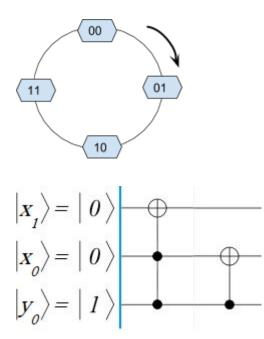

Lab4 - Simple Quantum Walk on a circle

Exercise T1 THEORY

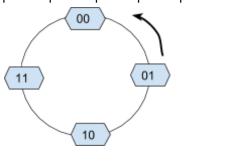
We consider simple quantum walk example on a 4-point circle.

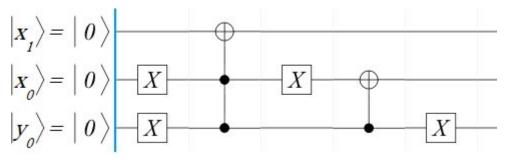

After applying H coin and the step gates, walker state changes according the following:

|position> \otimes |0> becomes $\frac{1}{\sqrt{2}}$ (|position-1> \otimes |0>+|position+1> \otimes |1>) |position> \otimes |1> becomes $\frac{1}{\sqrt{2}}$ (|position-1> \otimes |0>-|position+1> \otimes |1>)

Calculate walker state after applying H coin and step gates once and twice.

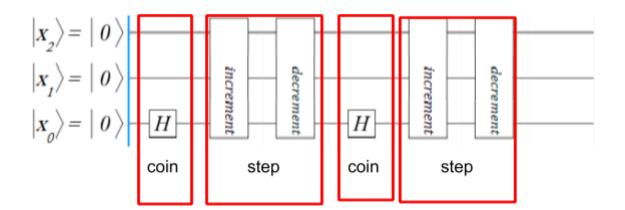
Exercise Q1 QUIDE

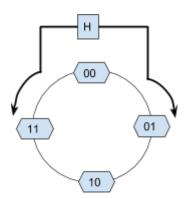

Implement increment gate for two qbit x register in QUIDE. Observe that the gate acts on X register in a way: |00>-> |01>-> |10>->|10>->|00> etc.



Exercise Q2 QUIDE

Implement decrement gate for two qbit x register in QUIDE. Observe that the gate acts on X register in a way:


|00>-> |11>-> |10>->|01>->|00> etc.



Exercise Q3 QUIDE

Implement quantum walk step on a 4-point circle according to the circuilt:

Fill the table and check with your calculations from exercise 1

Probability of finding walker at position				
Number of steps	00>	01>	10>	11>
0	1			
1				
2				
3				

The exercise is a simple example of a walk, but more complex quantum walks can be used for <u>image processing</u>

Exercise I1 IBM

Run IBM circuit implementing <u>Toffoli gate with flips</u>. Add more gates to build and test increment gate.

Exercise I2 IBM (Optional)

Using results from exercise I2 try to build decrement gate and perform one step of quantum walk. Compare results of the IBM simulator and real device.