Funktionen

Print[PRINT]
.  Home  .  Lehre  .  Seminare  .  Wintersemester 2022/23  .  Hauptseminar ML & AI  .  Themen

Below is the tentative list of the topics that are available. Please, consider the specified literature as starting point for your literature research.

Topic Area 1: AI, Machine Learning and Deep Learning

  1. Computer Vision: Convolutional Neural Networks and Vision Transformers (Andre Luckow)
  2. Natural Language Processing and Transformer Models (Fabian Dreer)
  3. Generative Models (Pascal Jungblut)
  4. Federated Learning (Korbinian Staudacher)
  5. ML in Computational Sciences and HPC (Sergej Breiter)
  6. Explainable AI (Daniel Diefenthaler)
    • Explaining Explanations: An Overview of Interpretability of Machine Learning: https://arxiv.org/abs/1806.00069v3
    • Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead: https://www.nature.com/articles/s42256-019-0048-x
    • The challenge of crafting intelligible intelligence: https://dl.acm.org/doi/10.1145/3282486
    • Li, M., Zhao, Z., & Scheidegger, C. (2020). Visualizing Neural Networks with the Grand Tour. Distill, 5(3), e25.
    • Smith, E. M., Smith, J., Legg, P., & Francis, S. Visualising state space representations of LSTM networks. Presented at Workshop on Visualization for AI Explainability
    • Gärtler, J., Kehlbeck, R., & Deussen, O. (2019). A Visual Exploration of Gaussian Processes. Distill, 4(4), e17
  7. AI Sustainability (Sophia Grundner-Culemann)

Topic Area 2: Data Management and Tools for AI

  1. Modern data management systems (Dang Diep)
  2. AI Programming Tools (Fabio Genz)
  3. Scaling Machine Learning (Minh Chung)
  4. AI Domain-specific Architectures (Sergej Breiter)
  5. Edge Computing and Edge to Cloud Continuum (Andre Luckow)

Topic Area 3: Quantum Computing

  1. Quantum Machine Learning (Michelle To)
  2. Quantum Benchmarking (Michelle To)