
Master Thesis

in Computer Science

Developing New Deep Learning
Methods to Break Strong Physical

Unclonable Functions

Sebastian Gavra

Supervisor: Prof. Dr. Peer Kröger
Advisors: Nadine Sarah Schüler, Prof. Dr. Dr. Ulrich Rührmair
Submission date: 30.09.2021, with minor additions and modifications

in December 2022 before publication

Abstract

Current literature has researched logistic regression and multilayer percep-
trons to break XOR Arbiter PUFs, but more modern deep learning methods
are missing. This thesis explores new deep learning methods to break XOR Ar-
biter PUFs. Experiments were conducted on various long short-term memory
and convolutional architectures. The results show that the most interesting
ones are a 3D convolutional neural network and an n−dimensional CNN. Opti-
mization techniques are discussed, mainly avoiding a limitation of the current
best method, a previously proposed multilayer perceptron architecture. In the
results chapter, the 3D CNN is compared to the MLP and shows the optimal
data amount and training times of attacks on (5 − 8)−XORs with 64−bit,
125−bit, and 216−bit challenge length. The 3D CNN was optimized to re-
quire the least amount of data and needs up to 82% less data than the best
method to reach 99% validation accuracy, but mostly takes longer to finish.
The relative difference in data requirement gets bigger and the relative differ-
ence in training time gets smaller when the task gets harder. Three methods
are evaluated on three different aspects. The future work chapter suggests how
the MLP and 3D CNN can be improved and which designs and architectures
are still left to attack.

Contents

1 Introduction & Motivation 3

2 Strong PUFs 4
2.1 Arbiter PUF . 4
2.2 XOR Arbiter PUF . 5

3 Neural Network Concepts 6
3.1 Multilayer perceptron . 6
3.2 Convolutional neural networks 6

4 Related Work 8

5 Data & Attack 10
5.1 Hardware . 10
5.2 Data generation . 10
5.3 Pre-processing . 11
5.4 Task . 11

6 Experiments 12
6.1 Long short-term memory . 12
6.2 CNN . 13

6.2.1 1D . 13
6.2.2 2D . 14
6.2.3 3D . 14
6.2.4 nD . 15

7 Optimization & 3D CNN Development 16
7.1 MLP limitation . 16
7.2 Network architecture . 17

7.2.1 3D convolutional layer 18
7.2.2 Dense layer . 18
7.2.3 Output layer . 19

1

CONTENTS

7.2.4 Optimizer . 19
7.2.5 Loss function . 19
7.2.6 Optimization . 19
7.2.7 Cubic & non-cubic challenge length 20

8 Results 22
8.1 Network configurations . 23
8.2 MLP on pypuf data . 24
8.3 Attacks on (5-8)-XPUFs . 26

8.3.1 Setup & methodology . 26
8.3.1.1 CRP amounts 28
8.3.1.2 Time . 29

8.3.2 64-bit . 30
8.3.3 125-bit & 216-bit . 32

8.4 Increasing arbiters & stages . 33

9 Evaluation 34
9.1 3D CNN vs. MLP vs. logistic regression 34

9.1.1 Theoretically optimal . 34
9.1.2 Modern household computers 35

10 Future Work 36
10.1 MLP optimization and side channels 36
10.2 3D CNN cube size and nD CNN 36
10.3 3D CNN attacks on (9+)-XORs 37
10.4 3D CNN attacks on other Strong PUFs 37
10.5 Training on GPUs . 37

11 Conclusion 38

Bibliography 39

2

Chapter 1

Introduction & Motivation

Today, the most commonly used practice to identify and authenticate de-
vices is to store cryptographic keys on devices. These keys are stored in non-
volatile memory and there are known attacks like the invasive attack or the
side channel attack that threaten security. Cryptography requires many secu-
rity mechanisms, which some devices can not provide. Modern devices, which
are designed as small as possible, could benefit from a more lightweight iden-
tification and authentication process.

PUF is the abbreviation for physical unclonable function, first introduced
by Pappu et al. [1] in 2002. PUFs can identify and authenticate devices. Weak
PUFs use a cryptographic secret key, whereas Strong PUFs do not require any
cryptography. Although they are physically unclonable because of manufac-
turing variations, they are not mathematically unclonable. Machine learning
methods can model the PUF, learn the PUF’s behaviour, and predict responses
with high accuracy. [2] [3]

Logistic regression and multilayer perceptrons successfully broke XOR Ar-
biter PUF designs, but for many well-researched machine learning fields, such
as computer vision or natural language processing, these methods are not pop-
ular choices. There are no mentions of popular deep learning networks such
as long short-term memory or convolutional neural networks to be found in
current literature on attacks on Strong PUFs, which is surprising, because
these networks have achieved state-of-the-art results in many machine learn-
ing fields and this thesis will explore if these networks can learn XOR Arbiter
PUFs better than existing methods.

3

Chapter 2

Strong PUFs

Strong physical unclonable functions (Strong PUFs) can be used for iden-
tification and authentication of devices. For each input challenge the PUF
receives, it generates an output response. Since the challenge-response inter-
face is unprotected, it is necessary to require a large challenge space, 264 being
most commonly used in current research, but 2128 or 2256 can have security ad-
vantages. The challenge space has to be large to prevent predictions of CRPs,
even if an attacker has collected a large subset of CRPs. Unlike Weak PUFs,
which require a cryptographic key, there are no cryptographic keys required
when using a Strong PUF.

A Strong PUF is a small physical system and uses physical disorder to its
advantage. Because of manufacturing variations, the PUFs behaviour is only
known after challenges are applied to the PUF. A challenge and its correspond-
ing response are called a challenge-response pair (CRP). [3]

2.1 Arbiter PUF

Gassend et al. [4] introduced the Arbiter PUF (APUF) in 2002. It com-
prises an input edge with two multiplexers and n stages. It receives an n−bit
input challenge and generates a single-bit output response. When a challenge
is applied, a race condition is established. When the top edge arrives at the
latch first, the response bit is one, and when it arrives at the bottom latch,
the response bit is zero.

Machine learning methods can learn APUFs easily because it is a linearly
separable task. For 99.9% accuracy, only 18050 challenges are required, with
a training time of only 0.6 seconds. [2]

4

CHAPTER 2. STRONG PUFS

2.2 XOR Arbiter PUF

An XOR Arbiter PUF (XPUF) comprises one or multiple APUFs which
forward their response into an XOR gate, which then generates the final re-
sponse. Because of the XOR gate, the response is either 1 or −1. In Figure
2.1, we can see a 64−bit 3−XPUF example, which comprises three APUFs.

XPUFs are harder to learn by machine learning methods than APUFs.
The XOR gate transforms the linearly separable task into a linearly insepara-
ble task. The higher the number of arbiters in the XPUF design and the higher
the number of challenge bits, the harder the machine learning task. Overall, a
high number of arbiters makes the attack harder than a high number of chal-
lenge bits. [5] Many other PUF architectures, including optical structures, can
be found in the literature, to which we refer interested readers [6–79]. Easily
accessible overviews can be found in some of the existing PUF surveys and
tutorials [3, 5, 80–85].

Figure 2.1: An XPUF with three arbiters and 64 stages. It is called a 64−bit
3−XOR. [86]

5

Chapter 3

Neural Network Concepts

This chapter focuses on the two neural network concepts which have achieved
the best results in this thesis.

3.1 Multilayer perceptron

Frank Rosenblatt [87] introduced the single-layer perceptron in 1958 and
it was based on the MP model, which was the first mathematical model of
neurons, proposed by McCulloch and Pitts [88] in 1943. The single-layer Per-
ceptron has a limitation - it cannot learn linearly inseparable problems.
The multilayer perceptron (MLP) however, proposed by Rumelhart et al. [89]
in 1986, was the first neural network to learn a linearly inseparable problem.

The MLP is a feed-forward artificial neural network and comprises an in-
put layer, at least one hidden layer, and an output layer. It uses a supervised
learning technique called backpropagation for learning. Instead of updating
each weight individually, backpropagation computes the gradient of the loss
function regarding a single input-output example. [89]

3.2 Convolutional neural networks

Convolutional neural networks (CNNs) are some of the most represented
networks in the deep learning field today. The term ’convolution’ regarding
neural networks was first used by LeCun et al. [90] in 1989 when they con-
structed a CNN for hand-written zip code recognition. Since then, CNNs have
achieved the following state-of-the-art results: 1D CNNs are used for time
series forecasting and signal identification, 2D CNNs are used for image clas-
sification, image object detection, image segmentation and face recognition
and 3+D CNNs are used for human action recognition and video object de-

6

CHAPTER 3. NEURAL NETWORK CONCEPTS

tection/recognition. [91]
Unlike traditional feature extraction methods like scale-invariant feature

transform, histogram of oriented gradients, and local binary patterns, a CNN
is a feed-forward neural network that can extract features from data automat-
ically. A CNN kernel responds to various features in the data and outputs
filters that are only connected to a few neurons. This reduces network param-
eters and therefore speeds up convergence. [91]

There are exclusive CNN operations that are not being used by other neu-
ral networks, although none of these operations are used in the neural network
presented in this thesis (see section 7.2). To prevent information loss in the
border when a small kernel size is set, the padding operation enlarges the
data. To decrease data density, the stride operation can be employed, which
skips adjacent features. To obviate redundancy in the data, the pooling (a.k.a.
down-sampling) operation can remove trivial features and therefore increase
learning efficiency. [91]

7

Chapter 4

Related Work

Rührmair et al. [2] conducted the first machine learning attacks on XPUFs
in 2010. Their experiments included logistic regression, evolution strategies,
and support vector machines. Logistic regression significantly outperformed
the other two methods. They broke the 6−XOR 64−bit and 5−XOR 128−bit
with a 99% prediction rate.

Tobisch and Becker [92] parallelized the logistic regression method in 2015.
They showed it is possible to break 8−XOR & 9−XOR 64-bit, but not con-
sistently, requiring much more data and training time than the deep learning
methods or the optimized logistic regression [93] in the future.

Aseeri et al. [94] conducted the first deep learning attacks on XPUFs in
2018. They used an MLP architecture that comprises three hidden layers, each
containing 2k neurons for every k-XPUF. They successfully broke the 8−XOR
64−bit and 7−XOR 128−bit with 99% validation accuracy and used fewer
CRPs than the logistic regression method.

In 2019, Santikellur et al. [95] proposed a Tensor Regression Network. It is
a parallel structure containing separate models, similar to the logistic regres-
sion. They could not break the 7−XOR 64−bit and 6−XOR 128−bit.

Mursi et al. [86] released a second MLP approach in 2020. The network
architecture comprises three hidden layers, the first and third contain 2k−1 and
the middle layer contains 2k neurons for k-XPUFs. This was the first method
to break the 9−XOR 64−bit consistently and used less CRPs than all previous
methods, although later Wisiol et al. [93] found a bug in their CRP generation
process.

Wisiol et al. [93] compared the previous four methods on multiple threads
in 2021. Since they generated their data using the pypuf library [96], they
corrected the previous CRP amounts by Mursi et al. [86] and this method
is considered to be the best to date. In addition, they broke 10−XOR &
11−XOR 64−bit consistently. They also optimized the logistic regression and

8

CHAPTER 4. RELATED WORK

could break the 10−XOR 64-bit and although it required more CRPs, it took
less training time than the best method.

Other attacks on PUFs, including side channels and protocol level attacks,
can be found in [97–103] and elsewhere. Also works on PUF formalization,
PUF-uses in advanced protocols, and PUF security proofs, which are all an-
tagonists to these attacks, deserve mentioning in this context [104–110]. Very
recently, Strong PUF security metrics have been developed that try to “antic-
ipate” the security against ML-methods by various means [111].

9

Chapter 5

Data & Attack

This chapter contains technical information about the data and the attack.

5.1 Hardware

All experiments mentioned in this thesis have been executed on an Intel
Core i7-8700 CPU at 3.2 GHz and 64 GB of RAM on up to 12 cores. All
training times and processing times mentioned in this thesis refer to this CPU.

With this RAM capacity, there is a limit to how many CRPs can be loaded
into memory in one chunk. The data limits for this thesis are 75 million 64−bit
CRPs, 35 million 125−bit CRPs, and 20 million 216−bit CRPs.

Not having much RAM is not necessarily an issue, as Aseeri et al. [94] have
shown in their paper, it is possible to load and pre-process multiple chunks of
CRPs sequentially and train on the entire dataset in one run.

5.2 Data generation

Every dataset has been generated with the pypuf library [96]. The challenge
and response data have been saved in two separate text files. One million
64−bit CRPs require 62 megabytes of disk space. The data is loaded into a
memory map [112]. Mursi et al. [86] have used this concept before.

For this thesis, all CRPs have been loaded from 1 to n, where 1 is the first
CRP in the text files and n is the size of the subset. All CRPs are loaded
sequentially and shuffled during training before every epoch.

10

CHAPTER 5. DATA & ATTACK

5.3 Pre-processing

Before the model can be trained, there are four pre-processing steps to
perform:

Step 1: convert challenge bits from 1 and 0 to 1 and −1.
Step 2: reverse the order of challenge bits along axis 1.
Step 3: calculate the cumulative product of challenge bits along axis 1.
Step 4: convert response bits from 1 and −1 to 1 and 0.

These pre-processing steps are required because, in an APUF, the delays
of the signals are additive and the transformed challenge space can be sepa-
rated by a hyperplane. Since an APUF with an n−bit challenge represents an
n−dimensional challenge space, a reverse accumulative product transform has
to be applied to the challenge data. [2]

Pre-processing can take a considerably long time, 1 million 64-bit CRPs
take almost 10 seconds. When a lot of data is being pre-processed for training,
pre-processing can take longer than training. Saving pre-processed CRPs in a
text file can therefore save time if multiple runs are planned to be executed.

5.4 Task

The task of the neural network is to create a model which predicts the re-
sponse for any given challenge. There are only two possible predictions, either
one or zero. This is known as a binary classification task.

There are four ways to evaluate a prediction: correctly predicted as one
(true positive (TP)), incorrectly predicted as one (false positive (FP)), incor-
rectly predicted as zero (true negative (TN)), and correctly predicted as zero
(false negative(FN)). The accuracy can be calculated as:

TP + FN

TP + TN + FP + FN
(5.1)

The difference between the training accuracy and the validation accuracy
is that the training accuracy is evaluated on the data the model was trained
on after every step, and the validation accuracy is evaluated on the data which
was excluded from the training data at the end of every epoch.

In other binary classification tasks, there are other metrics, e.g. precision
and recall, but these metrics are not relevant for this task because classifying
as one or zero is equally as important.

11

Chapter 6

Experiments

This chapter contains details about experiments of all implemented meth-
ods in chronological order. All methods have been implemented using the
Keras framework, unless otherwise specified.

All methods require an additional reshape step compared to the MLP [86]:
the LSTM and 1D CNN require a 1D tensor, nD CNNs require an nD tensor.
The reshape step takes a fraction of a second to complete for many millions of
CRPs and can therefore be ignored when measuring runtime.

6.1 Long short-term memory

First, a long short-term memory (LSTM) network was developed. There
was one approach with a single LSTM cell, one with two LSTM cells, and one
with three LSTM cells.

Unfortunately, the LSTM needed over 30 minutes to reach 97% validation
accuracy on the 1−XOR, whereas state-of-the-art methods can reach 99%
validation accuracy in less than five seconds. There were sudden validation
accuracy drops (see Figure 6.1) of up to 44% in only one epoch, this could
have happened because of the LSTM’s forget gate. Validation accuracy drops
when training the MLP [86] were always less than 1% per epoch. After multiple
failed runs on the 2−XOR, it was not developed any further.

12

CHAPTER 6. EXPERIMENTS

Figure 6.1: Multiple validation accuracy drops during the LSTM training, the
x-axis shows the number of steps and the y-axis shows the validation accuracy.

6.2 CNN

6.2.1 1D

Figure 6.2: A 64−bit challenge represented as a 1D vector.

The 1D CNN achieved good results on the (1 − 3)-XOR but struggled
to reach 95% validation accuracy on the 4−XOR. After adding up to four
convolutional layers and not resolving the issue, the 2D CNN was implemented
next.

Figure 6.2. visualizes how a 64−bit challenge can be represented as a one-
dimensional vector.

13

CHAPTER 6. EXPERIMENTS

6.2.2 2D

Figure 6.3: A 64−bit challenge represented as a 2D 8x8 square.

The 2D CNN also had problems with the 4−XOR but learned faster than
the 1D. There were only a few runs executed with the 2D CNN because im-
plementing the 3D CNN could have more interesting results.

Figure 6.3. visualizes how a 64−bit challenge can be represented as an 8x8
square.

6.2.3 3D

Figure 6.4: A 64−bit challenge represented as a 3D 4x4x4 cube.

The 3D CNN broke the 4−XOR on the first try and could even break the
6−XOR and 7−XOR sometimes before any optimization. This is the method
that was developed and optimized the most (see Chapter 7).

Figure 6.4. visualizes how a 64−bit challenge can be represented as a 4x4x4
cube.

14

CHAPTER 6. EXPERIMENTS

6.2.4 nD

After increasing the dimensionality of the CNN and seeing improvements
every time, it was interesting to see if higher dimensionality could improve
a CNN even more. Unfortunately, there was no machine learning framework
found which supports 4+D convolutional layers.

An nD CNN was implemented by using the PyTorch framework based on
an n−dimensional convolutional layer [113]. This layer is not part of the Py-
Torch framework and recursively reduces the dimensions until it reaches 3D,
from that point on the PyTorch implementation is used.

The problem was that the 3D CNN implemented in PyTorch was not nearly
as good as the Keras version because it struggled with the 2−XOR. Testing the
nD on the 2−XOR did also not show any promising results. Because the dif-
ference between a method that struggled with the 2−XOR and a method that
could break the 7−XOR seemed quite large, the nD CNN was not developed
any further.

15

Chapter 7

Optimization & 3D CNN
Development

This chapter discusses optimization options for two methods and the 3D
CNN development process.

7.1 MLP limitation

Figure 7.1: The training of a typical successful run (training accuracy: dark
blue, validation accuracy: light blue) and a typical failed run (training accu-
racy: dark red, validation accuracy: light red) during one hundred epochs.

From now on, ’MLP’ refers to the multilayer perceptron by Mursi et al. [86].
A drawback of the MLP is that it overfits early when training on less than
the recommended CRP amount. Most commonly, the difference between a

16

CHAPTER 7. OPTIMIZATION & 3D CNN DEVELOPMENT

successful (> 99% training accuracy & > 99% validation accuracy) and a
failed run (> 99% training accuracy & < 55% validation accuracy) is that the
overfitting occurs early on (see Figure 7.1). When the training accuracy is 5%
higher than the validation accuracy at any time during the run, the model
can never recover. Overfitting can also occur when the validation accuracy is
between 95% and 99% although it is much less common and likely a sign of
suboptimal network configuration.

When developing a method to successfully train on relatively low amounts
of CRPs, it is crucial to avoid early overfitting, that is why the 3D CNN uses
ridge activity regularization which has had the biggest impact to prevent this
from occurring.

It is worth noting that ridge activity regularization was not tested on the
MLP and could therefore yield even better results.

7.2 Network architecture

The 3D CNN comprises two hidden layers and one output layer.
All of the terminology used in this section in quotes can be found in the Keras
documentation [114].

The method makes use of two regularizers, ’l1’ (a.k.a. least absolute shrink-
age and selection operator, ’lasso’) and ’l2’ (a.k.a ridge regression). The sum
of square error estimate for least squares is

(Y −Xβ)T (Y −Xβ) (7.1)

. The regularizers add the ’l1’ penalty

(Y −Xβ)T (Y −Xβ) + λ|β|1 (7.2)

or ’l2’ penalty
(Y −Xβ)T (Y −Xβ) + λβTβ (7.3)

to the equation [115].
Table 7.1 shows the architectural differences between both methods.

17

CHAPTER 7. OPTIMIZATION & 3D CNN DEVELOPMENT

Loss Function Opti-
mizer

Hidden
layers

Kernel initializ-
ers

Activ-
ation

MLP Probabilistic
binary cross-
entropy without
reduction

Adam 3 ’random normal’ &
3x ’glorot uniform’

3x
’tanh’
& ’sig-
moid’

3D
CNN

Logistic binary
cross-entropy
with sum reduc-
tion

Adam 2 ’zeros’ &
’he uniform’ &
’glorot uniform’

2x
’tanh’
& ’sig-
moid’

Table 7.1: Architectural differences between the MLP [86] and 3D CNN.

7.2.1 3D convolutional layer

The 3D convolutional layer takes a 3D tensor as an input. The optimal
amount of filters varies by the amount of data being used. As shown in Table
8.1., the amount of filters ranges from seven to twelve.

Unlike in other CNNs, where a kernel goes through the data bit by bit,
this CNNs kernel size is equal to the cube size, so every challenge is learned as
a whole in one step. The kernel is initialized as ‘zeros’ and is ‘l1’ regularized.
The layer is activated by the ‘tanh’ function, which is ‘l2’ regularized.

As already mentioned in section 3.2, there are no exclusive CNN operations
being used in the convolutional layer. Padding is not being used, because
the kernel size equals the cube size and therefore, every bit in the challenge
is learned exactly once, unlike with small kernels, where border features are
learned more infrequently than centered features. Strides are not being used,
because skipping bits in the challenge is detrimental to the learning process
because every bit in the challenge could theoretically flip the response. And
last, pooling is not being used, because it compresses multiple challenge bits
to one feature, but every challenge bit should be learned individually.

7.2.2 Dense layer

While testing, the number of units in the dense layer did not affect the
performance noticeably and the number of units should range from five to
fifteen per filter. The formula for the number of units in the dense layer is the
square of the number of filters in the 3D convolutional layer.

The kernel is initialized as ‘he uniform’. There is a ‘zeros’ bias, which is

18

CHAPTER 7. OPTIMIZATION & 3D CNN DEVELOPMENT

‘l1’ regularized. The layer is activated by the ‘tanh’ function, which is ‘l2’
regularized.

7.2.3 Output layer

The output layer only has one unit, which is the predicted response bit.
The kernel is initialized as ‘glorot uniform’ and there is a ‘ones’ bias. The layer
is activated by the ‘sigmoid’ function, which is ‘l2’ regularized.

7.2.4 Optimizer

As the MLP, the 3D CNN uses the ‘Adam’ optimizer, which is the RM-
SProp algorithm with momentum. All optimizers of the Keras framework have
been tested, such as ‘RMSProp’, ‘NAdam’, ‘Adamax’ and ‘Adam amsgrad’.

7.2.5 Loss function

Unlike the MLP, which uses a probabilistic loss function (standard ’Bina-
ryCrossentropy’), the 3D CNN uses a logistic loss function (using ’from logits’)
which also enables a reduction function. The ’sum’ reduction works best on
small datasets and the ’none’ reduction learns faster on big datasets but doesn’t
succeed as often on small datasets.

7.2.6 Optimization

The method was optimized to require as few CRPs as possible. As already
mentioned in section 7.1, a method that does not overfit early on could theo-
retically be superior to the MLP. The biggest contributing addition to avoiding
overfitting was the ‘l2’ activity regularization in every layer.

19

CHAPTER 7. OPTIMIZATION & 3D CNN DEVELOPMENT

7.2.7 Cubic & non-cubic challenge length

Figure 7.2: The success rate of attacks on the 96−bit 5−XOR. Success: vali-
dation accuracy > 99%, 10 filters & 1000 batch size, 50 runs each. The color
only pertains to the success rate. The average training time is displayed under
the success rate.

Table 8.2 only contains results on XPUFs with challenge lengths 64, 125,
and 216. These numbers have a whole number as their cube root. In case of
a non-cubic challenge length, the cube root is rounded up, so the cube size is
increased by one, e.g. 64−bit is learned on cube size 4, 65−bit is learned on
cube size 5, and in this case, there would be 125− 65, equals 60 empty bits in
the cube, which are filled with zeros.

This was tested on a 96−bit 5−XOR instance, which was trained on cube
sizes from five to eight (see Figure 7.2). Surprisingly, cube size 5 performed
the worst, so filling up the cube to the minimum required size is not ideal.
Filling up the cube by one or two extra sizes can improve performance, but
filling up by three sizes worsens performance.

20

CHAPTER 7. OPTIMIZATION & 3D CNN DEVELOPMENT

Cube size 6 always has a higher success rate than cube size 5 and is always
faster, cube size 7 mostly has a higher success rate than cube size 8 and is
mostly faster. Cube size 7 has the highest overall success rate (62%), followed
by cube size 6 (61%) but cube size 6 is faster overall, 50 seconds compared to
66 seconds on average. The best choice for the 96−bit 5−XOR is cube size 6.

In comparison, the MLP needed 250k and 260k CRPs for 58% success rate
and 270k for 62% success rate with an average training time of 31 seconds.
So even though the challenge has to be filled with at least 29 zeros for the
3D CNN only, the 3D CNN still needs 20% less data than the MLP which is
higher than the 19% CRP difference for the 64−bit 5−XOR which does not
require any filling.

This was discovered after the result chapter 8 and therefore, there was no
filling to increase the cube size. Also, the method has only shaped the data
into a cube and no other geometrical shapes were tested.

21

Chapter 8

Results

Challenge
Design Method

Streams or
Batch size

length filters

64−bit

5−XOR
MLP 5 1000

3D CNN 7 100

6−XOR
MLP 5 1000

3D CNN 10 1000

7−XOR
MLP 6 10000

3D CNN 12 5000

8−XOR
MLP 6 10000

3D CNN 12 5000

125−bit

5−XOR
MLP 5 1000

3D CNN 10 1000

6−XOR
MLP 7 10000

3D CNN 12 5000

216−bit 5−XOR
MLP 6 10000

3D CNN 12 5000

Table 8.1: Network configurations for every attack. The MLP [86] uses a
stream parameter, the 3D CNN uses a filter parameter.

22

CHAPTER 8. RESULTS

8.1 Network configurations

As Wisiol et al. [93] have shown, it is important to configure the MLP
correctly because it makes a successful attack much more likely. The batch sizes
for 64−bit can be found in the original paper [86], for longer challenges, there
is no information in the literature. Therefore, batch sizes for those attacks
were chosen after testing. Regarding the stream parameter, which determines
the length of the hidden layers in the MLP, there is no information in the
literature, although, in the project’s GitHub repository, there is a README
file that states: “we suggest to choose stream = 5 if you are attacking the
2-XPUF, 3-XPUF, and 4-XPUF. If you are attacking the 9-XPUF, the stream
should equal eight since (29) neurons will lead to overfitting.” [116]

The configurations for all attacks of both methods can be found in Table
8.1.

23

CHAPTER 8. RESULTS

8.2 MLP on pypuf data

Figure 8.1: A comparison between the optimal CRP amounts published by
Mursi et al. [86] on their data and pypuf data. The best case refers to the one
instance out of five which requires the least amount of CRPs and the worst
case refers to the one instance out of five which requires the most amount of
CRPs.

As stated by Wisiol et al. [93], there was a bug in Mursi et al.’s [86] CRP
generation process: about 20% of the randomly drawn delays were set to
zero. As in Wisiol et al.’s work [93], the datasets of this thesis have also
been generated by the pypuf library [96], but their results do not include a
comparison where the goal was to use as few CRPs as possible.

Figure 8.1 displays the reference CRPs [86] and the best and worst case
on pypuf data. It is also worth noting that out of the five generated 8−XOR
datasets, two had to be skipped, because the MLP wasn’t able to break those
instances with the 75M CRP limit and two additional datasets were generated
afterward.

Comparing Mursi et al.’s [86] CRP amounts to the pypuf averages (from
Table 8.2), the MLP required 26% more CRPs for the 5−XOR, 173% more

24

CHAPTER 8. RESULTS

CRPs for the 6−XOR, 20% more CRPs for the 7−XOR, and 1176% more
CRPs for the 8−XOR.

25

CHAPTER 8. RESULTS

8.3 Attacks on (5-8)-XPUFs

Challenge
Design Method

CRPs in 1000 Training time in s

length min - max avg min - max avg

64−bit

5−XOR
MLP 43− 86 53 10− 121 42

3D CNN 26− 60 43 66− 324 137

6−XOR
MLP 395− 1240 696 26− 164 78

3D CNN 245− 790 413 88− 246 141

7−XOR
MLP 590− 965 813 24− 36 29

3D CNN 430− 830 648 90− 130 107

8−XOR
MLP 6500−30000 21700 179− 420 329

3D CNN 2800− 5000 3960 591− 971 711

125−bit

5−XOR
MLP 220− 860 443 56− 158 103

3D CNN 155− 650 312 42− 128 82

6−XOR
MLP 3400−10000 6190 67− 93 82

3D CNN 840− 2150 1474 117− 281 167

216−bit 5−XOR
MLP 2000− 2650 2390 32− 47 38

3D CNN 1280− 1800 1480 88− 111 104

Table 8.2: A comparison between the MLP by Mursi et al. [86] and the 3D
CNN method. The table shows the results of five randomly generated instances
per design. CRP amounts stand for the minimum amount needed to learn a
particular instance with 99% validation accuracy in at least 5/6 successful
runs. Training times are averages of all runs per instance until 99% validation
accuracy was reached. The average training time of a design is calculated as
the average of all average instance times.

8.3.1 Setup & methodology

For every design, five instances have been generated using the pypuf li-
brary. [96] Seven designs have been chosen, Table 8.2 therefore contains the
results of 35 instances.

26

CHAPTER 8. RESULTS

In related work, most result tables contain the actual accuracy values, ex-
cept for Wisiol et al. [93], they stopped training at 95% validation accuracy.
Excluding accuracy columns from a table can improve readability, especially
when the values hold little significance (e.g. comparing results by fractional
percentage).

For this thesis, the training has been stopped at 99% validation accuracy,
so, given enough time, either the model has successfully reached the threshold
after the training time displayed in the table, or the model has overfitted at
some point during training. Although the threshold at 99% is set high, it has
been observed during many runs that if the validation accuracy reaches 55%
during a run, 99% can be achieved almost always if the network is configured
optimally.

27

CHAPTER 8. RESULTS

8.3.1.1 CRP amounts

Figure 8.2: Fifty runs with every CRP amount on a 64−bit 5−XOR instance.
A successful run reached 99% validation accuracy, the success rate is calculated
by dividing the number of successful runs by the total number of runs.

In Figure 8.2, we can see that, for this instance, the first successful run was
achieved with 32000 CRPs, so training on fewer CRPs is unlikely to be suc-
cessful. When doubling the CRPs, it works 80% of the time and when tripling
the CRPs, it works 96% of the time. The CRP values in the results are usually
taken from the second quarter, so in this example, the CRP value would be
between 48000 and 64000.

The idea behind an ’optimal’ CRP amount is that only a subset of the
entire dataset is required to achieve good results. The fewer CRPs are trained
on, the less computing power will be required. Removing e.g. 20% of CRPs
from the dataset would decrease the success rate significantly, but adding the
equivalent CRP amount to the dataset would increase the success rate slightly
at best.

Finding the optimal CRP amounts for a particular instance can take many

28

CHAPTER 8. RESULTS

runs, which is why the following process was used:
- start one run each on three CPUs with a low CRP amount

- if all three runs were successful, start another three runs
- if at least 5/6 runs were successful, then the CRP amount is consid-
ered to be optimal

- if 2/3, 1/3 or 0/3 runs were successful, increase CRPs by ∼ 2%, ∼ 5% or
∼ 10% and start over

8.3.1.2 Time

All papers mentioned in the related work chapter only measured training
time. When attacking an instance, the dataset has to be pre-processed (see
Section 5.3.). When comparing two methods on the same dataset and one
method requires millions more CRPs than the other but trains faster, it may
actually be slower in total runtime. For small datasets (< 1M CRPs), pre-
processing can be disregarded, but for big datasets, pre-processing time can
exceed training time. Table 8.2 contains only training time results. For a
closer look regarding runtime on big datasets, see Figures 8.2 and 8.3.

In Wisiol et al.’s work [93], when attacking the 64−bit 10−XOR, the logistic
regression was trained on one billion CRPs and needed 41 minutes of training
time and the MLP was trained on 119 million CRPs and needed 291 minutes
of training time. It is possible to compare the runtime by adding the pre-
processing time to the training time. Because the LR required 881 million
CRPs more, at a duration of ten seconds per million CRPs, the pre-processing
time for the LR attack would take around 146 minutes longer than the pre-
processing for the MLP attack. When comparing runtime, the LR attack is
still faster, but not by as much as it seems when comparing training time.

29

CHAPTER 8. RESULTS

8.3.2 64-bit

Figure 8.3: Results of every 64−bit instance. The bars and the left y-axis
stand for the optimal CRP amount, the plot and the right y-axis stand for
time.

The 3D CNN required less data for 19/20 instances and more data for
one 5−XOR instance (see Figure 8.3). It required 19% fewer CRPs for the
5−XOR, 41% for the 6−XOR, 20% for the 7−XOR, and 82% for the 8−XOR
on average.

The MLP learned 19/20 instances faster and one 5−XOR instance slower.
On average, the MLP took 69% less training time for the 5−XOR, 55% less

30

CHAPTER 8. RESULTS

for the 6-XOR, 73% less for the 7−XOR and 54% less for the 8−XOR.
As the related work has shown before, the number of arbiters in the design

has a large impact on the amount of CRPs required and the training time.
The differences in training time are interesting, surprisingly, the 7−XOR was
learned the fastest on average by both methods. Also interesting is that the
MLP required more data for one 6−XOR instance than all 7−XOR instances,
but this is not the case for the 3D CNN.

31

CHAPTER 8. RESULTS

8.3.3 125-bit & 216-bit

Figure 8.4: Results of every 125−bit & 216−bit instance. The bars and the
left y-axis stand for the optimal CRP amount, the plot and the right y-axis
stand for time.

The 3D CNN required less data for all 15 instances (see Figure 8.4). It re-
quired 30% fewer CRPs for the 5−XOR 125−bit, 76% for the 6−XOR 125−bit,
and 32% for the 5−XOR 216−bit on average.

The MLP learned 12/15 instances faster and 3/15 instances slower and
learned the 5−XOR 125−bit slower on average by 20%. On average, it learned
the 6−XOR 125−bit faster by 51% and the 5−XOR 216−bit faster by 73%.

32

CHAPTER 8. RESULTS

Interestingly, the 6−XOR 125−bit was much harder to learn than the
5−XOR 216−bit with the MLP, but it seems like these two designs were sim-
ilarly as hard for the 3D CNN.

8.4 Increasing arbiters & stages

When trying to prevent machine learning attacks on XPUFs, there are two
options: the first is increasing the number of arbiters that forward their re-
sponse into the XOR-gate and the second is increasing the number of stages
where the signal races through.

As we can see in the results, increasing the number of arbiters to eight had
the biggest impact on making the attack harder. The 64−bit 8−XOR was
harder to learn than the 216−bit 5−XOR. Increasing the number of stages did
also have an impact. The 5−XOR 216−bit on average required at least four
times as many CRPs as the 5−XOR 125−bit which required at least seven
times as many CRPs as the 5−XOR 64−bit.

Regarding CRP requirement, the 3D CNN is performing better when the
task is harder because the smallest relative difference is 19% for the easiest
task (5−XOR 64−bit) and the biggest relative difference is 82% for the hard-
est task (8−XOR 64−bit).

When comparing training time, the results also show that the relative dif-
ference is smaller on the hardest tasks. The relative time difference for the
64−bit 5−XOR is 226%, and for the 64−bit 8−XOR it is 116%. Also worth
noting, when comparing total runtime on hard tasks (see Figures 8.3 and 8.4)
we can see that the gap becomes even smaller, which is another argument that
the 3D CNN is better suited for harder tasks.

33

Chapter 9

Evaluation

The deep learning methods were already evaluated in subsections 8.3.2 and
8.3.3 and section 8.4, while only focusing on the hardware and limited CRP
aspect with sufficient training time. In this chapter, all three methods are
evaluated from a theoretical and practical perspective.

When evaluating different methods, there are three aspects to consider:
1) CRP amount: how many CRPs are available to the attacker?
2) Computing power: how many threads can the attacker run in parallel?
3) Time: how important is it to break the PUF as soon as possible?

Depending on if one of these resources is insufficient, the attacker can
choose between three different methods. In practice, 3) can only be the most
important aspect if both 1) and 2) are sufficient, because not having enough
CRPs can fail the attack, and not having enough computing power can slow
down pre-processing and training. Therefore, when 1) or 2) are insufficient,
the attacker should choose a method according to these limitations.

9.1 3D CNN vs. MLP vs. logistic regression

This section determines the best attack choice based on the three aspects
mentioned above.

9.1.1 Theoretically optimal

When an attacker has collected many billions of CRPs and has access
to a very powerful computer, e.g. a supercomputer, the best choice could
theoretically be the logistic regression, because it is the fastest. As Wisiol
et al. [93] have shown, LR broke the 10−XOR in 41 minutes, whereas the

34

CHAPTER 9. EVALUATION

MLP needed 291 minutes. Even though LR’s success rate was 10% less, in
case of failure, the attacker could start the attack over much more quickly and
therefore save time.

9.1.2 Modern household computers

When the attacker is using a modern household computer, LR is only
the best choice for small XPUF designs because it requires much more CRPs
which cannot be held in RAM at once. Also, it would be hard to train on
many billions of CRPs, one billion 64− bit CRPs saved in a text file require
62 gigabytes of disk space.

When the attacker has collected sufficiently enough CRPs, the MLP can
be the best choice for designs up to 7−XOR, but there were problems with
the 8−XOR as reported in section 8.2.

The 3D CNN method seems to be the best choice when the collected data
is not sufficient for the MLP and LR and theoretically for the (8+)−XOR
designs on normal computers but (9+)-XOR still need empirical results.

35

Chapter 10

Future Work

This chapter proposes possible improvements to both methods and de-
scribes which attacks on which designs and architectures could be interesting
in the future.

10.1 MLP optimization and side channels

The MLP could be optimized similarly to the 3D CNN (see Chapter 7)
and could require even fewer CRPs. The first steps could be to test the ridge
activity regularization and the logistic loss function with sum reduction.

In 2013, Mahmoud et al. [117] proposed a ‘Side Channel Attack’. The
number of response bits of every arbiter in a design that is one or zero can be
known by the attacker and therefore this information can additionally be used
in an attack.

10.2 3D CNN cube size and nD CNN

As discovered in subsection 7.2.7, increasing the cube size can improve
the success rate and speed. The method was optimized to work best without
filling empty cube values. There could still be room for optimizing further.
The method may respond better to a change in filters, dense layer units, batch
size, kernel initialization, and so forth.

Because 2D works better than 1D and 3D works better than 2D, nD could
theoretically work even better than 3D. Unfortunately, the n−dimensional
CNN could not be optimized in time for this thesis.

36

CHAPTER 10. FUTURE WORK

10.3 3D CNN attacks on (9+)-XORs

Due to a lack of computing power and time constraints, attacks on the
(9+)−XORs have not been conducted with the 3D CNN. During the writing
of this thesis, Wisiol et al. [93] released results of the MLP on the 64−bit 10 &
11−XOR. These designs have not been broken by any deep learning method
before. It would be interesting to see how well the 3D CNN performs on these
designs, especially because the relative CRP difference of these two methods
increases on harder tasks (as shown in section 8.4).

10.4 3D CNN attacks on other Strong PUFs

Neural network attacks also have had success on other Strong PUFs than
the XPUF. The ’Splitting Attack’ by Wisiol et al. [118] is the best attack
on Interpose PUFs [119]. Alkatheiri and Zhuang [120] have attacked the
Feed-Forward Arbiter PUF [121] successfully. Rührmair et al. [2] broke the
Lightweight Secure PUF [71]. The Bistable Ring PUF [49] has not been bro-
ken by deep learning methods yet and there are new Strong PUF architectures
released every year. It would be interesting to see the performance of the 3D
CNN on all of these Strong PUFs.

10.5 Training on GPUs

Qualitative GPUs have become more affordable and from own experience,
methods can be trained about ten times faster than on CPUs. But modern
GPUs mostly only have four or six gigabytes of RAM. This works well on small
designs but makes chunking on big designs inevitable.

37

Chapter 11

Conclusion

In this thesis, new deep learning methods were developed as an alterna-
tive to the multilayer perceptron. LSTMs have not performed well. The nD
CNN was not optimized enough to be a viable option but could work better
than the 3D CNN in theory. This thesis introduced the first CNN to break
an XPUF, the best being a 3D CNN method. It was compared to an MLP,
the best method to date [86], requiring 19% − 82% fewer CRPs. Considering
training time it took 20% less for one design but more for the other designs by
up to 269%. The method could be optimized by increasing the cube size and
there are also possible improvements to be made to the MLP. The MLP was
trained on pypuf data and the results were compared to the reported CRP
amounts on another data source [86], and the data requirement was higher
for every design. The logistic regression [93], MLP [86], and 3D CNN are all
viable choices, depending on how many CRPs, how much computing power
and how much training time is available to the attacker. The 3D CNN misses
important results for the (9+)−XOR. Judging by the presented results, CNNs
have shown potential to break Strong PUFs and should be considered for deep
learning attacks in the future.

I would like to thank my advisors Nadine Sarah Schüler and Prof. Dr. Dr.
Ulrich Rührmair and my professor Prof. Dr. Peer Kröger for teaching me and
for enabling me to write my master thesis at the DBS chair of the Institute of
Informatics at the LMU Munich.

38

Bibliography

[1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[2] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in Proceedings
of the 17th ACM conference on Computer and communications security,
pp. 237–249, 2010.

[3] U. Rührmair and D. E. Holcomb, “Pufs at a glance,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6,
IEEE, 2014.

[4] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physi-
cal random functions,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, pp. 148–160, 2002.

[5] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclon-
able functions and applications: A tutorial,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1126–1141, 2014.

[6] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic
pufs and their use for ip protection,” in International workshop on cryp-
tographic hardware and embedded systems, pp. 63–80, Springer, 2007.

[7] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “The
butterfly puf protecting ip on every fpga,” in 2008 IEEE International
Workshop on Hardware-Oriented Security and Trust, pp. 67–70, IEEE,
2008.

[8] A. Vijayakumar and S. Kundu, “A novel modeling attack resistant puf
design based on non-linear voltage transfer characteristics,” in 2015 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 653–658, IEEE, 2015.

39

BIBLIOGRAPHY

[9] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine
learning resistant strong puf: Possible or a pipe dream?,” in 2016
IEEE international symposium on hardware oriented security and trust
(HOST), pp. 19–24, IEEE, 2016.

[10] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, “Invasive puf
analysis,” in 2013 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, pp. 30–38, IEEE, 2013.

[11] P. Koeberl, Ü. Kocabaş, and A.-R. Sadeghi, “Memristor pufs: a new
generation of memory-based physically unclonable functions,” in 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 428–431, IEEE, 2013.

[12] S. Katzenbeisser, Ü. Kocabaş, V. Van Der Leest, A.-R. Sadeghi, G.-J.
Schrijen, and C. Wachsmann, “Recyclable pufs: Logically reconfigurable
pufs,” Journal of Cryptographic Engineering, vol. 1, no. 3, pp. 177–186,
2011.

[13] J. Delvaux, “Machine-learning attacks on polypufs, ob-pufs, rpufs, lhs-
pufs, and puf–fsms,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 8, pp. 2043–2058, 2019.

[14] B. Chatterjee, D. Das, S. Maity, and S. Sen, “Rf-puf: Enhancing iot
security through authentication of wireless nodes using in-situ machine
learning,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 388–398,
2018.

[15] A. Mazady, M. T. Rahman, D. Forte, and M. Anwar, “Memristor puf—a
security primitive: Theory and experiment,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 5, no. 2, pp. 222–229,
2015.

[16] J.-L. Zhang, G. Qu, Y.-Q. Lv, and Q. Zhou, “A survey on silicon pufs
and recent advances in ring oscillator pufs,” Journal of computer science
and technology, vol. 29, no. 4, pp. 664–678, 2014.

[17] J. Shi, Y. Lu, and J. Zhang, “Approximation attacks on strong pufs,”
IEEE transactions on computer-aided design of integrated circuits and
systems, vol. 39, no. 10, pp. 2138–2151, 2019.

[18] R. Kumar and W. Burleson, “On design of a highly secure puf based on
non-linear current mirrors,” in 2014 IEEE international symposium on
hardware-oriented security and trust (HOST), pp. 38–43, IEEE, 2014.

40

BIBLIOGRAPHY

[19] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Robust and reverse-engineering resilient puf authentication and
key-exchange by substring matching,” IEEE Transactions on Emerging
Topics in Computing, vol. 2, no. 1, pp. 37–49, 2014.

[20] R. Maes, P. Tuyls, and I. Verbauwhede, “A soft decision helper data
algorithm for sram pufs,” in 2009 IEEE international symposium on
information theory, pp. 2101–2105, IEEE, 2009.

[21] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic pufs from flip-flops
on reconfigurable devices,” in 3rd Benelux workshop on information and
system security (WISSec 2008), vol. 17, p. 2008, 2008.

[22] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Ver-
bauwhede, “A lockdown technique to prevent machine learning on pufs
for lightweight authentication,” IEEE Transactions on Multi-Scale Com-
puting Systems, vol. 2, no. 3, pp. 146–159, 2016.

[23] J. Delvaux and I. Verbauwhede, “Side channel modeling attacks on 65nm
arbiter pufs exploiting cmos device noise,” in 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 137–
142, IEEE, 2013.

[24] B. C. Grubel, B. T. Bosworth, M. R. Kossey, H. Sun, A. B. Cooper,
M. A. Foster, and A. C. Foster, “Silicon photonic physical unclonable
function,” Optics Express, vol. 25, no. 11, pp. 12710–12721, 2017.

[25] R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and
C. Yang, “Physical key-protected one-time pad,” Scientific reports,
vol. 3, no. 1, pp. 1–6, 2013.

[26] J. D. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem,
G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan,
“‘fingerprinting’documents and packaging,” Nature, vol. 436, no. 7050,
pp. 475–475, 2005.

[27] G. DeJean and D. Kirovski, “Rf-dna: Radio-frequency certificates of au-
thenticity,” in International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 346–363, Springer, 2007.

[28] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up sram state as
an identifying fingerprint and source of true random numbers,” IEEE
Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, 2008.

41

BIBLIOGRAPHY

[29] P. Simons, E. van der Sluis, and V. van der Leest, “Buskeeper pufs, a
promising alternative to d flip-flop pufs,” in 2012 IEEE International
Symposium on Hardware-Oriented Security and Trust, pp. 7–12, IEEE,
2012.

[30] Y. Eliezer, U. Ruhrmair, N. Wisiol, S. Bittner, and H. Cao, “Exploiting
structural nonlinearity of a reconfigurable multiple-scattering system,”
arXiv preprint arXiv:2208.08906, 2022.

[31] S. S. Zalivaka, A. A. Ivaniuk, and C.-H. Chang, “Reliable and modeling
attack resistant authentication of arbiter puf in fpga implementation
with trinary quadruple response,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 4, pp. 1109–1123, 2018.

[32] C. Q. Liu, Y. Cao, and C. H. Chang, “Acro-puf: A low-power, reliable
and aging-resilient current starved inverter-based ring oscillator physical
unclonable function,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 64, no. 12, pp. 3138–3149, 2017.

[33] R. A. John, N. Shah, S. K. Vishwanath, S. E. Ng, B. Febriansyah,
M. Jagadeeswararao, C.-H. Chang, A. Basu, and N. Mathews, “Halide
perovskite memristors as flexible and reconfigurable physical unclonable
functions,” Nature Communications, vol. 12, no. 1, pp. 1–11, 2021.

[34] K. Rosenfeld, E. Gavas, and R. Karri, “Sensor physical unclonable func-
tions,” in 2010 IEEE international symposium on hardware-oriented se-
curity and trust (HOST), pp. 112–117, IEEE, 2010.

[35] G. S. Rose, J. Rajendran, N. McDonald, R. Karri, M. Potkonjak, and
B. Wysocki, “Hardware security strategies exploiting nanoelectronic cir-
cuits,” in 2013 18th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pp. 368–372, IEEE, 2013.

[36] J. Tang, R. Karri, and J. Rajendran, “Securing pressure measurements
using sensorpufs,” in 2016 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1330–1333, IEEE, 2016.

[37] Q. Chen, G. Csaba, X. Ju, S. B. Natarajan, P. Lugli, M. Stutzmann,
U. Schlichtmann, and U. Rührmair, “Analog circuits for physical cryp-
tography,” in Proceedings of the 2009 12th International symposium on
integrated circuits, pp. 121–124, IEEE, 2009.

[38] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, M. Stutzmann, and
U. Ruehrmair, “Circuit-based approaches to simpl systems,” Journal
of Circuits, Systems, and Computers, vol. 20, no. 01, pp. 107–123, 2011.

42

BIBLIOGRAPHY

[39] Y. Gao, C. Jin, J. Kim, H. Nili, X. Xu, W. Burleson, O. Kavehei, M. van
Dijk, D. C. Ranasinghe, and U. Rührmair, “Efficient erasable pufs from
programmable logic and memristors,” Cryptology ePrint Archive, 2018.

[40] R. Horstmeyer, S. Assawaworrarit, U. Ruhrmair, and C. Yang, “Phys-
ically secure and fully reconfigurable data storage using optical scat-
tering,” in 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 157–162, IEEE, 2015.

[41] L. Orosa, U. Rührmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jat-
tke, M. Patel, J. Kim, K. Razavi, and O. Mutlu, “Spyhammer:
Using rowhammer to remotely spy on temperature,” arXiv preprint
arXiv:2210.04084, 2022.

[42] U. Rührmair, “Simpl systems as a keyless cryptographic and security
primitive,” in Cryptography and Security: From Theory to Applications,
pp. 329–354, Springer, 2012.

[43] M. Sauer, P. Raiola, L. Feiten, B. Becker, U. Rührmair, and I. Polian,
“Sensitized path puf: A lightweight embedded physical unclonable func-
tion,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pp. 680–685, IEEE, 2017.

[44] U. Rührmair, Q. Chen, M. Stutzmann, P. Lugli, U. Schlichtmann, and
G. Csaba, “Towards electrical, integrated implementations of simpl sys-
tems,” in IFIP International Workshop on Information Security Theory
and Practices, pp. 277–292, Springer, 2010.

[45] C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, and M. Stutzmann,
“Random pn-junctions for physical cryptography,” Applied Physics Let-
ters, vol. 96, no. 17, p. 172103, 2010.

[46] P. Lugli, A. Mahmoud, G. Csaba, M. Algasinger, M. Stutzmann, and
U. Rührmair, “Physical unclonable functions based on crossbar arrays
for cryptographic applications,” International journal of circuit theory
and applications, vol. 41, no. 6, pp. 619–633, 2013.

[47] G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber,
U. Schlichtmann, P. Lugli, and U. Rührmair, “Application of mis-
matched cellular nonlinear networks for physical cryptography,” in 2010
12th International Workshop on Cellular Nanoscale Networks and their
Applications (CNNA 2010), pp. 1–6, IEEE, 2010.

43

BIBLIOGRAPHY

[48] U. Ruehrmair, M. Stutzmann, J. Finley, C. Jirauschek, G. Csaba,
P. Lugli, E. Biebl, R. Dietmueller, K. Mueller, and H. Langhuth,
“Method for security purposes,” July 5 2012. US Patent App.
13/250,534.

[49] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “The
bistable ring puf: A new architecture for strong physical unclonable func-
tions,” in 2011 IEEE International Symposium on Hardware-Oriented
Security and Trust, pp. 134–141, IEEE, 2011.

[50] G. Csaba, X. Ju, Q. Chen, W. Porod, J. Schmidhuber, U. Schlichtmann,
P. Lugli, and U. Rührmair, “On-chip electric waves: An analog circuit
approach to physical uncloneable functions,” Cryptology ePrint Archive,
2009.

[51] H. Langhuth, S. Frédérick, M. Kaniber, J. J. Finley, and U. Rührmair,
“Strong photoluminescence enhancement from colloidal quantum dot
near silver nano-island films,” Journal of fluorescence, vol. 21, no. 2,
pp. 539–543, 2011.

[52] U. Rührmair, “Simpl systems: On a public key variant of physical un-
clonable functions,” Cryptology ePrint Archive, 2009.

[53] U. Rührmair, “Simpl systems, or: can we design cryptographic hard-
ware without secret key information?,” in International Conference on
Current Trends in Theory and Practice of Computer Science, pp. 26–45,
Springer, 2011.

[54] C. Jin, W. Burleson, M. van Dijk, and U. Rührmair, “Programmable
access-controlled and generic erasable puf design and its applications,”
Journal of Cryptographic Engineering, pp. 1–20, 2022.

[55] U. Rührmair, C. Hilgers, S. Urban, A. Weiershäuser, E. Dinter,
B. Forster, and C. Jirauschek, “Optical pufs reloaded,” Cryptology ePrint
Archive, 2013.

[56] C. Jin, X. Xu, W. Burleson, U. Rührmair, and M. van Dijk, “Playpuf:
programmable logically erasable pufs for forward and backward secure
key management,” Cryptology ePrint Archive, 2015.

[57] C. Jin, W. Burleson, M. van Dijk, and U. Rührmair, “Erasable pufs:
formal treatment and generic design,” in Proceedings of the 4th ACM
Workshop on Attacks and Solutions in Hardware Security, pp. 21–33,
2020.

44

BIBLIOGRAPHY

[58] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and
G. Csaba, “Applications of high-capacity crossbar memories in cryptog-
raphy,” IEEE Transactions on Nanotechnology, vol. 10, no. 3, pp. 489–
498, 2010.

[59] U. Rührmair, J. Martinez-Hurtado, X. Xu, C. Kraeh, C. Hilgers,
D. Kononchuk, J. J. Finley, and W. P. Burleson, “Virtual proofs of
reality and their physical implementation,” in 2015 IEEE Symposium
on Security and Privacy, pp. 70–85, IEEE, 2015.

[60] F. Pavanello, I. O’Connor, U. Rührmair, A. C. Foster, and D. Syvridis,
“Recent advances in photonic physical unclonable functions,” in 2021
IEEE European Test Symposium (ETS), pp. 1–10, IEEE, 2021.

[61] M. Majzoobi, F. Koushanfar, and S. Devadas, “Fpga puf using pro-
grammable delay lines,” in 2010 IEEE international workshop on infor-
mation forensics and security, pp. 1–6, IEEE, 2010.

[62] Y. Cao, L. Zhang, C.-H. Chang, and S. Chen, “A low-power hybrid ro
puf with improved thermal stability for lightweight applications,” IEEE
Transactions on computer-aided design of integrated circuits and sys-
tems, vol. 34, no. 7, pp. 1143–1147, 2015.

[63] J. Rajendran, G. S. Rose, R. Karri, and M. Potkonjak, “Nano-ppuf: A
memristor-based security primitive,” in 2012 IEEE Computer Society
Annual Symposium on VLSI, pp. 84–87, IEEE, 2012.

[64] M. T. Rahman, D. Forte, J. Fahrny, and M. Tehranipoor, “Aro-puf: An
aging-resistant ring oscillator puf design,” in 2014 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1–6, IEEE, 2014.

[65] K. Xiao, M. T. Rahman, D. Forte, Y. Huang, M. Su, and M. Tehra-
nipoor, “Bit selection algorithm suitable for high-volume production of
sram-puf,” in 2014 IEEE international symposium on hardware-oriented
security and trust (HOST), pp. 101–106, IEEE, 2014.

[66] K. Lofstrom, W. R. Daasch, and D. Taylor, “Ic identification circuit
using device mismatch,” in 2000 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (Cat. No. 00CH37056), pp. 372–
373, IEEE, 2000.

[67] B. Škorić, P. Tuyls, and W. Ophey, “Robust key extraction from physical
uncloneable functions,” in International Conference on Applied Cryptog-
raphy and Network Security, pp. 407–422, Springer, 2005.

45

BIBLIOGRAPHY

[68] C. Herder, L. Ren, M. Van Dijk, M.-D. Yu, and S. Devadas, “Trapdoor
computational fuzzy extractors and stateless cryptographically-secure
physical unclonable functions,” IEEE Transactions on Dependable and
Secure Computing, vol. 14, no. 1, pp. 65–82, 2016.

[69] M. Arapinis, M. Delavar, M. Doosti, and E. Kashefi, “Quantum physical
unclonable functions: Possibilities and impossibilities,” Quantum, vol. 5,
p. 475, 2021.

[70] R. Maes, A. V. Herrewege, and I. Verbauwhede, “Pufky: A fully func-
tional puf-based cryptographic key generator,” in International Work-
shop on Cryptographic Hardware and Embedded Systems, pp. 302–319,
Springer, 2012.

[71] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
pufs,” in 2008 IEEE/ACM International Conference on Computer-Aided
Design, pp. 670–673, IEEE, 2008.

[72] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design
and implementation of secure reconfigurable pufs,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 2, no. 1, pp. 1–
33, 2009.

[73] P. Tuyls, G.-J. Schrijen, B. Škorić, J. v. Geloven, N. Verhaegh, and
R. Wolters, “Read-proof hardware from protective coatings,” in Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
pp. 369–383, Springer, 2006.

[74] P. Tuyls and B. Škorić, “Strong authentication with physical unclonable
functions,” in Security, Privacy, and Trust in Modern Data Manage-
ment, pp. 133–148, Springer, 2007.

[75] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The dram latency
puf: Quickly evaluating physical unclonable functions by exploiting the
latency-reliability tradeoff in modern commodity dram devices,” in 2018
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 194–207, IEEE, 2018.

[76] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “Dram-based
intrinsic physically unclonable functions for system-level security and
authentication,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 3, pp. 1085–1097, 2016.

46

BIBLIOGRAPHY

[77] X. Xi, H. Zhuang, N. Sun, and M. Orshansky, “Strong subthreshold
current array puf with 2 65 challenge-response pairs resilient to machine
learning attacks in 130nm cmos,” in 2017 Symposium on VLSI Circuits,
pp. C268–C269, IEEE, 2017.

[78] X. Xi, G. Li, Y. Wang, and M. Orshansky, “A provably secure strong puf
based on lwe: Construction and implementation,” IEEE Transactions on
Computers, 2022.

[79] C. Jin, C. Herder, L. Ren, P. H. Nguyen, B. Fuller, S. Devadas, and
M. Van Dijk, “Fpga implementation of a cryptographically-secure puf
based on learning parity with noise,” Cryptography, vol. 1, no. 3, p. 23,
2017.

[80] U. Rührmair, S. Devadas, and F. Koushanfar, “Security based on phys-
ical unclonability and disorder,” in Introduction to Hardware Security
and Trust, pp. 65–102, Springer, 2012.

[81] U. Rührmair, J. Sölter, and F. Sehnke, “On the foundations of physical
unclonable functions,” Cryptology ePrint Archive, 2009.

[82] U. Rührmair, “Towards secret-free security,” Cryptology ePrint Archive,
2019.

[83] U. Ruhrmair, “Sok: Towards secret-free security,” in Proceedings of the
4th ACM Workshop on Attacks and Solutions in Hardware Security,
pp. 5–19, 2020.

[84] U. Rührmair, “Secret-free security: A survey and tutorial,” Journal of
Cryptographic Engineering, pp. 1–26, 2022.

[85] R. Maes and I. Verbauwhede, “Physically unclonable functions: A
study on the state of the art and future research directions,” Towards
Hardware-Intrinsic Security, pp. 3–37, 2010.

[86] K. T. Mursi, B. Thapaliya, Y. Zhuang, A. O. Aseeri, and M. S.
Alkatheiri, “A fast deep learning method for security vulnerability study
of xor pufs,” Electronics, vol. 9, no. 10, p. 1715, 2020.

[87] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.,” Psychological review, vol. 65,
no. 6, p. 386, 1958.

47

BIBLIOGRAPHY

[88] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas imma-
nent in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, 1943.

[89] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–
536, 1986.

[90] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip
code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[91] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2021.

[92] J. Tobisch and G. T. Becker, “On the scaling of machine learning attacks
on pufs with application to noise bifurcation,” in International Workshop
on Radio Frequency Identification: Security and Privacy Issues, pp. 17–
31, Springer, 2015.

[93] N. Wisiol, K. T. Mursi, J.-P. Seifert, and Y. Zhuang, “Neural-network-
based modeling attacks on xor arbiter pufs revisited.,” IACR Cryptol.
ePrint Arch., vol. 2021, p. 555, 2021.

[94] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri, “A machine learning-
based security vulnerability study on xor pufs for resource-constraint
internet of things,” in 2018 IEEE International Congress on Internet of
Things (ICIOT), pp. 49–56, IEEE, 2018.

[95] P. Santikellur, A. Bhattacharyay, and R. S. Chakraborty, “Deep learn-
ing based model building attacks on arbiter puf compositions.,” IACR
Cryptol. ePrint Arch., vol. 2019, p. 566, 2019.

[96] nils wisiol, “https://github.com/nils-wisiol/pypuf,” 2021.

[97] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “Puf modeling
attacks on simulated and silicon data,” IEEE transactions on informa-
tion forensics and security, vol. 8, no. 11, pp. 1876–1891, 2013.

[98] U. Rührmair and M. van Dijk, “Pufs in security protocols: Attack mod-
els and security evaluations,” in 2013 IEEE symposium on security and
privacy, pp. 286–300, IEEE, 2013.

48

BIBLIOGRAPHY

[99] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushan-
far, and W. Burleson, “Efficient power and timing side channels for phys-
ical unclonable functions,” in International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 476–492, Springer, 2014.

[100] U. Rührmair, U. Schlichtmann, and W. Burleson, “Special session: How
secure are pufs really? on the reach and limits of recent puf attacks,”
in 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1–4, IEEE, 2014.

[101] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, F. Koushanfar, and
W. Burleson, “Power and timing side channels for pufs and their effi-
cient exploitation,” Cryptology ePrint Archive, 2013.

[102] M. van Dijk and U. Rührmair, “Protocol attacks on advanced puf pro-
tocols and countermeasures,” in 2014 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1–6, IEEE, 2014.

[103] U. Rührmair, “On the security of puf protocols under bad pufs and pufs-
inside-pufs attacks,” Cryptology ePrint Archive, 2016.

[104] U. Rührmair, H. Busch, and S. Katzenbeisser, “Strong pufs: models,
constructions, and security proofs,” in Towards hardware-intrinsic secu-
rity, pp. 79–96, Springer, 2010.

[105] U. Rührmair, “Oblivious transfer based on physical unclonable func-
tions,” in International Conference on Trust and Trustworthy Comput-
ing, pp. 430–440, Springer, 2010.

[106] R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia, “Universally
composable secure computation with (malicious) physically uncloneable
functions,” in Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pp. 702–718, Springer, 2013.

[107] D. Dachman-Soled, N. Fleischhacker, J. Katz, A. Lysyanskaya, and
D. Schröder, “Feasibility and infeasibility of secure computation with ma-
licious pufs,” in Annual Cryptology Conference, pp. 405–420, Springer,
2014.

[108] U. Rührmair and M. v. Dijk, “Practical security analysis of puf-based
two-player protocols,” in International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 251–267, Springer, 2012.

49

BIBLIOGRAPHY

[109] U. Rührmair and M. van Dijk, “On the practical use of physical un-
clonable functions in oblivious transfer and bit commitment protocols,”
Journal of Cryptographic Engineering, vol. 3, no. 1, pp. 17–28, 2013.

[110] U. Rührmair, “Physical turing machines and the formalization of physi-
cal cryptography,” Cryptology ePrint Archive, 2011.

[111] F. Kappelhoff, R. Rasche, D. Mukhopadhyay, and U. Rührmair, “Strong
puf security metrics: Response sensitivity to small challenge perturba-
tions,” in 2022 23rd International Symposium on Quality Electronic De-
sign (ISQED), pp. 1–10, IEEE, 2022.

[112] memmap, “https://numpy.org/doc/stable/reference/generated/
numpy.memmap.html,” 2021.

[113] pvjosue, “https://github.com/pvjosue/pytorch convnd,” 2021.

[114] keras, “https://keras.io/api/,” 2021.

[115] C. Van Dusen, “Methods to prevent overwriting and solve ill-posed prob-
lems in statistics: Ridge regression and lasso,” Preprint submitted to
Colorado College Department of Mathematics September, vol. 16, 2016.

[116] kmursi, “https://github.com/kmursi/ml attack xor puf,” 2021.

[117] A. Mahmoud, U. Rührmair, M. Majzoobi, and F. Koushanfar, “Com-
bined modeling and side channel attacks on strong pufs.,” IACR Cryptol.
ePrint Arch., vol. 2013, p. 632, 2013.

[118] N. Wisiol, C. Mühl, N. Pirnay, P. H. Nguyen, M. Margraf, J.-P. Seifert,
M. van Dijk, and U. Rührmair, “Splitting the interpose puf: A novel
modeling attack strategy,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 97–120, 2020.

[119] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and
M. van Dijk, “The interpose puf: Secure puf design against state-of-
the-art machine learning attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 243–290, 2019.

[120] M. S. Alkatheiri and Y. Zhuang, “Towards fast and accurate machine
learning attacks of feed-forward arbiter pufs,” in 2017 IEEE Conference
on Dependable and Secure Computing, pp. 181–187, IEEE, 2017.

50

BIBLIOGRAPHY

[121] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–
1205, 2005.

51

