
New Approach for Automated Generation of Service

Dependency Models

Christian Ensel1

Munich Network Management Team
University of Munich, Dept. of CS

Oettingenstr. 67; 80538 Munich; Germany
phone: +49-89-2178-2171, fax: -2262

email: ensel@informatik.uni-muenchen.de

Abstract
Managing services by not only looking at their own current state but with support from the
“big picture” of service– and inter–service dependencies becomes increasingly important
in nowadays’ IT–management. This paper presents a new methodology to automatically
generate such dependencies models together with an agent based implementation archi-
tecture. It strives to enable more comprehensive IT–management by providing an always
up–to-date information basis about inter–dependencies of services, applications and net-
work components. The approach specially aims for heterogeneous environments as found
in large enterprises and outsourcing scenarios.

Keywords
automated dependency model creation, IT–management, agent based architecture

1 Introduction

Over the last couple of years IT–management has made enormous progress: Management ar-
chitectures and their realization in platforms and tools provide standardized remote access to
the managed environment [1]. But there is still a number of management tools that is based on
proprietary resource interfaces. And worse, often important management information is only
available through those non–standardized interfaces or even not at all. This is especially true
for information about dependencies between those managed objects, although this would be
required by the various management applications described in section 2.
Figure 1 shows a small scenario with two domains. One hosts a web serverWS, the other
contains the Domain Name ServiceDNS responsible to resolve the name of the web server and
other subservices that are not shown in the figure, e.g., a database server providing content
information for the web pages. Thus, the web server is said to depend on the DNS server.
Further, there are two users who typically access information onWS via web clients. They
depend on the web server and—if they want to type normal URLs instead of IP addresses—also
on DNS. The figure also depicts the mentioned dependencies between the major objects. For
simplicity, it neglects all dependencies to the communication infrastructure and further sub–
services.
Although several objects of the example depend on DNS, none of them explicitly tells to do so
and cannot be queried by a management application for their dependencies. In the example,

1The author’s work was sponsored by Siemens AG, department CT IC 4 in the context of the project “LEONET”
of the German Ministry for Education and Research (BMBF)

the dependencies are hidden inWS’ configuration file that mentions the database server by
name instead of by IP address, plus the fact that this host name isnot listed in local name
resolving files like “resolve.conf”. One can already imagine how hard an automated detection
of dependencies by looking at configuration files would be. The case would become even more
complicated, if host name and IP address indeedare listed in “resolve.conf”, because it would
then be up to a third file to determine whether local resolving is carried out at all.

web client 1

DNS

web client 2

web serv er

Figure 1: Simple multi service scenario

Conventional approaches generally struggle with
evaluation problems of various configuration files
as mentioned above. It gets even worse if the
format of those files changes with software up-
dates. In heterogeneous environments such mod-
eling tools typically must further be restricted to a
very limited set of resource types or vendors. The
major alternative to dependency detection at run-
time is an a priori description of the environment
with its components and dependencies, similar to
what is achieved in software engineering by the
help of Architecture Description– resp. Module
Interconnection Languages. However, so far sim-
ilar dependency description languages have not
been commonly agreed on in the IT–network and
service provisioning world.
As a consequence, dependency models are not generally used in today’s management world—
although their benefits are commonly known. This leads to a lack of overview for the IT-
administrators and prevents the use of powerful management tools like event correlators that
are based on dependency models [2]. More applications are described in section 2 together
with an overview of existing types of dependency models.
To overcome the problems of automated modeling described above, this paper presents a
new approach to gain management relevant dependency information. Unlike conventional ap-
proaches it is designed to obtain useful results independent of the heterogeneity of the managed
environment. It is based on two key parts. The first (covered by section 3) are the underlying
concepts of dependency determination that are carried out with the help of Neural Networks.
However, this paper does not aim at details about artificial intelligence like the training methods
of our neural networks etc., but concentrates on modeling and realization aspects relevant for
IT–management. Thus, the second part (section 4) deals with the concepts’ integration into real
IT–environments and management processes, where questions of installation efforts, scalability
etc. have to be taken into account. The conclusions of the paper are drawn in section 5.

2 Existing Modeling Concepts and their Applications

To provide means for the description of management information has always been an important
part of the definition of management architectures. Syntax and semantics of information de-
scriptions are defined in the so calledinformation model; the access to it in thecommunication
model. The focus of management information traditionally lay on attributes and properties of
single objects. Although, e.g. the ISO/OSI (Open Systems Interconnection, [3]) management
architecture already defined a General Relationship Model (GRM, [4]), it was never widely used
in IT–management. Only in recent years the issue regained more interest [5]—mainly with the
increasing number and complexity of the inter–service, –system and –domain dependencies.

Examples for typical information specific to single managed objects are variables of the Ma-
nagement Information Bases (MIBs, [6]) defined in the Internet Management Architecture, like
...mib-2.system.sysLocation that is defined to store the system’s location. This kind
of information is either stored at the real objects (hardware components, applications, etc.) and
accessible via management agents using standardized protocols or within the corresponding
object representation at the management tools.
The following subsections focus on another type of management information which has gained
more and more importance with the growing complexity of IT-systems and networks: the de-
pendencies between managed objects, captured by the so calledDependency Models In the
following, various types of such models are illustrated together with their applications. Al-
though most model types could also be used for the management of lower (communication)
layers, they are analysed with regard to service dependencies. I.e., we leave aside models at the
lower OSI layers, like network topologies. Of course, knowledge about the underlying commu-
nication structures is also essential e.g., to diagnose problems or to identify bottlenecks, but this
has to be (and to a satisfactory part already is) carried out by very different techniques than the
ones needed on the level of end user– and supplementary services, with a much higher degree
of complexity and dynamics.

2.1 Environmental Models

web client
on host c2

web server
on host a1

DNS server
on host d2

communication
infrastructure

A depends
on B

AA BB

web client
on host b1

Figure 2: Simple instantiated Service
Dependency Graph

Figure 2 shows a directed graph expressing the de-
pendencies of the objects in the scenario as described
in the introduction. Its main components are the web
server, both web clients, the DNS server and a gener-
alizing object for the common communication infras-
tructure. The edges in the graph represent the depen-
dencies. In the following, such models are calleden-
vironmental models to stress their capability to reflect
information specific to real objects in the managed
IT–environment (in contrast to the abstract models
explained further down). Each node represents one
single or alternatively a group of real objects. Infor-
mation attached to them reflects the content of tradi-
tional object related management variables. The (directed) edges represent dependencies be-
tween the nodes. For some applications of the models, undirected graphs are sufficient. For
others it is useful to attach further management relevant attributes, e.g.:

� to form groups which, e.g., express that a dependency only occurs together with others,
� to express that some dependencies must occur in a certain timely order, or
� to attach values of strength or likelihood.

If DNS in our example fails, web clients in principal are still useable by typing IP addresses.
This restriction in the quality of service could be denoted as an attribute of the dependency
between the clients and the DNS server.

Applications
Several research projects have come up with utilizations of such models. One of the applications
is the so calledroot cause analysis. It helps to find a common (root) cause of problems or faults
detected at distinct places within an environment. It may be applied to network components
reporting error conditions as well as to services where, end users detect problems. The reason

for the actual need of such root cause analysis is that error conditions or problem reports brought
to administrators or management systems, are just descriptions of symptoms. To be able to
derive their causes, further knowledge about the dependencies among them is necessary. [7],
[8] and [9] explain this subject in detail.
Similar dependency models are needed whendetermining availability requirements on sub–
services (looking from a top down perspective) respectively for thecalculation of service avail-
ability from the availability of underlying services (bottom up), as described in [10].
Knowledge of dependencies between systems may be of further use for theprediction of im-
pacts on other systems due to management operations. This is of particular interest in typical
maintenance scenarios, where a server has to be shut down temporarily: It is essential to know,
resp. to simulate the effects on other systems beforehand. Further investigations of advantages
can be found in [11] and [12]. A common result of their and others’ examinations is that—
assuming models do already exist—great benefits can be achieved for management tasks. For
our purposes, following major advantages for the practical utilization of environmental models
can be resumed; they:

� are not restricted to special types of objects (e.g., hosts, applications, services and com-
prehensive objects likecommunication infrastructure),

� provide overview to IT-administrators on selectable levels of details,
� support for more intelligent management tools.

More applications of environmental models emerge if the algorithm used for their generation
allows—like the one presented in section 3—frequent iteration of the modeling process in cer-
tain time intervals. This enables the analysis of changes of dependencies in the managed envi-
ronment during that time. This is, e.g., useful forfault prediction, because significant changes
in the overall system behavior are detected through emerging or disappearing dependencies.
This often reflects errors that are already present in currently unused parts of a service which
may later (under different usage conditions) effect its usability. The detected changes may also
be used to point out forbidden actions or disallowed use of services. This is helpful especially
for intrusion detection and torecognize service misuse.

2.2 Abstract Models

The main elements of abstract models are classes providing an abstraction of the specialties
of real environments. This contrasts the components of environmental models, which deal
with objects directly mappable to the real world. The dependencies between the classes are
specified on the same level of abstraction. It is easy to see that environmental models actually
are instantiations of abstract models—of their objects as well as their dependencies.

DNS server

web server

web client

 communication
infrastructure

A depends
on B

AA BB

Figure 3: Simple Abstract Service De-
pendency Graph

Abstract models are normally generated by hand—
either by the vendor of the corresponding objects in
the real world (e.g., the developer of an application
provides a model showing the dependencies to other
applications and the underlying system), or by the
suppliers of management tools that are based on rea-
soning on such models. Just like environmental mod-
els, abstract models are suitable to express knowl-
edge about higher layers, e.g., to model services.
They do not depend on environmental specifics, but
only express general or principal dependencies.

The model shown in figure 3 looks similar to the previous one. However—as each node now

depicts a class—both web clients are covered by a single“web client” element. Following
object oriented principles, the nodes’ and edges’ attributes are now replaced by definitions for
allowed, resp. needed attributes.

Applications
In principal, the applications are similar to the ones described in the previous subsection, with
the difference that abstract models are:

� partly constructible before their actual application on real environments (e.g., by the ser-
vice vendors),

� much smaller and more simple to handle.
However, the models’ restriction to the abstract level has of course implications on their usabil-
ity. This problem is typically circumvented by one of two methods:Virtual instantiation, keeps
lists of real objects (together with the object specific management information) for each class,
but the inference engine’s main work is carried out on the abstract models.Full instantiation
maps the abstract to an environmental model. In this case the former are used to add commonly
known dependency information to specific scenarios, but after their instantiation they are not
directly operated on by the management tools.
More direct use of abstract models has been carried out in severalModel Based Reasoning
(MBR, [11]) systems, since a number of years. These have already been able to map the results
of errors in simple components to services or systems visible to end users. Another application
is to diagnose possible sources of errors on lower layers, if problems on higher ones are reported.
Still, management tools based on abstract models have so far not been very successful with
regard to their share on the market: The number of available models remained too small to
let the strengths of the tools become fully visible: On the one hand, companies delivering
products do not want to enclose models due to the extra efforts needed and because of strategic
policies enforced to strengthen the companies’ market positions (e.g., confidentiality). On the
other hand, it is also virtually impossible for the providers of the management tools to supply
sufficient models themselves.
As a partial solution to this problem a standardized and widely accepted library for the most
important classes could be used. In the past, efforts to do so have not been very successful.
However, the endeavors of the Distributed Management Task Force (DMTF) for the Common
Information Model (CIM, [13]), where esp. the Common Schemas are able to serve as a basis for
further abstract models, hopefully will be more successful. The following subsection provides
more information on models similar to CIM.

2.3 Object Oriented Approaches

To obtain a complete picture, one also has look at object oriented approaches. Standardized
object oriented modeling of management information exists at least since the definition of the
ISO/OSI management architecture [3]. An example for a vendor specific object oriented ma-
nagement model is the one used in Cabletron Spectrum [14]. It was introduced to overcome the
lack of a similarly powerful information model in the Internet Management.
Newer endeavors led to the aforementioned CIM specified by the DMTF, a federation of many
leading companies in the areas of computer systems, software and networks. It is an information
modeling and representation schema widely accepted by the industry. The CIM Specification
provides a “Meta Schema”, a specification language called “Managed Object Format” (MOF)
and mappings to other information models. Details can be found in the CIM Specification 2.2
[13]. CIM further includes a set of pre–defined basic schemas, defining fundamental classes

like “System” (in the “Core Schema”) and classes specific to certain areas, like“Rack” in
the Common Schema “Physical”. In addition to the definition of an appropriate set of general
attributes and an inheritance hierarchy it also allows the modeling of arbitrary dependencies
between classes, resp. objects. Thus, CIM provides concepts for descriptions on the abstract
modeling level and means to instantiate, represent and exchange environmental models. How-
ever, for dependency determination, resp. model generation CIM also needs to be supplemented
with further algorithms.

2.4 Extensional Domain Concept

In complex scenarios it is hard to keep the overview even with the help of environmental mod-
els. To reduce the number of elements, resp. to restrict the model to currently interesting parts,
the concept of domains is introduced as addition to the modeling concepts presented above to
provide a simple means to structure models hierarchically. This allows to provide an overview
on higher, e.g., business process oriented levels, and enhances visualization and understand-
ability for the IT-managers working with them— without abandoning details on lower levels
needed for proper diagnosis. Graphical user interfaces of management tools will typically be
capable of unfolding domains and of generating and presenting a model including underlying
objects, resp. to navigate into submodels.
Domains are represented by only one element in the model, but stand for (and may be expanded
to) collections of:

� objects in the real world (selected by IT-managers) that are relevant for modeling, and/or
� other (sub-)domains.

The selection of domains depends on the management purpose. Possible criteria are:
� administrative zones,
� organizational (work-) groups,
� topological aspects regarding the underlying network or
� buildings, etc.

As domains obviously are an important concept, the architecture presented in section 4 is able
to generate models that include domain elements and submodels. [15] presents further details
on the subject of domains.

3 New Methodology for Automated Model Generation

It is a challenging task to automatically generate environmental models using information gath-
ered at run-time, without disturbing the normal operation of networks and systems. A straight-
forward method to determine the dependencies is to choose data directly expressing this kind
of information. Examples are entries of utilization in server log files. In the example of figure
2 the web server’s log file would contain entries showing that both clients had connections. In
other words, there is a dependency to each of them.
However, a major drawback of this approach is, that log files typically have a proprietary format
or sometimes change from version to version of the application. Even worse, not all applica-
tions provide log files or similar mechanisms containing this information, or its access may be
restricted for several other reasons, like security policies or limited amount of local disk space.
Similar problems of analysis of configuration files at client side as well as the current lack of a
standardized and commonly accepted service description format (as discussed in section 1 show
the necessity of a new approach.

Determining Dependencies with Neural Networks
The suggested alternative solution chosen by this project is to concentrate on information rela-
tively easy to collect and available for most types of services, hosts, etc. and to decide for each
relevant pair of objects, whether a dependency exists and (if required) the type and attributes of
that dependency. This is done by a Neural Network fed with time series of the objects activities
to judge whether they “have something to do with each other” or not. Of course, values of
activity do not show the dependencies explicitly. The fact that two services show activity at the
same time does not yet allow to say that they are dependent, but after observing this behavior
several times (within a certain period of time), such a conclusion is plausible.
Examples for values of activities measured per object are:

� CPU activity of a host (mainly useful, if the selected host is an interesting object by itself,
or hosting one main service),

� CPU usage of an application, compared to the CPU power available over a certain period
of time (useful in various cases measuring applications in scenarios different from above),

� communication bandwidth used by a system, and
� sum (or other appropriate function) of activities of sub-components (if the activity of an

object is not directly measurable, e.g., of a distributed application)
Generally speaking, this is information taken from lower layers, like the operating system,
middleware or the transport system.
For the project, we constructed and trained neural networks. After normalization and pre-
selection of relevant intervals in the activity data they are capable of deciding for a pair of
objects whether there is a relationship or not.

tt

activ ity a

tt

activ ity b

yes / no

Figure 4: Neural Network decides
per Pair of Objects

Neural networks were chosen because of advantages,
like:

� dealing with uncertain information,
� robustness to noise in the input data

and others, described in more detail in [16]. These ad-
vantages are necessary to overcome the lack of expli-
citly useful information in the simple input values and
problems like small timely displacements of values at
certain managed objects (e.g., due to not well synchro-
nized clocks). The second point is especially important,
because—depending on the kind of values that express
activity—there potentially is a lot of “internal” activity, meaning that actions are performed
which are completely unrelated to other objects outside. The complex training process of the
neural networks needed to achieve the necessary robustness and flexibility cannot be presented
in the brevity of this paper. The interested reader will find more details about it in [17].
A possible disadvantage of pairwise decision over dependencies between all objects is that it
needsO(n2) time for n elements. For large numbers ofn special techniques must be applied:
One simple possibility is to pre–exclude pairs that are either not of interest, or where depen-
dencies are not possible anyway. In the web server scenario one could omit all calculations
for pairs of web clients what usually makes up a significant percentage, comparing the huge
number of clients against a smaller number of servers. Further reduction comes from applying
the domain concept introduced in section 2.4. Smaller models are generated per interesting
domain. Additionally, the activity of the whole domain is condensed into one single “domain
activity” (e.g., by summing up activity values of important objects) allowing to calculate the
dependencies between domains and also between one single object in one domain and (other)
‘outside’ domains.

4 Architecture for Automated Model Generation

The purpose of the architecture is to enable an implementation that generates the previously
described models of environmental dependencies—not just for a pair of objects, but on a larger
scale. To support the understanding of the architecture’s design (section 4.2) and the purpose of
its components, the overall modeling process is explained step by step in the subsection below.
It starts from selecting the models objects and covers the process up to the automated model
generation and utilization in management tools.

4.1 Overall Generation Process

The following explanation of the process assumes that the implementation is already installed
in the managed environment. Figure 5 depicts all steps to be carried out by the IT-managers and
the involved algorithms during the most important parts of the model’s ‘lifecycle’.

(i’)
choose classes
(abstract level)

select matching
objects

(ii)
identify matching real
systems / applications

(iv)
meter / collect
activity data

(vii)
apply management to:

(vi)

(v)
generate

dependency model

(i’’)
select relevant

objects

environ−
mental
model

(iii)
install means of
data collection

tt

a) single model
b) changes in models

over time

in
st

al
la

tio
n

ru
n−

tim
e

Figure 5: Steps of the Modeling Process

In the first step the administrator has to select
all services, components, departments etc. that
should be part of the model. These will later
appear as the objects in the model. Of course,
this selection highly depends on the manage-
ment tasks the model will be used for. There
are two variants, on which level the selection
process can take place: Either (i0) on the ab-
stract (class) level, e.g.,“web servers” and
“web clients” followed by (possibly platform
supported, automated) instantiation, to select
the real objects belonging to the chosen classes.
Or (i00) directly on the level of objects in the real
world, e.g.,web server on host a, web client on
host b, etc. Note, that domains are represented
as objects, too.
In step ii the matching components, applica-
tions etc. in the real world must be chosen for
each object. This requires no special actions for
simple objects, but only for those where the re-
alization is dispersed over distinct real objects,
e.g., distributed applications and also the previ-
ously mentioned domains. In our example, two
main routers could be selected to represent the
objectcommunication infrastructure.
Stepiii, where the appropriate probes to me-
ter the objects’ activity (as explained in sec-
tion 4.2) must be installed, is the last step of
the installation phase. As for all measurements
in distributed environments special care has to
be taken on where to place the means of collec-
tion and the model generating algorithms; esp.
in the TCP/IP world, where the management data is transferred ‘inband’ through same channels
as the user data. Therefore, the architecture presented in the following section supports different

kinds of collectors, assuring its suitability for various environments.
During normal operation of the systems and networks, activity data is collected (stepiv). After
a certain period of time the information is transferred to places where a model can be generated
(stepv) using the method described in section 3. From hereon management tools can start
to use the generated model (vii; a)). Special management functions (vii; b))—as described
at the end of section 2.1—may be applied on sequentially generated models (stepvi). For
example, pointing out the differences to the administrator or generating alarms if heavy (or
certain) changes occur.

4.2 Agents Architecture

This section describes the actual architecture based on a management agent system. Reasons
for that choice are the following features, that are provided in an easy to use way (see also [18]):

� interfaces to resources (managed objects),
� communication infrastructure, and
� support for flexible balancing of duties.

However, it is not assumed that agent systems have to be hosted on all machines. As explained
in the following, the architecture contains means to cleanly embrace other sources for activity
measurement via proprietary or standardized management protocols. Along with the architec-
ture, supplementary information about the prototypical implementation developed in the project
is presented. The agent platform chosen is the Mobile Agent Systems Architecture (MASA,
[19]) implemented and developed at our research group for general management purposes. The
platform and agents are written in Java, making them independent of the underlying system to
a great extent. The inter–agent communication is based on the Common Object Request Broker
Architecture 2.0 (CORBA, [20]).

PP PP PPPP.

.

DD

... domain activ ity ... dependencies
flows of information needed to determine ...

agents

probes:
meter activities of MOs via
propritary interfaces

collector agents:
collect, normalize, pre−select
relevant activities

domain agents:
determine activity of domain

modeler agents, neural agents:
determine dependencies
between objects (incl. domains)

legend

MO MO
managed objects:
(relevant objects playing
 a role in the generated model)

...MO...MO MO...MO...

NN

CC control agents:
setup/control all other agents

manage−
ment

Figure 6: Architecture’s hierarchy of probes and agents

Regarding the steps of the overall process, the architecture first becomes involved in stepiii.
The input at that step is a list of objects that play a role in the desired model and lists (for
each object) of corresponding real managed objects and measurable activity values. With this
information, one or morecontrol agents (see figure 6) start the required data collection and
domain agents in the managed environment.
Means of collection are:

1. management agents (in the sense used in management architectures like OSI or Internet
management), already in place or to be installed,

2. proprietary measurement tools (delivered with applications, etc),
3. special probes, developed and deployed for the purpose of gathering information for this

modeling,
4. or agents of the agent architecture directly capable of measuring through interfaces of the

agent system.
As representatives of the first type, the implementation supports access to SNMP agents, cur-
rently used to meter CPU activity of hosts and amount of network traffic on IP interfaces.
Further implemented are probes of the third type, metering CPU utilization of applications by
reading from the ‘proc filesystem’ (as provided by SUN’s Solaris, Linux and others). The means
of collection should be installed close to the objects that have to be monitored, to avoid unneces-
sary traffic. On the other hand, not all endsystems are capable of hosting an agent system, or are
not allowed to for security or other reasons. In these cases remote monitoring is the preferred
choice.
There is no difference, whether (in step4) the information is gathered to calculate a collective
domain activity or directly for the later model generation. Figure 6 shows the same flow of
information for both cases. On the left hand side domain activity is calculated, while on the
right hand side the information goes directly to themodeler agent.

mm

mm

DD

SNM
P

domain A domain B

legend of agents
see previous figure

agent system
at an MO

**

resulting model

domain A

serv er

domain B

server
management
station

NN

managed
object (MO)

PP

PP

PP
PP

probePP

Figure 7: Deployment of probes and agents

The collector agents help to concentrate the flows of data. In figure 7 the collector agent in
domain B (like all depicted by white squares without inner symbol, but marked with ‘*’) uses
queries to an SNMP management agent on the router and collects data from a probe on its
own host. The agent on the other system in the domain directly accesses its host. Further
tasks assigned to collector agents are the pre–selection of time intervals containing significant
patterns of activity and the normalization of values. These tasks are combined in one agent

to reduce the required communication bandwidth. In the example, both agents’ data is then
forwarded to thedomain agent that calculates the resulting domain activity by joining the time
intervals and summing up the values in case of overlaps. On the interface towards the modeler
the agent behaves just like collector agents. Therefore, the whole domain appears as just one
object in the model.
Modeler agents are responsible for the generation of the complete resulting models. The task
to decide for each pair whether a dependency exists (in the way it is explained in section 3)
is performed by one or moreneural agents containing the pre-trained neural network. An
example model for the scenario is included in figure 7. All systems except the one hosting the
modeler agent and one router are part of the model, however, the systems in domain B are only
represented indirectly by one single element. In cases where both modeler and domain agent are
present in the same domain (to generate a detailed model and calculate the overall activity for
other models), the data collection still must take place only once. The modeler simply queries
all information from the domain agent which does not only aggregate the data, but also caches
the individual activity time series.

5 Conclusions and future work

This paper presented a methodology that enables the creation of powerful dependency models
for various use cases, in a—to a considerable extent—automated way. Thus, it solves the worst
problems of existing applications of dependency models by overcoming the lack of up-to-date
models. Due to the nature of the new approach it is even able to do so in heterogeneous envi-
ronments. This paper further described an agent based architecture enabling the modeling of
large scale scenarios as they are typically found in nowadays’ IT-management-world. This is
an important advantage, as those scenarios disallow manual model creation simply due to the
huge number of managed objects involved.
For future work of the project, we consider to have a closer look at scalability issues, e.g., to
determine the number of objects our approach is able to handle in a single domain, esp. taking
into account that bandwidth and other resources should be used for management only in a very
careful and restricted way. For extreme scenarios the project will investigate how far the use of
resources can be reduced, while still being able to generate models of satisfactory quality. Or in
other words, can the neural networks be trained better so they are able to cope with much less
grained data?
For the part of the neural networks we consider to work on improvements allowing to distin-
guish between different types of dependencies. A second point is that—additional to the way
it is implemented now, where the IT–administrator is not at all involved in the training process
of neural networks—a feedback mechanism from the GUI to the neural agents could help to
improve the neural networks and thus the modeling results. However, the pre–trained neural
network currently used in our prototype already reliably works for various use case.

Acknowledgment
The author wishes to thank the members of the Munich Network Management (MNM) Team for
helpful discussions and valuable comments on previous versions of the paper. The MNM Team
directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers of the University of Munich,
the Munich University of Technology and the Leibniz Supercomputing Center of the Bavarian
Academy of Sciences. Its webserver is located athttp://wwwmnmteam.informatik.
uni-muenchen.de.

References
[1] H.-G. Hegering, S. Abeck, and B. Neumair,Integrated Management of Networked Systems –

Concepts, Architectures and their Operational Application, Morgan Kaufmann Publishers, ISBN
1-55860-571-1, 1999, 651 p.

[2] R. Gopal, “Layered Model for Supporting Fault Isolation and Recovery,” In Hong and Weihmayer
[21], pp. 729–742.

[3] “Information Technology – Open Systems Interconnection – Structure of Management Informa-
tion,” IS 10165-X, International Organization for Standardization and International Electrotechni-
cal Committee.

[4] “Information Technology – Open Systems Interconnection – Structure of Management Information
– Part 7: General Relationship Model,” IS 10165-7, International Organization for Standardization
and International Electrotechnical Committee, 1997.

[5] Manuel Rodriguez, “Modeling Object Relationships in TMN / OSI Management Systems with
SDL-92 (one page poster),” In Hong and Weihmayer [21].

[6] K. McCloghrie and M. T. Rose, “RFC 1213: Management information base for network manage-
ment of TCP/IP-based internets:MIB-II,” RFC, IETF, Mar. 1991.

[7] B. Gruschke, “Integrated Event Management: Event Correlation using Dependency Graphs,” in
Proceedings of the 9th IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM 98), Newark, DE, USA, Oct. 1998.

[8] M. Hasan, B. Sugla, and Viswanathan R., “A Conceptual Framework for Network Management
Event Correlation and Filtering Systems,” In Sloman et al. [22], pp. 233–246.

[9] S. Kätker and M. Paterok, “Fault Isolation and Event Correlation for Integrated Fault Manage-
ment,” in Proceedings of the Fifth IFIP/IEEE International Symposium on Integrated Network
Management (IM 97), A. Lazar, R. Saracco, and R. Stadler, Eds., San Diego, USA, May 1997, pp.
583–596, Chapman & Hall.

[10] T. Kaiser, Methodik zur Bestimmung der Verfügbarkeit von verteilten anwendungsorientierten
Diensten, Ph.D. thesis, Technische Universit¨at München, 1999.

[11] A. Pell, K. Eshghi, J. Moreau, and S. Towers, “Managing in a distributed world,” inProceedings of
4th International Symposium on Integrated Network Management, Yves Raynaud and Adarshpal
Sethi, Eds. IFIP, May 1995, Chapman & Hall.

[12] A. Clemm, Modellierung und Handhabung von Beziehungen zwischen Managementobjekten im
OSI-Netzmanagement, Dissertation, Ludwig-Maximilians-Universit¨at München, June 1994.

[13] “Common Information Model (CIM) Version 2.2,” Specification, Distributed Management Task
Force, June 1999.

[14] CabletronSystems, “Spectrum enterprise manager 5.0 rev 1,”http://www.spectrummgmt.
com/support/manuals/501admin.html, 1999.

[15] B. Gruschke, S. Heilbronner, and N. Wienold, “Managing Groups in Dynamic Networks,” In
Sloman et al. [22].

[16] Denise W. G¨urer, Irfan Khan, and Richard Ogier, “An Artifical Intelligence Approch to Network
Fault Management,” California, USA.

[17] C. Ensel, “Bericht zum Arbeitspaket KM 2.1 der Siemens Kooperation (LEONET),” Koopera-
tionsbericht, July 1999.

[18] R. Pinheiro, A. Poylisher, and H. Caldwell, “Mobile Agents for Aggregation of Network Ma-
nagement Data,” inFirst International Symposium on Agent Systems and Applications and Third
International Symposium on Mobile Agents (ASA/MA 99), Palm Springs, California, October, 3–6
1999, pp. 130–140, IEEE.

[19] B. Gruschke, S. Heilbronner, and H. Reiser, “Mobile Agent System Architecture — Eine Plattform
für flexibles IT–Management,” Tech. Rep. 9902, Ludwig-Maximilians-Universit¨at München, In-
stitut für Informatik, München, 1999.

[20] “The Common Object Request Broker: Architecture and Specification,” OMG Specification Revi-
sion 2.0, Object Management Group, July 1995.

[21] J. W. Hong and R. Weihmayer, Eds.,NOMS 2000 IEEE/IFIP Network Operations and Managment
Symposium — The Networked Planet: Management Beyond 2000, Honolulu, Hawaii, USA, Apr.
2000. IEEE.

[22] M. Sloman, S. Mazumdar, and E. Lupo, Eds.,Integrated Network Management VI (IM’99), Boston,
MA, May 1999. IEEE Publishing.

