Im Folgenden finden Sie eine Aufstellung der zur Verfügung stehenden Themen. Die angegebene Literatur versteht sich als Startlektüre und weitere Literatur sollte selbstständig recherchiert wertden.
Themenblock 1: Data Science und Machine Learning
- Data Science and Machine Learning (English)
- Peng, Matsui, The Art of Data Science, 2017
- Hey, The Fourth Paradigm of Scientific Discovery, 2009
- Cao, Data Science: Challenges and Directions, Communications of the ACM, 2017
- Donoho, 50 Years of Data Science, 2015
- Benaich, Hogarth, State of AI Report, 2020
- Scikit-Learn, 2017
- Machine Learning Frameworks (Github), 2017
- Dominigos, A Few Useful Things to Know about Machine Learning, KDD, 2014
- Sculley et al., Machine Learning: The High Interest Credit Card of Technical Debt, NIPS, 2014
- Distributed Machine Learning (English)
- Dean et al., Large Scale Distributed Deep Networks, 2012
- Li et al., Scaling Distributed Machine Learning with the Parameter Server, OSDI, 2014
- Xing et al., Petuum: A New Platform for Distributed Machine Learning on Big Data, KDD, 2015
- Meng et al., MLlib: Machine Learning in Apache Spark, Journal of Machine Learning Research, 2016
- PyTorch: Writing Distributed Applications with PyTorch, https://pytorch.org/tutorials/intermediate/dist_tuto.html
- Model Management and Deployment
Themenblock 2: Deep Learning and AI
- Deep Learning: Convolutional Neural Networks
- LeCun, Bengio, Hinton, Deep Learning, Nature, 2015
- Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, 2012
- Ujjwal Karn, An intuitive explanation of convolutional neural networks, 2016
- Alex Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014
- Stanford, CS231n: Convolutional Neural Networks, 2017
- Deep Learning: Natural Language Processing and Transformer Models
- AutoML
- Reinforcement Learning
- Deep Learning Frameworks: Caffe, Torch/PyTorch, Tensorflow, CNTK, MXNet
- Jia et al., Caffe: Convolutional Architecture for Fast Feature Embedding, MM, 2014
- PyTorch, 2017
- Abadi et al., TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems, White Paper, 2015
- Seide et al., CNTK: Microsoft's Open Source Deep-Learning Toolkit, White Paper, 2016
- Chen et al., MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems, 2015
- Visualizing AI
- Li, M., Zhao, Z., & Scheidegger, C. (2020). Visualizing Neural Networks with the Grand Tour. Distill, 5(3), e25.
- Smith, E. M., Smith, J., Legg, P., & Francis, S. Visualising state space representations of LSTM networks. Presented at Workshop on Visualization for AI Explainability
- Görtler, J., Kehlbeck, R., & Deussen, O. (2019). A Visual Exploration of Gaussian Processes. Distill, 4(4), e17
- Explainable AI
Themenblock 3: Emerging Topics
- Quantum Machine Learning
- AI Domain-specific Architectures
- Security and Privacy in Machine Learning
- Machine Learning for Crypto-Analysis
- Fault management based on machine learning (English)
- Velasco, Luis, and Danish Rafique. "Fault management based on machine learning." 2019 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2019
- Mulvey, David, et al. "Cell fault management using machine learning techniques." IEEE Access 7 (2019): 124514-124539
- Ferreira, Vinicius C., et al. "Fault detection and diagnosis for solar-powered wireless mesh networks using machine learning." 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2017
- Deep Learning for Systems
- Knowledge Graphs