
SERVICE ORIENTED APPLICATION
MANAGEMENT — DO CURRENT
TECHNIQUES MEET THE REQUIREMENTS?

In: New Developments in Distributed Applications and Interoperable Systems:
3rd IFIP International Working Conference (DAIS 2001), Cracow, Poland

Kluwer Academic Publishers, September 2001

Rainer Hauck, Igor Radisic
Munich Network Management (MNM) Team, University of Munich, Dept. of CS
Oettingenstr. 67, D-80538 Munich, Germany. Phone: +49-89-2178-2155|2167, Fax: -2262

{hauck|radisic}@informatik.uni-muenchen.de

Abstract Besides the conclusion of agreements about quality of service (QoS), one of the
major prerequisites for a global service market are means to monitor the ful-
fillment of those agreements. From a user’s perspective, the time needed to
complete a service transaction represents one of the most critical QoS parame-
ters. As most electronic services are usually based on distributed applications,
obviously the same techniques can be used to measure the performance of elec-
tronic services as well as the underlying applications. In recent years several
techniques evolved to monitor the application performance. However, the new
aspect of service orientation adds relevant new requirements that are to be posed
on such solutions. This paper evaluates the various techniques from a service
oriented point of view and presents open research questions.

Keywords: Distributed Applications, Application Performance Monitoring, Service Perfor-
mance, Electronic Service, Quality of Service

1. INTRODUCTION
As the analysis of agreements between providers of so called electronic services
(e–services) and their customers shows, one of the most important prerequisites
for a successful business relationship is the fulfillment of the agreed quality of
service. Usually several problems arise from not fulfilling the agreement that
lead to consequences ranging from penalties to be paid by the provider to
breaking up the agreement. The discipline of service management provides
and develops tools, techniques and methodologies to support the provider in
fulfilling his agreements.
As current e–services are usually based on distributed applications (application
services), it is actually possible to use the same techniques to manage both the
e–services and the underlying applications. As a consequence there are several
new requirements emerging from service orientation in application management:
the main focus changes from application deployment and configuration to mon-
itoring and controlling proper fulfillment of the agreed QoS. From a customer’s
point of view the most interesting QoS parameter in this context is the time

1



2

needed to successfully complete a transaction. Taking too much time resolves
into user’s discontent which is to avoid. As providers are strongly interested in
fulfilling the agreed QoS parameters, the ability to react in time is most rele-
vant to the provider in case application performance degradation is noticed and
thus the violation of an SLA is possible. On the other hand customers want to
verify the fulfillment of their SLAs. Thus, for both sides means to monitor the
duration of transactions are necessary.
In recent years several techniques evolved to monitor the performance of dis-
tributed applications. This paper presents a classification and a criteria–based
rating of existing approaches in the area of application performance monitor-
ing from a service oriented point of view. Furthermore, the analysis is used to
identify and structure open research questions.
The requirements to be posed on the different approaches have been derived
from a generic service model [8]. As already mentioned, one of the most impor-
tant requirements is to monitor service-oriented parameters (e.g., transac-
tion duration, service availablity). Of similar importance is the monitoring of
actual user experience (as opposed to drawing samples) and the availability
of in-depth information to allow providers to easily identify root causes of
problems. Further requirements are minimal effort for all participants, min-
imal performance impact on the application service to be monitored, the
possibility to do real-time monitoring as well as general applicability of
the solution (concerning e.g., operating systems, programming languages).

2. CLASSIFICATION OF APPROACHES

Provider
domain

Network

Customer
domain

Distributed

Application

Infrastructure

Client Server
User

Figure 1 Distributed application scenario

In recent years a number of
approaches to application perfor-
mance monitoring have evolved. To
alleviate evaluation of specific tech-
niques, the following section intro-
duces a classification gained from
a survey of currently existing solu-
tions by applying the requirements
mentioned above. Eventually, the
most prominent representatives of
the different classes – both current products and existing standards – are briefly
introduced. Figure 1 shows a simple model of a distributed application as well
as its underlying infrastructure. The measurement of performance parameters
can either take place at the application itself or in the infrastructure (both
at the network and the systems). When measuring the application itself, ap-
proaches that solely focus on the client–side of the application can be distin-
guished from those taking into account the application as a whole (client– and
server–side). This leads to the following four classes of techniques: Monitoring
of network traffic, system–level monitoring, client–side application monitoring
and application–wide monitoring. The following paragraphs explain these four
techniques along with a number of subordinate techniques in greater detail.



Service oriented Application Management 3

2.1. MONITORING OF NETWORK TRAFFIC
A wide spread technique to identify QoS problems of applications in networks
is scanning the network traffic in order to detect transaction–like behavior.
Looking at IP–based networks, traffic occurring successively between the same
pair of source and destination address is called a flow that, in combination
with the application’s port number, helps to find out start and end point of a
client request and its response. In case of high–speed networks an evaluation
of the measured data mostly cannot be done on–the–fly and therefore flows
are recorded in real–time but analyzed at a later date. If network nodes (e.g.,
routers) do not support recording of flows, especially suited devices (so called
probes) are installed in the network that provide the needed functionality. Ad-
vantages of this method are that no source code access is needed and every
application that communicates over the network can be monitored.
Nevertheless, there are several disadvantages. As usually only transactions of
standard applications can be detected automatically the system administrator
must have in–depth knowledge about protocols of custom–designed applications
to configure probes in that way that they distill individual transactions. Even
worse, many protocols are used for different purposes than originally designed
(e.g., SOAP uses HTTP for its RPC mechanism), which further increases com-
plexity. In case of encrypted communication monitoring of network traffic is not
suitable at all. As mentioned above, due to massive data volumes in high–speed
networks the data analysis cannot be done in real–time and therefore cannot
be used to react in time when a problem occurs. Additionally, it is impossible
to determine the reason of a QoS degradation as long as it is not a network
failure. Furthermore, time stamps are not taken from a user’s point of view but
at the network meter point.
Overall, solely monitoring network traffic is not suited well for application ser-
vice performance monitoring as this technique was originally developed and
used to detect network failures, for capacity planning and for reporting. There
are several working groups within the IETF that develop standards in the field
of network based (application) performance monitoring: e.g., IP Performance
Metrics (IPPM) [13] and Realtime Traffic Flow Measurement (RTFM) [3]. Sev-
eral companies offer probes and analyzing software using this technique: e.g.,
CompuWare’s EcoSCOPE [6], and Apptitude’s MeterFlow [2].

2.2. SYSTEM-LEVEL MONITORING
A second approach to application performance management is to measure
system–level parameters like CPU usage, memory utilization, number of open
files or run state of a process or a thread. By mapping processes and threads
to applications, status information about the application is gained. The main
advantage of this approach is the great experience gathered over the last years
which allows easy collection of the data. It is relatively easy to read this kind of
information from the system and provide it to management systems via well–
defined interfaces.



4

However, there are major drawbacks of this technique as well: The basic prob-
lem of this solution is that it cannot provide the QoS parameters agreed with
customers. Information about the state of the underlying systems is of minor
importance to technically not versed customers. Mapping of system–level in-
formation to user–oriented parameters is often impossible. Even if a process is
running perfectly from a systems view, the transactions a user is interested in
might still be failing. Therefore, the monitoring of system–level parameters can
be invaluable for a provider to monitor overall system performance but cannot
be used for measuring actual application performance and verifying SLAs.
The IETF makes heavy use of this approach by providing a number of MIBs
(e.g., SysAppl MIB [12]) concerning the area of application management. A lot
of management tools, like HP Perfview [10] also follow this approach.

2.3. CLIENT–SIDE APPLICATION MONITORING
Monitoring solely from client’s side is the third class of techniques we discovered.
In contrast to the methods mentioned so far it is possible to measure the actual
time an application needs to complete a transaction, i.e. it is metered from a
user’s perspective. Nevertheless, this class of techniques still suffers from one
general problem: it is possible to detect an application’s malfunction in the
moment it happens but it still does not help in finding the root cause of the
problem. Therefore in general this class of techniques is only useful to verify
fulfillment of SLAs from a customer’s point of view, but additional techniques
have to be used for further analysis in order to detect the reason of a QoS
problem. Our studies revealed two basic methods that are applied to monitor
from a client’s perspective: synthetic transactions and GUI based solutions. The
following paragraphs describe these two approaches in more detail.
Synthetic Transactions: This method uses simulated transactions in order
to measure the response time of an application server and to verify the received
responses by comparing them to previously recorded reference transactions.
Several simulator agents, acting as clients in a network, send requests to the
application server of interest and measure the time needed to complete a trans-
action. In case response time exceeds a configurable threshold or the received
server response is incorrect in some way, the agents usually inform the manager
by generating events.
As solely synthetic transactions are monitored and not real transactions ini-
tiated by actual users, this technique is only useful to take a snapshot of a
server’s availability, but not to verify the fulfillment of service level agreements.
To get measurement data close to actual user experience, the interval between
simulated transactions has to be reduced to a minimum. As a consequence the
application service could experience serious performance degradation. Further
problems arise from agent deployment in large networks.
Currently there are several companies providing either product solutions for
performance monitoring using synthetic transactions, like Geyer & Weinig’s
GW-TEL INFRA-XS [15], or offering a service for testing the availability of



Service oriented Application Management 5

application services, like Jyra In-Site for Web–/E–Commerce Server [11], using
this technique.
GUI based solutions: To be able to meter the actual user transactions but
to avoid the need for accessing the client application’s source code, a new ap-
proach was recently developed: As every user request both starts and ends with
using/changing a GUI element at the client side (e.g. clicking a web link and
displaying the appropriate web page afterwards), simply observing GUI events
delivers the needed information about start and end points of user transactions.
A software agent installed at client site devices gathers the transaction data of
interest from a user’s point of view.
The advantages of this technique are that the actually occurring transaction du-
ration is measured and that it can be applied to every application service client.
Furthermore, only very little performance impact is caused on the monitored
application.
However, we discovered two major problems. First of all, mapping GUI events
to user transactions is a difficult task regarding non–standard applications and
therefore requires additional effort by the administrator. Secondly, the only
agents using these technique known by the authors, are agents by Candle ETE-
Watch [9] that are currently available only for MS Windows platforms.

2.4. APPLICATION–WIDE MONITORING
As mentioned before, client–based monitoring cannot identify the reason for
performance degradation or malfunction of an application. Therefore solu-
tions that monitor both from the client– and from the server–side are neces-
sary. As details about the application and problems within the application
cannot be gathered externally, these approaches rely on information supplied
by the application itself. Our studies have shown two basic classes that allow
application–wide monitoring. These are application instrumentation and appli-
cation description. These two classes are described in the following paragraphs
in greater detail.
Application instrumentation: Application instrumentation means insertion
of specialized management code directly into the application’s code. The re-
quired information is sent to management systems by using some kind of well–
defined interface. This approach can deliver all the service–oriented information
needed by an administrator. The actual status of the application and the actual
duration of transactions is measured and any level of detail can be achieved.
Subtransactions within the user transactions can be identified and measured.
However, application instrumentation is not very commonly used today. This
is mainly due to the complexity and thus the additional effort posed on the
application developer. The developer has to insert management code manually
when building the application. Subtransactions have to be correlated manu-
ally to higher–level transactions. As the source code is needed for performing
instrumentation, it definitely has to take place during development.



6

Examples for approaches using application instrumentation are the Application
Response Measurement API (ARM) [4] jointly developed by HP and Tivoli
and the Application Instrumentation and Control API (AIC) [5] developed by
Computer Associates. Both approaches have recently been standardized by the
Open Group. ARM defines a library that is to be called whenever a transaction
starts or stops. Subtransactions can be correlated using so called correlators.
Thus the duration of the transaction and all subordinate transactions can be
measured. AIC in contrast was not explicitely developed for performance mea-
surement but might be used in this area as well. It defines an application library
to provide management objects that can transparently be queried using a client
library. Additionally, a generic management function can be called through the
library and thresholds of certain managed objects can be monitored regularly.
Both ARM and AIC suffer from all the problems mentioned above and thus are
not in wide–spread use today.
Application description: As most of the applications in use today somehow
deliver status information but are not explicitely instrumented for management,
application description techniques can be used. As opposed to the instrumen-
tation approach, no well–defined interface for the provisioning of management
information exists. The description therefore comprises where to find the rele-
vant information and how to interpret it. Examples might be scanning of log
files or capturing status events generated by the application.
The major advantage of application description techniques is that it can be
applied to legacy applications without requiring access to the source code. It
can be done by a third party after application development, while the reasonable
approach again is to provide the description by the developer.
Application description faces two major problems: The information available
typically is not easy to map to the information needed by the administrator.
Especially in the area of performance management typically only little infor-
mation is available. Moreover monitors are needed to extract the information
from the application. Only very little information can be gathered by standard
monitors and thus specialized monitors must be developed for every application.
The most prominent representative of application description suited for per-
formance monitoring is the Application Management Specification (AMS) [1].
Most other approaches, like the CIM Application Schema [7] mainly focus on
configuration management. An example for a tool making use of application
description is Tivoli Business System Manager [14], which reads in AMS based
Application Description Files (ADF) to learn about the application or business
system to be managed.

3. OPEN RESEARCH QUESTIONS
Table 1 summarizes the results of our analysis. As can easily be seen, none of
the currently existing techniques completely meets the requirements of service
oriented application management. Either they simply cannot deliver the data
needed or they suffer from high complexity.



Service oriented Application Management 7

Application−wide
monitoring

monitoring
Client−based

Se
rv

ic
e−

or
ie

nt
ed

A
ct

ua
l u

se
r

G
en

er
al

 

R
ea

l−
tim

e

In
−d

ep
th

Application description

Application instrumentation

GUI−based Monitoring

Monitoring of system parameters

Monitoring of network traffic

Synthetic Transactions

M
in

im
al

 e
ff

or
t

M
in

im
al

 im
pa

ct

o/− o − − ++

o ++ ++ ++

+ −− −− −− ++

++ ++ −− ++ −

++ ++ ++ −− + ++ o

o o o − ++

Techniques

− o/+

−− o o/+

++/+ ++

++

++ +

−

Requirements

pa
ra

m
et

er
s

ex
pe

ri
en

ce

ap
pl

ic
ab

ili
ty

m
ea

su
re

m
en

t

in
fo

rm
at

io
n

Table 1: Summary

In our opinion application instrumentation is the only reasonable way to over-
come the problems of today’s application performance management. However,
due to the enormous efforts posed on the developer nowadays it is hardly ever
used. This immediately leads to a number of research questions that have to
be tackled in the future. The following enumeration provides an overview of
the most important open research questions concerning application instrumen-
tation:
Instrumentation methodology: A methodology for the developer must be
provided in order to alleviate the task of identifying relevant measurement
points. Current application techniques simply offer APIs to be called from
an application but give no hint about where to actually place the calls in the
code. The instrumentation definitely has to take place during application de-
velopment and thus the instrumentation methodology must be integrated into
the software development process.
Automation and tool support: To further alleviate a developer’s task a
great amount of automation and tool support must be achieved. Therefore,
means to facilitate or even automate the instrumentation process must be de-
veloped. E.g., in the area of component based application development the code
required to measure response time of an individual component might entirely
be generated by a development tool.
Correlation of subtransactions: Means to avoid the cumbersome corre-
lation of subtransactions to their parent transactions are desperately needed.
The idea of transporting unique transaction identifiers through the application
as parameters is awkward to say the least. In some cases (e.g., component
bases development, third party instrumentation) this approach even makes an
instrumentation nearly impossible. By correlating transactions, e.g., using the
identifiers of the underlying control flows, this could be simplified by far.
Integration with remaining existing techniques: Finally, a tighter inte-
gration of application instrumentation with the existing techniques is required
in order to deliver an exhaustive overview of the status of the application to be
monitored.



8

4. CONCLUSION
The paper focused on evaluating the different approaches currently used for per-
formance monitoring of distributed applications. Therefore a classification and
analysis of available approaches has been done. Overall result was, that current
techniques are not sufficient to solve today’s service management problems. The
paper concludes with open research questions in the area of application perfor-
mance management that – in our opinion – are most important to be tackled
in the forthcoming years.
Our current work focuses on the research questions raised above. Especially in
the area of component based application development some promising proto-
types are under development that might lead to a high degree of instrumentation
automation. In the area of automated transaction correlation we already have
achieved some first substantial progress which is about to be published soon.
Acknowledgment
The authors wish to thank the members of the Munich Network Management
(MNM) Team for helpful discussions. The webserver of the MNM Team is
located at http://wwwmnmteam.informatik.uni-muenchen.de.

References
[1] Application Management Specification. Version 2.0, Tivoli Systems, 1997.
[2] Apptitude. MeterFlow Network Decision Data Engine. Technical White

Paper, January 2000.
[3] N. Brownlee, C. Mills, and G. Ruth. RFC 2063: Traffic flow measurement:

Architecture. RFC, IETF, January 1997.
[4] Application Response Measurement (ARM) API . Technical Standard

C807, The Open Group, July 1998.
[5] Application Instrumentation and Control (AIC) API, Version 1.0. Technical

Standard C910, The Open Group, November 1999.
[6] Compuware. Ecoscope — analyzing networked application performance,

2001.
[7] DMTF Application Working Group. Application MOF Specification 2.5.

CIM Schema, Distributed Management Task Force, December 2000.
[8] M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, M. Langer,

M. Nerb, I. Radisic, H. Roelle, and H. Schmidt. Towards generic Service
Management Concepts – A Service Model Based Approach. In Proc. of the
7th Int. IFIP/IEEE Symposium on Integrated Management, May 2001.

[9] Hurwitz Group. Candle captures the ”user experience”. Technical White
Paper, September 1998.

[10] Hewlett–Packard Company. HP Management Software Products, 2001.
[11] Jyra. Jyra In–Site@PSINet, 2000.
[12] C. Krupczak and J. Saperia. RFC 2287: Definitions of system-level man-

aged objects for applications. RFC, IETF, February 1998.
[13] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. RFC 2330: Framework

for ip performance metrics. RFC, IETF, May 1998.
[14] Tivoli Systems, Inc. Tivoli Business System Manager, 2001.
[15] Geyer & Weinig. Portofolio – INFRA-XS, 2000.

http://wwwmnmteam.informatik.uni-muenchen.de

	4ptto0pt1 2pt -.9-36pt =-=0pt plus1filService oriented Application Managementdepth4pt width0pt1sp
	1.1 Introduction 
	1.2 Classification of approaches 
	1.2.1 Monitoring of network traffic 
	1.2.2 System-level Monitoring 
	1.2.3 Client--side application monitoring 
	1.2.4 Application--wide monitoring 

	1.3 Open research questions 
	1.4 Conclusion 

	 -References

