Below is a list of the topics that are available. Please, consider the specified literature as starting point for your literature research.

Topic Area 1: AI, Machine Learning and Deep Learning

  1. Introduction to AI and Machine Learning (FG)
  2. Computer Vision: Convolutional Neural Networks and Vision Transformers (FG)
  3. Natural Language Processing and Transformer Models
  4. Foundation Models und Transfer Learning
  5. ML and Simulations/HPC (English) (DD)
  6. Explainable AI
    • Explaining Explanations: An Overview of Interpretability of Machine Learning: https://arxiv.org/abs/1806.00069v3
    • Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead: https://www.nature.com/articles/s42256-019-0048-x
    • The challenge of crafting intelligible intelligence: https://dl.acm.org/doi/10.1145/3282486
    • Li, M., Zhao, Z., & Scheidegger, C. (2020). Visualizing Neural Networks with the Grand Tour. Distill, 5(3), e25.
    • Smith, E. M., Smith, J., Legg, P., & Francis, S. Visualising state space representations of LSTM networks. Presented at Workshop on Visualization for AI Explainability
    • Gärtler, J., Kehlbeck, R., & Deussen, O. (2019). A Visual Exploration of Gaussian Processes. Distill, 4(4), e17

Topic Area 2: Systems for ML

  1. Scaling Machine Learning (English) (DD)
  2. AI Domain-specific Architectures
  3. Security and Privacy in Machine Learning (SGC)
  4. Machine Learning for Crypto-Analysis (SGC)
  5. Deep Learning for Systems (MC)
  6. Knowledge Graphs (MC)

Topic Area 3: Quantum Computing

  1. Quantum Machine Learning (AL)
  2. Quantum Benchmarking (AL)

Last Change: Mon, 11 Dec 2023 07:36:40 +0100 - Viewed on: Wed, 01 Jan 2025 18:05:49 +0100
Copyright © MNM-Team http://www.mnm-team.org - Impressum / Legal Info  - Datenschutz / Privacy