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Abstract

In order to enable a common understanding of context
information we introduce a modeling concept that embraces
four abstraction layers from meta-metamodel and meta-
model to model and instance layer. Being compliant to OWL
DL we especially consider the ability of reasoning over the
information and the modeling of quality attributes.

1 Introduction

Context-aware services (CASs) nowadays are often di-
rectly linked with their context sources, they operate in
closed systems. With the advance of context-aware com-
puting, the need to unify context representation arises. For-
mal context models will facilitate the exchange of context
information, provide a common understanding and thus en-
able interoperability between different context-aware ser-
vices and context sources.

Whilst it is agreed upon that the use of ontologies is a
feasible approach to share the understanding of context in-
formation (cp. [12]) and miscellaneous collections of on-
tologies arise, we propose an even more basic proceed-
ing for context modeling with ontologies. We are devel-
oping a formal metamodel that specifies the construction
of restricted OWL DL-based ontologies. OWL DL is one
of the three sublanguages of theWeb Ontology Language
(OWL), a W3C recommendation [11]. It is an implemen-
tation of Description Logics as a trade-off between maxi-
mum expressiveness, computational complexity and decid-
ability. The information modeling we propose takes into

account the requirements posed on a context model by the
special characteristics of context information and context-
aware systems, e.g. it incorporates the specification of qual-
ity considerations of context and association rules. Tools
supporting the development of context-aware services can
then be designed based on our formal context modeling ap-
proach. Such a tool can generate an ontology in OWL DL
from a graphical representation generated by the developer.

Section 2 describes our approach to metamodeling con-
text starting from the requirements it has to fulfill. Our im-
plementation of a sample application is shown in section 3
and our experiences with it are discussed. We conclude the
paper with a short summary and an outlook to future work.

2 Context Metamodeling Approach

Recent approaches to context modeling used very differ-
ent data structures as their basis, a detailed discussion can
be found in [12]. However, the research community seems
to agree upon that ontologies are a very promising formal-
ism for modeling context (cp. [12] and [9]). In [12], Strang
identified six important requirements for a context model in
a ubiquitous computing environment: distributed compos-
tition, partial validation, richness and quality of informa-
tion, incompleteness and ambiguity, level of formality, and
applicability to existing environments. Ontologies fulfills
all those requirements in contrast to the other solutions that
mostly lack in support for richness and quality of informa-
tion as well as assistance with incompleteness and ambigu-
ity of information. Our modeling approach was driven by
requirements we collected during the work with and devel-
opment of a reference context brokering and processing ar-
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chitecture (see Context Composition infrastructure in [4]).
We identified the following additional requirements:

1. Evolutionary development:The individual developer
has the best knowledge about the service he designs
and implements. Context models for different services
may often differ and can never be exhaustive and com-
pleted. Therefore, a modeling technique should sup-
port adaptability and evolutionary design. At the same
time, there will be (and there partly already are) stan-
dard models for the most important information and
services used. It has to be possible to reuse and inter-
operate with such standard models.

2. Interoperability: There are already models of the
world and special context models around. Thus, it
is important to consider interoperability with existing
models or keep mappings in mind when designing a
modeling technique for context information.

3. Reasoning: Context information is gathered from
many different sources. The interesting context infor-
mation often cannot be sensed directly. Composition
of context information, as Strang says, should be pos-
sible in a distributed way. In addition, deriving new
information from available context information should
be feasible and has to be considered in the modeling
technique.

4. Inferential efficiency:Context models are the basis for
the application logic of a context-aware system. By
reasoning on the available context information, an ap-
plication can adapt its behaviour accordingly. That
is why a modeling technique for context information
should provide modeling constructs that allow for effi-
cient inference and reasoning operations.

5. Ease of use:There will be numerous heterogenous
context-aware applications in the future and context-
aware applications may be targeted at special small
groups or even individuals. Change will be immanent
and especially developers have to be supported when
developing those applications. Therefore, a modeling
technique should be easy to use and the models con-
structed with it should be concise.

Many research groups developed particular ontologies
for context and context-aware services (e.g. Chen et al. [6],
Wang et al. [8]). To compute all information complying
to different ontologies, there has to be a common structure
underlying. Thus, we pursue a more formal approach to
support reasoning and follow a widely-used metamodeling
proceeding that embraces four layers. With our formal ap-
proach on the one hand we restrict the interoperability of
services to those that use information models that comply
with our metamodel directly or where a respective mapping

Knowledge BasesKnowledge Bases

Context ModelsContext Models

Context Meta-Model (CMM)Context Meta-Model (CMM)Metamodel Layer

Model Layer

Instance Layer

Meta-Metamodel Layer Description Logics,
Horn clauses

Description Logics,
Horn clauses

Figure 1. Conceptual architecture

can be found. On the other hand we ensure therewith that
tools, decision and reasoning algorithms can be fully ap-
plied and thus increase the degree of interoperability.

2.1 Modeling Architecture

As a basis for the formal specification of our context
modeling technique we adopt a widely-used conceptual
metamodeling architecture, where elements in a given con-
ceptual layer describe elements in the next layer down. It
comprises the following four layers (see also figure 1):

1. Meta-metamodel layer: Provides the formal constructs
for specifying our Context MetaModel (CMM).

2. Metamodel layer: Provides the modeling constructs of
our Context MetaModel.

3. Model layer: Uses our Context MetaModel to build
custom ontologies.

4. Instance layer: Implements a custom context model in
a knowledge base (KB).

The following sections follow this metamodeling archi-
tecture in order to provide a structured and formally clean
specification of our modeling constructs.

2.2 Choosing the Meta-Metamodel Layer

On the meta-metamodel layer we select Description
Logics for our terminology and Horn clauses (a special class
of formulae which are of particular interest for logic of pro-
gramming) for rules as a formal foundation. Description
Logics provide the formal semantics for specifying ontolo-
gies of terms and their relations [2]. Their main benefit is
that they balance expressiveness and inferential efficiency,
which is a basic requirement for effective context modeling.

2.3 Modeling Constructs on the Metamodel Layer

For the formal specification of our context metamodel,
we have leveraged the existing ontology language OWL DL
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Figure 2. Metamodel layer: Illustration of the
metamodeling constructs

as an implementation of the Description Logics SHION(D).
Rules are formally based on first-order logic and are cur-
rently specified according to the Semantic Web Rule Lan-
guage (SWRL) draft [10], a W3C member submission orig-
inating from RuleML and integrating well with OWL. We
do not use OWL itself, but we have done a formal mapping
from our metamodel to OWL DL.

Figure 2 shows an overview of our context modeling
metamodel (note that AbstractConcept and AbstractDataS-
tructure are declared abstract and only introduced for mod-
eling Property associations and complex data types).

Base constructs for representing (context) knowledge are
entity classes, datatype classes and properties with their as-
sociated quality classes:

• Entity class: base construct for representing a group
of entities (persons, places, things, events etc.) that
belong together because they share some properties

• Datatype class: base construct for representing a
datatype (temperature, noise level, position etc.)

• Property: base construct for representing a type of
relationship between an instance of an entity class
and an instance of either an entity or a dataype
class. An example for aproperty as a relation be-
tween two entities on the model layer is:Person
”owns” MobilePhone . Person ”hasPhoneNum-
ber” PhoneNumber relates an entity with a datatype
(more details are given in the next subsection).

Each property has a specifieddomainandrange, i. e.
a collection of entity classes and a collection of either
entity or datatype classes that specify the valid classes
for the first and second instance, respectively. Each
property is also associated with a collection of quality
classes (see below) that specify the quality aspects that
are relevant to the property.

Additional restrictions as known from Description

Logics, such as cardinality restrictions etc., may also
be used for properties.

• Quality class: base construct for representing specific
quality aspects of dynamically acquired information
(certainty, precision, resolution etc.) also known as
Quality of Context[5].

In order to representtemporal historyinformation, for
every property the acquisition time is captured as a times-
tamp. It is a mandatory quality class for every property.

Dependenciesbetween properties are expressed as rules
in the form of Horn clauses. Each rule expresses an implica-
tion between an antecedent and consequent: whenever the
conditions specified in the antecedent hold, the conditions
specified in the successor must also hold. This allows to
specify consistency conditions as well as derivation rules.
Conditions can reference entity classes and datatype classes
as well as properties and their associated quality classes.
This way a rule can take into account quality information
and also specify the quality of the deduced properties.

In addition, there are two special constructs for the se-
mantically rich specification of datatypes: datavalue prop-
erties and transformation rules:

• Datavalue Class: base construct for specifying data
structures, i.e. datatype classes and quality classes.
Each datavalue class associates a data structure (Ab-
stractDataStructurein 2) with a literal type and thus
allows to compose complex data structures from liter-
als. E.g. the coordinates for a position are composed
from longitude andlatitude .

• Transformation: base construct for representing a
transformation from values of one data structure to val-
ues of another data structure. It is a directed associa-
tion between two data structures and references a rule
that specifies the transformation. An example is the
transformation between a position in Gauss-Krueger
coordinates into a WGS-84 format, the transforma-
tion function itself is given or described in a rule in
the Rules and the identifier for the rule is given in the
model itself.

Note that - in contrast to all other constructs introduced
so far - the transformation is not declared as a meta-
class. This is because transformations are special in
that they work on classes (datatype and quality classes)
instead of instances. Transformations are therefore in-
stantiated on the model layer and not on the instance
layer. This is why they represent classes and not meta-
classes on the metamodel layer.

Further modeling constructs arespecialization-relations
that may be specified between two entity classes (subEn-
tityOf), two datatype classes (subDatatypeOf), two quality
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Figure 3. Model layer: Sample context model for the intelligent answering machine application.
Namespaces “per” and “foaf” stand for “http://pervasive.semanticweb.org/ont/2004/01/person” and
“http://xmlns.com/foaf/0.1/”

classes (subQualityOf) or two properties (subPropertyOf)
in order to organize them in (separate) specialization hierar-
chies. Finally, there areequivalence-relationsthat may be
specified between two entity classes (equivalentEntity), two
datatype classes (equivalentDatatype), two quality classes
(equivalentQuality) or two properties (equivalentProperty).
Their semantics is that the first node represents the equiva-
lent concept or role as the second node and should therefore
be interpreted equivalently. They are useful for mapping
context models that have been developed separately in or-
der to enable interoperability.

2.4 Building Context Models on the Model Layer

By designing a context model, the developer of a
context-aware application specifies the understanding of the
world that the application will have.

A developer first identifies the real-world entities that
are relevant for the application in mind and models them
asentity classes. Entity classes can be specified in terms
of other entity classes and their set-theoretic operations, or
they are explicitly organized in an specialization hierarchy.
For example, the developer of an intelligent answering ma-
chine application may specify the entity classes like shown
in figure 3:Person (e. g. the people calling),Activity
(e. g. what somebody is busy with),Device (e. g. the ma-
chine itself) and others. Then the developer identifies the
information about these entities that will be relevant for

the application. That includes both information that will
be acquired from the context as well as any other infor-
mation. It is modeled in terms ofpropertiesof the rele-
vant entity class. Properties either refer to a anotherentity
class(“a Person knows anotherPerson ”, “a Person
is occupied with anActivity ”) or a datatype class(“a
Device has aPhoneNumber ”). As a specialization of
the knows-property could be specified “aPerson super-
vises aPerson ”.

The structure of a datatype class as well as of a qual-
ity class is specified usingdatavalue classes. Abstract data
structures may be linked withtransformation rulesto indi-
cate that a transformation between the two is available. For
example, the datatype classPhoneNumber may have only
one datavalue class that specifies a string literal–the phone
number represented as a string. The specialized datatype
classInternationalPhoneNumber may have an ad-
ditional datavalue class for the international access code as
a string literal. For example, the quality classCertainty
could be relevant for the property “occupied with”, while
both Certainty and Accuracy could be relevant for
the property “located nearby”.

Rules are the basis for specifying transformations
between data structures, derivations of context informa-
tion and consistency conditions. Transformation rules
are referenced by transformations. They specify how
values of one data structure can be transformed to values
of another data structure. For example, a transforma-
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tion rule for transforming aGermanPhoneNumber
to InternationalPhoneNumber could state:
If there is a GermanPhoneNumber with a
datavalue class localNumber , then there is a
InternationalPhoneNumber with the same in-
stance of the datavalue classlocalNumber and a
datavalue instance ofaccessCode with value “49”.
Derivation rules describe how additional information
can be generated automatically. Such a rule could for
example specify that if aDevice “has phone number”
PhoneNumber and “is owned by”Person then it can
be derived that thisPerson has the property “has phone
number” PhoneNumber . The rule would also specify
how the quality attributes of the resulting property are
affected. Consistency rules specify conditions that must
always hold for a context model or, more precisely, its
instantiations. For example, a consistency rule could
specify that persons who work in the same department
also work for the same organization. Instead of specifying
everything from scratch, context models can also partially
or completely be reused. This is enabled by the mapping
constructs provided by the metamodel. Two entity classes,
two property classes, two datatypes classes or two quality
classes from separate models can be declared representing
the same using equivalence-relations. Then it is sufficient
for an application to understand one of the both to also
implicitly understand the other one. Having specified such
a context model is the basis for the following use cases:

• Model consistency check: Is the specification of the
context model consistent and valid with respect to the
metamodel?

• Reuse and extension: Is there a consensus model that
can be reused or that can be extended?

• Model interoperability: Are there consensus constructs
that the new model can be mapped to in order to in-
crease interoperability?

2.5 Using Context Models on the Instance Layer

Based on a context model, aknowledge basecan be con-
structed on the instance layer, see figure 4. While the con-
text model describes the vocabulary and the structure of the
world, the knowledge base represents the actual state of the
world with respect to this context model. It abstracts away
from actual context sources and instead expresses context
information in the terms of the context model.

Knowledge is represented as statements about entities.
A statement is an instance of a property. It is always about
an instance of an entity class and references either an in-
stance of an entity class or an instance of a datatype class
(according to the specification of the property). For exam-
ple, the proximity of Alice to her answering machine could

be expressed as: Alice, an instance ofPerson, has a property
instance of “located nearby” that references Alice’s answer-
ing machine, an instance ofDevice.

Entity instances are uniquely identified in order to avoid
inconsistencies and to enable knowledge base consolida-
tion. This can be done using URIs. Every property instance
is associated with the timestamp of its acquisition. For each
quality class that is associated with the property class, the
property instance is assigned the current value. This way
freshly acquired property instances are continuously added
to the knowledge base and entity instances are created as
required. Based on the timestamps, a history is automat-
ically captured. A separateknowledge base management
componentis responsible for managing the content of the
knowledge base. Depending on the requirements of applica-
tions, irrelevant property instances can be cached, archived
or removed. Entity instances that do not participate in any
property instance can always be removed. A separaterule
engineconstantly applies the rules specified in the context
model to the content of the knowledge base. This way it
checks dependencies and performs derivations.

With a knowledge base like this, the following use cases
are possible:

• Information consistency check: Is the knowledge rep-
resented in the knowledge base consistent with the
specification of the underlying context model?

• Knowledge base distribution: With knowledge being
represented as a network of (basically) property in-
stances and entity instances, knowledge bases can be
decomposed in arbitrary views. They can be deployed
both locally or in the infrastructure.

• Information interoperability: Knowledge bases that
are based on a shared context model or context models
that are mapped to each other, can also share their con-
tents. Thus, reuse of the information stored there for
many purposes is possible. Consolidation of knowl-
edge bases is facilitated by the unique identification of
entity instances.

• Reasoning: One important use of a knowledge base
will be to reason about its content. A context-aware
application’s application logic is specified with respect
to a context model and executed based on a corre-
sponding knowledge base. Reasoning is facilitated by
the consistent representation of heterogeneous infor-
mation in accordance with a formally specified context
model. By leveraging specialization hierarchies, rea-
soning about incomplete or vague knowledge is possi-
ble. Quality of the available knowledge can be taken
into account during reasoning using the quality at-
tributes.
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Figure 4. Instance layer: Sample snapshot of a knowledge base for the intelligent answering machine
application

3 Implementation and Discussion

Based on our context modeling approach we have imple-
mented a knowledge base engine and a sample application.

3.1 Knowledge Base Engine

The knowledge base engine handles the management of
a context model and a corresponding knowledge base. Ap-
plications use it to build context models with our meta-
modeling constructs, have a context model instantiated in
a knowledge base and query and reason about the available
context information in this knowledge. This way they do
not have to deal with handling context information, but can
focus on designing their context model and adjusting their
application logic. The knowledge base engine is imple-
mented in Java and supports arbitrary representations of the
underlying context information. The prototype implemen-
tation is based on the Web Ontology Language OWL (more
precisely its sublanguage OWL DL) and the Resource De-
scription Framework RDF (both W3C recommendations)
and uses the Jena2 Semantic Web Toolkit [1] to handle
OWL and RDF data.

There is no direct mapping from our metamodeling con-
structs to OWL DL as associating OWL classes with OWL
properties (in our case quality classes with properties) is
not legal in OWL DL. We therefore transform our meta-
modeling constructs to OWL DL constructs as follows:En-
tity classes, datatype classesand quality classesare real-
ized as OWL classes.Propertiesandtransformation rules,
however, are also realized as OWL classes and appropri-
ate OWL object properties connecting them to the specified
entity, datatype and quality classes are automatically gener-
ated.Datavalue classescombined withliteral typesare re-

alized as OWL datatype properties.Specialization relations
are realized as OWL subClassOf-relations andequivalence-
relations as OWL equivalentClass–relations. For a more
detailed description about the representation of our Con-
text Meta Model in OWL DL and SWRL cp. [7]. On the
knowledge base layer, the OWL constructs are instantiated
accordingly. Property instances (in the form of OWL indi-
viduals) can now be associate with the required acquisition
timestamp and the specified quality values in compliance
with OWL DL. The described transformation is also appli-
cable to other existing OWL ontologies in order to use them
for ontology mapping.

The knowledge base engine transparently handles the
translation from our modeling constructs to OWL DL and
vice versa. It provides interfaces for adding context infor-
mation from context sources, querying the available infor-
mation and refining and cleaning up information stored in
the knowledge base.

3.2 Sample Application: Intelligent Answering
Machine

Based on our knowledge base engine we have imple-
mented a sample application that realizes the intelligent an-
swering machine application. An appropriate context model
specified with respect to our context metamodel is depicted
in figure 3. It shows the required entity classes, datatype
classes and quality classes. Properties, transformation rules
and datavalue classes are displayed with their specified do-
main and range with respect to entity classes and datatype
classes. Some of the relevant quality classes for proper-
ties are displayed, too. Note the exemplary mappings of
Person andknows to the corresponding terms in the pop-
ular Friend-of-a-Friend (FOAF)ontology [3] and Person
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ontology, respectively (the latter being an OWL representa-
tion of the RDF-based FOAF ontology, provided by Chen’s
Standard Ontology for Ubiquitous and Pervasive Applica-
tions SOUPA [6]).

Figure 4 shows how the snapshot of a corresponding
knowledge base for this context model could look like in
a simplified way. The application logic of the prototype
is specified with respect to the context model and exe-
cuted based on the knowledge base: While the answer-
ing machine service is disabled, it monitors the knowl-
edge base for new information about the location of its
user (hasSpatialRelationship ). When the user
has left the desk (outdatedisLocatedNearby and no
other matchinghasSpatialRelationship or one of
its subproperties), it actives itself. On an incoming call it
checks the knowledge base for the calling number. De-
pending on the deduced social relationship with the caller
(query for matchinghasSocialRelationshipWith )
it plays different messages or even forwards the call to the
user’s mobile phone in case of an important call.

3.3 Experiences

Implementing the prototype application and modeling
other case studies we have found that our context modeling
approach expedites context model engineering and applica-
tion development: Reusing existing consensus ontologies
results in higher quality models and higher interoperabil-
ity. The application logic is simplified as all relevant in-
formation is stored in the knowledge base in a consistent
way and can be queried in a consistent way. The founda-
tion on ontologies enables evolutionary development. Hav-
ing the possibility of annotating every property with qual-
ity attributes allows to take into account quality in a flex-
ible way. Including quality classes (as well as datatype
classes) in context models increases the level of specifica-
tion detail and facilitates interoperation. Rules prove ver-
satile enough for expressing complex derivations, but grow
complicated quickly (especially when taking into account
quality). This suggests providing tool support for the spec-
ification of rules. Furthermore, realizing derivation rules is
hampered by the lack of existing suitable rule engines.

Performance is sufficient for the prototype application,
but could be critical with more complex applications and
larger-scale knowledge bases. Maintenance and manage-
ment of knowledge bases are crucial in this respect. A basis
for optimizations is provided by acquisition timestamps.

4 Conclusion

We proposed a modeling technique for context informa-
tion based on metamodeling which considers the require-
ments posed on it by the nature of context information and

the development of context-aware systems. Most impor-
tantly, it keeps in mind the relation between context and its
entity, takes into account quality of context, provides for
interoperability, and accounts for formality.

In the near future, we plan to support developers with a
tool that accounts for our modeling approach and lets them
design their own ontologies, relate to exisiting ontologies
and thus eases the development of context-aware services.
Also, the transparent distribution and collection of context
information in knowledge bases is a future goal.
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