
Dynamic Management of Internet Telephony Servers:
A Case Study based on JavaBeans and JDMK

Alexander Keller�

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA
Email: alexk@us.ibm.com

Helmut Reiser
University of Munich, Dept. of CS

Oettingenstr. 67
D-80538 Munich, Germany

Email: reiser@informatik.uni-muenchen.de

Proceedings of the Third International Enterprise Distributed Object Computing Conference:
EDOC’99, Mannheim, Germany, September 1999

Abstract

It is widely recognized that the scalable and efficient mana-
gement of large, heterogeneous information technology in-
frastructures requires middleware that allows the extension
of managed resources with new functionality at runtime. A
recent and promising approach is the Java Dynamic Ma-
nagement Kit (JDMK) that relies on the JavaBeans compo-
nent technology. Based on our experiences with a prototype
implementation that provides an adaptable management in-
strumentation for an Internet Telephony Server, this paper
analyses the suitability of JDMK for building scalable and
flexible management systems. The results of our work allow
us to evaluate JDMK regarding its suitability for the mana-
gement of large-scale enterprise networks.

Keywords:
JavaBeans, JDMK, JMX, Internet Telephony Server, Dis-
tributed Management, Management by Delegation

1 Introduction

The ever-increasing deployment of electronic commerce so-
lutions and the computerized interworking between manu-
facturers, vendors and customers requires fault-tolerant and
scalable network infrastructures. Integrated management of
corporate networks, systems and applications helps service
providers to maintain a high level of quality by providing
mechanisms able to cope with large and highly complex
environments. Today, the dynamic distribution of manage-
ment services to extensible agents residing on the managed
resources is considered as the most promising approach
for addressing the challenge of scalable, integrated mana-
gement. Although significant progress has been made re-
cently, the application of “traditional” (i.e., protocol-based)
management architectures like the OSI/TMN or Internet

�This work was carried out and completed while the author was work-
ing at the Munich University of Technology.

(SNMP-based) frameworks to networked e-business appli-
cations is still at an early stage. This is – among others –
due to the fact that management software based on these
frameworks being able to transfer lightweight management
components between management entities is not yet avail-
able on the marketplace.

On the other hand, the success of principles from distributed
systems engineering motivates the development of modu-
lar management systems built from off-the-shelf software
components. This leads to the demand for technologies that
shield developers from the heterogeneity of the underlying
systems. In this context, object-oriented implementation
frameworks such as CORBA and JavaBeans are gaining in-
creasing importance for the integrated management of net-
works, systems and applications.

The Java Dynamic Management Kit (JDMK) [19] by Sun
Microsystems, Inc. aims to achieve the goal of scalable, dis-
tributed management by allowing the development of flex-
ible management components that can be modified at run-
time and then loaded on the managed resources. Based on
our experiences with building a JDMK-based prototype for
managing Internet telephony servers, we were able to eval-
uate to which degree JDMK fulfills the above requirements.

Internet telephony servers have a high potential for reducing
an enterprise’s communication costs by acting as a gateway
between private branch exchanges (PBX) and the Internet.
On the one hand, they have very high requirements with re-
spect to availability and reliability but are, on the other hand,
also deployed in increasing numbers. Consequently, Inter-
net telephony servers have severe scalability constraints and
make their management a challenge. The work described in
this paper has been carried out in a joint cooperation project
with Siemens AG, Munich, Germany [9].

The paper is structured as follows: In the next section we
will describe the architecture of the Siemens Internet tele-
phony server and its current management instrumentation.
Based on an analysis of management requirements for In-
ternet telephony servers, we discuss the shortcomings of

1

the current approach and the steps to enhance their man-
ageability in large IT infrastructures. While section 3 gives
an overview of the Java Dynamic Management Kit archi-
tecture, its management services and development environ-
ment, section 4 describes how we applied JDMK to the
problem domain of Internet telephony servers. Section 5
summarizes our experiences and evaluates whether JDMK
can serve as an infrastructure for scalable, reliable and dy-
namic management solutions. We will discuss why some of
the criteria defined in section 2 are not met by the current
version of the toolkit.

In June 1999, the new Java Management Extensions (JMX)
specification has been released for public review; it is in-
tended as a replacement for the Java Management API
(JMAPI) and relies to a large extent on JDMK. We will
therefore contrast JMX with JDMK in section 6 and discuss
to which extent JMX alleviates the shortcomings of JDMK
that we identify in section 5. Section 7 concludes the paper
and presents issues for further research.

2 Internet Telephony Servers:
Architecture and Management

In order to reduce the costs for buying, operating and main-
taining communication services and devices, the integra-
tion of voice and data is gathering increased attention. It
is possible to use the high capacity of already established
broadband data networks for voice transmission, thus over-
coming the need to rely on public carriers for long-distance
telephony: Enterprises now have the opportunity to locally
transform outgoing calls to remote sites into data streams
that are then transmitted through the Internet. At the remote
site, incoming streams are converted back into voice and
delivered to the addressee, thus bypassing public switched
telephone networks (PSTN). The potential of multi-million
dollar cost savings per year makes the integration of voice
and data particularly attractive for global enterprises with
large corporate networks.

To achieve this, gateways between private branch exchanges
and the Internet have to be installed and deployed at multi-
ple locations of an enterprise. These gateways are termed
Internet telephony servers. We will now describe the sys-
tem which our implementation is based on.

2.1 Siemens Telephony Internet Server

By means of different gateways, the Siemens ISDN private
branch exchange (PBX) Hicom 300 is able to connect tele-
phone calls over ATM or over Internet protocols (TCP/IP)
[16]. The gateway of the Hicom 300 that implements the

interface between analogue data (audio, video) and Internet
protocols is called the Telephony Internet Server (TIS).
In addition, TIS is able to integrate different kinds of video-
conferencing (H.323 over LAN and H.320 over ISDN) and
(ISDN-)telephony equipment (see figure 1). The several
TIS components (call processing, gateway, dispatcher, fea-
ture processing etc.) are implemented as Windows NT ser-
vices and can be administered and controlled via the Simple
Network Management Protocol (SNMPv2) [17]. The ma-
nagement agent on TIS is implemented as a separate Win-
dows NT service and uses the Windows NT SNMP exten-
sion agent facility. This feature allows the registration of
a new management module (implemented as dynamic link
library) without the need to recompile the agent. However,
every time a new extension is added to the agent, the whole
agent has to be restarted in order to access the new function-
ality. The TIS-specific part of the SNMP agent has a size of
250 kbytes and consists of about 150 variables and 20 ta-
bles; the TIS management information base (MIB) defines
6 types of asynchronous event messages.

Internet

ISDN / PSTN

TIS

TIS

Hicom (PBX)

Hicom (PBX)

Figure 1: Siemens Telephony Internet Server: Architecture

On the side of the managing system, several Java-Applets
exist for the Web-based management of TIS: They are
downloaded from a WWW server and connect to the TIS
management agent. The latter accesses the C++ based ma-
nagement instrumentation of the TIS and executes the mon-
itoring and control of important variables such as the avail-
able and the peak bandwidth for a specific service type,
the maximum and current number of calls and IP-specific
settings (domain name, name servers, transmitted packets
etc.). Management information relevant for accounting and
billing purposes (e.g., caller and callee identification, length
of call, used bandwidth etc.) can also be retrieved from
TIS. Furthermore, it is possible to assign maximum band-
widths to specific connections and to modify them at run-
time. Facilities for deleting and setting up calls and initi-
ating/suspending/resuming the transfer of video streams are
also available.

It is obvious that – particularly in large corporate networks –

2

access policies to these MIB variables have to be defined:
Some variables should be readable/settable for local admini-
strators while others might only be accessible to administra-
tors responsible for the enterprise-wide Internet telephony
server network. Although the SNMP View-based Access
Control Model (VACM) [25] meets these requirements, it
was not yet implemented in the current version of the TIS
management agent. As the TIS management information
base (MIB) has been implemented in a single module, there
is no way of assigning specific access rules to MIB vari-
ables.

2.2 Management Requirements for Internet
Telephony Servers

Traditionally, the administration and management of tele-
phony systems and networks has been done by public car-
riers with specifically tailored – and often proprietary –
frameworks, protocols and tools. Nowadays, the paradigm
of voice/data integration implies that telecommunication
systems are increasingly being managed with technologies
stemming from the data communications world. This means
that management of Internet telephony servers should rely
on open, standardized middleware infrastructures in order
to be compatible with already established data network ma-
nagement environments.

However, the very high requirements on any kind of tele-
phony equipment with respect to scalability, availability, re-
liability and fault tolerance are rarely met by current data
network management systems. This can be considered as
one reason why telecom carriers are – despite the recent
progress e.g., in SNMP-based management – still reluc-
tant of deploying data communication management tech-
nologies to their domain. As Internet telephony servers are
a special kind of telecommunication equipment, these re-
quirements also apply to their management.

Thus, development frameworks serving as a basis for Inter-
net telephony server management in large-scale corporate
networks should provide:

� fine-grained security mechanisms (comparable to the
SNMP VACM),

� a high degree of flexibility and adaptability,

� the ability to enhance or modify the amount of func-
tionality at run-time,

� means to permit agents a large degree of autonomy
without subordinating the target of global optimization
to local optimization concerns,

� a way of enabling the cooperative solution of problems
(e.g., problem determination tasks),

� access to standardized naming and directory services,

� simple update mechanisms for the agent software,

� persistent storage of agents, including their states, to
guarantee a safe and consistent restart after a failure,

� an easy integration in already existing management
systems,

� the support for Java-based management, thus yielding
a high-degree of platform independence and increasing
portability.

The above list of requirements is obviously not specific for
Internet telephony servers but applies to any large-scale dis-
tributed environment with high availability and security re-
strictions. These servers can be regarded as a characteristic
example of a highly distributed environment and have ma-
nagement requirements similar to other complex systems.
We believe that distributed environments should be man-
aged in a distributed way and focus in the next sections on
a JavaBeans-based management approach.

2.3 Related Work

Distributed network, systems and application management
is an active field of research motivated – among other –
by the experiences with deploying centralized management
systems (so-called management platforms) in large-scale
corporate networks.

Management by Delegation (MbD) [5, 14, 15] defines a
concept for delegating functionality from managing systems
to agents in order to enhance them at run-time. The deci-
sion as to when this delegation should happen and which
kind of functionality should be transferred to the agents is
taken by the managing system, thus preventing autonomous
decisions by the agents. Cooperative agents [11] rely on
MbD and exhibit a certain degree of autonomy; they are
able to receive event notifications from peers and can be
grouped together in order to jointly achieve a task. Adding
the concept of mobility to these agents yields mobile agents
[12, 13]; their roaming capabilities allow them to move
across networks in order to achieve specific, pre-defined
tasks. However, the applicability of mobile agents is bound
by security concerns; [6] and [24] discuss these aspects.
The OMG Mobile Agent Systems Interoperability Facility
(MASIF) [10] specifies an infrastructure for mobile agents
in a CORBA [3] environment. Mobile management agents
are designed to achieve administrative tasks on systems and
software; while [1] discusses the advantages of applying
mobile agents to management, [4] presents a Java-based en-
vironment for configurable and downloadable lightweight
management applications.

3

3 Java Dynamic Management Kit

The Java Dynamic Management Kit (JDMK)1, devel-
oped by Sun Microsystems [19, 20], promises to overcome
many of the mentioned problems and supports some of the
new requirements. JDMK was developed primarily for net-
work management purposes. In the next sections, we will
introduce the architecture and services of JDMK.

3.1 Architecture

JDMK represents a framework with corresponding tools,
based on the JavaBeans specification [18], for the develop-
ment of management applications and management agents.
The base components of the architecture are summarized in
figure 2. The Core Management Framework, M–Beans, C–
Beans and different kinds of adaptors and services are the
essential parts of JDMK.

Manager

Java Virtual Machine

Agent

C-Bean
2

C-Bean
1

A
da

pt
or

 I

Java Virtual Machine

A
da

pt
or

 II
A

da
pt

or
 I

C
or

e
M

an
ag

em
en

t F
ra

m
ew

or
k

M-Bean
2

M-Let
Service

M-Bean
3

1
M-Bean

Figure 2: JDMK Architecture

M–Beans (Managed Beans) are Java objects implement-
ing the “intelligence” and functionality of an agent. An
M–Bean acts as a representative for one or more managed
objects (MOs) or implements some functionality of a man-
ager e.g., the preprocessing of data. With the aid of M–
Beans it is possible to develop an agent that can be dy-
namically enhanced with new “management intelligence”.
M–Beans are developed using a design pattern which is
based on the JavaBeans component model. They are ad-
dressed with and uniquely identified by their object name.
Names of M–Beans consist of the following parts: class-
Part[.attribute=value[,attribute=value]*]. Each of the parts
can be set with user-defined values, especially the classPart

1http://www.sun.com/software/java-dynamic

does not need to be equivalent to the name of the implemen-
tation class of the M–Bean. The optional attribute=value
pairs may be used to characterize M–Beans more precisely.
All parts of the name can be used to define filtering rules
for selecting special M–Beans (see also Filtering Service in
Section 3.2).

In order to use JDMK services or communication re-
sources the M–Beans have to be registered at the so-called
Core Management Framework (CMF) which represents
a BeanBox for M–Beans. Only registered Beans can be ac-
cessed from outside of the CMF. The name of the M–Bean
is used for the registration. The CMF generates the name
if it was not set explicitly. The CMF together with its M–
Beans represents the management agent. It is therefore the
central interface for objects (M–Beans, services, : : :) which
may be registered at the CMF from the agent itself or from
a manager.

C–Beans (Client Beans) can be generated from M–Beans
(or rather from the .class–files implementing the M–
Beans) using a special compiler (mogen). They are proxy
objects for remote M–Beans. M–Bean functions and data
can be accessed by performing operations on C–Beans
which are then propagated to the M–Bean. C–Beans use
adaptors to communicate with their corresponding M–Bean.
Together with their adaptors and additional management
functionality they form the manager. An agent is also able
to register C–Beans with its CMF. By doing this, the agent
becomes a manager for that agent which implements the
corresponding M–Beans. The strict separation between the
manager and the agent role in protocol-based management
architectures is therefore abolished in JDMK.

An Adaptor implements a special kind of a protocol, it is
an interface for the CMF and for the agent. It is also realized
as a Bean and therefore it is very easy to register adaptors
at a CMF. With adaptors, manager and agent may be con-
nected to each other or to other applications. At present
RMI, HTTP, HTTP over SSL (HTTPS), IIOP, SNMP and
a so-called HTML adaptor, which represents a Web–server,
are available. This concept allows to communicate with the
same JDMK agent by means of different protocols. It is
not necessary to change the functionality or the code of the
agent, the only thing to do is to register another adaptor.
Should e.g., a Web–browser be used to connect to an agent
the HTML adaptor must be registered at the CMF of the
agent. This adaptor generates HTML pages for all M–Beans
which are registered at the CMF. It is of course possible to
use more than one adaptor at the same time.

3.2 Services and Development Tools

Besides of the base components of JDMK several services
and tools exist to simplify the development of management

4

applications and agents (cf. figure 3).

C
la

ss
 a

nd
 L

ib
ra

ry
 S

er
ve

r

B
oo

ts
tr

ap
 S

er
vi

ce

D
is

co
ve

ry
 S

er
vi

ce

Dynamic Extension
of Agents

Management Functions
predefined

Base Services

Update Mechanisms,
Versioning

Development Tools

Structuring Service

Gauge Monitor
Counter and

Library Loader
Class and

mibgen

Repository

TimingEvent Scheduler

Launcher

M-Let Service

Cascading

MetadataFiltering

Core Management Framework

mogen

Figure 3: JDMK Services and Development Tools

For the registration process the Repository Service is used.
Beans may be registered either as volatile or persistent
within the CMF.

With the aid of the Filtering Service it is possible to define
filtering rules selecting all M–Beans which are registered
at a CMF that match the filtering rule. Such rules may be
defined over methods, attributes with their concrete values
and over object names and their single parts.

To determine the properties and methods which are sup-
ported by an M–Bean the Metadata Service, based on the
Java Reflection API, can be used. The Metadata, the Repos-
itory and the Filtering Service are called Base Services of
the CMF.

The Discovery Service is used to detect all active CMFs.
Therefore an IP–broadcast is sent by the service and all
CMFs that have registered a so-called Discovery Responder
reply to the broadcast message.

Agent and manager are able to use different Class Loaders
– even in parallel – to load the implementation classes from
local or remote sites. To take advantage of native, (non–
Java) dynamically linked libraries in M–Beans the Library
Loader Service may be used. As a local or remote repos-
itory for class files and libraries the Class and Library
Server is available. This server can either be used as a
stand-alone application or – since it is realized as an M–
Bean as well – registered with a CMF.

M–Let, Launcher and Bootstrap Service are used for the dy-
namic extension of agents, for update mechanisms and for
bootstrapping.
The M–Let Service (Management Applet Service) offers
the possibility to download and configure M–Beans dynam-
ically. For this purpose a new HTML tag (<MLET>) is de-
fined. The M–Let Service operates according to the follow-
ing steps (see also figure 4):

1. The M–Let Service loads a HTML page from an URL
from which it can obtain all the necessary informa-

tion about the Beans to load (i.e., names, objects, code
repository).

2. By using this information the M–Let Service is able to
download the implementation classes of the M–Beans
and to instantiate them.

3. Afterwards, the M–Let Service must register them at
the CMF.

It is also possible to put version information inside the
(<MLET>) tag and to use the M–Let Service for versioning.

The Bootstrap Service, which is realized as a stand-alone
Java application, simplifies the distribution and instantiation
of JDMK agents. The service is used to download imple-
mentation classes of an agent from a local or remote server.
Therefore the Bootstrap Service initializes the CMF, starts
the M–Let Service, loads the necessary classes, initializes,
registers and starts all the required M–Beans and services of
the agent.

With the Cascading Service it is possible to build hierarchi-
cal structures of master and sub agents. The master agent is
the main interface towards the manager and hides the real
location of sub agents.

Besides of these services JDMK also provides predefined
management functions. The Event Service facilitates syn-
chronous and asynchronous communications with unicast
and multicast events. Triggering events, alarms or actions
at predefined times is realized by the Alarm and Sched-
uler Service. Counter Monitor is used for the monitoring
of discrete values and thresholds, Gauge Monitor for the
monitoring of properties varying continuously.

Two compilers, mogen and mibgen, are delivered with
JDMK as development tools. As mentioned, mogen is used
to create C–Beans from M–Bean .class files.
If SNMP–MIB files are available for the managing device,
the mibgen Compiler is able to use them to create M–
Beans representing the MIB. The M–Beans have to be en-
larged with functions e.g., implementing access to resources
of the managed system. With these tools it is possible to
build standalone or integrated SNMP agents. M–Beans of
integrated agents are registered in the CMF and the inte-
grated agent may therefore be reached through all protocols
implemented in adaptors (e.g., RMI, IIOP, etc.) and also
via SNMP. Communication with standalone agents is only
possible over SNMP. It is not possible to distinguish from
outside between a standalone JDMK agent and a classical
SNMP agent.

5

<MLET

CODE=
ARCHIVE=
NAME=
VERSION=

>
</MLET>

MBean3
remotebean.jar

"M-Bean 3"
2

remotebean.jar
MBean3.class
Helper.class

classes/MBean1.class

classes/MBean2.class

C
M

F

M-Let
Service

2
M-Bean

Helper

M-Bean
1

M-Bean
3

printserver.mnm.de

M-Bean loaded by M-Let Service
Instances of Objects

Instances of Objects
loaded from the local filesystemM-Bean

http://beanserver.mnm.de/remotebean.jar

beanserver.mnm.de

http://beanserver.mnm.de/MyRemoteBean.html

1.

2.

3.

1. loading a HTML file

3. register M-Beans

Course:

2. loading and instantiating M-Bean classes

Figure 4: The JDMK Management Applet (M-Let) Service

4 TIS-Management with JDMK

JDMK has been used in this project because it offers inter-
esting possibilities and meets many of the requirements for
management application development frameworks.

4.1 Code Generation, Update Mechanisms
and Native Code

To reduce time and costs of adaption and to minimize errors,
as much code as possible should be generated automatically
during the development of a TIS agent. Taking the TIS
MIB as input, M–Beans are generated using the mibgen
compiler. The conversion of the TIS MIB structure into
corresponding M–Beans is performed automatically: The
information mapping performed by mibgen is very simi-
lar to the JIDM specification translation algorithm for con-
verting SNMP MIBs into OMG IDL descriptions [8]. Both
JIDM and mibgen map MIBs to object-oriented languages.
The whole MIB as a container for the groups, tables and
variables is translated into an M–Bean. Each SNMP group
becomes an M–Bean; every variable in a group is repre-

sented as an M–Bean property. SNMP table rows are trans-
lated into M–Beans; the variables contained in the rows are
mapped to M–Bean properties, respectively. For detailed
information on the conversion the reader is referred to [20].

A conversion example for a MIB structure is (partly) shown
in figure 5. The left side of the figure depicts a very small
part of the TIS MIB; the right side represents the appropriate
M–Bean structure.

The group GkStatistics of the TIS MIB stores impor-
tant statistical information of the Gatekeeper component of
TIS (e.g., current number of calls, average length of calls in
the last hour, etc.). The table gkStatTable stores Gate-
keeper statistics of the last 48 hours. Figure 5 shows how
these parts of the MIB are transformed in an M–Bean struc-
ture. The mibgen compiler generates M–Beans for the
whole group GkStatistics, for the table (TableGk-
StatTable) and for each entry in this table. For each
object that is readable and writable get and set functions
are generated.

The generated M–Beans have to be enhanced with algo-
rithms implementing the specific access functions for TIS.
This is shown at the bottom of figure 5, e.g., GkStatis-
ticsImpl.java extends GkStatistics and imple-

6

gkStatTable OBJECT-TYPE

 ::= { gkStatistics 4 }

ACCESS not-accessible
SYNTAX SEQUENCE OF GkStatEntry

STATUS mandatory
DESCRIPTION

"Table of gatekeeper statistics for the last 48 hours."

GkStatistics OBJECT IDENTIFIER ::= { tisGatekeeper 4 }

gkStatCurrentNoOfCalls INTEGER
gkStatIndex INTEGER

GkStatEntry ::= SEQUENCE
{

}
...

gkStatIndex OBJECT-TYPE
SYNTAX INTEGER (1..48)
ACCESS read-write
STATUS mandatory
DESCRIPTION

"Index into the statistics table. 1=the current hour ..."
::= { gkStatEntry 1 }

gkStatEntry OBJECT-TYPE

::= {gkStatTable 1}
INDEX {gkStatIndex}
STATUS mandatory
ACCESS not-accessible
SYNTAX GkStatEntry

public class GkStatEntry implements Serializable {
...

protected Integer GkStatIndex= new Integer(1);
...

}

GkStatEntry.java

GkStatisticsMeta.java

Elements in TIS2.0 MIB

GkStatEntryMeta.java

...

 public TableGkStatTable(SnmpMib myMib) {
 super(myMib);
node= new GkStatEntryMeta(myMib);

}
...

public class TableGkStatTable extends SnmpMibTable implements Serializable {

TableGkStatTable.java

MIBGEN generated code

public class GkStatistics implements Serializable {
protected TableGkStatTable GkStatTable;
protected Integer GkStatsCurrentNoOfCalls;
...

}

GkStatistics.java

}

public GkStatisticsImpl(SnmpMib myMib, Framework cmf) {
...

}

public getGKStatsCurrentNoOfCalls() {

return GKStatsCurrentNoOfCalls
...

public class GkStatisticsImpl extends GkStatistics {

}
...

public class GkStatEntryImpl extends GkStatEntry {
...

public GkStatEntryImpl(SnmpMib myMib, Framework cmf, TableGkStatTable GkStatTable) {
...

}
...
public Integer getGkStatIndex() throws SnmpStatusException {

return GkStatIndex;
}

}

GkStatEntryImpl.javaGkStatisticsImpl.java

M
IB

G
E

N

Implementation

Figure 5: Generating M–Beans with mibgen (Example)

ments the get function for the current number of calls.

Nevertheless, an adaption after changes can be done rela-
tively quickly as only the implementation of the changed
M–Beans must be adapted. M–Beans of the agent can be
replaced at run-time with the changed ones and it is possible
to enhance the agent with additional M–Beans or objects.

If M–Beans have been changed or if a new version of the
TIS agent has to be installed, the M–Let and the Launcher
Service can be used for a dynamic update. The only
thing that has to be done is to write the relevant classes
at the <MLET> tag of the corresponding HTML file. The
Launcher Service which uses the M–Let Service loads the
new classes not yet installed or it replaces the whole TIS
agent — if its version number has been increased.

Internally TIS is built upon various components (e.g., Gate-
keeper, Administration Maintenance Server (AMS), : : :)
which communicate by means of proprietary message for-
mat and inter-process communication (IPC). The required
method calls for the IPC are combined into a dynamically
linked library. In order to obtain management information
from TIS components, the TIS agent must be able to con-
struct and handle IPC messages. The dynamic link library
was integrated for that purpose into the agent using the Java
Native Interface (JNI) and is encapsulated by the Java class
Native Base (cf. figure 6). The result is that the JDMK
agent and its M–Beans are able to use Java method calls for
the management of TIS and its components. Changing the
MIB would not affect this interface.

7

TIS-AgentManagement Consoles

Services
various

Gatekeeper

AMS

H
T

M
L

S
N

M
P

C
or

e
M

an
ag

em
en

t F
ra

m
ew

or
k

NetworkParams

TIS2-MIB

Native
Base

IPC
DLL

JNI

TISGKStatistics

SNMP-MIB
Browser

Web Browser

Management Platform
(IIOP/RMI/SNMP/HTTP)

Figure 6: JDMK-based TIS Management: Architecture

4.2 Integration into existing Management
Systems

A requirement on the TIS agent was that it should be
possible to use a WWW browser as a management con-
sole; the agent should support the Web-based management
paradigm. This demand can easily be fulfilled by registering
the HTML adaptor at the CMF of the TIS agent. The HTML
adaptor is accessed like a conventional WWW server, it dy-
namically creates HTML pages with all information and
method interfaces available from the TIS agent.

Pages generated from the HTML adaptor do not always
meet the requirements on modern user interfaces. Neverthe-
less, they provide a sound basis for further enhancements.
In order to manage TIS from a WWW browser, it is suffi-
cient to register the HTML adaptor with the TIS agent.

Besides the Web interface, it should be possible to access
the TIS agent with SNMP or other protocols (e.g., RMI).
This can also be easily achieved by registering the corre-
sponding protocol adaptor.

A further requirement was that it should be possible to in-
tegrate the agent in a CORBA based management system.
JDMK provides an IIOP adaptor; but this is not sufficient
for the integration in a CORBA environment: The adaptor
implements the IIOP protocol, but makes no use of any ex-
isting CORBAservices. In particular, it does not register the
TIS agent or its M–Beans with the CORBA Naming Ser-
vice or with the CORBA Interface Repository. The inter-
face definition of the adaptor defines only simple get and
set methods which are the only ones registered with the
CORBA Interface Repository. It is thus necessary either to
be aware of the whole internal structure of the TIS agent and

all M–Beans or to considerably modify the implementation
of the adaptor or the agent in order to manage TIS from a
CORBA-based management system. It can be concluded
that the IIOP adaptor serves only as IIOP-wrapper for the
M–Bean access methods.

In our implementation of the TIS Agent the IIOP Adapter is
registered without any changes. This shows that it is gener-
ally feasible to connect to a JDMK agent over IIOP. But a
complete integration requires extensive changes and cannot
be done automatically or semi–automatically.

The architecture for the management of TIS developed dur-
ing the project is given in figure 6. TIS2-MIB, Network-
Params and GKStatistics are examples of M–Beans
which implement parts of the TIS MIB.

5 Evaluation of JDMK

This section evaluates JDMK with respect to its applicabil-
ity to large enterprise management environments. We will
thereby focus on three major problem domains which are of
critical importance for a successful deployment and address
the requirements identified in section 2.2.

5.1 Rapid Prototyping of flexible, dynamic
Management Systems

As outlined in the previous sections, the primary strengths
of JDMK lie in its capability of realizing flexible and highly
distributed management systems.

8

Simple Web-based user interfaces can be generated au-
tomatically by using the HTML-Adaptor. JDMK-
administered resources can easily be accessed from sys-
tems in other management architectures, because several
adaptors for different management protocols are provided.
It is thus possible to administer JDMK-based agents from
SNMP management platforms through the SNMP adaptor.
The toolkit also enables the development of adaptors for
new, not yet supported protocols. The adaptor concept is
helpful if agents should support multiple management pro-
tocols simultaneously e.g., information provided by a spe-
cific agent should be accessible not only from an SNMP-
based management platform but also from a Web–browser
via HTTP.

Agents developed with JDMK can be enhanced and modi-
fied at run-time, thus yielding the opportunity of delegating
management tasks to them via the push model. Further-
more, these agents are also allowed to initiate the download
of management functionality by themselves (pull model).
These additional services are only transferred to the agent
if needed. If the agent detects an error condition in the
managed resource, it can request additional management
functionality e.g., specific problem determination and error-
correction services. Under regular conditions, tasks of the
management system – such as the correlation of differ-
ent variables – may already be carried out by the agent,
thus preventing the exchange of large amounts of data be-
tween the managing system and the agent. The JavaBeans
concept and the simple registration mechanism of Beans
with the CMF of the agent facilitate quick response times
when status changes are detected. The services provided by
JDMK enable distribution and update mechanisms to en-
hance agents with additional functionality residing in cen-
tralized code repositories.

The access to resource-specific (and thus non-portable) ma-
nagement instrumentation is eased by the integration of ap-
propriate dynamic link libraries through the Java Native In-
terface. In case that no Java Virtual Machine is available for
a resource, a JDMK-based agent installed on another system
may act as a proxy for the resource.

JDMK also provides mechanisms for the persistent storage
of M-Beans, thus enabling the agent components to remain
close to the resource and eliminating the need of download-
ing them from remote servers. However, only the basic se-
rialization mechanisms of Java are available. Mechanisms
for the recovery from system crashes or errors within the
agent (like incremental backups of the agent context and
software) require the extension of the agent and the CMF
by the developer.

In summary, we believe that JDMK has a strong potential
for the rapid development of highly distributed management
environments and provides with its several protocol adap-

tors a good basis for today’s heterogeneous management
environments.

5.2 Suitability for large IT infrastructures

We will now analyze how well JDMK can be integrated with
large-scale distributed environments such as CORBA and
discuss whether it can make use of the large amount of al-
ready specified CORBAservices.

As it was pointed out in section 4.2, JDMK does neither pro-
vide standardized directory and naming services nor mech-
anisms for making use of CORBAservices. Features for
achieving location transparency (like the CORBA Interoper-
able Object References) are also not available: An M–Bean
is identified by a protocol identificator, the host address and
port number, and its object name. These parameters and
some knowledge about the registered beans in a given CMF
must be present in order to make use of the M–Beans.

The scope of the metadata service that can be used to re-
trieve information on registered M–Beans is limited to a
single CMF, i.e., there is no global metadata service such
as the CORBA Interface Repository in conjunction with the
Dynamic Invocation Interface or the Trader Object Service.
Consequently, the only way of finding the currently active
CMFs is the JDMK Discovery Service which sends a broad-
cast message that is answered by all running agents. In or-
der to then find the agents that implement e.g., a specific
method, every agent has to be queried individually via the
JDMK Filtering Service. Therefore, JDMK services have a
much smaller scope than CORBAservices.

The establishing of domains and the structuring of the
agents in functional groups is not supported by the devel-
opment environment and has to be done by the developer.

Inter-agent communication is only feasible between master
and sub agents. As sub agents are not supposed to inter-
act with each other, JDMK cannot serve as a communica-
tion infrastructure for cooperating agents. Another issue is
that JDMK-based agents are not able to migrate in a net-
work. Therefore, JDMK agents are not mobile in terms
of the OMG Mobile Agent Systems Interoperability Fa-
cility (MASIF). They are installed on a host and are un-
able to “visit” another one. As JDMK agents are not de-
signed according to the MASIF specification, it is not – or
only with great difficulties – possible to integrate them in a
CORBA/MASIF-based management system.

The above mentioned conceptual weaknesses make it hard
to develop management applications for large IT infrastruc-
tures where a high number of different JDMK-based agents
are needed. The JDMK services are useful for small, lo-
cal environments where the amount and degree of diversity
of the agents are restricted. Due to the absence of focus on

9

large systems, the scalability of JDMK-based solutions may
be critical at the current stage of the toolkit.

5.3 Security Aspects

JDMK does not have a homogeneous security concept for
its different protocol adaptors; instead, developers need to
be aware of the different security mechanisms to imple-
ment comprehensive security for agents that support differ-
ent protocol adaptors.

The SNMP adaptor relies on a file containing access con-
trol lists to determine which management systems have the
right to read or modify specific parts of the MIB. Although
this can be considered as an enhancement compared to the
(password-based) mechanism of the early SNMP, modern
fine-grained SNMP security mechanisms like VACM [25]
are not yet supported. As the authentication of remote sys-
tems is based on their IP address, the agent is vulnerable
with respect to IP-spoofing attacks.

The authentication method of the HTTP/HTML adaptors
are login/password combinations. As sensitive data is ex-
changed unencrypted, it is not possible to implement secure
HTTP-based management solutions.

The RMI and IIOP adaptors do not support authentication
and access control.

The only way of enabling secure authentication is based on
the HTTPS (HTTP over SSL) adaptor which allows the ex-
change of cryptographically secure certificates. The appro-
priate access control system must then be implemented by
the developer.

We believe that the current security mechanisms of JDMK
are insufficient because developers still have to implement
a large part of the security mechanisms themselves. Fur-
thermore, the large differences between the various security
mechanisms are not yet shielded behind a comprehensive
security architecture. Agents that support multiple manage-
ment protocols simultaneously thus have to implement sev-
eral security models.

6 Java Management Extensions

In mid June 1999 the draft version of the new Java Ma-
nagement Extensions (JMX) specification [22] has been
released for public review. JMX integrates the former de-
velopments within the scope of the Java Management API
(JMAPI) and JDMK into a Java-based management frame-
work. The specification does not only focus on the agent
part of the management system (as it was the case with
JDMK) but will also specify the manager part. However,

in the current version of the specification the JMX manager
is left blank. JDMK can be considered as an integral part of
JMX. We will therefore provide a short overview over the
most recent developments and address the question whether
the critical issues of JDMK (as described in the previous
section) also apply to JMX. However, please note that the
JMX specification is not yet in a final state. Information on
the latest developments can be found at the Sun website.

The JMX architecture it is very similar to JDMK depicted in
figure 2. JMX distinguishes between manager, agent and
instrumentation levels: Within an agent, M–Beans respon-
sible for making a resource manageable (including the gen-
eration of event notifications) reside at the instrumentation
level. A manageable resource in JMX can be an application,
a service implementation or a device. The instrumentation
is made accessible to JMX managers (forming the manager
level) through the agent level which provides a communi-
cations interface, a set of standard services and a run-time
environment. The Core Management Framework of JDMK
has been renamed to MBean server.

One of the major changes in JMX refers to MBeans2 that
have been categorized into four distinct classes: The stan-
dard MBean is a subset of the M–Beans known from
JDMK; its interface consists of the method names. In con-
trast, Dynamic MBeans expose their properties and oper-
ations at run-time via defined operations that return all the
attribute and operation signatures. The purpose of dynamic
MBeans is to ease the instrumentation of existing (legacy)
managed resources. An open MBean is a dynamic MBean
which offers of universal, predefined data types and func-
tions and provides – in addition – detailed meta-information
regarding its interface (MBeanInfo). The goal is to have
“self-describing” MBeans that can easily be used when
needed. The model MBean – another kind of dynamic
MBean – is a generic, configurable management template
for managed resources. It can be instantiated either by the
JMX Agent or by other MBeans or even by the managed
resource itself. At creation time, the method signatures and
the set of attributes exposed by the model MBean can be de-
fined in XML, OMG IDL or Java. The model MBean also
offers the option of persistent storage.

The adaptor concept of JDMK is now divided up into pro-
tocol adaptors and connectors. Protocol adaptors are
used to link an JMX agent with non-JMX compliant ma-
nagement applications (i.e., SNMP, Common Information
Model (CIM) [2] or proprietary). The connector – in con-
trast – is used by a remote JMX-enabled management ap-
plication (i.e., developed using JMX manager services) to
connect to a JMX agent.

JMX extends the event mechanism of JDMK into a notifi-

2The dash in the word “M–Bean” has been removed.

10

cation model which enables a listener to register only once
and still receives all events. To select special kinds of noti-
fications a notification filter is offered. A management ap-
plication can be notified whenever a value of a given MBean
attribute changes using the attribute change notification or
whenever a MBean is created or deleted.

The services described in section 3.2 are also available
in JMX. The predefined management services timer,
counter and gauge monitor have been integrated
into the new notification model. In addition, a new String
monitor has been defined to control changes of string ob-
jects.

For the integration with existing management solutions
JMX offers additional management protocol APIs and in-
cludes an open interface that any vendor can use. Currently,
an SNMP API [23] and CIM/WBEM APIs [21] are de-
fined and implemented. The CIM client API deals with the
transfer of data between JMX-based management applica-
tions and CIM Object Managers (i.e., CIM-compliant ma-
nagement systems); the provider API describes the interface
between a CIM Object Manager and JMX agents.

The final JMX specification will provide both a reference
implementation and a compatibility test suite. The former
is intended to allow developers to prototype management
applications easily whereas the latter checks if a implemen-
tation conforms to the specification. However, none of them
are available yet.

Based on the current draft of the JMX specification, we have
to state that the shortcomings of JDMK that have been iden-
tified in section 5 also apply to JMX. To which degree the
review process of the specification will eliminate the weak-
nesses of the current JMX version is still an open question.
This particularly applies to the manager side of JMX, which
is yet unspecified.

7 Conclusion and Outlook

This paper has described a case study for the dynamic ma-
nagement of Internet telephony servers based on JavaBeans
and JDMK. We have discussed our implementation concept
with extending the management agent of the Siemens Tele-
phony Internet Server. Our work was motivated by the in-
creasing demand for scalable and reliable solutions which
allow the extension of management agents at runtime. The
experiences gained in this project allow the evaluation of the
applicability of JDMK for managing large-scale enterprise
networks and can be summarized as follows:

The development environment permits rapid prototyping
and is easy to use; the transfer of lightweight applications
(implemented as JavaBeans) to management agents at run-

time works very well: JDMK supports both push and pull
models and enables agents to acquire additional functional-
ity, thus improving their (albeit limited) autonomy. How-
ever, JDMK-based agents are neither able to cooperate nor
can they migrate across networks. Therefore, they cannot
be considered as mobile agents; according to the definitions
given in section 2.3, JDMK is best described as a devel-
opment framework for Java-based Management by Delega-
tion. At its current stage (version 3 beta 2), JDMK is a
powerful toolkit for the development of management agents
that can be accessed and modified through several different
communication mechanisms (CORBA/IIOP, RMI, HTTP,
SNMP, HTTPS). However, the differences between these
communication infrastructures are not hidden by the devel-
opment environment and thus have to be addressed by the
developer.

The usability of management systems – especially in an
enterprise-wide context – depends to a high degree on the
security features of the underlying middleware. However,
the JDMK security mechanisms are yet unsatisfactory be-
cause the different mechanisms of the underlying communi-
cation protocols/infrastructures have not yet been integrated
into a common security architecture. It therefore depends
on the type of the underlying protocol whether e.g., encryp-
tion is available and how access control is handled. An-
other critical issue is the absence of services to obtain meta-
information on the deployed agents (like the CORBA inter-
face repository and the naming and trader services): The
services to obtain information regarding the whole set of
agents in a JDMK environment lack scalability because they
can only be applied to a single Core Management Frame-
work, thus preventing a “global” view on the agents.

JDMK is not positioned as a stand-alone management
framework but as an integral component of the Java Ma-
nagement Extensions (JMX), the emerging Java-based ma-
nagement framework that is currently developed by Sun Mi-
crosystems, Inc. and leading companies in the systems ma-
nagement field (such as IBM, Computer Associates, Bull-
Soft, Tibco, Xylan and Powerware) through the Java com-
munity process. Even if the JMX specification is yet incom-
plete, it can be expected that the future development of JMX
will eliminate the weaknesses that have been identified dur-
ing our work.

11

Acknowledgment

The authors wish to thank the members of the Munich
Network Management (MNM) Team for helpful discus-
sions and valuable comments on previous versions of the
paper. The MNM Team directed by Prof. Dr. Heinz-
Gerd Hegering is a group of researchers of the Univer-
sity of Munich, the Munich University of Technology,
and the Leibniz Supercomputing Center of the Bavarian
Academy of Sciences. Its webserver is located at http:
//wwwmnmteam.informatik.uni-muenchen.de.

References

[1] Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mo-
bile Agents for Network Management. IEEE Communica-
tion Surveys, 1(1), 1998. http://www.comsoc.org/
pubs/surveys/4q98issue/bies.html.

[2] Common Information Model (CIM) Version 2.2. Specifica-
tion, Distributed Management Task Force, June 1999.

[3] The Common Object Request Broker: Architecture and
Specification. OMG Specification Revision 2.2, Object Ma-
nagement Group, February 1998.

[4] M. Feridun, W. Kasteleijn, and J. Krause. Distributed Mana-
gement with Mobile Components. IBM Research Report RZ
3102, IBM Research Division, Zurich Research Laboratory,
February 1999.

[5] G. Goldszmit and Y. Yemini. Distributed Managment by Del-
egation. In Proceedings of the 15th International Conference
on Distributed Computing Systems, June 1995.

[6] Michael S. Greenberg and Jennifer C. Byington. Mobile
Agents and Security. IEEE Communications Magazine,
36(7):76–85, July 1998.

[7] Nicholas R. Jennings and Michael J. Wooldridge. Agent
Technology – Foundations, Applications and Markets.
Springer, Berlin, Heidelberg, New York, 1998.

[8] Inter-Domain Management: Specification Translation. Open
Group Preliminary Specification P509, Open Group, March
1997.

[9] H. Knöchlein. Management eines Internet Telefonie Servers
mittels JDMK . Diploma thesis, Technische Universität
München, February 1999.

[10] Mobile Agent System Interoperability Facilities Specifica-
tion. OMG TC Document orbos/98-03-09, Object Manage-
ment Group, March 1998.

[11] M.-A. Mountzia. Flexible Agents in Integrated Network and
Systems Management. PhD thesis, December 1997.

[12] Vu Anh Pham and Ahmed Karmouch. Mobile Software
Agents: An Overview. IEEE Communications Magazine,
36(7):26–37, July 1998.

[13] K. Rothermel and F. Hohl, editors. Mobile Agents (MA ’98),
volume 1477 of LNCS, Berlin; Heidelberg, 1998. Springer.

[14] Jürgen Schönwälder. Netzwerkmanagement mit program-
mierbaren, kooperierenden Agenten. PhD thesis, Technische
Universität Braunschweig, March 1996.

[15] Jürgen Schönwälder. Network management by delegation -
from research prototypes towards standards. In 8th Joint Eu-
ropean Networking Conference (JENC8), Edinburgh, May
1997.

[16] Siemens AG. The convergence of voice and data. White Pa-
per, 1998. http://www.siemens.se/siemensab/
communications/itnet/papers.html.

[17] SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose,
and S. Waldbusser. Protocol operations for version 2 of the
Simple Network Management Protocol (SNMPv2). RFC
1905, January 1996.

[18] Sun Microsystems, Inc. JavaBeans, Version 1.01. Technical
Specification, Sun Microsystems, Inc., Palo Alto, CA, July
1997. http://www.javasoft.com/beans/docs/
spec.html.

[19] Sun Microsystems, Inc. Java Dynamic Management
Kit. White Paper, Sun Microsystems, Inc., Palo
Alto, CA, 1998. http://www.sun.com/software/
java-dynamic/wp-jdmk/.

[20] Sun Microsystems, Inc. Java Dynamic Management Kit 3.0
(beta). Programming Guide, Sun Microsystems, Inc., Palo
Alto, CA, August 1998.

[21] Sun Microsystems, Inc. Java Mangement Extensions
CIM/WBEM APIs. Preliminary Specification Draft 1.9, Sun
Microsystems, Inc., Palo Alto, CA, June 1999.

[22] Sun Microsystems, Inc. Java Mangement Extensions (JMX).
Preliminary Specification Draft 1.9, Sun Microsystems, Inc.,
Palo Alto, CA, June 1999.

[23] Sun Microsystems, Inc. Java Mangement Extensions SNMP
Manager API. Preliminary Specification Draft 1.9, Sun Mi-
crosystems, Inc., Palo Alto, CA, June 1999.

[24] Giovanni Vigna, editor. Mobile Agents and Security, number
1419 in LNCS, Berlin, Heidelberg, 1998. Springer.

[25] B. Wijnen, R. Presuhn, and K. McCloghrie. View-based Ac-
cess Control Model (VACM) for the Simple Network Mana-
gement Protocol (SNMP). RFC 2275, January 1998.

12

