 QPUs 140 ms 7142 kB/s

Table 7.4: AES-128-ECB encryption with the first implementation shown in approach to
4.2. Here, we measured kernel time only, overhead is not factored in. Throughput
is calculated from timings. Scaling is near perfection with increasing number of
QPUs, suggesting no memory bottleneck at all. 1.0M values, clock high

54

Figure 7.3: Horizontal access mode to the VPM

55

7 Appendix

Figure 7.4: Vertical access mode to the VPM

56

1 Int i n v s h i f t r ow s (Int s t a t e) { // CORRECT fo r ro ta ted
2 Int rotHe lper = index () & 0x03 ;
3 Int tmpState = s t a t e & 0 x f f ; // row 0 s e t
4

5 Int tmpRotation = ro ta t e (s t a t e & 0 xf f00 , 1) ;
6 Where(rotHe lper == 0)
7 tmpRotation = ro ta t e (s t a t e & 0 xf f00 , 13) ;
8 End
9 tmpState = tmpState | tmpRotation ;

10

11 tmpRotation = ro ta t e (s t a t e & 0 xf f0000 , 2) ;
12 Where(rotHe lper < 2)
13 tmpRotation = ro ta t e (s t a t e & 0 xf f0000 , 14) ;
14 End
15 tmpState = tmpState | tmpRotation ;
16

17 tmpRotation = ro ta t e (s t a t e & 0 xf f000000 , 3) ;
18 Where(rotHe lper < 3)
19 tmpRotation = ro ta t e (s t a t e & 0 xf f000000 , 15) ;
20 End
21 re turn tmpState | tmpRotation ;
22 }

Listing 7.1: The Shift Rows step inverted for decryption has the same complexity as the
non-inversed function used for encryption.

1 Int inverse mix co lumns (Int s t a t e) {
2 re turn g a l o i s mu l t i p l i c a t i o n p e r l a n e (s ta te , 0x0E)
3 ˆ g a l o i s mu l t i p l i c a t i o n p e r l a n e (ro r (s ta te , 8) , 0x0B)
4 ˆ g a l o i s mu l t i p l i c a t i o n p e r l a n e (ro r (s ta te , 16) , 0x0D)
5 ˆ g a l o i s mu l t i p l i c a t i o n p e r l a n e (ro r (s ta te , 24) , 0x09) ;
6 }

Listing 7.2: The inverted Mix Columns step for decryption. To make use of the fast
Accumulators, we avoid writing intermediate results to variables.

57

7 Appendix

1 Int g a l o i s mu l t i p l i c a t i o n p e r l a n e (Int s ta te , Int o r i g b) {
2 Int r e s u l t s t a t e = 0 ; // temporary s t a t e
3

4 For (Int i = 0 , i < 4 , i = i +1) // f o r each lane
5

6 Int lane = (s t a t e & (0xFF << (i << 3))) >> (i << 3) ; // unpacking o f
the lane

7 Int o ld a ;
8 Int b = o r i g b ; // load second operand
9 Int p = 0 ;

10

11 f o r (i n t j = 0 ; j < 4 ; j++) { // max 4 b i t s set , so we never need a
f u l l Galois−mu l t i p l i c a t i o n i t e r a t i n g over 8 b i t s ,

but j u s t 4
12 Where ((b & 1) == 1) // i f low b i t i s s e t
13 p = p ˆ lane ; // update r e s u l t
14 End
15

16 o ld a = lane ; // save high b i t s be f o r e s h i f t i n g them out o f
context

17 l ane = lane << 1 ; //
18 Where ((o ld a & 0x80) == 0x80) // h i g h b i t s e t t rue
19 l ane = lane ˆ 0x11B ; // reduce with polynom ; d e l e t e over f l ow
20 End
21

22 b = b >> 1 ; // s h i f t operand b to the r ight , dev id ing i t by 2
23 }
24 r e s u l t s t a t e = r e s u l t s t a t e | (p << (i << 3)) ; // wr i t e r e s u l t back to

lane
25 End
26 re turn r e s u l t s t a t e ;
27 }

Listing 7.3: The GPU implementation of Mix Columns used for decryption. Operand b is
never greater than 0x0E, so we never need more than four iterations. This
implementation of the Galois-multiplication is rather slow, as shown in the
Evaluation chapter.

58

List of Figures

2.1 Byte Order for 128-bit block size and key-lengths in Rijndael 4
2.2 Byte Order for 192-bit block size and key-lengths in Rijndael 4
2.3 Byte Order for 256-bit block size and key-lengths in Rijndael 5
2.4 Add Round Key visualisation [Haa08] . 6
2.5 Sub Bytes visualisation [Haa08] . 7
2.6 Shift Rows visualization [Haa08] . 8
2.7 Mix Columns visualisation [Haa08] . 9
2.8 EBC Mode [Com07] . 10
2.9 CBC Mode [Com07] . 10
2.10 PCBC Mode [Com07] . 11
2.11 CFB Mode [Com07] . 11
2.12 OFB Mode [Com07] . 11
2.13 CTR Mode [Com07] . 12
2.14 QPU Core Pipeline . 15
2.15 A lane of data in a QPU-register . 16
2.16 ALU Instructions . 17
2.17 Mux encoding . 17
2.18 add-ALU Operations . 18
2.19 mul-ALU Operations . 19

4.1 Single AES block interpreted horizontally . 36
4.2 State vector with 4 AES blocks after Shift Rows without a counter rotation . 37
4.3 State vector with 4 AES blocks after Shift Rows 38

7.1 VideoCore IV 3D archtitecture overview, graphics only hardware is greyed out. 51
7.2 Available Performance Counters on the Raspberry Pi’s GPU to measure var-

ious performance critical aspects of a program run on it 52
7.3 Horizontal access mode to the VPM . 55
7.4 Vertical access mode to the VPM . 56

59

Bibliography

[AFD17] Abdelrahman, Ahmed A. ; Fouad, Mohamed M. ; Dahshan, Hisham: High
Performance CUDA AES Implementation: A Quantitative Performance Analysis
Approach. (2017). https://www.researchgate.net/publication/317475198_

High_Performance_CUDA_AES_Implementation_A_Quantitative_Performance_

Analysis_Approach

[Bro13] Broadcom (Hrsg.): VideoCore R© IV 3D Architecture Reference Guide. Broad-
com, September 2013. https://docs.broadcom.com/docs-and-downloads/

docs/support/videocore/VideoCoreIV-AG100-R.pdf

[Com07] Commons, Wikimedia: Block cipher mode of operation. https://en.wikipedia.
org/wiki/Block_cipher_mode_of_operation. Version: 2007

[DR02] Daemen, Joan ; Rijmen, Vincent: The Design of Rijndael: AES - The Advanced
Encryption Standard. 2002

[Haa08] Haan, Laurent: Advanced Encryption Standard (AES). http://codeplanet.eu/
tutorials/cpp/51-advanced-encryption-standard.html. Version: Februar
2008. – Online; accessed 7-December-2019

[Nay16] Naylor, Matthew: QPULib. https://github.com/mn416/QPULib, 2016. – On-
line; accessed 7-December-2019

[nin15] PyVideoCore. https://github.com/nineties/py-videocore, 2015. – Online;
accessed 7-December-2019

[Pau17] Pauls, Paul: Parallelization of AES on Raspberry Pi GPU in Assembly. (2017),
Juli. http://mnm-team.org/pub/Fopras/paul17/PDF-Version/paul17.pdf

[RP17] Raspberry Pi, Entwicklung einer OpenCL-Implementierung für die VideoCore IV
GPU d.: VC4CL. https://github.com/doe300/VC4CL, 2017. – Online; accessed
7-December-2019

[WC19] Wang, Canhui ; Chu, Xiaowen: GPU Accelerated AES Algorithm. In: CoRR
abs/1902.05234 (2019). http://arxiv.org/abs/1902.05234

61

https://www.researchgate.net/publication/317475198_High_Performance_CUDA_AES_Implementation_A_Quantitative_Performance_Analysis_Approach
https://www.researchgate.net/publication/317475198_High_Performance_CUDA_AES_Implementation_A_Quantitative_Performance_Analysis_Approach
https://www.researchgate.net/publication/317475198_High_Performance_CUDA_AES_Implementation_A_Quantitative_Performance_Analysis_Approach
https://docs.broadcom.com/docs-and-downloads/docs/support/videocore/VideoCoreIV-AG100-R.pdf
https://docs.broadcom.com/docs-and-downloads/docs/support/videocore/VideoCoreIV-AG100-R.pdf
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
http://codeplanet.eu/tutorials/cpp/51-advanced-encryption-standard.html
http://codeplanet.eu/tutorials/cpp/51-advanced-encryption-standard.html
https://github.com/mn416/QPULib
https://github.com/nineties/py-videocore
http://mnm-team.org/pub/Fopras/paul17/PDF-Version/paul17.pdf
https://github.com/doe300/VC4CL
http://arxiv.org/abs/1902.05234

	Introduction
	Background
	The Advanced Encryption Standard
	Rijndael
	Algorithm Overview
	Modes of Operation

	Raspberry Pi
	The QPULib
	Software Architecture

	Related Work
	Summary

	Additions to the QPULib
	Char
	4x8-bit Vector Implementation
	Concept Packing and Unpacking 8-bit Vectors

	Summary

	AES Implementation
	Parallelization Concept
	First AES Implementation
	Key Expansion
	Add Round Key
	Sub Bytes
	Shift Rows
	Mix Columns
	Complete Algorithm
	Summary

	AES Implementation Using Packed Data
	The Key
	Sub Bytes
	Shift Rows
	Mix Columns
	Decryption

	Summary

	Evaluation
	Test Preparation
	Performance
	Problems

	Conclusion
	Appendix
	List of Figures
	Bibliography

